
Research Article
Virtual Machine Replica Placement Using a Multiobjective
Genetic Algorithm

Marwa F. Mohamed ,1 Mai Dahshan,2 Kenli Li,3 and Ahmad Salah 4,5

1Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
2School of Computing, University of North Florida, Jacksonville, Florida, USA
3College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
4Department of Computer Science, College of Computers and Informatics, Zagazig University, Sharkia, Egypt
5Department of Information Technology, College of Computing and Information Sciences,
University of Technology and Applied Sciences, Ibri, Ad-dhahira, Oman

Correspondence should be addressed to Ahmad Salah; ahmad@zu.edu.eg

Received 22 February 2023; Revised 29 May 2023; Accepted 3 June 2023; Published 28 June 2023

Academic Editor: Mohammad R. Khosravi

Copyright © 2023 Marwa F. Mohamed et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Virtual machine (VM) replication is a critical task in any cloud computing platform to ensure the availability of the cloud service
for the end user. In this task, one primary VM resides on a physical machine (PM) and one or more replicas reside on separate
PMs. In cloud computing, VM placement (VMP) is a well-studied problem in terms of diferent goals, such as power consumption
reduction.Te VMP problem can be solved by using heuristics, namely, frst-ft and meta-heuristics such as the genetic algorithm.
Despite extensive research into the VMP problem, there are fewworks that consider VM replication when choosing a VMP. In this
context, we proposed studying the problem of optimal VMP considering VM replication requirements.Te proposed work frames
the problem at hand as a multiobjective problem and adapts a nondominated sorting genetic algorithm (NSGA-III) to address the
problem. VM replicas’ placement should consider several dimensions such as the geographical distance between the PM hosting
the primary VM and the other PMs hosting the replicas. In addition, to this end, the proposed model aims to minimize (1) power
consumption, (2) performance degradation, and (3) the distance between the PMs hosting the primary VM and its replica(s). Te
proposed method is thoroughly tested on a variety of computing environments with various heterogeneous VMs and PMs,
including compute-intensive and memory-intensive environments. Te obtained results illustrate the performance disparity
between the adapted NSGA-III and MOEA/Dmethods and other methods of comparison, including heuristic and meta-heuristic
approaches, with NSGA-III outperforming other comparison methods. For instance, in memory-intensive and in heterogeneous
environments, the NSGA-III method’s performance was superior to the frst-ft, next-ft, best-ft, PSO, and MOEA/D methods by
58%, 62%, 64%, 55%, and 31%, respectively.

1. Introduction

Virtualization is a convenient technology in which physical
resources (e.g., CPU, memory, and disk space) can be
partitioned over one or more machines through partial or
full machine simulation. To maintain availability and in-
crease the performance of VMs, VM replication (VMR) is
a technique that duplicates VMs and places replicas in
multiple PMs of cloud data centers. If one replica fails, the
client’s requests will be fulflled by another replica. VM

replication increases efciency by distributing incoming
requests across VM replicas in various PMs, hence balancing
and decreasing PM loads [1]. VM replication has been
adopted by well-known data centers, namely, Amazon
Simple Storage Service (Amazon S3) and Microsoft Azure.

Tere are several challenges to be considered when
addressing the problem of VM replicas’ placement. First,
multiple duplicates of the same VM should be installed in
many PMs (i.e., VM fault-tolerance constraint). Un-
fortunately, this accelerates the rise in energy usage in cloud

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 8378850, 16 pages
https://doi.org/10.1155/2023/8378850

https://orcid.org/0000-0002-7142-1828
https://orcid.org/0000-0003-3433-7640
mailto:ahmad@zu.edu.eg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8378850

data centers [2]. By decreasing the number of active PMs and
shutting down inactive PMs, it is possible to save energy and
cut emissions. Consequently, minimizing PM energy con-
sumption is crucial for reducing the overall power con-
sumption of a data center [3].

Second, selecting one replica as the primary replica,
which is responsible for processing requests from incoming
clients and returning responses, in addition to returning
responses, it transmits updates to other replicas [4]. Con-
sequently, the geographical distance between VM replicas
has a signifcant impact on the performance of applications.
Moreover, the distance between VM replicas afects the
energy required for data transmission. Te greater the
distance between replicas, the more transmission energy is
required. Replicas located further from the primary replica
will consume more energy than the replicas closer to the
primary replica [5].

A third issue with VM replication is that as more VM
replicas are built and deployed in cloud data centers, more
resources (such as CPUs, RAM, and I/Os) are utilized;
however, PMs have a fnite amount of resources. In addition,
the diversity of hosted client programs presents additional
issues; certain client apps may be memory intensive, while
others may be computation-intensive [6]. A fourth issue is
connected to the service-level agreement (SLA) [7]. If the
service provider fails to provide the required service as
outlined in the SLA contract, the client is eligible to receive
credits. VM replication is a method for avoiding SLA vio-
lations; therefore, it should be considered placing replicas in
PMs with the same or comparable performance.

Meta-heuristic algorithms are one of the most efective
techniques to overcome the prior obstacles in VM repli-
cation placement. Meta-heuristic algorithms have demon-
strated countless successes in numerous VM placement
studies. Many-objective optimization problems (MaOPs)
are optimization problems with more than three objectives
[8]. Multiobjective evolutionary algorithms based on de-
composition (MOEA/D), particularly the basic NSGA [9]
and its modifcations, are commonly used to address these
difculties in a wide range of industries. Deb and Jain [10]
proposed the NSGA-III algorithm, which uses reference
points to replace the NSGA-II-congested distance. Te
NSGA-III algorithm outperforms the NSGA-II in terms of
performance. In fact, the NSGA-III and MOEA algorithms
are widely recognized as the best extant many-objective
evolutionary algorithms (MaOPs) [11].

In this context, the discussed four issues of the VM
replicas’ placement problem motivated this work to frame
this problem as an optimization problem. Moreover, an-
other motivation for this work was the minimal amount of
research undertaken in this area. Due to the superior per-
formance of multiobjective problems, it is proposed to frame
this problem as a multiobjective optimization problem and
addressing it with the well-known NSGA-III algorithm. In
addition, the proposed method was evaluated utilizing
a variety of scenarios, including compute-intensive and
memory-intensive contexts for cloud computing. Te fol-
lowing is a summary of the key contributions of this work:

(1) To our knowledge, this is the frst work that considers
the problem of VMP with VM replication with the
aim of minimizing three objectives, namely, (1)
power consumption, (2) performance degrading due
to switching to a replica with specifcation lower than
the user’s needs, and (3) distance between VM
replicas.

(2) Te NSGA-III method was adapted to address the
problem at hand with a proposed method for
repairing infeasible solutions.

(3) Datasets were suggested to evaluate the proposed
work with diferent scenarios.

(4) Te obtained results show that the proposed adapted
NSGA-III method outperformed the other methods
of comparison by a huge margin. Of note, reducing
the number of replicas causing performance
degrading was the most improved objective, as the
improvement is an order of magnitude.

Te rest of the paper is organized as follows. Section 2
discussed the related work. Section 3 explains in detail the
problem. Section 4 presents a methodology of the problem.
Evaluation of the proposed algorithm is presented in Section
5. Finally, the paper is concluded in Section 6.

2. Related Work

Multiple objectives have been examined in relation to the
VMP optimization problem. VMP’s primary objective is to
minimize power consumption, which is a well-studied
problem. Other objectives, such as fault tolerance, SLA vi-
olations, and distance awareness between VMs, have re-
ceived less research efort.

Multiple approaches have been developed to solve the
VMP optimization problem. Al-Moalmi et al. [12] proposed
a computational intelligence method to reduce the number
of active hosts and energy consumption. Mirjalili et al. in-
troduced GWO-VMP with grey wolf optimization (GWO)
for reducing the number of active physical machines that are
used to host a set of VMs. Alharbi et al. [13]

Parvizi and Rezvani [14] developed a multiobjective
virtual machine placement (MO-VMP) problem in order to
reduce power consumption, the number of active PMs, and
total resource wastage. Te problem is presented as a non-
linear convex optimization problem. Ten, NSGA-III is
applied to minimize the MO-VMP time complexity. Tar-
ahomi et al. [15] proposed a microgenetic algorithm to
reduce energy consumption, VM migration, SLA violation,
and the number of server shut down. Abbasi-khazaei and
Rezvani [16] designed a multiobjective VM placement that
aims to reduce the energy cost and the cost of producing
carbon dioxide.

Alresheedi et al. [17] proposed an alternative multi-
objective optimization (MOP) technique that combines the
salp swarm and sine-cosine algorithms (MOSSASCA) for
selecting a suitable virtual machine placement solution.
MOSSASCA aims to increase the mean time before a host
shutdown, reduce power consumption, and eliminate

2 International Journal of Intelligent Systems

service-level agreement breaches. Using a MOP technique,
the proposed approach improves the salp swarm algorithm
(SSA) and sine-cosine algorithm (SCA). Utilizing a local
search approach, the SCA enhances the performance of the
traditional SSA by preventing trapping in a local optimal
solution and accelerating convergence. Zhang et al. [18]
proposed an approach based on a heuristic ant colony
technique. Multiple factors, including the service-level
agreement violation rate, resource remaining rate, power
consumption rate, failure rate, and fault tolerance cost, are
used to construct a model for the initial fault-tolerant
placement of VMs in cloud systems’ star-topological data
centers.

Sharma et al. [19] proposed an energy-efcient approach
for VM consolidation. It considers the reliability factor
before combining the running VMs to conserve energy in
a cloud computing environment prone to failure. Fault
tolerance is achieved through the use of both reactive
(checkpointing) and proactive (VM migration) techniques.
Te activation of fault tolerance systems relies on failure
prediction based on time series analysis.

Khani et al. [20] aimed to reduce total power usage in
data centers by studying the virtual machine replication
(VMR) problem. It replicates R copies of each VM and
places them on separate PMs in the data centers to ensure
that each VM is accessible in the event of a server failure,
where R is tuned by the probability of server failure. Te
authors show that VMR is the same as the least cost fow
issue; thus, it can be solved quickly and efectively. Te
solution can further minimize data center power usage by
unifying PMs that hold VM clones and shutting of inactive
machines.

Gonzalez and Tang [2] proposed a new fault-tolerant
VM placement problem (FT-VMP) to arrange the re-
quired number of VM replica copies in cloud data
centers. Te proposed technique aims to lower the total
number of active PMs while meeting VM fault tolerance,
VM compatibility with PMs, and PM resource capacity
restrictions. Yao et al. [21] proposed a network-aware
VM allocation algorithm based on the maximum clique
algorithm (MCNVMA) for VMs in the cloud data center.
In MCNVMA, each VM can have its unique confgu-
ration requirements. In addition, the cost of commu-
nication between VMs, which can be gathered, is
a necessity. Tis algorithm searches for solutions that
fulfll the user’s requirements and provide a short
communication path across VMs. According to test
fndings, the proposed algorithm lowers the cost of
communication between VMs, especially in big data
centers.

As listed in Table 1, the work proposed in [21] is the only
proposed study that takes into account the distance between
VMs during the placement procedure. However, energy
conservation, fault tolerance, and SLA violation are not
considered objectives by the authors. Te last row of Table 1
shows the proposed work to bridge the gap of combining the
mentioned three objectives as a multiobjective problem.

Ten, this optimization problem is proposed to be addressed
using the adapted NSGA-III algorithm.

3. Problem Definition

Virtualization is an important technology that supports
cloud computing and ofers signifcant benefts from PM
consolidation. A single PM may host several VMs, each
operating independently. VMP aims to reduce cloud
computing operating costs and make better use of PMs’
resources. VMP maximizes resource utilization by grouping
VMs into one or more PMs. It aims to reduce the power
usage of the cloud data center. In addition, VMP ofers VM
replication for fault tolerance and to prevent SLA violations.
In this paper, a VMP strategy is proposed to reduce (1)
power consumption, (2) performance degradation due to
switching to a replica, and (3) the distance between VM
replicas. Te list of symbols is listed in Table 2.

Tis paper considers the initial placement or static VM
placement algorithms. It submits several VMs M and their
replicas R, which are predefned, to a set of fully empty PMs
P, where Pi represents the ith PM, i ∈ [1, N], and Pi ∈ P.
Similarly, V is a collection of VMs, where Vk

j represents the
jth VM and its kth replica, j ∈ [1, M], and k ∈ [0, R], if k � 0;
it then becomes the primary VM. In addition, an assumption
is made that the most important resource requirements of
PMs are the CPU, clock rate, and main memory resources.
Minimizing the performance degrading objective is signif-
icant for avoiding SLA violations. Te CPU and memory
requirements of PMi are presented as Pcpui and Prami, re-
spectively. Likewise, the requirement of CPU andmemory of
Vk

j is presented as Vk
cpuj and Vk

ramj, respectively. Table 1
summarizes the key parameters and variables used in the
proposed model.

Te proposed model has four constraints and three
objectives. Te frst constraint is the OS constraint, which
requires matching the VM requirements of the host OS with
the host PM OS when placing a VM in a PM. Te same
approach proposed in [22] has been utilized in resolving this
issue. It reduces the search space by treating VMs with
comparable OS needs as a separate issue. Te cloud provider
intuitively knows the ratio of VMs based on their OS needs.
By this ratio, the cloud provider distributes the PMs among
the VMs.

Te second constraint is CPU constraint (equation (1)),
which ensures that the total consumed capacity of a set of
VMs does not exceed the CPU capacity of the host’s CPU
PcpuCapacityi

.

􏽘

M,R

j�1,k�0
V

k
cpuj
≤PcpuCapacityi

, (1)

where Vk
cpuj is the CPU capacity of Vk

j .
Te third constraint is the RAM constraint (equation

(2)); it ensures that the total consumed capacity of a set of
VMs does not exceed the RAM capacity of the host’s RAM
PramCapacityi.

International Journal of Intelligent Systems 3

Ta
bl

e
1:

A
su
m
m
ar
y
of

th
e
re
la
te
d
w
or
k.

Re
f.

V
M
P

V
M
R

U
til
iz
ed

te
ch
ni
qu

e
O
bj
ec
tiv

es

[1
2]

✓
7

G
re
y
w
ol
fo

pt
im

iz
at
io
n
(G

W
O
)

M
in
im

iz
e
th
e
nu

m
be
ro

fa
ct
iv
e
se
rv
er
st
ha
ta
re

us
ed

to
ho

st
th
e
vi
rt
ua
lm

ac
hi
ne
s

(V
M
s)

[1
3]

✓
7

A
nt

co
lo
ny

sy
st
em

(A
C
S)

M
in
im

iz
e
th
e
en
er
gy

co
ns
um

pt
io
n

[1
5]

✓
7

M
ic
ro
ge
ne
tic

M
in
im

iz
e
en
er
gy

co
ns
um

pt
io
n,

V
M

m
ig
ra
tio

n,
SL

A
vi
ol
at
io
n,

an
d
nu

m
be
r
of

se
rv
er

sh
ut
do

w
n

[1
4]

✓
7

N
SG

A
-I
II

M
in
im

iz
e
re
so
ur
ce

lo
ss
,e
ne
rg
y
co
ns
um

pt
io
n,

an
d
th
e
nu

m
be
r
of

ac
tiv

e
PM

[1
6]

✓
7

M
od

if
ed

m
em

et
ic

al
go
ri
th
m

(M
A
)

M
in
im

iz
e
th
e
en
er
gy

co
st

an
d
th
e
co
st

of
pr
od

uc
in
g
ca
rb
on

di
ox
id
e

[1
7]

✓
7

C
om

bi
ne
st
he

sa
lp
sw

ar
m

an
d
sin

e-
co
sin

ea
lg
or
ith

m
s(
M
O
SS
A
SC

A
)

M
ax
im

iz
e
m
ea
n
tim

e
be
fo
re

a
PM

sh
ut
do

w
n
(M

TB
H
S)

an
d
m
in
im

iz
e
po

w
er

co
ns
um

pt
io
n
an
d
SL

A
vi
ol
at
io
ns

[1
8]

✓
✓

A
nt

co
lo
ny

M
in
im

iz
e
SL

A
vi
ol
at
io
n,

m
in
im

iz
e
re
so
ur
ce

w
as
tin

g,
po

w
er

co
ns
um

pt
io
n,

an
d

gu
ar
an
te
e
fa
ul
t
to
le
ra
nc
e

[1
9]

7
✓

H
eu
ri
st
ic

al
go
ri
th
m
s

M
in
im

iz
e
th
e
to
ta
lp

ow
er

co
ns
um

pt
io
n
an
d
im

pr
ov
e
V
M

re
lia
bi
lit
y
an
d

av
ai
la
bi
lit
y

[2
0]

✓
✓

H
eu
ri
st
ic

al
go
ri
th
m
s

M
in
im

iz
e
th
e
to
ta
lp

ow
er

co
ns
um

pt
io
n
an
d
gu
ar
an
te
e
V
M

av
ai
la
bi
lit
y

[2
]

✓
✓

In
te
ge
r
lin

ea
r
pr
og
ra
m
m
in
g
(I
LP

)-
ba
se
d
al
go
ri
th
m

M
in
im

iz
e
th
e
nu

m
be
r
of

PM
s
an
d
gu
ar
an
te
e
fa
ul
t-
to
le
ra
nt

[2
1]

✓
7

H
eu
ri
st
ic

al
go
ri
th
m
s
ba
se
d
on

th
e
m
ax
im

um
cl
iq
ue

al
go
ri
th
m

M
in
im

iz
e
th
e
co
m
m
un

ic
at
io
n
co
st
,l
at
en
cy

be
tw
ee
n
se
rv
er
s,
an
d
co
m
m
un

ic
at
io
n

ba
nd

w
id
th
s

T
e
pr
op

os
ed

w
or
k
✓
✓

N
SG

A
-I
II

M
in
im

iz
e
th
e
po

w
er

co
ns
um

pt
io
n,

pe
rf
or
m
an
ce

de
gr
ad
in
g
du

e
to

sw
itc
hi
ng

to
a
re
pl
ic
a
w
ith

sp
ec
if
ca
tio

n
lo
w
er

th
an

th
e
us
er
’s
ne
ed
s,
an
d
th
e
di
st
an
ce

be
tw
ee
n

V
M

re
pl
ic
as

4 International Journal of Intelligent Systems

􏽘

M,R

j�1,k�0
V

k
ramj ≤PramCapacityi

, (2)

where Vk
ramj is the RAM capacity of Vk

j .
Te last constraint (equations (3) and (4)) restricts the

placement of the VM and its replicas on the same PM.

∀ V
c
a, V

d
b􏼐 􏼑 if a � b, then b is the replica of a and c≠ d, (3)

if  Vc
a ∈ Pi thenV

d
bi , (4)

where a and b are integer numbers ∈[0, M] and c and d are
integer numbers ∈[0, R].

Te main objectives of the proposed model are to
minimize the number of PMs (power consumption) f(e)

(equation (5)), the distance between the VM and its replicas
f(d) (equation (6)), and the performance degradation
caused by the PM hosting the replica having lower capa-
bilities (e.g., a lower core speed) f(c) (equation (7)). In this
model, it is assumed that the three objectives are of same
importance. Tus, the weights of all objectives should be
equal.

minf(e) � 􏽘
N

i�1
Pi, (5)

minf(d) � 􏽘
M

j�1
􏽘

R

k�1
V

0
j − V

k
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (6)

minf(c) � 􏽘
M

j�1
􏽘

R

k�1

1, if PMhosting isV
k
j less powerful than the PMhostingV

0
j

0, otherwise.

⎧⎨

⎩ , (7)

4. The Proposed NSGA-III Method

In this paper, the NSGA-III method was utilized to solve the
multiobjective optimization problem (equations (5), (6), and
(7)). Te implementation details of NSGA-III are explained
in [23]. Te NSGA-III algorithm is similar to other genetic
algorithms in that it employs sampling, crossover, and

mutation processes. In this context, it is proposed using
random integer sampling, half uniform crossover, and
polynomial mutation techniques for these operations [24].

4.1. Solution Construction. Te initial solutions of the
NSGA-III are generated at random. Each solution is rep-
resented as a one-dimensional array with a length of T,

Table 2: Summary of the symbols that are used in our model.

M Number of VMs
r Number of replica for individual VM
R Total number of replicas for all VM, R � 􏽐

M
i�1ri

V It represents a set of VM
T It represents M + R

Vk
j

It represents the jth VM and kth replica. j ∈ [1, M] and ∈ [0, R], if k � 0, then its the
primary VM

Vk
cpuj Te CPU capacity of Vk

j

Vk
ramj Te memory capacity of Vk

j

N Number of PMs
n Number of PMs hosted by VMs
P It represents a set of PM
Pi It represents the ith PM, i ∈ [1, N]

Pcpui Te current CPU usage of Pcpui is equal to the sum of all Vcpu in Pcpui

Prami Te current memory usage of Prami is equal to the sum of all Vram in Prami

PcpuCapacityi Te CPU capacity of Pi

PramCapacityi Te memory capacity of Pi

S Solution
Sb Te best solution
gen Number of generation
pop Number of population

International Journal of Intelligent Systems 5

where T � M + R. Te array indices refect the identifers of
VMs, while the array values represent the identifers of PMs.
Tese indices control the placement of each VM within
a PM. A PM can host several VMs, but a VM can only be
hosted by one PM. Te array values are in the range
[0, N − 1], where N is the number of existing PMs.

Figure 1 illustrates an example of three solutions, where
7 VMs are assigned to 4 PMs. Tree out of seven VMs are
replicas (R � 3); V4 and V5 are replicas of V1 and V6 is the
only replica of V3. V0 and V2 have no replicas. Te frst
solution S1 is an infeasible solution since the VM1 and its
replica VM5 are placed on the same PM, i.e., PM1. Te
second solution S2 is a feasible solution for the reason that it
meets all the proposed constraints (e.g., RAM, CPU, and
replication constraints). However, it is not a recommended
solution, as it does not minimize the problem objectives (i.e.,
f(e), f(d), and f(c)). Te third solution S3 is an optimal
solution due to the fact that it produces the minimum f(e),
f(d), and f(c) values. In the next subsection, it will be
explained how f(e), f(d), and f(c) are calculated in detail.

4.2. Population Updating and Repairing. As depicted in
Figure 2, the model parameters are initially assigned (e.g.,
the number of generations gen and the population size pop).
Te NSGA-III algorithm then generates solutions at ran-
dom, which may or may not be feasible. All infeasible so-
lutions should be modifed to meet the problem’s
constraints. After that, for all feasible solutions, the ftness or
objective functions are evaluated to determine the best
solution Sb. When the model generates the gen generations,
the best solution Sb is returned.

Algorithm 1 converts an infeasible solution into a fea-
sible solution through the following steps: First, it fnds the
VM that has been incorrectly allocated to the PM, and then it
unassigned the VM to the PM. Second, it allocates the
unassigned VM into a valid PM. Notably, there are two cases
for VMs: (1) a VM with replica(s) and (2) a VM without
replica(s). In the frst case, when the VM has replicas, it is
placed in the valid PM that has the minimum distance from
its replica. In the second case, when the VM has no replica,
the proposed algorithm selects a valid PM that has the
highest core capacity.

After correcting the infeasible solutions, the objective
functions are computed to select the optimal solutions S. Te
optimal solutions are chosen by minimizing the number of
PMs, the distance between the VM and its replica, and the
degradation of SLA. Algorithm 2 evaluates the frst objective
by counting the number of unique PMs in solution S. For
example, the number of distinct PMs of S1 is 4 (0, 1, 2,
and 3), S2 is 4 (0, 1, 2, and 3), and S3 is 3 (3, 0, and 2), as
depicted in Figure 1.

Te second objective is evaluated by Algorithm 3, which
calculates the total distance between the primary VM host
and its replica host. For example, the total distance between
the primary VM host and the replicas (host) of S2 is 38
(Figure 1), which is equivalent to the sum of the following
distances (10, 8, and 20).Te value 10 is the distance between
P1 and P0, which are the hosts of V1 and its replica host V4.

Te value 8 is the distance between P1 and P2, which are the
hosts of V1 and its replica host V5. Te value 20 is the
distance between P3 and P1, which are the hosts of V3 and its
replica host V6.

Te third objective is evaluated by Algorithm 4, which
counts the number of times the performance can potentially
degrade. Tis may occur if the PM hosting the replica has
lower capabilities (e.g., slower core speed) than the PM
hosting the primary VM. For example, the degrading per-
formance of S2 is 1 because the core speed of P0 which is the
V4 host is higher than P1 which is the V1 host (Figure 1).
While the degrading performance of S3 is 0; this is because
all of the hosts of the primary VMs have lower core speeds
than the hosts of their replicas.

4.3. Dataset. To validate the proposed model, a dataset has
been compiled containing the capabilities of PMs, VMs, the
VMs map, and the distance between PMs. PMs’ specifca-
tions dataset is generated as follows:

First, realistic PMs’ specifcations were collected (e.g.,
RAM, CPU, and clock rate). For example, PM0 has 1 TB
RAM, 28 cores CPU, and 2.5GHz clock rate (Figure 1). Each
collection of RAM, CPU, and clock rate specifcations is
known as a PM’s category or type. For instance, 1 TB RAM,
28 cores CPU, and 2.5GHz clock rate represents PM type 1.
Second, the percentage k of each type in the dataset was
detected. If the dataset has four types, then one possible
combination of these four types is as follows, k1 � 30%,
k2 � 20%, k3 � 40%, and k4 � 10% of N. Tird, each type k

was repeated a number of times in the PM dataset. Fourth,
the PMs were randomly rearranged and the consecutive PMs
are not necessarily of the same PM type.Tese steps are used
to generate VMs’ specifcation datasets as well.

In the dataset, the distances between PMs are generated
randomly as well. For example, in Figure 1, the distance
matrix consists of N rows and N columns. Te distance
between PM and itself is zero; in other words, the matrix
diagonal has only zeros. Te distance between P0 and P1 is
the same as the distance between P1 and P0. Te mapping
matrix represents the replica of a specifc VM. For example,
in Figure 1, V4 and V5 are replicas of V1. Te number of
replicas for each VM (e.g., 0, 1, or 2) is selected randomly.

4.4. Te Proposed Algorithm Complexity Analysis. Each it-
eration in the proposed algorithm has two main steps: (i)
repair the generated solution and (ii) evaluate objective
functions (e.g., f(e), f(d), and f(c)). To repair infeasible
solutions, Algorithm 1 consists of one loop and one nested
loop. Te frst loop fnds the VM that has been incorrectly
allocated to the PM, and Algorithm 1 time complexity is
O(T), where T is the total number of VMs and replica
T � M + R. Te second nested loop allocates the unassigned
VM into a valid PM and its time complexity at the worst case
is O(T × N), where N is the number of PMs.

Algorithm 2 evaluates the frst objective by getting the
number of unique PMs in solution S, its complexity is O(1).
Te second objective is evaluated by Algorithm 3, which
calculates the total distance between the primary VM host

6 International Journal of Intelligent Systems

and its replica host r. It consists of one nested loop.Te outer
loop traces the primary VM, and its complexity is O(M).
Te inner loop traces its replica host; thus, its time com-
plexity is O(r). So, the complexity of Algorithm 3 is
O(M × r). Similarly, the third objective is evaluated by
Algorithm 4 that calculates the total performance degrading
between the primary VM host and its replica host r; thus, its
time complexity is O(M × r).

5. Experimental Results

5.1. Setup. Six experiments were applied to measure the
performance of the model. Te proposed optimization
model NSGA-III was implemented and other metaheuristic
models such as MOEA/D and particle swarm optimization

(PSO) using the pymoo [25] library in Python. Te
NSGA-III default values of the pymoo library were used for
this reasoning. One of these values is the scale factor or
mutation parameter; this parameter range is (0, 2]. Te
higher values of this parameter increase exploration and the
lower values increase the exploitation. Te default value of
the mutation parameter balances exploration and exploi-
tation. Te experiments were conducted on a PC with Intel
(R) Core(TM) i7-4770S CPU @ 3.10GHz Ram 8.00GB. Te
adaptive NSGA-III algorithmwas compared to the PSO [26],
MOEA/D [27], frst-ft, next-ft, and best-ft [28].

Te best algorithm of those aforementioned algorithms
is selected based on the following equation:

Fitnessvalues(F) � w ×(f(e)/100) + w ×(f(d)/1, 000) + w ×(f(c)/10), (8)

where weight w � 0.33. Each of the three objectives has the
same weight (i.e., one-third). As the frst objective, f(e) is
four orders of magnitude, the second objective is fve orders
of magnitude, and the third objective is three orders of
magnitude; we unifed the value of each objective to only two
orders of magnitude in equation (8). Te used weights for
the three objectives are the same to indicate equal impor-
tance of the three objectives.

5.2. Heterogeneous Environment. In this experiment, the
efciency of the model in heterogeneous VM and PM en-
vironments was examined. Five diferent types of VMs and
PMs are used to evaluate the proposed model and discover
the best solution. Table 3 lists the heterogeneous VMs’ and
PMs’ specifcations, where M equals 7,500, N equals 4,000,
and R represents 25% of M. Table 4 indicates the best
outcomes for the three objective functions (i.e., number of

VM0

VM1

VM2

VM3

VM0

VM1

VM2

VM3

PM0

PM1

PM2

PM3

PM0

PM1

PM2

PM3

S1 (Infeasible Solution)

S2 (Feasible Solution)

S3 (Optimal Solution)

f (e)= 4
f (d)= 10+8+20=38
f (c)= 1 + 0 + 0 = 1

f (e)= 3
f (d)=5+7+5=17
f (c)= 0

VM

PM

Array indexes

Array values

Map
Replica 1

with
Replica 2

with

-- --

4 5

-- --

6 --

Req Core RAM

2 8G

4 16G

4 8G

8 64G

Distance PM0 PM1 PM2 PM3

0 10 15 5

10 0 20 8

15 20 0 7

5 8 7 0

Req RAM Core CR

1TB 28 2.50

1TB 24 3.1

2TB 48 4.5

2TB 32 2.0

0 1 2 3 4 5 6

0 1 2 3 0 1 2

0 4 5 6

0 0 2 1

0 4 5 6

3

3

3

3

1 2

1 2

1 2

3 3 3 0 2 0

VM

VM

PM

PM

Figure 1: Example of three solutions (infeasible, feasible, and optimal solutions) of the proposed model.

International Journal of Intelligent Systems 7

Start

Initialize model parameters, e.g.
gen, pop, M, N, amd so on ...

Apply NSGA-III
i = 0

i <= gen

Generate S using NSGA-III
sampling, crossover, and mutation

Is S feasible
? Repair S

Evaluate the fitness of S

Set the best solution as Sb
i = i + 1

Return Sb

End

No

Yes

Figure 2: Flowchart of the proposed model.

Input: S
Output: S
count� 0;
for VMindex:� 0 to length (S)−1 do
if checkConstrains (VMindex, S [VMindex])�� 0 then
UpdatedList [count]�VMindex;
/∗Del the host of VM from the Solution∗/
S[VMindex]� −1
count ++;

end
end
for j:� 0 to count do
VMindex�UpdatedList [j];
if HasReplica (VMindex)�� 1 then
/∗Select the valid PM with the minimum distance with replicas∗/
PMIndex� SelectPMMinDis (VMindex);
S[VMindex]�PMIndex;

end
else

ALGORITHM 1: Continued.

8 International Journal of Intelligent Systems

/∗Sort descending the PM based on core capacity∗/
PMList� SortDesPM (S)
for k:� 0 to length (PMList) do
PMIndex� PMList [k]/∗check its valid to add VM to PM∗/if checkvalidity (VMindex, PMIndex) then

S[VMindex]� PMIndex;
break

end
end

end
end

ALGORITHM 1: Repair solution.

Input: S
Output: n
n� length (unique (S))
return (n)

ALGORITHM 2:f(e): Number of used PMs.

Input: S, V, Distance
Output: tolDistance
tolDistance� 0
for i:� 0 to V− 1 do
PrimaryPM� S[i]
Replica� getReplicas (i)
for j:� 0 to length (Replica)−1 do
ReplicaIndex�Replica[j]
ReplicaPM� S[ReplicaIndex]
tolDistance� tolDistance +Distance [PrimaryPM, ReplicaPM]
end
end
return (tolDistance)

ALGORITHM 3:f(d): total distance between VMs and its replica.

Input: S, V
Output: Count
Count� 0
for i:� 0 to V− 1 do
PrimaryPM� S[i]
Replica� getReplicas (i)
for j:� 0 to length (Replica)−1 do
ReplicaIndex�Replica [j]
ReplicaPM� S[ReplicaIndex]
if ClockRate (PrimaryPM) > ClockRate (ReplicaPM) then
Count ++;
end
end
end
return (Count)

ALGORITHM 4:f(c): the performance degrading due to the PM hosting the replica is with lower capabilities.

International Journal of Intelligent Systems 9

PMs of equation (5), distance between PMs hosting the
replicas of equation (6), and performance degrading of
equation (7)) in bold. As shown in Table 4, the NSGA-III
algorithm yields the highest performance with the lowest
ftness values. Te NSGA-III algorithm’s score is lower than
those of other algorithms by 43.66%, 52.71%, 50.81%,
46.32%, and 12.10% for frst-ft, next-ft, best-ft, PSO, and
MOEA/D, respectively. Te NSGA-III algorithm achieves
the lowest possible level for the number of PMs and per-
formance degrading. Best-ft achieves theminimum distance
since it selects the hosted PM based on distance. First-ft and
next-ft perform the worst in comparison to the other al-
gorithms. Tis can be linked to the fact that the frst-ft
heuristics searches the frst n valid PMs to host VMs while
next-ft searches valid PMs sequentially. Notably, NSGA-III
and MOEA/D performed similarly in lowering the distance
between replicas and the number of PMs, while the
NSGA-III algorithm signifcantly outperformed MOEA/D
in reducing the performance degrading PMs (i.e., clock rate).
Specifcally, Table 4 demonstrates that NSGA-III reduced
performance degradation by almost 600% compared to the
MOEA/D technique. As this experiment was repeated
several times, the reported results are the mean and mean
plus and minus the standard deviation of the NSGA-III
improvement over the closest algorithm MOEA/D. To test
the confdence interval (CI) of the reported mean of im-
provement of the NSGA-III over the MOEA/D, the conf-
dence interval analysis was conducted on the obtained
results. Te CI analysis shows that the reported mean of
improvement of the NSGA-III over the MOEA/D has 15.1%

with ± 0.6% error margin and 95% confdence interval. Te
obtained solutions are following the constraints in equations
(1) to (3).

5.3. Memory Intensive in Heterogeneous Environments.
Te efciency of the proposed model was evaluated with
more complicated scenarios using memory-intensive re-
quirements. Table 5 lists the VMs’ and PMs’ specifcations,
where M equals 7,500, N equals 4,000, and R represents 25%
of M. NSGA-III, MOEA/D, and PSO parameters are pop �

50 and gen � 10, 000. Table 6 shows the experimental results
of the proposed model in the memory-intensive heteroge-
neous environment relative to other algorithms. Te bold
results represent the best outcomes for the three objective
functions. Te obtained solutions are following the con-
straints in equations (1) to (3). Te NSGA-III algorithm
successful achieved the lowest (i.e., the best) ftness values, as
shown in Figure 3. An observation was made that there is
a performance gap between the NSGA-III algorithm on one
side and the other algorithms. For instance, the results of the
NSGA-III’s ftness values for 4,000 generations and pop-
ulation size of 25 are lower than those of the other algo-
rithms by 58.29%, 62.65%, 62.55%, 55.70%, and 31.02% for
frst-ft, next-ft, best-ft, PSO, and MOEA/D, respectively.
As the search space increases, the performance gap between
the NSGA-III algorithm on one side and the MOEA/D and
PSO algorithms on the other side continues to increase. Te
search space increases by increasing the number of gener-
ations and population size. Tus, the performance gaps

Table 3: Specifcation of heterogeneous environment.

Type Memory Number of cores Clock rate (GHz) k (%)

PM

1 768GB 28 2.50 30
2 2 TB 32 2.0 15
3 1 TB 48 4.5 10
4 1 TB 24 3.1 25
5 2 TB 96 3.6 20

VM

1 8GB 2 2.5 25
2 16GB 4 3.5 25
3 72GB 30 3.6 20
4 64GB 8 2.5 25
5 976GB 46 2.3 5

Table 4: Experimental results of heterogeneous environment

Model Number of PMs Distance Performance degrading F
First-ft 2,066 22,559.00 556.00 32.61
Next-ft 3,546 22,578.00 597.00 38.85
Best-ft 3,403 18,750.00 604.00 37.35

gen 4,000
pop 25

NSGA-III 2,629.67 ± 51.83 19,244.33 ± 21.57 101.33 ± 26.76 18.37
PSO 2,839.33 ± 3.21 20,319.00 ± 54.53 550.00 ± 19.67 34.23

MOEA/D 2,610.00 ± 27.22 18,934.67 ± 14.98 183.00 ± 9.64 20.90

gen 5,000
pop 50

NSGA-III 2,524.50 ± 6.36 19,022 ± 48.08 55 ± 11.31 16.42
PSO 2,824.00 ± 4.24 20,156.00 ± 70.71 560.00 ± 1.41 34.45

MOEA/D 2,566.50 ± 9.19 18,906.50 ± 12.02 181.00 ± 12.73 20.68
gen 10,000
pop 50

NSGA-III 2,438. 0 ± 8.69 18,8 3.00 ± 14.14 31.00 ± 11.31 1 .29
MOEA/D 2,599.50 ± 3.54 18,895.00 ± 33.94 187.00 ± 25.46 20.98

where bold numbers indicate the best result.

10 International Journal of Intelligent Systems

between the NSGA-III algorithm with 5,000 and 10,000
generations relative to other algorithms are greater than the
performance gap of the NSGA-III algorithm with 4,000
generations.

Table 6 shows that the NSGA-III algorithm, with 10,000
generations, reduced performance degrading, and reduced
the number of PMs by about 1,600% and 7%, respectively, in
comparison with the MOEA/D algorithm. A conclusion can
be drawn that other algorithms are infuenced by the
memory-intensive requirements, which resulted in more
PMs being utilized to host these VMs. Increasing the
number of VMs leads to increasing the distance objective
as well.

5.4. Compute Intensive in Heterogeneous Environments.
In this experiment, the efciency of the proposed model was
examined in a compute-intensive heterogeneous VM and
PM setting utilizing fve diferent types of VMs and PMs.Te
specifcations for heterogeneous VMs and PMs are detailed
in Table 7, where M equals 6,000, N equals 4,000, and R

represents 25% of M. Te parameters for NSGA-III and PSO
are pop � 50 and gen � 10, 000. Te results of all algorithms
for the compute-intensive experiments are depicted in Ta-
ble 8. Te results demonstrate that the NSGA-III algorithm
outperforms the other algorithms, as shown in Figure 4.
When comparing the ftness values of the NSGA-III algo-
rithm to that of the other algorithms, there is a signifcant

Table 5: Specifcations of memory intensive in heterogeneous environments.

Type Memory Number of cores Clock rate (GHz) k (%)

PM

1 768GB 28 2.50 30
2 2 TB 32 2.0 15
3 1 TB 48 4.5 10
4 1 TB 24 3.1 25
5 2 TB 96 3.6 20

VM

1 64GB 2 2.5 25
2 128GB 4 3.5 25
3 256GB 30 3.6 20
4 512GB 8 2.5 25
5 976GB 46 2.3 5

Table 6: Experimental results of memory-intensive heterogeneous environments

Number PM Distance Performance degrading F
First-ft 2,460 22,526 561 34.06
Next-ft 3,626 22,521 565 38.04
Best-ft 3,441 18,750 618 37.94
NSGA-III 2,310 ± 1.40 18,804 ± 1.40 11. 0 ± 2.10 14.21
PSO 2,759.50 ± 7.78 19,548.5 ± 0.71 500.50 ± 47.38 32.07
MOEA/D 2,557.50 ± 6.36 18,840.50 ± 2.12 180 ± 8.49 20.60
where bold numbers indicate the best result.

34.06

38.04 37.94

32.07

20.6

14.21

Next-Fit Best-Fit PSO MOEA/D NSGA-IIIFirst-Fit
Comparative algorithms

20

30

40

Fi
tn

es
s v

al
ue

s F
 (%

)

Figure 3: Te ftness values of the proposed adaptive NSGA-III algorithm and comparative algorithms on memory intensive in
a heterogeneous environment.

International Journal of Intelligent Systems 11

diference. It is lower than other algorithms by 55.26%,
58.43%, 56.07%, 47.33%, and 23.94% for frst-ft, next-ft,
best-ft, PSO, and MOEA/D, respectively. Te NSGA-III
algorithm generated the smallest number of PMs and per-
formance degrading. Tis indicates that NSGA-III performs
well in a compute-intensive context.

5.5. Proposed Method’s Performance Analysis. In this ex-
periment, we demonstrate how changing the population size
afects the outcome. Furthermore, the utilized NSGA-III
algorithm’s behavior is investigated as the number of gen-
eration increases. In Figure 5, the number of PMs, distance,
number of replicas causing performance degrading, and
ftness values are plotted against the number of population
pop for diferent generation gen values, gen equals 1,000,

2,000, and 3,000. As can be seen, the lowest ftness value is
17.66. Tis value is achieved by the highest pop and gen
values, where pop � 50 and gen � 3, 000. In general, the
higher the pop and gen values, the lower the distance,
number of PMs, and performance degrading. Tis is logical
because when the numbers of pop and gen increase, the
NSGA-III algorithm takes more time to search for the best
solution with the highest performance (i.e., the larger the
search space).

5.6.HeterogeneousEnvironmentwithDiferent SLAScenarios.
Allocating VM replicas to a PM with fewer hardware re-
quirements relative to PM hosting the primary replica may
lead to an increase in the SLA violation due to performance
degrading. Terefore, the VM replica should be allocated to

Table 7: Specifcation of compute intensive in the heterogeneous environment.

Type Memory Number of cores Clock rate (GHz) k (%)

PM

1 768GB 28 2.50 10
2 2 TB 32 2.0 15
3 1 TB 48 4.5 15
4 1 TB 72 3.1 30
5 2 TB 96 3.6 30

VM

1 8GB 16 2.5 40
2 16GB 30 3.5 40
3 32GB 46 3.6 10
4 48GB 62 2.5 5
5 976GB 70 2.3 5

Table 8: Experimental results of compute-intensive heterogeneous environments

Number of PMs Distance Performance degrading F
First-ft 2,978 17,836 470 31.22
Next-ft 3,787 18,050 459 33.60
Best-ft 3,505 15,000 463 31.80
NSGA-III 2, 2. 0 ± 17.70 1 ,002 18 ± 4.20 13.97
PSO 2,861 ± 12.70 15,257.50 ± 29 365 ± 19.80 26.52
MOEA/D 2,662 ± 12.73 15,027.50 ± 3.54 140 ± 2.83 18.36
where bold numbers indicate the best result.

31.22
33.61

31.81

26.52

18.36

13.97

Next-Fit Best-Fit PSO MOEA/D NSGA-IIIFirst-Fit
Algorithms of Comparison

20

30

40

Fi
tn

es
s v

al
ue

s F
 (%

)

Figure 4: Te ftness values of the proposed algorithm NSGA-III and comparative algorithms on compute intensive in a heterogeneous
environment.

12 International Journal of Intelligent Systems

a PMwith at least the same hardware specifcation as the PM
hosting the primary replica. In this experiment, two SLA
scenarios were compared. Scenario 1 acts as Algorithm 4
where the VM replicas are allocated on PM with at least the
same hardware specifcation as the PM hosting the primary
replica while in scenario 2, the VM replicas allocated to PMs
have the s same hardware specifcation as the PM hosting the
primary replica. Five diferent types of VMs and PMs are
used to evaluate the proposed model and to discover the best
scenario. Table 3 lists the heterogeneous VMs’ and PMs’
specifcations, where M equals 7,500, N equals 4,000, and R

represents 25% of M. Te NSGA-III algorithm’s parameters
are pop � 50 and gen equals (e.g., 2,000, 4,000, 6,000, 8,000,
and 10,000). As shown in Figure 6, scenario 1 is superior to
scenario 2 in terms of performance degrading and ftness
values. Tis is logical, as increasing the search space leads to
enhancing the NSGA-III algorithm’s performance.

5.7. Statistical Analysis. In this experiment, analysis of
variance (ANOVA) is applied in order to compare themeans
of six groups (e.g., frst-ft, next-ft, best-ft, PSO, NSGA-III,
and MOEA/D results). Tese groups were compared in
terms of the three objectives (e.g., f(e), f(c), and f(d)) and
ftness values. Te results of the ANOVA test are shown in
Table 9. Te following are the H0 and H1 hypotheses for the
ANOVA test: H0: for each group, the means are the same.
H1: in the two groups, there are diferences in the mean.

To examine the confdence level of the reported results,
95% of the confdence interval was utilized. Terefore, the
hypothesis H0 is accepted if the signifcance parameter
(abbreviated sig.) or p value is greater than 0.05. Table 9
shows that the sig. value for objective function, f(d), is more
than 0.05. Terefore, for the distance objective, the hy-
pothesis H0 is accepted. Tis indicates that, with a 95%
confdence interval, the average distance between VM and its

gen=3000
gen=2000
gen=1000

gen=3000
gen=2000
gen=1000

gen=3000
gen=2000
gen=1000

gen=3000
gen=2000
gen=1000

100

200

300

Pe
rfo

rm
an

ce
 d

eg
ra

di
ng

18

20

22

24

26

28
Fi

tn
es

s v
al

ue
s,

F
(%

)

19,200

19,400

19,600

19,800

20,000

20,200

20,400

D
ist

an
ce

 (k
m

)

2,600

2,700

2,800

2,900

3,000

N
um

be
r o

f P
M

s

5030 402010
Population size, pop

5030 402010
Population size, pop

5030 402010
Population size, pop

5030 402010
Population size, pop

Figure 5: Te performance of NSGA-III on diferent population sizes and a diferent number of generations.

International Journal of Intelligent Systems 13

scenario 2
scenario 1

scenario 2
scenario 1

4,000 6,000 8,0002,000 10,000
Generation size, gen

4,000 6,000 8,0002,000 10,000
Generation size, gen

0

200

400

600

800

1,000
Pe

rfo
rm

an
ce

 d
eg

ra
di

ng

20

30

40

50

Fi
tn

es
s v

al
ue

s (
F)

Figure 6: Te performance of NSGA-III on diferent SLA scenarios with a diferent number of generations.

Table 9: Te ANOVA test regarding utilization of frst-ft, next-ft, best-ft, PSO, NSGA-III, and MOEA/D algorithms.

Source of variation SS df MS F Sig. F crit

Number of PMs
Between groups 4015382.74 5 803076.55 19.50 2.18915E− 05 3.11
Within groups 494128.83 12 41177.40

Total 4509511.57 17

Distance
Between groups 44173994.44 5 8834798.89 1.48 0.266183005 3.11
Within groups 71496377.67 12 5958031.47

Total 115670372.11 17

Performance degrading
Between groups 791787.28 5 158357.46 36.67 7.26942E− 07 3.11
Within groups 51827.67 12 4318.97

Total 843614.94 17

Fitness values
Between groups 1240.29 5 248.06 36.70 7.23549E− 07 3.11
Within groups 81.12 12 6.76

Total 1321.40 17

Table 10: Te LSD test regarding utilization of frst-ft, next-ft, best-ft, PSO, NSGA-III, and MOEA/D algorithms.

Algorithm 1 Algorithm 2 Dif. lwr.ci upr.ci Sig.

Number of PMs

NSGA-III Best-ft −1016.00 −1377.00 −655.00 0.000051
NSGA-III First-ft −67.67 −428.66 293.33 0.69017
NSGA-III MOEA/D −172.67 −533.66 188.33 0.31789
NSGA-III Next-ft −1219.33 −1580.33 −858.34 0.0000087

PSO NSGA-III 381.17 20.17 742.16 0.04016

Performance degrading

NSGA-III Best-ft −541.50 −658.41 −424.59 3.20E− 07
NSGA-III First-ft −508.83 −625.75 −391.92 6.30E− 07
NSGA-III MOEA/D −148.83 −265.75 −31.92 0.0168
NSGA-III Next-ft −520.17 −637.08 −403.25 5.00E− 07

PSO NSGA-III 455.00 338.09 571.91 2.10E− 06

Fitness values

NSGA-III Best-ft −21.20 −25.83 −16.58 3.60E− 07
NSGA-III First-ft −18.14 −22.77 −13.52 1.90E− 06
NSGA-III MOEA/D −5.49 −10.12 −0.87 0.02377
NSGA-III Next-ft −22.34 −26.97 −17.72 2.10E− 07

PSO NSGA-III 16.53 11.90 21.15 5.00E− 06

14 International Journal of Intelligent Systems

replica for each of the six algorithms (i.e., frst-ft, next-ft,
best-ft, PSO, NSGA-III, and MOEA/D results) are almost
similar.

In addition, as listed in Table 9, the sig. value for the
objective functions f(e), f(c), and ftness values f is less
than 0.05. Terefore, hypothesis H0 is rejected for the
number of PMs, performance degrading, and ftness values.
Tis indicates that there is a diference in themean of the two
algorithms at least for f(e), f(c), and f. However, the
ANOVA test gives no indication of the mean value for any
method. Tus, a post hoc Fisher’s least signifcant diference
(LSD) analysis was applied. LSD can be used to determine
whether group means are diferent from one another. Ta-
ble 10 lists the LSDmultiple comparisons for f(e), f(e), and
f. Notably, the focus was mainly placed on the NSGA-III
algorithm, as it outperformed other algorithms in the pre-
vious experiment. Te results clearly show that for f(c), the
NSGA-III algorithm’s mean is closer to the MOEA/D and
frst-ft algorithms than that of the other algorithms. Tis
demonstrates how the NSGA-III algorithm is superior to the
next-ft, best-ft, and PSO methods on f(e). For f(c) and f,
the NSGA-III algorithm is superior to the frst-ft, next-ft,
best-ft, PSO, and MOEA/D methods.

6. Conclusions

In this work, it was proposed to address the problem of VMP
in the context of VM replication. Proposing to utilize the
NSGA-III algorithm to confront this problem, the VMP was
addressed as a multiobjective optimization problem. Con-
struction solutions were proposed to ft the NSGA-III
method. In addition, a repair algorithm to restore the in-
feasible solutions generated by the utilized methods was
suggested. Subsequently, a set of datasets with diferent
requirements in terms of memory and computing was
proposed. Tese datasets cover diferent scenarios such as
heterogeneous PMs and VMs, compute-intensive environ-
ment, and memory-intensive environment. Te proposed
method is examined on these datasets, and their perfor-
mance is compared against both heuristic and meta-
heuristic methods (e.g., MOEA/D and PSO). Te experi-
mental results show a superior performance of the adapted
NSGA-III method where the performance gap was in the
range of 23% to 62% relative to the other methods of
comparison. Te utilized NSGA-III massively outperformed
the MOEA/D algorithm in reducing the performance
degrading, and NSGA-III outperformed MOEA/D for the
overall performance as well.

Te future directions are two-fold. First, the proposed
model will include additional objectives such as application
awareness to consider placing the VM according to the
match between its running application(s) and the PM’s
specifcations. Second, the problem solution can be explored
using a reinforcement learning model and then compared to
the proposed GA-based method.

Data Availability

Te datasets generated during the current study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] M. F. Mohamed, “Service replication taxonomy in distributed
environments,” Service Oriented Computing and Applications,
vol. 10, no. 3, pp. 317–336, 2016.

[2] C. Gonzalez and B. Tang, “FT-VMP: fault-Tolerant virtual
machine placement in cloud data centers,” in Proceedings of
the 2020 29th International Conference on Computer Com-
munications and Networks (ICCCN), pp. 1–9, Honolulu, HI,
USA, August 2020.

[3] J. Hu, J. Luo, and K. Li, “Opportunistic energy cooperation
mechanism for large internet of things,”Mobile Networks and
Applications, vol. 23, no. 3, pp. 489–502, 2018.

[4] H. F. ElYamany, M. F. Mohamed, K. Grolinger, and
M. A. Capretz, “A generalized service replication process in
distributed environments,” in Proceedings of the 5th In-
ternational Conference on Cloud Computing and Services
Science, Liverpool UK, January 2015.

[5] M. Elshrkawey, S. M. Elsherif, and M. Elsayed Wahed, “An
enhancement approach for reducing the energy consumption
in wireless sensor networks,” Journal of King Saud University-
Computer and Information Sciences, vol. 30, no. 2, pp. 259–
267, 2018.

[6] H. Goudarzi and M. Pedram, “Energy-efcient virtual ma-
chine replication and placement in a cloud computing sys-
tem,” in Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, pp. 750–757, Honolulu, HI,
USA, June 2012.

[7] W. Hussain, O. Sohaib, M. Naderpour, and H. Gao, “Cloud
marginal resource allocation: a decision support model,”
Mobile Networks and Applications, vol. 25, no. 4, pp. 1418–
1433, 2020.

[8] A. Garcı́a-Nájera and A. López-Jaimes, “An investigation into
manyobjective optimization on combinatorial problems:
analyzing the pickup and delivery problem,” Swarm and
Evolutionary Computation, vol. 38, pp. 218–230, Feb. 2018.

[9] N. Srinivas and K. Deb, “Muiltiobjective optimization using
nondominated sorting in genetic algorithms,” Evolutionary
Computation, vol. 2, no. 3, pp. 221–248, 1994.

[10] K. Deb and H. Jain, “An evolutionary many-objective opti-
mization algorithm using reference-point based non-domi-
nated sorting approach, Part I: Solving problems with box
constraints,” IEEE Transactions on Evolutionary Computa-
tion, vol. 18, no. 4, pp. 577–601, 2014.

[11] Q. Liu, X. Liu, J. Wu, and Y. Li, “An improved NSGA-III
algorithm using genetic K-Means clustering algorithm,” IEEE
Access, vol. 7, pp. 185239–185249, 2019.

[12] A. Al-Moalmi, J. Luo, A. Salah, and K. Li, “Optimal virtual
machine placement based on grey wolf optimization,” Elec-
tronics, vol. 8, no. 3, p. 283, 2019.

International Journal of Intelligent Systems 15

[13] F. Alharbi, Y. C. Tian, M. Tang, W. Z. Zhang, C. Peng, and
M. Fei, “An ant colony system for energy-efcient dynamic
virtual machine placement in data centers,” Expert Systems
with Applications, vol. 120, pp. 228–238, 2019.

[14] E. Parvizi and M. H. Rezvani, “Utilization-aware energy-
efcient virtual machine placement in cloud networks us-
ing NSGA-III meta-heuristic approach,” Cluster Computing,
vol. 23, no. 4, pp. 2945–2967, 2020.

[15] M. Tarahomi, M. Izadi, and M. Ghobaei-Arani, “An efcient
power-aware VM allocation mechanism in cloud data centers:
a micro genetic-based approach,” Cluster Computing, vol. 24,
no. 2, pp. 919–934, 2021.

[16] T. Abbasi-khazaei and M. H. Rezvani, “Energy-aware and
carbon-efcient VM placement optimization in cloud data-
centers using evolutionary computing methods,” Soft Com-
puting, vol. 26, no. 18, pp. 9287–9322, 2022.

[17] S. S. Alresheedi, S. Lu, M. Abd Elaziz, and A. A. Ewees,
“Improved multiobjective salp swarm optimization for virtual
machine placement in cloud computing,” Human-centric
Computing and Information Sciences, vol. 9, no. 1, pp. 15–
24, 2019.

[18] W. Zhang, X. Chen, and J. Jiang, “A multi-objective opti-
mization method of initial virtual machine fault-tolerant
placement for star topological data centers of cloud sys-
tems,” Tsinghua Science and Technology, vol. 26, no. 1,
pp. 95–111, 2021.

[19] Y. Sharma, W. Si, D. Sun, and B. Javadi, “Failure-aware
energy-efcient VM consolidation in cloud computing sys-
tems,” Future Generation Computer Systems, vol. 94,
pp. 620–633, 2019.

[20] P. Khani, B. Tang, J. Han, and M. Beheshti, “Power-efcient
virtual machine replication in data centers,” in Proceedings of
the 2016 IEEE International Conference on Communications
(ICC), pp. 1–7, Kuala Lumpur, Malaysia, May 2016.

[21] Y. Yao, J. Cao, and M. Li, “A network-aware virtual machine
allocation in cloud datacenter,” in Proceedings of the IFIP
International Conference on Network and Parallel Computing,
pp. 71–82, Shanghai China, September 2013.

[22] A. Al-Moalmi, J. Luo, A. Salah, K. Li, and L. Yin, “A whale
optimization system for energy-efcient container placement
in data centers,” Expert Systems with Applications, vol. 164,
Article ID 113719, 2021.

[23] J. Blank, K. Deb, and Proteek Chandan Roy, “Investigating the
normalization procedure of nsga-iii,” in Evolutionary Multi-
Criterion Optimization, 229 240, K. Deb, E. Goodman,
A. Carlos et al., Eds., Springer International Publishing,
Midtown Manhattan, NY, USA, 2019.

[24] J. Blank and K. Deb, “Pymoo: multi-objective optimization in
Python,” IEEE Access, vol. 8, pp. 89497–89509, 2020.

[25] Pymoo, “PYMOO:Multi-objective Optimization in Python,”
2020, https://pymoo.org/.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the ICNN’95-International Conference on
Neural Networks, vol. 4, pp. 1942–1948, Perth, WA, Australia,
November 1995.

[27] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[28] G. Gigerenzer and W. Gaissmaier, “Heuristic decision
making,” Annual Review of Psychology, vol. 62, no. 1,
pp. 451–482, 2011.

16 International Journal of Intelligent Systems

https://pymoo.org/

