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Convolutional neural networks (CNNs) have received widespread attention due to their powerful modeling capabilities and have
been successfully applied in natural language processing, image recognition, and other felds. On the other hand, traditional CNN
can only deal with Euclidean spatial data. In contrast, many real-life scenarios, such as transportation networks, social networks,
reference networks, and so on, exist in graph data.Te creation of graph convolution operators and graph pooling is at the heart of
migrating CNN to graph data analysis and processing. With the advancement of the Internet and technology, graph convolution
network (GCN), as an innovative technology in artifcial intelligence (AI), has received more and more attention. GCN has been
widely used in diferent felds such as image processing, intelligent recommender system, knowledge-based graph, and other areas
due to their excellent characteristics in processing non-European spatial data. At the same time, communication networks have
also embraced AI technology in recent years, and AI serves as the brain of the future network and realizes the comprehensive
intelligence of the future grid. Many complex communication network problems can be abstracted as graph-based optimization
problems and solved by GCN, thus overcoming the limitations of traditional methods. Tis survey briefy describes the defnition
of graph-based machine learning, introduces diferent types of graph networks, summarizes the application of GCN in various
research felds, analyzes the research status, and gives the future research direction.

1. Introduction

AI has drawn the attention of the whole industry in recent years
as a frontier feld of scientifc research and has progressively
become a new engine for social and economic development [1].
NLP, computer vision, intelligent robots, data mining, cognition
and reasoning, and other disciplines of society have widely
practiced and implemented AI. Today’s network data trafc is
increasing dramatically due to the rapid expansion of smart
devices such as smartphones, smart automobiles, and smart
homes. Simultaneously, using technologies such as edge com-
puting, virtualization, and network slicing broadens network

services, improves user experience, and creates a more com-
plicated network environment. Te efcient management of
a large number of intelligent devices and the optimization of
resource allocation in large-scale and complex network envi-
ronments has emerged as a critical challenge for future network
growth. AI, as the future network’s brain, is employed for
network optimization and decision-making. Simultaneously,
increasing the computational capability of network nodes adds
bones and muscles to the network, allowing intelligent network
calculations to be performed [2]. Besides that, the image pro-
cessing feld is also improving day by day due to diferent high-
dimensional and complex images generated from diferent data
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sources. Deep learning applications have attracted great atten-
tion in the feld of image processing due to their ultrahigh
prediction accuracy in recognition applications, which is bound
to improve the performance of existing image processing sys-
tems and open up new application felds [3–5].

Te coordinated development of algorithms and com-
puting power will enable future applications to enter a new
era of intelligence. Graph data is a typical non-Euclidean
spatial data with complex correlations and interobject de-
pendencies [6]. Te traditional graph theory method is
difcult to adapt to the complex graph problems in the
future network. Terefore, fnding algorithms to solve
complex graph data to guide the resource allocation,
management, and scheduling of communication networks
has become an important scientifc problem in future net-
works. As an emerging technology in the feld of AI in recent
years, GNN has opened up a new space for processing
complex graph structure data. With the help of artifcial
intelligence technologies such as deep learning and re-
inforcement learning, GCN can quickly mine topological
information and complex features in graph structures and
have solved many major problems in the felds of computer
vision, recommendation systems, and knowledge graphs
[7, 8]. Terefore, the combination of GCN and the latest
advancement is an important way to solve real-world issues
efciently and efectively.

1.1. Signifcance of this survey. CNN has grown dramatically
in recent years, attracting worldwide attention due to its
remarkable modeling skills. In comparison to older
methods, the introduction of CNN has resulted in signifcant
advances in the disciplines of image processing and natural
language processing, such as machine translation, image
recognition, and speech recognition, among others [9].
Traditional convolutional neural networks, on the other
hand, can only deal with data in Euclidean space (such as
images, text, and speech), and the data in these domains is
translation invariant. Because of translation invariance, we
can build a globally shared convolution kernel in the input
data space, allowing us to defne a convolutional neural
network. Using picture data as an example, an image can be
represented as a set of regularly distributed pixels in Eu-
clidean space, and translation invariance means that local
structures of the same size can be produced with any pixel as
the center [10]. Based on this, the CNN develops meaningful
hidden layer representations for pictures by learning con-
volution kernels shared at each pixel and then models local
connections. Figure 1 depicts the distinction between non-
Euclidean and Euclidean space.

Although traditional CNN bring improvements in text
and image domains, they can only handle Euclidean space
data. At the same time, non-Euclidean spatial data: graph
data, has gradually attracted attention due to its ubiquity.
Graph data can naturally express data structures in real
life, such as transportation networks, World Wide Web,
and social networks. Diferent from image and text data,
the local structure of each node in graph data are diferent,
which makes the translation invariance no longer satisfed

[11]. Te lack of translation invariance poses a challenge
to defne CNN on graph data. In recent years, due to the
ubiquity of graph data, researchers have begun to focus on
how to construct deep-learning models on graphs. With
the help of the CNN’s ability to model local structures and
the ubiquitous node dependencies on the graph, the GCN
has become the most active and important algorithm.
Recently, some articles have emerged to explore and
summarize deep learning on graphs, but for the most
important branch, GCN, the in-depth discussion and
summary of its modeling methods and applications are
still an area that needs to be focused on. In this regard, in
this article, we deeply organize and summarize the de-
velopment history and future trends of GCN with ap-
plications developed recently in all felds of science. Te
challenges faced in the construction of GCN mainly come
from the following aspects:

(i) Graph data are non-European spatial data:
Graph data, as non-Euclidean spatial data, does not
satisfy translation invariance, which means that
each node has diferent local structures. Traditional
convolutional neural networks’ basic operators,
convolution and pooling, rely on data translation
invariance. At the moment, defning convolution
and pooling operators on graph data are
a difcult task.

(ii) Diferent characteristics of graph data:
Graph data can be used to represent a wide range of
real-world applications, such as social networks,
citation networks, and political relationships net-
works, all of which have unique characteristics that
can be represented by graph data. Positive and
negative tendencies are linked to signs, symbols, and
other indicators. GCNs are more difcult to design
because they have to model a wider range of graph
characteristics.

(iii) Graph data with large scale:
Large-scale graphs, such as user commodity net-
works and user networks in social networks, can be
used in practical applications with millions or even
tens of millions of nodes in them. Additionally, the
challenge of building a large-scale graph convolu-
tional neural network with acceptable time and
space constraints is a major one.

Euclidean Space
Non-Euclidean Space

Figure 1: Highlighting the diference between euclidean space and
non-euclidean space.

2 International Journal of Intelligent Systems



Te current survey’s primary focus is GCN, including its
variants and the most recent GCN trends. We specifcally
cover all of the most recent works that use the GCN in
various felds of science. We concentrate on works published
between the years 2000 and 2022. We used the PRISMA
(preferred reporting items for systematic reviews and meta-
analyses) framework guidelines to select GCN-related
publications. Papers were found through a variety of
sources of publishers, including Springer, IEEE, MDPI,
HINDWAI, WILEY, Elsevier, and ACM library. Articles
were searched with diferent titles as follows: “graph con-
volutional networks,” “graph networks,” “GCN,” “Graph
attention network,” “Attention-based Graph,” “GAT,”
“GATnet,” and “GraphQuery.” All the articles were searched
only in the English language in the selected time period. Te
main contributions of this survey are three-fold as follows:

(1) We provide a thorough analysis of GCN deep
learning techniques, including variants and ad-
vancements in GCN, applications, and current
trends in various felds of study, performance
measures, and so on

(2) A hierarchical and structural review of recent im-
provements in deep learning-based GCN techniques
is ofered, and the benefts and limitations of each
component for an efective GCN solution are
examined

(3) In order to provide intelligent, advice to the general
public, we discuss the obstacles and unresolved
concerns, as well as new trends and future directions

Figure 2 gives the complete structure of our survey. Tis
paper frstly introduces the basic model of GNN and several
important graph neural networks; secondly, it introduces the
specifc application methods of GNN in various felds of
research such as NLP, computer vision etc; in the conclusion
part, it discusses the current research status and gives the
future research direction.

2. GraphNeuralNetwork (GNN) and ItsVariant

GNNwas frst proposed by Gori et al. [12] and Scarselli et al.
[13] elaborated on this model in more detail. GNN proposed
by Gori et al. [12] draws on the research results in the feld of
neural networks, which can directly process graph structure
data, and its core is the local transfer function and the local
output function. Te local transfer function generates the
state vector of the node, which contains the neighborhood
information of the node. Te transfer function is shared
among all nodes and updates the node’s state vector h1
according to the input neighborhood, and its expression is as
follows:

hv � f xv, xevu,hu, xu( 􏼁. (1)

In the formula, xv is the feature of the node xevu is the
feature connecting the node v and its neighbor node u, xu is
the feature of the neighbor node of the node v. Te local
output function generates a new representation of the node,
and its expression is as follows:

ov � g hv, xv( 􏼁. (2)

Te stacking form of the local transfer function and
the local output function applied to all nodes constitutes
a GNN structure model that will eventually reach a stable
state through iteration. Te early graph neural network
has great limitations, its efciency is low, the compu-
tational cost is high, and the node characteristics. It is
difcult to afect the state after multiple updates. In
recent years, in order to process graph structure data
more efciently, new graph neural networks and appli-
cation studies have been proposed one after another.

2.1. Graph Convolutional Networks (GCNs). GCN in-
troduces convolution operation into graph structure and
is one of the most important GNNs at present. According
to the diferent feature extraction methods, it can be
divided into GCN based on spectral-domain and graph
convolution network based on the spatial domain. Te
graph convolution network are derived from graph
signal processing, and a flter is introduced to defne
graph convolution, which can be understood as re-
moving noise through a flter to obtain the classifcation
result of the input signal.

Based on the spectral graph theory, Bruna et al. frst
proposed the convolution layer function to defne the
spectral domain GCN [14]. Kipf and Welling [15] frst
proposed the concept of semisupervised GCN based on
the spectral domain (structure shown in Figure 3). Te
spectral domain graph convolution is defned as the
product of the signal and the flter function, and its
expression is as follows:

gθ ∗ x � UgθU
T
x. (3)

In the formula, gθ is the flter function, x is the signal of
the graph at the node, and U is the eigenvector of the
normalized Laplacian matrix of the graph. gθ can be un-
derstood as the eigenvalue function of the graph Laplacian
matrix, namely, gθ (Λ), where Λ is the diagonal matrix
composed of the eigenvalues of the graph Laplacian matrix,
and θ is the function parameter. In order to reduce the
computational complexity, gθ (Λ) can be approximated, and
its expression is as follows:

gθ′(Λ) ≈ 􏽘
k

k�0
θk
′Tk(L),

L �
2

λmax
L − IN,

L � IN − D− (1/2)AD− (1/2)
.

(4)

In the formula, Tk is the k-order Chebyshev polynomial,
θ′ is the Chebyshev coefcient vector, L is the graph Lap-
lacian matrix, λmax is the largest eigenvalue of L, IN is the
identity matrix, D is the opposite angle matrix, and A is an
adjacency matrix. When limiting k� 1, the convolutional
layer can be simplifed to as follows:
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g
∗
θx ≈ θ IN + D− (1/2)

AD− (1/2)
􏼐 􏼑x,

A � A + IN,

Dii � 􏽘
j

Aij.

(5)

Ten, the convolutional layer formula of the graph
convolutional network is as follows:

h(l)
� σ D− (1/2)AD− (1/2)h(l− 1)W(l− 1)

􏼒 􏼓. (6)

In the formula, σ(·) is the nonlinear activation function,
and w(l) is the l-th layer graph convolution of the weight
matrix of the network.

After the concept of GCN was proposed, new forms of
graph convolutional network models based on spectral-
domain have been proposed, such as AGCN [16], AGC
[17], and so on. However, the GCN based on the spectral
domain cannot handle directed graphs and has poor
scalability, while the GCN based on the spatial domain is
more fexible and general. Spatial domain-based graph
convolutional networks defne graph convolutions
according to the spatial relationships of nodes. NN4G
[17] is the earliest proposed GCN based on spatial do-
main, which realizes graph convolution by directly ac-
cumulating feature information of node neighborhood.
Te message passing neural network (MPNN) proposed
by Gilmer et al. [18] can be regarded as a general
framework for GCN based on the spatial domain. MPNN
decomposes the spatial domain convolution into two
processes: information transfer and state update, and it
takes the feature of node v as the initial state of the
hidden state, namely,

h(0)
v � xv, (7)

where xv is the feature of node v. Te hidden state update
formula of MPNN is as follows:

h(l)
v � Ul h(l− 1)

v , 􏽘
u∈N(v)

Ml h(l− 1)
v , h(l− 1)

u , xevu􏼐 􏼑⎛⎝ ⎞⎠, (8)

where l is the layer index, Ul (·) is the update function, and
Ml (·) is the information transfer function. After obtaining
the hidden representation of all nodes in the graph, the
representation of the entire graph can be generated by the
readout function

􏽢y � R h(l)
v |v ∈ G􏼐 􏼑, (9)

where R(·) is the readout function. By defning diferent
forms of update function, information transfer function
and readout function, MPNN can represent a variety of
spatial domain-based graph convolutional networks.
Typical spatial domain-based graph convolutional net-
works also include PATCHY-SAN [19], GraphSage [20],
and Difusion CNN [21].

Graph Neural Network Operational Methods

Spectral Method Spatial Method Recurrent Method Encoder Method

(i) GCN
(ii) ChebNet
(iii) S2GCN
(iv) GWNN
(v) DGCN

GAT
(i) Heterogeneous GAT
(ii) Hierarchical GAT
(iii) Relational GAT
(iv) GAAN

SGCN
GraphSAGE

(i) Heterogeneous GAT
(ii) Graph LSTM
(iii) T-GCN
(iv) RGCN
(v) GGRU
(vi) ARGCM
(vii) Variational Graph RNN

(i) GAE
(ii) Variational GAE
(iii) Graph Attention AE
(iv) Convolutional GAE
(v) Dirichlet Graph

Variational Autoencoder

GCN Applications

Medical Science

(i) AM-GCN
(ii) I2GCN
(iii) IDGCN
(iv) Hi-GCN
(v) GGAC
(vi) BDR-CNN-GCN
(vii) DGC

(i) RouteNet
(ii) Link Scheduling

GCN
(iii) VNE-HRL
(iv) GAE for VNE
(v) GNN to NFV

Communication
and Networking

Hyperspectral
Image Processing

(i) Non-local GCN
(ii) MSAGE-CAL
(iii) DGU-HIS
(iv) ACSS-GCN
(v) D2AGCN
(vi) S2RGANet

(i) A2GCN
(ii) DA-GCN
(iii) GraphRf
(iv) KR-GCN
(v) HS-GCN
(vi) DFM-GCN

Recommendation
and Prediction Computer Vision

(i) BLDNet
(ii) CPNet
(iii) GCN Denoiser
(iv) DSSN-GCN
(v) Split GCN
(vi) ST-GCN
(vii) MBBOS-GCN
(viii) View-GCN

(i) TGC-LSTM
(ii) DCRNN
(iii) STGCN

Transport and
Traffic System Bioinformatics

(i) HPOFiller
(ii) MolGAN
(iii) GCNG
(iv) HANRD
(v) DNA-GCN
(vi) PGCN

(i) Threshold GCN
GGNN

(ii) SRL GCN
(iii) AMR GCN

Natural Language
Processing

Figure 2: Hierarchically-structured taxonomy of this survey.
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Figure 3: Basic structural form of GCN.
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2.2. Graph Attention Network (GAT). GAT introduces an
attentionmechanism on the basis of GCN, which enables the
model to focus on the information most relevant to the
current task, thereby improving the performance of the
model. In spectral domain-based GCN, the flter function
depends on the Laplacian matrix, which is derived from the
graph structure, which makes the model trained on a specifc
graph cannot be directly applied to other graph structures.
To solve this problem, Velikovi et al. [22] proposed a new
type of graph neural network structure, namely, GAT, and
Figure 4 shows the attention mechanism of GAT.

Te GAT learns the average value of the neighborhood
features of each node in the graph and is diluted and
weighted according to the importance of the neighborhood.
Te graph attention layer is the key structure of GAT to
realize the attention mechanism. Te graph attention layer
takes the features of the nodes in the graph as input and
outputs another set of higher-level node features that may
have diferent cardinality. Te graph attention layer realizes
the conversion of input and output through the attention
coefcient obtained by the attention mechanism a. Te
attention coefcient represents the importance of node j to
node i, and its expression is as follows:

eij � a Wxi,Wxj􏼐 􏼑. (10)

In the formula, W is the weight matrix applied to all
nodes, representing the relationship between input features
and output features; xi and xj are the features of node i and
node j, respectively. Te model introduces the attention
mechanism into the graph structure by only calculating the
attention coefcients of nodes and their neighbors without
considering the structural information of the graph. To
simplify operations and facilitate comparison, the attention
coefcients are regularized and used to generate output
features as follows:

xi
′ � σ 􏽘

j∈N(i)

αijWxj
⎛⎝ ⎞⎠, (11)

where σ(·) is the nonlinear activation function; αij is the
regularized attention coefcient. GAT also introduces

a multihead attention mechanism similar to the transformer
architecture, which can perform parallel computing on
adjacent node pairs and stabilize the learning process. Te
complexity of the GAT method is low and it only pays at-
tention to the adjacent nodes without the information of the
whole graph, and it does not need to repeat the training
model when it is applied to the new graph structure. For
complex graph structures, some studies have proposed new
graph attention networks, such as heterogeneous GAT [23],
multirelational GAT [24], and spectral GAT [25]. Tese
models can be used in more complex and informative
networks to achieve better results.

2.3. Graph Autoencoder. GAE is an unsupervised learning
framework that can convert graph structures into low-
dimensional vectors and reconstruct graph structures us-
ing encoded information and is often used for graph em-
bedding (GE) and graph structure generation [26]. Graph
embedding is a graph representation learning (GRL) method
that aims to map graph structure data into low-dimensional
dense vectors while preserving node information. Graph
embedding enables graph-structured data to be more ef-
ciently applied to traditional machine learning algorithms to
achieve better results in tasks such as recommendation and
classifcation. Typical methods include random walk-based
graph embeddings, such as DeepWalk [27] and Node2Vec
[28] (Figure 5 shows the diference between DeepWalk and
Node2Vec), and graph embeddings based on matrix de-
composition, such as singular value decomposition (SVD),
locally linear embedding (LLE), and non-negative matrix
factorization (NMF). Compared with graph embeddings
based on the random walk and matrix factorization, graph
autoencoders can be applied to highly nonlinear graph
structures, preserving the nonlinear structure and complex
features of graphs. In 2014, Tian et al. [29] applied
autoencoders to graph data for the frst time, which took the
adjacency matrix of the graph or its variants as the original
node features and generated it by stacking sparse autoen-
coders (SAE).Te nonlinear embedding of the graph, that is,
the low-dimensional node representation. Structural deep
network embedding (SDNE) [30] is an important graph
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Figure 4: (a) Attention mechanism and (b) multihead attention mechanism.
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autoencoder model that also adopts the stacked autoencoder
structure. It maintains the local network structure and global
network structure of the graph through the frst-order
similarity and second-order similarity between nodes, re-
spectively. Multilayer nonlinear functions generate-graph
embedding vectors. Te hidden layer expression of SDNE
is as follows:

h(l)
v � σ W(l)xv + b(l)

􏼐 􏼑,

h(l)
v � σ W(l)h(l− 1)

v + b(l)
􏼐 􏼑,

(12)

where xv is the feature of node v,W(l) is the weight matrix of
the lth layer, and b(l) is the deviation of the lth layer. After
the fnal hidden layer output is obtained, the output rep-
resentation x’ can be obtained by inverting the calculation
process of the encoder. SDNE contains two loss functions, of
which the frst loss function adopts the idea of a Laplacian
feature map to preserve the frst-order similarity, and its
expression is as follows:

L1st � 􏽘

n

i,j�1
si,j‖ hi − hj ‖

2
2. (13)

In the formula, si,j represents the connection relation-
ship of the nodes in the graph, if and only when the node i is

connected with the node j, si,j > 0.Te second loss function is
used to maintain the second-order similarity, and a penalty
vector is introduced to impose a larger penalty on the re-
construction error of nonzero elements than zero elements.
Its expression is as follows:

L2nd � 􏽘
n

i�1
‖ xi
′ − xi( 􏼁 ∘ bi

����
����
2
2, (14)

where represents the Hadamard product. bi � bi,j􏽮 􏽯
n

j�1, si,j �

0, bi,j � 1, otherwise bi,j � β> 1. To maintain both frst- and
second-order similarity, the joint loss of SDNE is as follows:

Lmix � L2nd + αL1st + ]Lreg, (15)

where Lreg is the regularized L2 norm, which is used to
prevent overftting.

Another type of graph autoencoder uses variational
autoencoders (VAE) [31] to implement graph embedding,
which is an important generative model and can improve the
generalization ability of the model. VGAE [32] applies the
variational autoencoder to the graph structure, and its in-
ference model, namely, the encoder, utilizes a 2-layer GCN
structure, whose expression is as follows:

q(Z |X,A) � 􏽙
N

i�1
q zi |X,A( 􏼁, q zi X,A( 􏼁 � N zi μi

􏼌􏼌􏼌􏼌 , diag σ2i􏼐 􏼑􏼐 􏼑, (16)

where μ is the mean matrix of the encoder, log(σ) is the
variance matrix, X is the feature matrix, A is the adjacency
matrix, and zi is the random latent variable. Te generator
function of VGAE, the decoder, is derived from the inner
product of the hidden variables, and its expression is as
follows:

p(A|H) � 􏽙
N

i,j�1
σ hih

T
j􏼐 􏼑. (17)

2.4. Other Graph Neural Networks. In addition to graph
convolutional networks and graph attention networks,
commonly used graph neural networks also include gated
graph neural networks (GGNNs) and spatial-temporal
graph neural networks (STGNNs). Te gated graph neural
network is an improvement on the traditional graph neural
network architecture. By introducing the gated recurrent
unit (GRU) into the graph neural network, the performance
of the model in the long-term propagation of information is
improved. Te gated graph sequence neural network pro-
posed by Ruiz et al. [33], introduced the gated recurrent unit
into the information dissemination process and controlled
the iterative loop to a fxed number of steps and no longer
needed parameter constraints to ensure convergence. In
addition to this model, the gated graph neural network

model also includes GAAN [34] and so on. Te spatio-
temporal graph [30] is a graph structure that depicts the
interaction between entities in the spatial and temporal
dimensions. It has three basic elements: nodes, spatiotem-
poral edges, and temporal edges. Te feature matrix in the
high-dimensional feature space will change with time. Te
spatiotemporal graph neural network can learn the hidden
patterns in the spatiotemporal graph, and obtain the feature
information of the time domain and the spatial domain in
the graph structure at the same time. Spatiotemporal graph
neural networks can be divided into methods based on
recurrent neural networks (RNNs) and methods based on
convolutional neural networks (CNNs). RNN-based
STGNN captures spatiotemporal correlations through
graph convolution. Compared with the RNN-based method,
the CNN-based STGNN processes the spatiotemporal graph
in a nonrecursive way, which can perform parallel com-
putation and avoid the problem of gradient explosion or
gradient disappearance, such as CGCN.

2.4.1. Graph Convolutional Neural Network Spectral Method.
Te lack of translation invariance on graphsmakes it difcult
to defne convolutional neural networks in the node domain.
Te spectral method uses the convolution theorem to defne
graph convolution from the spectral domain. We frst give
some background on the convolution theorem.
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(1) Graph signal processing:
Convolution theorem: the Fourier transform of the
signal convolution is equivalent to the product of the
signal Fourier transform [35]as follows:

F(f × g) � F(f) · F(g). (18)

Among them, f, g represents the two original signals,
F (f ) represents the Fourier transform of f, · repre-
sents the product operator, and ∗ represents the
convolution operator. Perform inverse Fourier
transform on both sides of (1), we can get

f∗g � F
− 1

(F(f) · F(g)). (19)

Among them, F− 1(f) represents the inverse Fourier
transform of the signal f. Using the convolution theo-
rem,we canmultiply the signal in the spectral space, and
then use the inverse Fourier transform to convert the

signal to the original space to realize the graph con-
volution, thus avoiding the convolution caused by the
graph data not satisfying the translation invariance.
Defne difcult problems. Te Fourier transform on the
graph depends on the Laplacianmatrix on the graph. In
the following, we will give the defnition of the Fourier
transform on the graph.
Te defnition of the Fourier transform on the graph
depends on the eigenvectors of the Laplace matrix.
Taking the eigenvectors as a set of bases in the
spectral space, the Fourier transform of the signal x
on the graph is as follows:

􏽢x � U
T
x. (20)

Among them, x refers to the original representation
of the signal in the node domain. 􏽢x refers to the
representation of the signal, x transformed into the
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Figure 5: (a) DeepWalk and (b) Node2Vec.
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spectral domain, and UT represents the transposition
of the eigenvector matrix, which is used for Fourier
transform. Te inverse Fourier transform of the
signal x is as follows:

x � U􏽢x. (21)

Using the Fourier transform and inverse transform
on the graph, we can implement the graph convo-
lution operator based on the convolution theorem as
follows:

x
∗
Gy � U U

T
x􏼐 􏼑⊙ U

T
y􏼐 􏼑􏼐 􏼑. (22)

Among them, G
⋆

represents the graph convolution
operator, x, y represents the signal of the node domain
on the graph, and ⊙ represents the Hadamard multi-
plication, which represents the multiplication of the
corresponding elements of the two vectors. We replace
the vector UTy with a diagonal matrix gθ, then
Hadamard multiplication can be transformed into
matrix multiplication.

(2) Graph convolutional neural network based on
convolution theorem.
Spectral convolutional neural network (Spectral
CNN) [36] is the earliest method to construct
a convolutional neural network on the graph. Tis
method uses the convolution theorem to defne the
graph convolution operator at each layer and passes
the gradient under the guidance of the loss function.
Back-pass learning convolution kernel, and stack
multiple layers to form a neural network. Te
structure of the mth layer of the spectral convolu-
tional neural network is as follows:

X
m+1
j � h U 􏽘

i�1
F

m
i,jU
⊤

X
m
i

⎛⎝ ⎞⎠, j � 1, · · · , q. (23)

Among them, p, q are the dimensions of the input
feature and output feature, respectively, Xm

i ∈ R
n rep-

resents the ith input feature of the node in the mth layer
on the graph, Fmi,j represents the convolution kernel in
the spectral space, and h represents the nonlinear ac-
tivation function. In the spectral convolutional neural
network, such a layer structure transforms the features
from p-dimensional to q-dimensional, and based on the
convolution theorem, graph convolution is realized by
learning the convolution kernel.

Te spectral convolutional neural network applies the
convolution kernel to the input signal in the spectral space,
and uses the convolution theorem to realize graph convo-
lution to complete the information aggregation between
nodes, and then applies the nonlinear activation function to
the aggregation result and Stack multiple layers to form
a neural network. Te model does not satisfy the locality, so
the locality of the spectral convolutional neural network is
not guaranteed; that is, the nodes that generate information
aggregation are not necessarily adjacent nodes.

Te original intention of modeling a GCN is to use the
graph structure to describe the information aggregation of
adjacent nodes, and the spectral convolutional neural net-
work introduced previously does not satisfy locality. Re-
cently, graph wavelet neural network (GWNN) [37]
proposed to use of the wavelet transform instead of Fourier
transform to realize the convolution theorem.

Te wavelet neural network pointed out that, similar to
the Fourier transform, the wavelet transform also defnes
a method to transform the signal from the nodal domain to
the spectral domain. Here, we use ψs � ψs1 · ψs2, · · · ,ψsn􏼈 􏼉 to
represent the basis of wavelet transform, where ψsi repre-
sents the energy difusion from the ith node, which describes
the local structure of the ith node. Te defnition of the
wavelet basis depends on the eigenvectors of the Laplace
matrix, namely, ψs � UGsU

T, where Gs � diag ( gs(λi)􏼈 􏼉
n
i�1),

and the diagonal elements are obtained by applying the g

function to the eigenvalues. Diferent g functions endow the
wavelet base with diferent properties. In the wavelet neural
network, the author uses the thermal kernel function,
gs(λi) � esλi .

Taking ψs as the base of the spectral space, the trans-
formation matrix of the inverse wavelet transform in the
fgure isΨ− 1

s � UGsU
T, where G-s represent the replacement

of the previous g function with g− s(λi) � esλi .
Compared with the Fourier transform, the basis of the

wavelet transform has several good properties: (1) the basis
of the wavelet transform can be obtained by the Chebyshev
polynomial approximation, avoiding the high cost of the
Laplace matrix eigen decomposition, (2) the wavelet the
transformed basis has locality, and (3) the locality of the
wavelet basis makes the wavelet transform matrix very
sparse, which greatly reduces the computational complexity
of Ψ− 1

s x and makes the calculation process more efcient.
Te parameter s is used to represent the range of heat
difusion, and it can be fexibly adapted to diferent task
scenarios by adjusting the hyperparameters.

Using the wavelet transform on the graph to replace the
Fourier transform, the mth layer structure of the wavelet
neural network is defned as follows:

X
m+1
j � h Ψs 􏽘

p

i�1
F

m
i,jΨ

− 1
s X

m
i

⎛⎝ ⎞⎠, j � 1, · · · , q. (24)

Compared with the spectral convolutional neural net-
work, the wavelet neural network replaces the Fourier
transform with the wavelet transform; that is, it replaces U
and UT with Ψ and Ψ− 1

s . Under such a set of wavelet bases,
the graph convolutional neural network satisfes locality, and
the computational complexity of the graph convolutional
neural network is greatly reduced due to the accelerated
computation and sparseness of the wavelet base. In addition
to wavelet neural networks, there are also some works
dedicated to realizing locality and accelerated computation
of graph convolutional neural networks, but diferent from
the way wavelet neural networks replace the substrate, these
works achieve locality by parameterizing convolution ker-
nels, while reducing parameter complexity and computa-
tional complexity.
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GraphHeat [38] analysed the previous spectral methods
from the perspective of flters and pointed out that spectral
convolutional neural networks are nonparametric flters,
while Chebyshev networks and frst-order graph convolu-
tional neural networks are high-pass flters. However, this is
inconsistent with the smoothness prior to the task of graph
semisupervised learning. Based on this, the graph thermal
kernel network uses the thermal kernel function to pa-
rameterize the convolution kernel and then implements
a low-pass flter.

2.4.2. Spatial Method of Graph Convolutional Neural
Network. In contrast to the previous methods, which all
start from the convolution theorem to defne graph con-
volution in the spectral domain, the spatial method aims to
start from the node domain and aggregate each central node
and its adjacent nodes by deriving an aggregation function
from each central node. Te defnition of the general
framework draws attention to the fundamental problems of
graph convolutional networks and provides a platform for
a comparative analysis of previously published work in the
feld. Two recent papers aim to defne a general framework
for graph convolutional networks by combining their re-
spective contributions. In particular, hybrid convolutional
networks (MoNet) [20] concentrate on the lack of trans-
lation invariance on graphs and map the local structure of
each node by defning a mapping function, which is then
applied to each node. Message propagation networks
(MPNNs) [18], on the other hand, are based on the ag-
gregation of information propagation between nodes and
propose a framework by defning a general form of the
aggregation function. Te lack of translation invariance
makes it difcult to defne graph convolutional neural
networks, which is a necessary but not sufcient condition.
When applied to a graph, hybrid convolutional networks
defne an orthogonal coordinate system and represent the
relationship between nodes as a low-dimensional vector in
the new orthogonal coordinate system. At the same time, the
hybrid convolutional network defnes a set of weight
functions that can be used to train the network. Te weight
function acts on all adjacent nodes centered on a node. Te
input is the relationship between nodes (a low-dimensional
vector), and the output is a scalar value. With this cluster of
weight functions, the hybrid convolutional network obtains
a vector representation of the same size for each node as
follows:

Dj(x)f � 􏽘
y∈N(x)

wj(u(x, y))f(y), j � 1, · · · , J.
(25)

Among them, N(x) represents the set of adjacent nodes
of x, f (y) represents the value of the node y on the signal f,
u(x, y) represents the node under the coordinate system u,
the low-dimensional vector representation of the relation-
ship, wj represents Te jth weight function, and J represents
the number of weight functions. Tis step makes each node
get a J-dimensional representation, and this representation
integrates the local structure information of the node. Te

hybrid convolution model defnes the shared convolution
kernel on this J-dimensional representation

f
∗
Gg( 􏼁(x) � 􏽘

j

j�1
g(j)Dj(x)f. (26)

Diferent from the hybrid convolutional network, the
message propagation network points out that the core of
graph convolution is to defne the aggregation function
between nodes. Based on the aggregation function, each
node can be represented as the information superposition of
surrounding nodes and itself.Terefore, this model proposes
a general framework for graph convolutional networks by
defning a general aggregation function. Te message dis-
semination network is divided into two steps. First, the
aggregation function is applied to each node and its adjacent
nodes to obtain the local structural expression of the node;
then, the update function is applied to itself and the local
structural expression to obtain the new express

m
t+1
x � 􏽘

y∈N(x)

Mt h
t
x, h

t
y, ex,y􏼐 􏼑, h

t+1
x � Ut h

t
x, m

t+1
x􏼐 􏼑.

(27)

Among them, ht
x represents the hidden layer representation

of the node x in the t-th step, ex,y represents the edge feature of
the nodes x, y,Mt represents the aggregation function in the t-th
step, mt+1

x represents the local structure expression obtained by
the node x after passing the aggregation function, and Ut

represents the update function of the t-th step. Using the
previously mentioned aggregation function and update function
to designate each layer of the neural network, each node can
continuously update itself with information from its own and
neighboring nodes as the source information, and then obtain
a new expression that is dependent on the local structure of the
node. Some methods, such as those described previously, no
longer rely on Laplacian matrices but instead design neural
networks for learning aggregation functions in the context of the
spatial framework. Aggregate functions learned through these
methods can be tailored to specifc tasks and graph structures,
resulting in greater adaptability and fexibility. Diferent
methods of Graph approach are summarized below in Table 1:

3. Applications of GCN

Researchers have been paying close attention to the graph
convolutional neural network since it was frst proposed,
particularly in the felds of network analysis, recommender
systems, biochemistry, trafc prediction, computer vision,
and natural language processing, among others. It is not only
traditional machine learning felds such as computer science,
artifcial intelligence, and signal processing that can beneft
from graph convolutional neural networks but also in-
terdisciplinary research felds such as physics, biology,
chemistry, and the social sciences that can beneft from this
technology. Diferent felds contain a variety of diferent
graph data, and the relationship between nodes and edges is
also diferent. How to combine domain knowledge to model
the given graph data using GCN is a key issue in the ap-
plication of GCN.
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3.1. GCN in Communication Network. Te previous graph
neural network method has the ability to deal with complex
communication network problems and has been applied to
network function virtualization, wireless network resource
allocation, network modeling, and performance analysis.
Software-defned network (SDN) and network functions
virtualization (NFV) have been researching hotspots in the
feld of communication networks in recent years. SDN
separates the control plane and forwarding plane of the
network.

Obtain the topology and resource information of the
entire network. NFV uses virtualization technology to
separate network functions from traditional hardware de-
vices, which improves the fexibility of network confgura-
tion. GNN can be used to solve problems in SDN and NFV
that need to explore graph structures, such as dynamic
resource allocation, service function chain (SFC) estab-
lishment, and virtual network embedding (VNE). Rafq et al.
proposed a supervised learning method for SFC trafc
prediction. Te method uses GNN to map the input his-
torical trafc to the output predicted trafc and adjust the
resource allocation accordingly. Te graph neural network
of this model trains 2 functions: the transfer function of the
point and the output function. Te transition function of
node n inputs the features of n, all adjacent edge features, all
adjacent node features and states, and outputs the state of
node n. Te output function computes nodes based on the
state and characteristics of the point’s output [39]. Li et al.
[40] used GNN to predict NFV resource requirements so as
to obtain advanced information about upcoming requests
and improve the efectiveness of SFC reconstruction algo-
rithms based on deep reinforcement learning. Network
trafc migration is also an important branch of dynamic

resource allocation. Sun et al. [41] proposed a method for
NFV network trafc migration using GNN and deep re-
inforcement learning. Te method maps the input network
topology to the output network topology after migration,
which is used to realize the expansion of network trafc,
reduction, and load balancing. Te essence of the SFC dy-
namic resource allocation problem is the transformation of
the topology structure, the optimization goal is the total end-
to-end delay, and there are no complex constraints, so it is
easy to use GNN to solve.

Te virtual network mapping problem is similar to
the SFC establishment problem, but the network request
and resource constraints are more complicated. VNE
problems are divided into node mapping and link
mapping. Te existing methods of GNN to solve the VNE
problem mainly focus on the node mapping. Habibi et al.
[42] proposed a method of using GAE to assist VNE
physical node classifcation. Te input of the model is the
adjacency matrix and the resource feature matrix, and
a supervised learning model that can reconstruct the
network topology is trained through the graph neural
network. Yan et al. [43] proposed to use of GCN com-
bined with deep reinforcement learning to complete the
node classifcation task. Tis method uses actor-critic
reinforcement learning, in which GCN is used to extract
physical node features, and the features extracted from
physical nodes and virtual network requests are fused
through feed-forward neural networks (FF), and fnally,
the probability of mapping nodes is obtained. In fact, for
the SFC establishment and VNE problems of large-scale
complex networks, considering the complexity of node
and link resources and optimization objectives, graph
neural networks are powerful tools for extracting

Table 1: Diferent graph-based approaches.

Method Description

GAE

GAE is an unsupervised learning framework that can convert graph structures into
low-dimensional vectors and reconstruct graph structures using encoded

information and is often used for graph embedding (GE) and graph structure
generation [26]. Graph embedding is a graph representation learning (GRL)

method that aims to map graph structure data into low-dimensional dense vectors
while preserving node information. Graph embedding enables graph-structured
data to be more efciently applied to traditional machine learning algorithms to

achieve better results in tasks such as recommendation and classifcation

GAT

GAT introduces an attention mechanism on the basis of GCN, which enables the
model to focus on the information most relevant to the current task, thereby

improving the performance of the model. In spectral domain-based GCN, the flter
function depends on the Laplacian matrix, which is derived from the graph

structure, which makes the model trained on a specifc graph cannot be directly
applied to other graph structures

GCN

GCN introduces convolution operation into graph structure and is one of the most
important GNNs at present. According to the diferent feature extraction methods,
it can be divided into GCN based on spectral-domain and graph convolution

network based on the spatial domain

STGNN

RNN-based STGNN captures spatiotemporal correlations through graph
convolution. Compared with the RNN-based method, the CNN-based STGNN
processes the spatiotemporal graph in a nonrecursive way, which can perform
parallel computation and avoid the problem of gradient explosion or gradient

disappearance, such as CGCN
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topological information, with the potential to provide
faster and more optimized solutions.

With the rapid development and application of tech-
nologies such as 5G, the Internet of Tings, and edge
computing, the problem of resource allocation in wireless
networks has become more and more important. Trough
the efective allocation of resources, various optimization
goals can be achieved in diferent application scenarios, and
the utilization rate of network resources can be improved.
Te problem with wireless power control is how to de-
termine the transmit power of each transmitter so that the
network can achieve the overall optimal signal-to-noise
ratio. Its basic model is an optimization problem with
constraints. Te optimization target is the weighted sum of
the ratio of signal to interference plus noise, and the con-
straint is the transmit power of the base station or equip-
ment. Shen et al. [44] proposed to represent the multiuser
wireless channel with a complete graph and used GNN to
solve the power control problem. Te node of the complete
graph is a transceiver pair, and the node features include the
direct channel state and weight; the link of the graph is the
interference channel, and the link feature is the interference
channel state. Te method trains the transfer function and
output function through GCN to output the optimal
transmit power of each transmitter. Considering the situ-
ation of base stations and users in practical problems, Guo
and Yang [45] proposed a method to solve the power control
problem in heterogeneous networks. Te nodes of this
model include two kinds of heterogeneous nodes: base
station and user. Heterogeneous nodes use diferent transfer
functions and use parameter sharing to obtain output re-
sults. Te wireless power control problem is not an intuitive
graph structure problem, so it is necessary to transform the
problem into a graph structure through modeling, and then
use the GNN model to solve it.

Nakashima et al. [46] used GCN based on deep re-
inforcement learning to extract the features of the channel
vector with topological information, and then generate the
channel deployment strategy. Tis method can perform
channel allocation in densely deployed wireless local area
networks, thereby improving system throughput. Yan et al.
[43] proposed an energy-saving topology control algorithm
based on GCN, which uses GCN to imitate the maximum
spanning tree algorithm for link prediction, and introduces
new edges into the topology according to the probability
graph, which optimizes the wireless network in 5G and B5G
environments.

Network modeling and performance analysis is a fun-
damental problem to realize an efcient communication
network. As mentioned previously, GNN can be used for
resource optimization of wired and wireless networks.
Various resources in the network are allocated to devices
through optimization strategies. Terefore, an efcient
network model is urgently needed to evaluate the quality of
resource allocation. Rusek et al. [47] proposed RouteNet,
which uses GNN to accurately evaluate the end-to-end delay
and packet loss of network paths. RoutNet takes network
topology, trafc matrix, and end-to-end path as input, and
outputs performance evaluation indicators (delay, jitter,

packet loss, etc.) according to the network state. RouteNet
contains a multilayer information transfer neural network,
uses RNN as the transfer function, compresses the link and
path information into the hidden state vector, and fnally
obtains the evaluation index value of the path through the
output function. RouteNet is used for the following two
example problems: (1) routing optimization based on net-
work delay and packet loss and (2) network topology up-
grade with budget constraints.

Routing is an ancient and core optimization problem in
the feld of communication networks. Artifcial intelligence
algorithms have been used for network routing. Geyer et al.
[48] proposed to use of GNN to learn distributed routing
algorithm. Tis method abstracts the router interface as
a point in the topology and uses GNN to train the hidden
node information so that each node has a local represen-
tation of the graph topology. Tis method is a rare
distributed-oriented GNN application. Secure network
communication relies heavily on encrypted network trafc,
and it can help protect sensitive data and maintain its in-
tegrity. However, it obscures the data’s characteristics,
makes it more difcult to identify malicious trafc, and
shields such activity from detection. Consequently, en-
cryption alone cannot guarantee fundamental information
security. It is also important to keep an eye out for suspicious
activity by monitoring trafc. Trafc classifcation methods
based on statistical features and graphs are currently the
most widely used. Te limitations of these two approaches
make them unreliable when used to detect malicious trafc
that is encrypts its contents. Prior to this, the external
connections between the network fows were not considered
at all in the analysis. Te latter, on the other hand, is
completely the opposite. GCN model called GCN-ETA is
proposed by [49] which considers the statistical features
(internal information) of network fows and the structural
information (external connections) between them to identify
malicious trafc. GCN-ETA has two parts: an improved
GCN feature extractor and a decision tree classifer. It is
possible to enhance the efectiveness and speed of detecting
malicious encrypted trafc by modifying the traditional
GCN, and this can be used as a model for the imple-
mentation of GCN in similar scenarios [50]. Te design of
poisoning-resistant graph neural networks is extremely
difcult, and several attempts have been made in the past.
Existing research attempts to reduce the negative impact of
adversarial edges only with the poisoned graph, which is
suboptimal because they fail to distinguish between
adversarial and normal edges. Tang et al. developed
PA-GNN relies on a penalized aggregation mechanism that
directly restricts the negative impact of adversarial edges by
assigning them lower attention coefcients [51]. Pan et al.
proposed the trafc classifcation method using GCN and
LSTM, which low labeled sample for model classifcation
and getting better accuracy using GCN [52].

3.2. GCN in Medical Imaging. Coronavirus 2019 (COVID-
19) disease chest computed tomography (CT) scans are
typically derived from multiple datasets gathered from
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various medical centers, with images sampled using a variety
of acquisition protocols. However, while combining datasets
from multiple sites increases sample size, it is hampered by
intercenter heterogeneity, which makes comparisons dif-
cult. Te following steps are proposed by Song et al. [53] for
diagnosing COVID-19 using an augmented multicenter
graph convolutional network to address this issue: (AM-
GCN). Amgen’s convolutional neural network (AM-GCN)
extracts features from initial CT scans using a 3-D CNN,
which is supplemented by a ghost module and a multitask
framework to improve the network’s performance. Tis
study uses the extracted features to construct a multicenter
graph that takes into account intercenter heterogeneity, as
well as the disease status of training samples, as described in
the following section. In addition, the AM-GCN algorithm
employs an augmentation mechanism to increase the
number of training samples, resulting in an augmented
multicenter graph.Tis method achieved a mean accuracy of
97.76 percent based on 2223 COVID-19 subjects and 2221
normal controls from seven medical centers.

Given the high cost of exhaustively annotating 3D data,
a more sustainable approach would be to develop diagnosis
algorithms using only patient-level labels. Chen et al. [54]
proposes the Instance Importance-aware GCN (I2GCN) for
multi-instance learning (MIL), motivated by the fact that 2D
slices of 3D data exhibit explicit diagnostic efcacy. To be
more precise, this study begins by calculating the instance
importance of each slice for diagnosis using a preliminary
MIL classifer, which is then used to promote the refned
diagnosis branch. Create the instance importance-aware
graph convolutional layer (I2GCLayer) in the refned di-
agnosis branch to exploit complementary features in both
importance-based and feature-based topologies. Addition-
ally, to address the defcient supervision of 3D datasets, the
importance-based subgraph augmentation (SGA) technique
was proposed to efectively regularize framework training.

Zhu et al. [55] developed Interpretable Dynamic GCN
(IDGCN) to enhance the performance of personalized
alzheimer’s disease diagnosis and to generate interpretable
results. Tis is accomplished through the incorporation of
interpretable feature leaning and dynamic graph leaning into
a GCN architecture. More precisely, interpretable feature
learning ensures that diagnosis results are interpretable, and
preclassifcation ensures that selected features are
classifcation-oriented. Additionally, by adjusting the similar
and dissimilar correlations of all objects, dynamic graph
learning dynamically updates the graph structure for GCN
to produce superior diagnosis results. Tus, by optimizing
feature learning, graph learning, and the GCN simulta-
neously, the proposed disease diagnosis method not only
generates reliable personalized diagnoses but also provides
interpretability for diagnosis results. Similarly, Jiang et al.
[56] proposed a hierarchical GCN framework (called hi-
GCN) to learn the graph feature embedding, while con-
sidering the network topology information and subject’s
association at the same time. Memory, thinking, behavior,
and emotion are all afected by dementia, which is a term
used to describe progressive brain syndromes. A dementia
patient’s ability to carry out everyday tasks may deteriorate,

and they become increasingly dependent on their caregivers.
As a result, spotting the early signs of cognitive decline and
alerting caregivers and doctors would be benefcial. Arfoglu
et al. [57] used GCN to recognize activities and fag ab-
normal behavior related to dementia.

Figure 6 shows a standardized approach implemented by
diferent studies for the classifcation of medical images. For
medication recommendation and lab test imputation, Mao
et al. [58] developed MedGCN, a machine learning
framework based on MedGraph. Te framework can be
applied to a wide range of medical procedures. MedGCN
built a graph to associate four diferent types of medical
entities, namely patients, encounters, lab tests, and medi-
cations, and then used a graph neural network to learn node
embeddings for medication recommendation and lab test
imputation. Shi et al. [59] proposed a new method called
cell-graph convolutional neural network (CGC-Net) that
converts each large histology image into a graph in which
each node is represented by a nucleus within the original
image and cellular interactions are denoted as edges between
these nodes based on node similarity. To improve the al-
gorithm’s performance, the CGC-Net employs nuclear ap-
pearance features in addition to spatial node location. Zhang
et al. [60] proposed a BDR-CNN-GCN model using batch
normalization with CNN and GCN to get an accurate
classifcation of breast disease. Yin et al. [61] create a novel
multi-instance deep learning method for building a robust
classifer by treating multiple 2D ultrasound images of each
individual subject as multiple instances of the same bag.
Convolutional neural networks (CNNs) are used in this
method to learn instance-level features from 2D US kidney
images, and GCNs are used to further optimize the instance-
level features by exploring potential correlations among
instances of the same bag. Tis study also use full-connected
neural networks (FCNs) to learn bag-level features using
gated attention-based MIL pooling. Table 2 gives a detailed
comparison of diferent approaches using graphs.

3.3. GCN for Recommendation and Prediction. In today’s
web platforms and applications, recommender systems are
widely used as important tools to alleviate information
overload and improve user experience. Tey are now widely
deployed. It is a hot topic right now to take more user
preferences into account when making recommendations.
Although the systems often choose “click” or “purchase” as
the optimization target in real-world information systems,
there are also various types of user behaviors, such as view
and add-to-cart. Users have the option of viewing, adding to
a cart, and ultimately purchasing any item. In order to create
a more precise recommender system, data on a user’s diverse
behaviors is crucial. Before this study, researchers would
typically use a default value (i.e., “other”) to represent the
missing attribute, which resulted in suboptimal perfor-
mance. In order to address this issue, Liu et al. propose an
attribute-aware attentive graph convolution network that is
both fast and accurate (A2-GCN) [20]. Te A2-GCN al-
gorithm, in particular, begins by constructing a graph in
which nodes represent users, and items represent attributes.

12 International Journal of Intelligent Systems



Following that, A2-GCNmakes use of the graph convolution
network to characterize the complex interactions among the
participants. Tis model also employs the message-passing
strategy to aggregate the messages passed from the other
types of nodes that are directly linked in order to learn the
node representation (see Figure 2) (e.g., a user or an at-
tribute). Guo et al. used a similar approach and developed
a domain-aware GCN (DA-GCN) model, which links users
and items in each domain as a graph [67]. Shehnepoor et al.
used GCN for a recommendation of fraudster detection in
rating the user profle and proposed a HIR-RNN algorithm
[68]. Tis algorithm performs two tasks i.e., prediction of
user rating and fraudster detection based on user behavior.

Knowledge graphs (KGs) when combined with a rec-
ommendation system are helpful for providing the ex-
plainable recommendation. Ma et al. proposed knowledge-
aware reasoning with graph convolution network (KR-
GCN) which integrates user-item interactions and knowl-
edge graphs into a heterogeneous graph, which is performed
with the GCN [69]. Social data are much more important for
getting a recommendation about the product, and Yu et al.
proposed an enhanced social recommendation system based
on GCN, which solves the problem of limited neighbors,
noisy social relationships, and heterogeneous neighbors
[70]. Tis model use an autoencoder to augment the data by
encoding the high-order and complex connectivity patterns
[71]. To extract the relationship between indirect instances
between users and items, hamming similarity model is
proposed by Liu et al. named hamming spatial graph
convolutional networks (HS-GCNs). Xiao et al. proposed
a GCN model for a recommendation system using a deep
graph neural network named DeepFM graph convolutional
network (DFM-GCN) [72]. DFM-GCN is mainly focused on
solving the problem of cold start and data sparseness, which
is solved by getting the interactive information between the
nodes and the representation of items as vector nodes in
GCN. Tere are many types of interaction data that can be
generated by users, but traditional studies on recommender
systems tend to focus on just one type of user behavior (the
optimization target, for example, purchasing) (e.g., view,
click, add-to-cart, and so on). Well-structured information
can be derived from heterogeneous multi-relational data,

and this information can be used to make excellent rec-
ommendations. As a result, early attempts to leverage these
heterogeneous data fail to capture the high-hop structure of
user-item interactions, which are insufcient to make full
use of them and may only deliver limited recommendation
performance. Graph heterogeneous collaborative fltering
(GHCF) explores the high-hop heterogeneous user-item
interactions; this study takes the advantages of graph con-
volutional network (GCN) and further improves it to jointly
embed both representations of nodes (users and items) and
relations for multirelational prediction data sparsity issue is
further solved by Tang et al. by developing multigraph
collaborative fltering (DMGCF) model to mine and reuse
side information. Tis method generates multiple graphs
with a dynamic evolution mechanism to simulate side in-
formation for better performance, especially when side in-
formation is unavailable [73].

Monti et al. [74] combined a multi-graph convolutional
neural network with a recurrent neural network, in which
the multigraph convolutional neural network was used to
extract locally stationary features, and the recurrent neural
network could difuse the fractional values and reconstruct
the matrix. Zhang et al. [75] modeled the recommender
system as a link prediction problem on graphs and proposed
a graph self-encoding framework based on diferent message
propagation to model the bipartite graph of the recom-
mender system and achieved the best results on data in-
cluding social networks good result. Yang et al. [76] applied
convolutional neural networks to recommender systems and
proposed a data-efcient graph convolutional neural net-
work algorithm MultiSage to generate embedded repre-
sentations for commodity nodes. Tese expressions contain
graph structure and node feature information. Compared
with the traditional graph convolution method, it proposes
an efcient random walk strategy to model convolution,
designs a new training strategy, and successfully integrates
graph convolution neural networks. Te network is applied
to a superlarge-scale recommendation system with 1 billion
nodes. Wang et al. [77] proposed the RippleNet framework,
which introduced knowledge graph information to improve
the performance of the recommender system. Liao et al. [78]
proposed the SocialLGN framework, which includes three

Lungs Dataset

Image Dataset
COVID-19 Images

Brain Tumor Images etc

Image Preprocessing
Augmentation,

Segmentation, feature
extraction etc

GCN, GAT, GraphSAGE
or other hybrid Graph
based approaches for

classification

Prediction and
classification of

diseases

Figure 6: Medical image classifcation using GCN.
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parts: user modeling, commodity modeling, and scoring
prediction. Using the attention mechanism, the user’s in-
teraction information and the user’s social network in-
formation are efectively modeled.

Te graph convolutional neural network is considered to
be able to model the structural attributes and node feature
information of the graph well, and the recommendation
system can be regarded as either a matrix completion
problem or a bipartite graph (users and items) for the link
prediction problem. Compared with traditional methods,
graph convolutional neural networks can better utilize the
information of user attributes and product attributes that are
ubiquitous in recommender systems, which is why graph
convolutional neural networks can attract widespread at-
tention in recommender system tasks. Table 3 highlights the
latest progress in recommendation and prediction using the
graph-based methods.

3.4. GCN for Hyperspectral Data. Hyperspectral techniques
have been greatly improved by the rapid growth of optics
and spectroscopy. A considerable quantity of important
information can be captured using hyperspectral images,
which are images that containmany contiguous bands. It has
been used in a variety of disciplines, including military target
identifcation, vegetation monitoring, and disaster pre-
vention and control throughout the past few decades [4].
Various algorithms have been proposed so far for catego-
rizing the pixels of a hyperspectral image into specifc land-
cover categories. Te early-stage approaches rely heavily on
traditional pattern recognition methods such as K-nearest
neighbor classifers and linear classifers. K-nearest neighbor
has been frequently employed among these traditional
methods due to its simplicity in both theory and practice.
With high-dimensional hyperspectral data, support vector
machine (SVM) works stably and satisfactorily. Te afore-
mentioned approaches, however, are all based on con-
structed spectral-spatial properties that rely largely on
professional skill and are extremely empirical. Deep learning
is being used to solve this faw. Mou et al. were the frst to use
a recurrent neural network (RNN) to classify hyperspectral
images [81]. Convolutional neural network (CNN) has re-
cently emerged as a potent method for hyperspectral image
classifcation, and Lou et al. developed a high-performance
novel HSI classifcation algorithm based on CNN. Figure 7
shows the basic implication method in diferent studies.

It’s been shown that convolutional neural networks
(CNNs) are excellent at representing and classifying
hyperspectral images. Convolution can only be performed
on normal square image regions with fxed sizes and weights
in traditional CNN models, so they cannot generically adapt
to unique local regions with varying item densities and
geometric appearances. Tey must be improved in classi-
fcation, especially at class boundaries [82]. To address this
shortcoming, Luo et al. [83] propose using the recently
proposed graph convolutional network (GCN) for hyper-
spectral image classifcation, as it can perform convolution
on arbitrarily structured nonEuclidean data and is applicable
to irregular image regions represented by spatial graph

information. Mou et al. [84] proposed a graph-based
semisupervised network called nonlocal-GCN. Unlike
existing CNNs and RNNs, which take pixels or patches of
a hyperspectral picture as input, this network takes the entire
image (including both labeled and unlabeled data) into
account. To be more specifc, a nonlocal graph is initially
computed. To extract characteristics from this network
representation, a pair of graph convolutional layers are used.
Finally, the network’s semisupervised learning is accom-
plished by employing a cross-entropy error over all labeled
occurrences. Ding et al. [32] adopt graphSAGE for feature
extraction in local regions of the graph, which is helpful in
getting more accurate and efective information about
nodes. Using MSAGE-CAL based attention method with
graphSAGE improves the classifcation accuracy of HSI.

Guo et al. [79] found that GCN models are shallow and
feature extraction is not efective. To solve this issue,
DGU-HSI is proposed. Tis DGU-HSI constructs two
separate graphs for spatial and spectral data for feature
extraction, which extract features simultaneously. Once the
feature is extracted, the graph u-nets is used for the fusion of
features for classifcation. Yang et al. [85] also used a similar
approach using the spectral (Se-GCN) and spatial (Sa-GCN)
data to develop an adaptive cross-attention-driven spa-
tial–spectral graph convolutional network (ACSS-GCN).
Tis model is improved by using an attention mechanism in
both the blocks of spectral and spatial information. Qu et al.
[86] used frst-time GCN for change detection in HSI data
and proposed dual-branch diference amplifcation GCN
(D2AGCN) which is highly efcient in low samples of data.
Te dual-branch structure can efectively extract sufcient
diferent features to facilitate the detection of the
changed areas.

GCN is used by the methods described previously to
investigate large-range spatial relations of HSI, whereas local
spatial information is more important when training sam-
ples are limited. S2RGANet (spectral–spatial residual graph
attention network), a novel method for HSI classifcation
that addresses the shortcomings mentioned previously, has
been developed to address these issues. Te spectral residual
modules in the S2RGANet are designed to extract spectral
discriminative features, while graph attention convolutions
are introduced to explore the local geometric structure. In
contrast to existing GNNs, which are designed to learn large-
range spatial relations between samples in HSI, the proposed
graph convolutions are designed to capture the distribution
pattern of land cover in a given local patch of ground [86].
Sha et al. [87] used GAT for HSI classifcation by using
diferent weights for diferent nodes according to their at-
tention coefcients during the convolution process. Table 4
highlights the latest progress in hyperspectral data classif-
cation using the graph-based methods.

3.5. GCN for Computer Vision. With the development of
science and technology, image processing technology has
been presented to everyone’s feld of vision. Among them,
the content covered is relatively extensive, and the image
information can be optimized, and the corresponding image
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recognition, detection, data encoding processing, enhanced
restoration, and other work can be completed. It can not
only transmit the information that the people need to obtain
but also penetrate into all aspects of work production. For
example, the felds of transportation, agriculture, commu-
nication technology, and aviation all require the support of
image processing technology. AI is playing a vital role in
image processing and helping in diferent tasks of image
processing efciently such as image segmentation, change
detection, denoising, image enhancement, and 3D images.
After traditional approaches such as SVM, KNN, and so on.
CNN provides a wide range of applications in image pro-
cessing but currently, the research is diverting towards GCN
because of better results and low complexity of calculation.
GCN research in image processing is extensive in remote
sensing images, medical images, 3D images, etc., with dif-
ferent types of images denoising and image enhancement
techniques.

Saha et al. [90] used GCN for developing a change
detection mechanism in remote sensing images. Tis sem-
isupervised CD method encodes multitemporal images as
a graph via multiscale parcel segmentation that efectively
captures the spatial and spectral aspects of themultitemporal
images. Ismail et al. [91] proposed a BLDNet algorithm for
estimating the damage detection in the building caused by
disasters or earthquakes. Te model is based on Siamese
CNN with trained GCN in semisupervised to get the pre-
dictions of disasters carried out by earthquakes. In recent
years, deep learning-based image denoising methods have
outperformed traditional denoising techniques. In order to
train a convolutional neural network to infer clean images,
most deep learning-based image denoising methods use
cropped small patches. However, in practice, real-world
noisy images tend to be of high resolution rather than the
cropped small patches, and the vanilla training strategies
ignore the cross-patch contextual dependency in the whole
image. Li et al. [92] used cross-patch GCN with the help of
CNN to perform denoising of the image, and the results
show that denoising is 95% accurate. Shen et al. [93] ex-
tended the denoising work using GCNs and proposed
a novel approach, GCN-Denoiser, which preserves features
of mesh denoising and performs graph convolution oper-
ations in the dual space of mesh triangles.

Remote sensing (RS) image semantic segmentation, as
the fundamental task of GIS, serves as the foundation for
other RS research and applications such as natural resource
protection, land cover mapping, and land-use change

detection. Despite receiving signifcant attention over the
last decade, semantic segmentation of high-resolution RS
images remains difcult due to the complexity of structure in
RS images, which leads to interclass similarity and intraclass
variability. Ouyang et al. [94] proposed a DSSN-GCN
framework that combines deep semantic segmentation with
GCN. In this framework, an attention residual U-shaped
network (AttResUNet) is used as a feature extractor while
graph nodes are denoted by the superpixels, and the graph
weight is calculated by considering the spectral information
and spatial information. Kim et al. [95] proposed the Split-
GCN model which outlines the objects in by similar nodes
features and highlights them in a specifed region. Tis
model consists of two parts: an encoder (feature extraction
network) to extract the boundary information of an object
and a decoder (novel graph composition network) to capture
the shape of an object. Te model used the polygon-based
approach to detect the object boundary in uniform spaced
points.

Computer vision is a long-running research topic be-
cause it can perceive and recognize the world without the aid
of humans by gathering data from sensors. Reverse engi-
neering, intelligent surveillance, and remote sensing all rely
on target recognition as a critical component of their re-
spective applications. Unmanned systems and augmented
reality are examples of practical application scenarios where
three-dimensional (3D) object recognition is more relevant
than two-dimensional (2D) target recognition. Zhan et al.
[96] proposed a 3D point cloud model named minimum
bounding box oversegmentation GCN (MBBOS-GCN).Tis
model uses a minimum bounding box algorithm, and the
farthest point sampling (FPS) algorithm is used to sample
within each small region to reduce sampling randomness,
with an accuracy of the model being more than 90% for
segmentation of the 3D objects. Wang et al. [97] used GCN
models for activity recognition in 3D space and proposed
a spatial-temporal graph convolutional network (ST-GCN)
model. In this method, semantically close point data are
treated as neighbors, and using the motion capture data,
a graph was created as follows: the intrabody edges between
skeleton areas are defned based on the natural connections
in human bodies; the interframe edges connect the same
skeleton areas between consecutive frames. For 3D shape
analysis, Wei et al. [98] proposed a model named View-GCN
which can 3D shape based on a graph representation of
multiple views infexible view confguration. Tis model is
a fexible model with diferent view confgurations, e.g.,

HSI Data (i) Spectral Processing 
(ii) Spatial Processing 

Testing
Samples

Training
Samples

Text

Preprocessing

Preprocessing

Feature Extractors
CNN, 2DCNN, 3D CNN
other hybrid approaches

Classification
GCN, GAT, GraphSAGE

Prediction
Output

Figure 7: Hyperspectral image classifcation using GCN.
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cameras located on circles, corners of dodecahedron, or even
irregular positions around objects. Second, by using view-
graph representation, this study can take advantage of GCN
to aggregate multiview features considering the relations of
graph nodes. Table 5 highlights some latest innovations for
image processing using graphs.

3.6. GCN for Transport and Trafc System. Te trafc pre-
diction problem is also one of the tasks in which graph
convolutional neural networks are widely used. Its purpose
is to predict the rate of future trafc given the historical
trafc speed and route map. In the trafc prediction
problem, nodes represent sensors placed on the road, and
edges represent the physical distances of node pairs. Each
node contains a temporal feature. Compared with tradi-
tional graph analysis problems, the trafc prediction
problem includes both time and space modeling, and how to
use the graph convolutional neural network to better model
the road network in trafc brings opportunities and chal-
lenges. Li et al. [101] proposed a difusion convolutional
recurrent neural network (DCRNN) to model trafc fore-
casting. In this model, it regards trafc fow as a difusion
problem on a directed graph and proposes to use difusion
convolution to model graph-structured data. Use recurrent
neural networks to model time dependencies. It achieves
a 12%–15% improvement on two large-scale road network
trafc datasets.

Cui et al. [102] proposed a trafc graph convolutional
long short-term memory network (TGC-LSTM) to learn
road networks and time-varying trafc patterns. It defnes
the graph convolutional neural network on the physical road
network topology. Te experimental results show that the
method can capture the complex spatiotemporal de-
pendencies efectively existing in the vehicle trafc network.
Zhang et al. [1] proposed a graph gate recursive unit
(GGRU) to solve the trafc fow prediction problem. Tey
applied the graph gate recursive unit to the encoding-
decoding model of the recurrent neural network and ap-
plied it to the Los Angeles highway data set. Zhang et al. [38]
proposed a new deep learning framework, a space-time
graph convolutional neural network (STGCN), to solve
the problem of time series prediction in the trafc feld. In
this framework, it frst formalizes the problem onto a graph
using convolutional structures for modeling, which achieves
signifcant improvements over traditional machine learning
methods in short-term and mid-to long-term trafc pre-
diction due to better utilization of topology.

Zhu et al. [103] developed AST-GCN for modeling trafc
forecasting for intelligent transportation systems. Tis
model uses external factors as dynamic attributes and static
attributes and designs an attribute-augmented unit to en-
code and integrate those factors into the spatiotemporal
graph convolution model and perform trafc speed pre-
diction. In another approach, Zhu et al. [104] proposed BRB-
based RNN-GCN model for trafc fow prediction, which
solves the existing issues of trafc fow prediction models
such as saturation or speed. In the scenarios related to trafc

prediction, how to solve the spatiotemporal dependence is
an important research direction. Since the graph convolu-
tional neural network provides a solution to the modeling of
graph data problems, it combines with time series models
such as recurrent neural networks to give a good solution to
the modeling trafc forecasting problem is presented [70].
However, how to further fne-grained consideration of
spatiotemporal data modeling is still the focus of future
research.

3.7. GCN for NLP. Graph convolutional neural networks
have a large number of applications in the feld of natural
language processing. In this feld, the more common graph
data are knowledge graphs, syntactic dependency graphs and
abstract meaning expression graphs, word cooccurrence
graphs, and graphs constructed by other methods. Entity
relation extraction (RE) is a method of encoding the
meaning of a sentence as a rooted directed graph [105]. Sun
et al. [106] applied graph convolutional neural networks to
dependency syntax trees for machine translation tasks in
English and German, and English and Zhou et al. [107] used
a graph convolutional neural network for event extraction,
where the graph used here is a dependency syntax tree.
Table 6 provide a further description of the methods:

In addition to the previous graphs, word cooccurrence
networks have also been applied to text classifcation tasks.
Where nodes are nonstop words, and edges are word
cooccurrence relationships in a given window. Deferard
et al. [112] proposed a convolutional neural network defned
in graph theory, which provides the necessary mathematical
background and an efcient numerical scheme to design fast
local convolutional flters on graphs. Reference [113] used
a weighting approach with GCN for the categorization of
text. Pal et al. [114] used graph convolutional neural net-
works for text classifcation tasks on the Reuters dataset. Yao
et al. [115] applied a graph convolutional neural network to
a text classifcation task by constructing a coword network
and document relation network, and achieved the best re-
sults without using external knowledge and word
representation.

A large number of studies have shown that the results of
various natural language processing tasks have been im-
proved to a certain extent after using the graph convolu-
tional neural network model [116]. Te use of graph
structure enables the complex semantic relationship be-
tween objects to be efectively mined. Compared with the
traditional serialization modeling for natural language
processing, the use of graph convolutional neural networks
can mine nonlinear complex semantic relationships.

3.8. GCN for Bioinformatics. In addition to the traditional
modeling of graph data, graph convolutional neural net-
works have also received a lot of attention from researchers
in felds such as biochemistry. Compared with traditional
graph data research, in the feld of biochemistry, people
usually regard a chemical structure or a protein as a graph,
the nodes in the graph are smaller molecules, and the edges
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represent bonds or interactions. Figure 8 is a molecular
graph of medicine, where the nodes are carbon, hydrogen,
and oxygen atoms, and the edges are chemical bonds. Re-
searchers focus on the chemical function of a graph, that is,
the object of study is no longer the nodes in the graph, but
the entire graph itself.

Intracellular interactions are the focus of most methods
for determining gene-gene interactions from expression data.
High-throughput spatial expression data enables methods
that can infer such interactions between cells and within cells.
Yuan et al. [117] developed graph convolutional neural
networks for Genes were developed to accomplish this
(GCNG). It uses supervised training to combine spatial in-
formation with expression data. Prior methods for analyzing
spatial transcriptomics data have been improved by GCNG,
which can propose new extracellular interacting gene pairs.
Upstream analyzes, such as functional gene assignment, can
make use of the GCNG output. It is one of the primary goals
of genomic medicine to identify the genetic variations in
a patient that are responsible for their clinical phenotypes and
to determine their relationship to those phenotypes. Only the
genotype information is taken into consideration when pri-
oritizing genomic variants, which results in the identifcation
of a few hundred potential variants on average. It is still
a signifcant challenge to narrow it down even further in order
to identify the disease genes that are responsible for the
clinical phenotypes observed. Tis is especially true for rare
diseases. Motivated by the recent progress in spectral graph
convolutions. Rao et al. [118] developed the graph
convolution-based technique HANRD (Heterogeneous As-
sociation Network for Rare Diseases) to infer new phenotype-
gene associations from this initial set of associations.

Predicting chemical compounds is one of the funda-
mental tasks in bioinformatics and cheminformatics because
it contributes to various applications in metabolic engi-
neering and drug discovery. Harada et al. [119] proposed
a new graph convolutional neural network architecture
called a dual graph convolutional network that learns
compound representations from both the compound graphs
and the intercompound network in an end-to-end manner.
For the prediction of DNA protein, Zhang et al. [120] build

a sequence k-mer graph for the whole dataset based on the k-
mer cooccurrence and k-mer sequence relationship and then
learn DNA graph convolutional network(DNA-GCN) for
the whole dataset. It has not yet been thoroughly investigated
whether advanced graph network methods can be used to
identify functional protein complexes from the protein-
protein interaction networks (PPIs) at a high level. To im-
prove the detection of protein complexes, Zaki et al. [121]
proposes a variety of graph convolutional network (GCN)
methods. A node classifcation problem is frst formulated as
a protein complex detection problem. Once the model is
developed and a complex afliation matrix is in place, this
model will be able to use it to group the nodes (proteins). In
addition, a multiclass GCN feature extractor and a mean
shift clustering algorithm are used to extract the nodes’
features and perform clustering. Furthermore, applications
are in Table 7:

Appropriate gene prioritization is critical for genome-
based diagnostics of a variety of genetic diseases. However, it
is a difcult task that requires a limited and noisy un-
derstanding of genes, diseases, and their associations. While
several computational methods have been developed for the
task of disease gene prioritization, their performance is
largely constrained by manually crafted features, network
topology, or predefned data fusion rules [127].

Li et al. [50] defne convolutional neural networks di-
rectly on graphs. Te neural network model inputs mole-
cules of any size or shape and learns molecular fngerprints
end-to-end. Te model can better help to realize the mo-
lecular design of specifc functions. Torng et al. [128] used
a graph convolutional neural network to encode atoms,
bonds, and distances, which can better utilize the in-
formation in the graph structure. It provides a new paradigm
for ligand-based virtual screening. Gilmer et al. [129] pro-
posed a message propagation model MPNNs to predict the
chemical properties of a given molecule. Zitnik et al. [130]
used graph convolutional neural networks to model multiple
drug side efects. It frst constructs multimodal maps of
protein-protein interactions, drug-protein target in-
teractions, and multiple drug interactions. In the graph, each
side efect is treated as a diferent type of edge. Furthermore,

Table 6: Applications of graph network in NLP.

Method Description

Treshold graph neural network
Hari et al. [108] used a threshold graph neural network (GGNN) on an abstract
meaning graph for grammar-based machine translation tasks. Dependency syntax

graph or tree, nodes are words, and edges are semantic relations

Sentence learning based on SRL

Song et al. [109] applied graph convolutional neural networks to reading
comprehension, and the abstract meaning graph is applied to tasks such as text
generation and relation extraction. Te task of semantic role labeling (SRL) is to
give a sentence and identify the predicate and the corresponding object in the

sentence

GCN with LSTM
Marcheggiani et al. [110] proposed to use of a graph convolutional neural network
to act on the syntactic dependency graph, and stack it with a long-short-term

memory network

Dictionary-based learning using ST-GCN
Ye et al. [111] developed short text GCN (ST-GCN) in which diferent topic models
for short text are employed, and a short text short-text graph based on the word
cooccurrence, document word relations, and text topic information, is developed
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the modeling of side efects with drugs is transformed into
a link prediction problem, which provides a new research
idea for further study of pharmacology. Xiao et al. [131] and
Reau et al. [132] proposed to apply graph convolutional
neural network to protein interaction prediction. In this
task, proteins are chains of amino acid residues that fold into
three-dimensional structures that give them biochemical
functions. Proteins exert their functions through complex
networks of interactions with other proteins. You et al. [133]
proposed the graph convolutional policy network (GCPN),
a model based on general graph convolution and re-
inforcement learning to generate target graphs. In this
model, the hidden state is expressed as a node by means of
message propagation, and then a policy π is generated.

4. Prospects for Future ResearchDirections and
Limitations of GCN

Although graph convolutional networks have succeeded in
recent years, there are still some unsolved problems and
directions worthy of further research.

4.1. Deep Network Structure. After stacking a large number
of network layers, the traditional deep learning model has
achieved remarkable results in many problems due to its
powerful representation ability [38]. However, in the graph
convolutional neural network model, after stacking a small
number of layers, the network achieves the best efect.
Adding graph convolutional layers simultaneously will make
the results worse. Because graph convolution includes ag-
gregating the features of neighbor nodes, when the network
stacks multiple layers, the components between nodes are
too smooth and lack discrimination. Te experimental re-
sults of GCN show that when the number of network layers
exceeds two layers, with the increase in the number of layers,
the efect of GCN on the semisupervised node classifcation
problem will decrease instead [134]. At the same time, with
the continuous superposition of the network, eventually, all
nodes will learn the same expression. Whether the graph
neural network needs a deep structure or whether a deep
network structure can be designed to avoid the problem of
excessive smoothness is an urgent research problem to be
solved.

4.2. Multiscale on-Graph Tasks. Graph mining tasks can be
divided into node-level problems, graph and subgraph-level
problems, and signal-level problems according to the

diferent main objects. Te critical point of node-level tasks
is to learn efcient representations for each node, while
learning representations for graphs is the key to graph-level
tasks [135].Te key points of the signal-level task are learned
to express efectively for diferent graph signals, while the
network structure is unchanged. At present, most graph
convolutional neural networks are designed for node-level
tasks, and less attention is paid to graph-level and signal-
level tasks.

4.3. Dynamically Changing Graph Data. In practical sce-
narios, the network is often dynamic. Tis dynamic includes
the characteristics of nodes and edges that are constantly
changing over time and the structure of the network that is
constantly changing (there are new edges, nodes join the
network, and nodes and edges disappear from the network)
[136]. Considering the dynamics of the network is also the
trend of graph mining algorithms. Te current graph
convolutional neural networks are designed for static net-
works, so designing a graph convolutional neural network
that canmodel the dynamic changes of the network is also an
important direction in the future.

4.4. Te Complex Nature of Graph Data. In practical sce-
narios, networks often have complex structural character-
istics. For example, the types of nodes, the complex features
on the edges, the community structure of the network, and
so on. Although many works have proposed some solutions,
they are all networks designed for a certain characteristic
[137]. Whether a network can be designed to simultaneously
model various complex characteristics of the network is also
a question worthy of discussion. GCN employs mean
pooling. As a result, it will be impossible to distinguish
aggregation on, say, the 2 diferent multisets (a,b) and
(a,a,b,b). Mean-pooling will produce the same estimate for
both multisets, so it is not injective. Because of mean-
pooling, GCN will be unable to distinguish between
nodes receiving messages from two other nodes and nodes
receiving messages from four other nodes. Te structural
distinction is not distinguished here [133, 138–140].

4.5. Adversarial Attacks on Graph Neural Networks.
Neural networks shine in various tasks but still have in-
stability problems. For example, adding a certain amount of
noise to the picture will not change the type of the picture to
the human eye, but the neural network has already judged it
as other types. Designing a targeted sample to make the

Protein Nodes Formation GCN Processing

Global
Pooling

FC
Layer

FC
Layer

Prediction

Figure 8: Protein prediction approach using GCN.
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machine learning model make a misjudgment is called an
adversarial attack. In the feld of GNN, constructing
adversarial samples using the characteristics of nodes and
network structure and designing a graph neural network that
can defend against adversarial attacks are all important
directions for future development.

5. Conclusion

Graphs are a powerful and rich structured data type with
strengths and challenges that difer greatly from images
and text. We have outlined some of the milestones that
researchers have reached in developing neural network-
based models that process graphs in this study. We have
gone over some of the key design decisions that must be
made when employing these architectures, and hope-
fully, the GNN playground can provide some insight into
the empirical outcomes of these decisions. Te recent
success of GNNs opens the door to a wide range of new
problems, and we are excited to see what the feld will
bring. Te key points of this survey include the following
points:

(i) Te existing applications in the feld of computer
mainly use GN, GCN, and MPNN models, rarely
use the GAE model and do not use the GATmodel.
Most of the existing applications use FF, RNN,
CNN, etc., as aggregation functions to transmit
node and topology information and output pre-
dicted values, and the application scope is limited.
Due to their own limitations, GN, GCN, andMPNN
are difcult to solve complex communication net-
work problems.

(ii) Te learning methods are mainly divided into su-
pervised learning and reinforcement learning.

Supervised learning is mostly used for trafc/re-
source/index prediction, node classifcation, and
other issues; reinforcement learning is mostly used
for path selection, topology transformation/map-
ping, and other issues.

(iii) Te existing application goals mainly focus on the
tasks of nodes. Te output features are mostly the
features of nodes or the overall indicators of the
network and are rarely used for linking tasks.

(iv) Almost all existing applications are based on cen-
tralized learning, and it is necessary to obtain the
information of all nodes before learning.
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Table 7: Applications of graph network in bioinformatics.

Method Applications

CADA

Peng et al. [122] proposes a novel graph convolutional network-based method for
disease gene prioritization, CADA, based on the systematic embedding of the
heterogeneous network formed by genes and diseases, as well as their unique

characteristics

HPOFiller’s

Liu et al. [123] proposed HPOFiller based on GCN for human phenotype ontology.
HPOFiller’s central idea is to repeatedly run these two GCNmodules over the three

networks in order to refne the embeddings. Extensive empirical evidence
demonstrates that HPOFiller signifcantly outperforms all other state-of-the-art
methods, including cross-validation and temporal validation, demonstrating that
HPOFiller outperforms all other state-of-the-art methods. Te ablation study
demonstrates that batch normalization makes the greatest contribution to

performance

Graph Attention Model (GAM)

Lee et al. [124] proposed a graph attention model (GAM), which adaptively selects
some “information nodes” and collects the information of the entire graph for the
problem of graph classifcation. Such et al. [125] directly defned the flter as

a polynomial function of the graph adjacency matrix and proposed a Graph-CNNs
model, which can handle heterogeneous and homogeneous graph data. On the

molecular classifcation problem, it shows the best experimental results

MolGAN
Cao et al. [126] proposed MolGAN, which designs molecular structures containing
specifc chemical properties through generative adversarial networks combined

with graph convolutional neural networks
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