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Tis paper presents a novel adaptive neurochaotic fuzzy control system based on type-2 fuzzy systems to reduce seismic responses
in multistory structures with active tuned mass dampers under near-feld and far-feld earthquakes. In this proposed control
system, the whole parameters of the plant are assumed to be completely unknown, the structural model is estimated using
a multilayer perceptron neural network, and the system’s Jacobian is extracted. Te online estimation model is used, and the
controller parameters are adaptively trained using the extended Kalman flter and error back-propagation method. Subsequently,
the control force is applied to the active tuned mass damper, and the control objectives are met. Te adaptive controller does not
require initial settings, and a fractional-order proportional-integral-derivative controller is added to maximize stability and
robustness against seismic vibration. A simple adaptive controller optimized by a particle swarm is also presented as an in-
novation. Comparing the performance of the improved simple adaptive controller and adaptive neurochaotic fuzzy controller, the
proposed controllers appear more efcient and accurate. However, the superiority of the novel adaptive neurochaotic fuzzy over
the improved simple adaptive controller in reducingmaximum displacement, acceleration, drift, and base shear while maintaining
acceptable performance under parametric uncertainties and seismic conditions is substantial.

1. Introduction

Natural disasters are considered the primary concern of civil
engineers nowadays as they cause considerable damage to
residents and structures [1–9]. In addition, the casualties and
economic losses resulting from large-scale earthquakes and
strong winds are remarkable [10]. To overcome these
problems, structural control is a benefcial approach that
minimizes the dynamic responses and excessive damage to
the structures. Besides, the control strategies ofer remark-
able safety to the residents, raise the structural system’s
fexibility, and minimize the materials’ usage [11]. Notably,
many control systems were proposed to protect against

excessive vibrations in an earthquake or wind excitation.
Passive control systems [12, 13], semiactive control systems
[14], active control systems [15–19], and hybrid control
systems [20, 21] are typical examples of these systems. Te
active control systems have acceptable performance and
adaptability for various excitation frequencies. Tese char-
acteristics indicate the beneft of active control systems over
passive control systems. Tese systems are helpful for
transitive vibrations and minimizing the response to strong
earthquakes. Furthermore, the semiactive and hybrid con-
trol strategies that seem more practicable for implementa-
tion rely on active control algorithms [22–24]. One of the
passive control systems is the tuned mass damper (TMD),
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which has received much attention so far [25, 26]. For
example, Zamani and Etedali propose new formulas for
optimal adjustment of tuned mass damper (TMD) param-
eters using a genetic programming method for seismically
excited structures. Te formulas use the teaching-learning-
based optimization (TLBO) algorithm and derive high ac-
curacy and efciency. Numerical studies show that these
formulas are efcient for seismic control applications, re-
ducing foor displacement and absolute acceleration [27].
Among several passive devices for structural control ap-
plications [28–30], a family of extremely nonlinear dampers
(particle dampers) that concurrently exploit momentum
transfer and internal energy dissipation provides some
benefts in practical settings. Particle dampers, which de-
veloped from the single-particle impact damper [31], are
containers or structural spaces partly flled with particles
(e.g., ball bearings, tungsten powders, etc.) [32].

Te main disadvantage of this passive control strategy is
that it is limited to a narrow frequency band. Additionally,
since this strategy is entirely sensitive to parameter tuning,
a characteristic structural frequency needs to be considered
for tuning. Basically, severe earthquakes or strong winds lead
to irreparable damage to the structures and change their
dominant frequency. Terefore, due to the sensitivity of the
TMD damper optimal parameters to the dominant fre-
quency of the structure or ignoring the efect of soil-
structure interaction, it leads to an unwanted bad shock
absorption efect [25, 33–35]. To overcome the above-
mentioned problems associated with TMDs, many studies
have proposed using several TMDs with diferent properties
[36–40]. However, an active tuned mass damper (ATMD) is
a more practical strategy because it is applicable considering
several vibration states and is a useful control approach for
multistory structures [41]. Tis system uses a relatively small
mass to minimize the structures’ response and enhance
performance [42]. Furthermore, the active control force
employed to transmit this small mass exerts a secondary
inertial force against the vibrations [43]. Although, con-
cerning the building and the mass of the adjustable damper,
which constitutes the mass of the entire system, the high
level of driving force requirements might be utilized for the
ATMD systems and put the whole control system in an
unstable condition. Recent years have seen various control
algorithms for improving the ATMD control’s performance
because the control systems’ performance is signifcantly
related to the control algorithm that tunes the control force.
In this case, the structure’s dynamic vibrations are mini-
mized, which improves the safety and performance of civil
engineering structures under strong environmental excita-
tions. Besides, a suitable trade-of is created between these
conficting purposes, such as reducing the control force and
structural responses [44, 45]. LQR [46–48], H2 and H∞
[49, 50], bang-bang control [51], acceleration feedback
regulators [52, 53], feedforward and feedback optimal
tracking controller (FFOTC) [54], sliding mode control
(SMC) [55–57], fuzzy PID controller [58, 59], and PID
controller [48, 60, 61] are the signifcant algorithms mainly
used for adjusting the control force used in ATMD. In fact,
choosing an efective control algorithm is a determent factor

that raises the control system’s efciency [62]. Te control
algorithms that have been presented so far can deliver a large
number of benefts based on their characteristic practicalities
and purposes.

Semiactive control of base-isolated structures has been
well studied in recent years. However, there is a study gap in
the assessment of the structure in the literature. Etedali and
Zamani carry out research on semiactive control of non-
linear smart base-isolated structures using an MR damper
for the case of controlled ones in both passive-of and
passive-on modes and also tuning the command voltage of
the MR dampers by a multiobjective modifed clipped op-
timal controller [63]. In the study by Zamani and Etedali,
a new framework controller based on energy concepts,
namely OIT2FOFPIDC, was developed for implementation
in seismically excited structures [64]. However, this model
was not investigated for active seismic control of structures
with tunedmass dampers or tendon systems. In addition, the
efectiveness of the model for bridges and tall buildings
exposed to strong wind can also be discussed. A simple and
useful controller based on the optimal output feedback
controller for use in tall structures equipped with smart
base-isolated was developed by Zamani and Etedali [65].Te
main motivation of in research is to propose a new
framework of multiobjective brain emotional learning-based
intelligent controller for tuning the command voltage of MR
dampers in real time for smart base-isolated structures.

It is noteworthy that the previous decades have seen
many studies conducted regarding the fuzzy logic controller
(FLC) [39, 43, 66, 67], and this strategy has been considered
a control algorithm for the structures’ active control. Far-
avelli and Yao were the pioneers in this feld and proposed
a set of instructions to perform the active control strategy
with FLC in the structures [68]. After that, the active control
method’s application in the benchmark buildings [69] using
an FLC was examined by Al-Dawod in 2004 [70]. Te FLC is
designed based on human knowledge and experience to
create the rules of control and outline membership func-
tions. Besides, human knowledge is limited for solving
complex problems and cannot lead to efcient control re-
sponses for a specifc structure. To overcome these draw-
backs, the control systems’ parameters need to be
fundamentally adjusted with optimization algorithms
[62, 71–76]. Structural control studies primarily focus on
nominal parameters, but real structures face uncertain re-
sponses due to simplifcations in engineering models, esti-
mates, assumptions, and unpredictable environmental loads.
So, natural disasters like strong winds and earthquakes cause
damage to structures. Stifness, natural frequencies, and
mode shape variations are the major parameters that have an
adverse efect on the structures’ properties. Tese un-
certainties lead to losing the efective performance of the
controller in reducing the structure’s seismic responses. In
this case, the control systems are set ofine by algorithms,
possibly destabilizing them [77–79]. Tus, a fundamental
need is to propose a control strategy that is not sensitive to
parametric changes and has remarkable performance for
structural control. Accordingly, adaptive intelligent control
algorithms have been introduced as a promising approach
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and suitable alternative to traditional model-based control
algorithms [80]. Te efective control of nonlinear, time-
varying, and time-delayed complicated structures is ob-
tained through these algorithms based on artifcial in-
telligence [81] and soft computing techniques.Te structural
system’s specifcations are assessed under severe earthquakes
in real time. In order to minimize the dynamic responses,
suitable control forces are applied to the structure that also
compensates for the probable damage in the structure
[55, 82–85].

Type-1 fuzzy logic has been implemented in diferent
studies; however, its capability for modeling uncertainties is
being questioned. On the other hand, type-2 fuzzy systems
have received much attention compared to type-1 ones since
they model more uncertainties with the minimum rules
[86–88].

Terefore, type-2 fuzzy logic was introduced, which is
created by fuzzifcation of the secondary membership
functions. On the other hand, the information processing
speed in type-2 fuzzy systems is low because they contain
many embedded type-1 fuzzy sets, which increases the
theoretical and computational complexities in inference
operators and type reduction. Interestingly, the remarkable
capabilities of type-2 fuzzy systems in modeling un-
certainties outweigh such challenges. Notably, several
studies [80, 89–93] presented methods for increasing the
type-2 fuzzy system’s computation speed. In addition, in-
terval type-2 fuzzy systems have been signifcantly employed
in many felds, such as modeling nonlinear systems [94],
system identifcation [95], time series prediction [96], and
intelligent control [97].

In 2018, Golnargesi et al. exploited the IT2FLC in ATMD
to control the response of a structure according to soil-
structure interaction and achieved acceptable results [98]. In
a signifcant study in 2020 associated with IT2FLC, Hosseini
Lavassani and Shangapour presented the applicability of this
strategy in the hybrid control of the behavior of a real high-
rise burning building according to the soil-structure in-
teraction. Te hybrid control method included TMD and
a magnetorheological (MR) damper, and the parameters
were adjusted ofine [99]. In 2021, Hadad Baygi and Seyed
Mahdi analyzed a four-story structure subjected to a shaking
table, integrating proportional-integral-derivative and FLC.
Te primary objective of this study was to minimize the
isolation system’s displacement, assuming that the super-
structure’s acceleration did not rise for far-feld and near-
feld earthquake events [90]. Besides, a simple adaptive
controller (SAC), which has a good performance, was ex-
amined by Soares et al. for attenuating the bridge’s seismic
responses against parametric uncertainties [100]. In another
study by Soares et al., the neurofuzzy controller was com-
bined with SAC and applied to the cable-stayed bridge
subjected to central US seismic excitations, and acceptable
results were presented [10].

It is worth mentioning that the brain’s performance in
fuzzifcation and approximate reasoning when facing un-
certainties is considered for the theory of fuzzy sets [101].
Hence, using the operational and structural features of the
brain can tackle the challenges of fuzzy systems. According

to neuron studies, chaotic dynamics are one of the re-
markable characteristics of the brain. Using chaotic dy-
namics, the brain can cover a wide range of behaviors and
quickly process massive amounts of data [102, 103].
Terefore, the integration of fuzzy systems and chaos theory
can be strikingly benefcial since more efcacious perfor-
mance is obtained from the brain to understand and realize
the phenomena. Also, this new system has a remarkable
performance in fuzzifcation and approximate reasoning in
the fuzzy sets’ theories and can create chaotic dynamics in
the chaos theory.Te research in this feld is divided into two
classes: chaotic fuzzy systems (like fuzzy systems for mod-
eling chaotic systems [104] and chaos control [105]) and the
combination of the chaotic mappings with fuzzy sets, namely
chaotic fuzzy sets [105, 106].

Moreover, fuzzy systems can be combined with the
neural network to maximize the efciency of the control
strategy in the structures [91]. In this case, learning algo-
rithms need to be applied to enhance the neural network’s
performance and adjust the fuzzy system’s parameters
[10, 107]. Hence, the rules considered for the fuzzy systems
are automatically analyzed in the systems, and the control
system’s speed is considerably enhanced. For instance,Wang
and Kumbasar employed big bang-big crunch (BBBC) op-
timization and particle swarm optimization (PSO) to op-
timize interval type-2 fuzzy neural networks’ parameters
[108]. A more practical strategy, namely semiactive seismic
control, was introduced by Bozorgvar and Zahrai in 2019.
Also, a magnetorheological (MR) damper was utilized to
improve seismic behavior in a three-story building. Addi-
tionally, an adaptive neural-fuzzy intelligent controller was
considered to specify the damper input voltage. Using
a genetic algorithm, the controller’s performance became
efcient [109]. Furthermore, Tavoosi et al. proposed an
adaptive inverse type-2 fuzzy neural controller as a novel
approach for online controlling nonlinear dynamical sys-
tems [110].

A foundation for interval-valued Type-2 (IT2) Gaussian
fuzzy sets with fnite range is presented by Tolga et al. (2020).
Undoubtedly, all vague analyses, methods, and complex
problems can be addressed with the FIT2 Gaussian fuzzy
numbers and their arithmetic [111]. Considering the efect of
SSI, Nazarimofard et al. (2018) obtained a mathematical
model to obtain the seismic performance of irregular
multistory buildings with two active tuned mass dampers
(ATMDs) at the center of mass on the top foor. Tey in-
vestigated the seismic response of buildings with asymmetric
foor plans [16]. According to Zamani and Etedali, ROF-
BANFISC is a robust output feedback-based ANFIS con-
troller. Diferent soil types are used to validate the robustness
of the OOFC and ROFBANFISC. Considering six perfor-
mance criteria, a 40-story structure subjected to fve real
ground motions is numerically examined. Compared to the
OOFC, ROFBANFISC is more robust under various soil
conditions [112]. Sabetahd proposed a robust adaptive
controller for use in the active tuned mass damper (ATMD)
system for addressing undesirable vibrations in multistory
buildings under seismic conditions. An online adaptive
type-2 neural-fuzzy controller (AT2NF) is presented [113].
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Te presentation by Kousoloukas et al. focused on de-
veloping control variants for mass damper schemes on
building-like structures. Sixty-three percent refer to passive-
tuned mass dampers, 31 percent to hybrid mass dampers,
four percent to active mass dampers, and only two percent to
semiactive mass dampers [114]. Trough various examples
with real data, Mohammadzadeh proposed various methods
for optimizing interval Type-2 fuzzy systems. Gradient
descent, the Kalman flter, and the genetic algorithm will be
used for training, and error back-propagation will be used
for optimization [115].

According to the explanations above, combining fuzzy
systems, chaotic theory, and neural networks with a practical
optimization method or suitable algorithm can provide
unique benefts. On the other hand, no study has presented
a control strategy that can be efective for many applications.
In the cutting-edge paper of 2010, Wong et al. proposed
a newmodel called the Lee-Oscillatory Chaotic Fuzzy Model
(LOCFM). Tis study integrated chaos and fuzzy theories
using a chaotic neuron model, namely the improved Lee-
Oscillatory [116]. According to this study, chaotic fuzzy sets
have an advantageous control strategy to model the maxi-
mum number of uncertainties. Although this approach is
interesting, the studies sufer from several gaps and short-
comings. In light of recent events in the chaotic fuzzy system,
there is now considerable concern about the practicality and
authenticity of the results. However, using ATMD and the
adaptive form of this control strategy can overcome such
pitfalls and concerns. Despite this interest, to the best of our
knowledge, no one has presented an adaptive neurochaotic
fuzzy (ANCF) system to control and minimize responses in
the structural system containing ATMD. Te current study
was conducted based on the fuzzy approach and inspired by
the brain’s capabilities in creating various dynamics, fast
information processing, and the modifed Lee-Oscillator
structure. Tus, a novel fuzzy set, namely the adaptive
neurochaotic fuzzy sets, is presented here as a controller, and
this control strategy is based on the type-2 fuzzy systems.

In this study, we propose an approach to reduce the
structure’s dynamic responses in near-feld and far-feld
earthquakes without considering the structural system’s dy-
namics and input information of the event. In order to derive
the Jacobian and predict the structural system model, a mul-
tilayer perceptron (MLP) neural network structure is
employed. In addition, the coefcients of the MLP are con-
sidered adaptive, so their parameters can be used to estimate
the model parameters accurately. Te ATMD is subjected to
a controlled force tuned through the optimized controller
parameters by utilizing the extended Kalman flter and the
error back-propagation method. As a result, the adaptive
control system employed in this study operates online. In
particular, the roof displacement is considered the control error
signal, which must be minimized. As part of the neurochaotic
fuzzy system controller, a fractional-order proportional-in-
tegral-derivative (FOPID) is added tomaximize its stability and
resistance to seismic vibrations. Furthermore, the performance
of the ANCF controller is evaluated based on an adaptive
control model based on the simple adaptive controller opti-
mized by PSO. In this study, the improved controller is referred

to as the ISAC controller. To achieve the control gains required
for specifying the considered interactions in a control system,
the ISAC controller does not require the complete identif-
cation of the parameters of the controlled system. An adaptive
type-2 neural-fuzzy controller (AT2NF) was proposed in the
previous work to mitigate unwanted vibrations in an 11-story
building [113]. Tis study is noteworthy for its proposed state-
of-the-art controller, which optimizes the parameters of SAC
online via PSO. In contrast to the previous paper, this paper
features a remarkable level of accuracy and ability to maintain
acceptable performance during operation. According to the
results of the related studies, the control strategies are divided
into two categories: (1) the system dynamics are known, and
the controller is designed online. (2) Te system dynamics are
assumed to be unknown, and the controller is designed ofine.
Hence, evolutionary algorithms can be used to optimize the
controllers, and optimized parameters are applied to the sys-
tem. In fact, the system parameters are assumed to be implicitly
known. Te disadvantages of these methods are their time-
consuming nature and the fact that they may not achieve an
optimal operating point, which increases the computational
work and may lead to control instability. By comparing the
results, it can be concluded that the ANCF controller has
signifcant advantages when providing control functions. Te
major benefts of this controller compared to the previous
studies are as follows:

(i) Te structural system’s dynamics are assumed to be
uncertain, and an online scheme is used to design
the controller.

(ii) Unlike previous study methods, the Jacobian of the
plant is not needed, and the MLP neural network is
considered for modeling and extracting the sys-
tem’s Jacobian.

(iii) Since the proposed strategy is adaptive, the con-
troller does not require any initial settings to be
considered.

(iv) Te proposed strategy has enough capability to deal
with a time-varying system and tackle uncertain
parameters.

(v) An adaptive control strategy with the highest ef-
fciency can be produced using a combination of
chaotic theory, fuzzy theory, neural networks, and
an optimization algorithm.

(vi) Te remarkable capability of the proposed control
strategy to create various fuzzy sets, such as type-1
or type-2 fuzzy sets, convex or nonconvex, is
unique.

(vii) Te performance of an adaptive neurochaotic fuzzy
controller in a larger-scale structural system can be
evaluated.

Te rest of this paper is organized as follows: Section 2
mentions the equations of motion. Section 3 is devoted to
the proposed control scheme. Section 4 is devoted to nu-
merical analysis, structure specifcations and dynamics, and
earthquake site. Section 5 is devoted to results and dis-
cussion. Section 6 is devoted to the conclusion.
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2. The Equations of Motion

Tis section gives the necessary equations associated with
the motion in the structural model (see Figure 1). ATMD is
installed on the highest foor, with N-degree-of-freedom
(DOF) in the shear building, and the dynamic equation of
motion has several characteristic equations that are as
follows:

M€x(t) + C _x(t) + Kx(t) � −MΛ€xg (t), (1)

where x(t) indicates the vectors considered for specifying
the displacement in the structure, and the velocity is denoted
by _x(t), and €x(t) is the acceleration. Also, the excitation
acceleration vector is €xg(t) which is considered in the
structure with dimensions (N + 1) × 1. Notably, the number
of freedom degrees is characterized by N. Accordingly, M

shows the mass matrices, C is used for indicating damping,
and K the stifness matrices of the structure equipped with
an ATMD with dimensions represents (N + 1) × (N + 1).

Furthermore, the (N + 1) × 1 relative displacement vector is
highlighted through X(t).

X(t) � x1(t), x2(t), . . . , xi(t), . . . , xN(t), xTMD(t)􏼂 􏼃
T
.

(2)

In relation to equation (2), the displacement of the i th
story relative to the ground is represented by
xi(i � 1, 2, . . . , N). Also, the displacement between the
TMD and the ground is indicated by the xTMD. Assuming
that the masses are accumulated at foor levels, the following
mass matrix is considered:

M � diag m1, m2, . . . , mi, . . . , mN, mTMD( 􏼁, (3)

where the mass of the i-th foor is indicated by
mi(i � 1, 2, . . . , N), and the mass of the TMD is shown by
mTMD. Adding a TMD to the primary structure leads to
adding a degree of freedom to the structure. Te structural
stifness matrix is shown in the following equation:

K �

k1 + k2( 􏼁 −k2

−k2 k2 + k3( 􏼁 −k3 0

⋮ ⋮

⋮

sym −kN kN + kTMD( 􏼁 −kTMD

−kTMD −kTMD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where the stifness of the i-th foor is highlighted through
ki(i � 1, 2, . . . , N). Furthermore, kTMD is employed to
demonstrate the stifness factor of the TMD. According to
Rayleigh’s method, the structural damping matrix C is as-
sumed to be proportional to the mass and stifness matrices,
as shown in equation (5). Accordingly, ω1 and ω2 represent
the natural structural frequencies in the frst and second
modes. In addition, ξ denotes the structural critical damping
ratio in the frst two modes.

C �
2ξω1ω2

ω1 + ω2
M +

2ξ
ω1 + ω2

K. (5)

Te highest foor contains a smart structure employing
an active control system. Tere is an actuator between the
structure and the TMD system.Tis actuator is used to apply
a controlled force u(t) to the ATMD in real time. Besides, its
reaction is applied to the top foor. Accordingly, equation (6)
shows the motion of the structure equipped with an ATMD.

M€x(t) + C _x(t) + Kx(t) � −MΛ€xg (t) + Du(t). (6)

Concerning equation (6), the location vector of the
control force is shown by vector D. Tis vector is based on
the location of actuators. Te highest foor is the location of
ATMD, D � [0, . . . , 0, −1, 1]T indicates the (N + 1) × 1

location vector of the control forces. As shown in equation
(7), the standard state space form is specifed for the dynamic
equation of motion in which the vector Z(t) is selected.

Z(t) �
x(t)

_x(t)
􏼨 􏼩. (7)

Furthermore, the state matrix A, input matrix B, output
matrix G, and vector H indicate

A �
0 I

−M
− 1

K −M
− 1

C
􏼢 􏼣,

B �
0

M
− 1

D
􏼢 􏼣,

H �
0

−Λ
􏼢 􏼣,

G � [I 0],

y(t) � GZ(t).

(8)

Here, y(t) denotes the output vector, and I and 0 are the
identities and zero matrices with suitable dimensions. No-
tably, the matrix of B is employed to determine the control
forces’ locations. In other words, the controlling force is not
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required to apply in every story. Due to modeling errors,
nominal and real physical parameters of structures are
diferent. Since the exact values of the elements of matrices
M, C, and K in equation (1) are unknown, equation (9)
illustrates it is reasonable to presume that their values are
within certain intervals.

M � 1 + ΔM( 􏼁M,

C � 1 + ΔC( 􏼁C,

K � 1 + ΔK( 􏼁K.

(9)

According to equation (9), the nominal values of M, C,
and K are indicated by M, C, and K. Also, the uncertainty
percent of the structural model is represented by ΔM,ΔC,
and ΔK.

3. The Proposed Control Scheme

Tis section explains the control approach employed in this
paper. In addition, the necessary information is given.

3.1. Te MLP Neural Network Structure. Artifcial neural
networks (ANNs) are created based on the biological model
of the human brain and have shown remarkable capabilities
in solving many problems nowadays. Te concept of the
ANN is actually one of the main subbranches of artifcial

intelligence. Te ANNs have features such as adaptive
learning, self-organization, real-time operators, generaliza-
tion, stability and fexibility, and parallel processing. Various
neural network models and training algorithms make them
useful in many applications, such as estimating functions,
prediction, pattern recognition, and control. Another feld in
which neural networks are widely used is system identif-
cation. Identifcation aims to obtain an approximation of the
dynamic models for designing the optimal controller
without any information regarding the system dynamics.

In this study, a multilayer perceptron (MLP), one of the
most important structures in the neural network (ANN) and
has much applicability, is employed. Te multilayer per-
ceptron (MLP) neural network can approximate any non-
linear function with optimal accuracy. Te MLP’s
remarkable ability to identify systems even with complex
dynamics without explicit dependency on their model has
increased the popularity of using neural networks for
adaptive control. Overall, there are three types of neuron
layers in the neural networks considered in this study, which
are as follows: input layer, middle layer, and output layer.

According to Figure 2, the neural network’s inputs are
shown by u(t − τ1), u(t − τ2), . . . , u(t − τn), and τ1, τ2,
. . . , τn are constant.Te control signal is considered with the
output system at the instant t, whose sum is represented by
u(t). Notably, w1

11, w1
12, . . . , w1

1n, the middle layer weights are
related to the frst neuron, and w1

21, w1
22, . . . , andw1

2n are
considered for the second layer. Te middle layer weights
connected to neuron q are captured by w1

h1, w1
h2, . . . , w1

qn, in
which q indicates the neuron’s number. Te output and
neuron considered in the middle layer have the weights
w21, w22, . . . , w2q.

Te neural network’s input is the control signal and
system output at previous time samples. Ten, the middle
layer contains the neuron’s output, which is computed
through the following relations:

neti � w
1
i U,

oi � g neti( 􏼁, i � 1, . . . , q,
(10)

where

U � u t − τ1( 􏼁, u t − τ2( 􏼁, . . . , u t − τn( 􏼁􏼂 􏼃
T
,

w
1
i � w

1
i1, w

1
i2, . . . , w

1
in􏽨 􏽩,

g neti( 􏼁 �
1 − exp −neti( 􏼁

1 + exp −neti( 􏼁
.

(11)

Te following equation gains the output of the MLP
neural network:

y � w2O, (12)

where

O � o1, o2, . . . , oq􏽨 􏽩
T
,

w2 � w21, w22, . . . , w2q􏽨 􏽩.
(13)

X TMD

KTMD

CTMD

Actuator
mTMD

mN
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m1
X1

C1 K1
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Ci Ki

CN KN
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‥

Figure 1: Te condition of ATMD in the considered structure.
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With the aim of minimizing the cost function of E, the
neural network’s weights are trained.

E �
1
2
e
2
est �

1
2

yd − y
∧

􏼒 􏼓
2
. (14)

Concerning equation (14), the obtained output is
specifed by yd, and the neural network’s output is shown by
􏽢y.

Weights in step t + 1 are (t + 1) � w(t) − η(zE/zw).
Gradient descent and back-propagation errors are used for
training. In order to obtain (zE/zw), the chain diferenti-
ation of (zE/zw) � (zE/ze)(ze/z􏽢y)(z􏽢y/zw) applies.
According to equation (15), the relations (zE/ze) � e, (ze/
z􏽢y) � −1, (z􏽢y/zw) � O are substituted, and the rule of
training weights is computed. Equation (15) outlines the rule
of training weights.

w2(t + 1) � w2(t) + ηbest O. (15)

Equation (16) is considered to obtain the adaptive rule
for the weights of the frst layer.

w
1
i (t + 1) � w

1
i (t) + ηeestg′ neti( 􏼁w2iU, (16)

where w1
i implies the vector of the weights neuron in the

middle layer that is related to the i-th layer; besides, g′(neti)
denotes the derivation of g(neti) according to neti input.
Notably, the training rate of gradient descent is shown by η.
Concerning η, the adaptive rate is adjusted online.

3.2. Te System Jacobian. Equation (17) illustrates the
computation of the system’s Jacobian employing the ob-
tained model:

z∆f

zuc

� w
1
11, w

1
21, . . . , w

1
q1􏽨 􏽩diag g′ net1( 􏼁, . . . , g′ netq􏼐 􏼑􏽨 􏽩w2􏼐 􏼑,

(17)

where (z∆f/zuc) represents the derivative of system output
concerning the control input. Also, the diagonal vector of
matrix A is shown by diag(A). Te expressions [w1

11,

w1
21, . . . , w1

q1], and A � [g′(net1), . . . , g′(netq)] are related
to the vector of weights connected to the frst input and
neurons of the middle layer and the vector of the derivative
of the output of neurons of the middle layer with respect to

their input, respectively. Te vector of weights connected to
the output and neurons of the middle layer is indicated
by w2.

3.3. Te Structure of Interval Type-2 Fuzzy Sets. In the
groundbreaking paper of 1975, the IT2FS was proposed by
Zadeh [117] and then developed and grown by Karnik et al.
[118]. In fact, the type-2 fuzzy is the corrected form of the
type-1 fuzzy, with the same fuzzy rules and membership
function. Te membership function of type-1 is a fxed
number. While in type-2 it is a fuzzy set. Te third di-
mension in the type-2 fuzzy set is used to model the un-
certainties that type-1 fuzzy cannot model. Type-2 fuzzy is
used when the system complexity is high [44, 45]. Te
continuous form of the IT2FSs is defned as follows:

􏽥A � x(x, u), μ􏽥A
(x, u)􏼐 􏼑 ∀x

􏼌􏼌􏼌􏼌 ∈ X, ∀u ∈ Jx ⊆ [0,1]􏽮 􏽯, (18)

where 0≤ μ􏽥A
(x, u)≤ 1, and 􏽥A is also equal to

􏽒
x∈X􏽒

u∈Jx
(μ􏽥A

(x, u)/(x, u)). Accordingly, 􏽒 􏽒 represents the
union over whole admissible input variables x and u. Be-
sides, the primary membership of x is denoted by Jx⊆[0,1],
and μ􏽥A

(x, u) indicates a type-1 fuzzy set known as the
second set. Hence, in order to reduce the computation, an
interval type fuzzy is employed, according to which
μ􏽥A

(x, u) � 1.
Research indicates an increase in the ability of type-2 fuzzy

sets to model more uncertainties. However, according to this
pattern, (1) since each input must have multiple membership
values, the number of type-1 fuzzy sets enclosed in these sets
increases unnecessarily, (2) although these sets inherently in-
clude various fuzzy sets, such as convex and nonconvex,
normal, abnormal, and binomial sets, none of them can be
utilized alone in modeling uncertainties. Notably, only the
lower and upper membership functions specifed beforehand
are employed to model the uncertainties. Tat issue un-
necessarily increases the uncertainty interval, and (3) the upper
and lower membership values are determined through
mathematical equations. Tey are absolute values, which
contradicts the fuzzy concept. Terefore, despite the undeni-
able capabilities of these sets in modeling uncertainties, the
above features have caused type-2 fuzzy sets to encounter
problems in practical and online applications. Te main
drawbacks to these collections are (1) increasing the complexity
of the theory of these fuzzy sets, (2) signifcant reduction in
information processing speed, and (3) lack of ability to create
new membership functions or fexibility in selecting one or
more membership functions enclosed in the uncertainty efect
area. In order to tackle the limitations mentioned above and
create novel and varied behaviors for the fuzzy membership
values, the features of chaotic mappings are used.

3.4. Te Neurochaotic Fuzzy Sets. Te neurochaotic fuzzy
sets are modeled as a single-layer recurrent neural network
with an input neuron, an output neuron, and three hidden
neurons, as shown in Figure 3. Te mapping between the
input and output is defned as follows [119]:

u (t - τ1) O1

O2

Oq

w1
11

w1
qn

w21

w22

w2q

u (t - τ2)

u (t - τn)

/

… …

ŷ

First layer: Input Layer Second Layer: Middle Layer Third layer: Output Layer

Figure 2: Te structure of the MLP network.
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u(n + 1) � f a1u(n) − a2v(n) + a3z(n) + a4x − θu( 􏼁,

v(n + 1) � f b3z(n) − b1u(n) + b2v(n) + b4x − θv( 􏼁,

w(n) � μA(x),

z(n + 1) � max (0, min (1, u(n + 1 − v(n + 1)) × exp −K x − mA( 􏼁
2

􏼐 􏼑 + w(n)􏼐 􏼑,

(19)

where u, v, w, and z show the modes of the stimulator,
inhibitor, input, and output neurons, respectively. Te
membership function and the average value of the fuzzy set
A are indicated by mA and μA(x); a1to4 and b1to4 are con-
sidered the neurons’ weights; the bias of stimulating and
inhibitor neurons is shown by θu and θv; K is the latency
constant, and x is the input value; f() indicates the function
of the stimulator neuron, and 0≤ μA(x)≤ 1.

When the above mapping uses x as the bifurcation
parameter, the chaotic set can be obtained by the bifurcation
diagram of the mapping in equation (19)

For example, if θu and θv were zero in equation (19),
μA(x) and f(x) would be defned as follows:

μA(x) � exp −
(x − μ)

2

2σ2
􏼠 􏼡,

f(x) � exp − x
2

􏼐 􏼑.

(20)

In this case, the bifurcation diagram is in equation (19),
used to represent the neurochaotic fuzzy membership
functions in parameter changing.

3.5.Te Neurochaotic Fuzzy Controller Structure. Tis paper
considers the neurochaotic fuzzy controller structure as
a novel control strategy. Fuzzy systems, chaotic theory, and
neural networks indicate aspects of the human brain’s
information-processing mechanism and decision-making
[101, 102]. Hence, combining these sciences can create
a robust system with fuzzy reasoning, self-adaptation, and
chaotic search capabilities. Since the novel behaviors orig-
inate from the chaotic mappings, the chaotic theory is
combined with the fuzzy theory. Furthermore, combining
the neural network with the chaotic and fuzzy theories
eliminated the fuzzy rules and made the control strategy
adaptive. Using a suitable optimization method or algorithm
can also enhance the neural network’s capability. Terefore,
the chaotic neural-fuzzy controller structure along with the
extended Kalman flter is considered for optimizing the
performance of the type-2 neural-fuzzy controller.

Since the membership function proposed in equation
(19) can create the interval type-2 fuzzy sets, the neuro-
chaotic fuzzy systems (NCFSs), similar to the interval type-
2 fuzzy neural network (IT2FNN) system, are proposed.
Te main diference between these systems is calculating
the higher and lower membership degrees. Te higher and
lower membership degrees are specifed through a certain
and fxed mathematical formula in IT2FNN. In compari-
son, this calculation is conducted based on the mapping

rules in the neurochaotic fuzzy system. Hence, the higher
and lower membership values change according to the
chaotic mapping and input value parameters. As shown in
Figure 4, the structure of the neurochaotic fuzzy system
consists of fve layers.Te input nodes are shown in the frst
layer. Te higher and lower membership values are com-
puted in the second layer. Te calculations concerning the
fuzzy rules are conducted in the third layer. Te reduced
and fnal outputs are calculated in the fourth and ffth
layers, respectively.

Te if-then rule can be defned as follows:

R
i
: IFx1 isF

i
1, and . . . , andxn is F

i
n,THENy

i isY
i
, (21)

where i= 1, 2, . . .,M shows the number of rules, and Fi
1 is the

neurochaotic fuzzy membership function in the front sec-
tion. Te set of centers of the neurochaotic fuzzy mem-
bership function of output is represented by Yi � [yi

l, yi
r].

Te intensity of each rule is represented by Fi � [fi, f
i
]; so

that the values which fi and f
i are calculated by

􏽑
n
j�1μ

�F
i

j

(xj) and 􏽑
n
j�1μ�F

i

j

(xj). In order to calculate the fnal

output y, the reduced output values ([yl, yr]) is obtained
through the Karnik–Mendel algorithm and the following
equations [120]:

yl �

􏽐
L
i�1f

i
y

i
l + 􏽐

M
j�l+1f

i
y

j

l

􏽐
L
i�1f

i
+ 􏽐

M
i�l+1f

i
, (22)

yr �
􏽐

R
i�1f

i
y

i
r + 􏽐

M
j�R+1f

j
y

j
r

􏽐
R
i�1f

i
+ 􏽐

M
j�R+1f

j , (23)

where L and R are the switch points from the bottom to the
top membership function and vice versa, and these pa-
rameters are calculated by using the Karnik–Mendel algo-
rithm. Finally, the fnal output value is computed through
y � (yl + yr)/2.

3.6.Te Extended Kalman Filter and Error Back-Propagation.
Te training weights based on the error back-propagation
and the extended Kalman flter are employed in the current
study. When the roof displacement is minimized, the op-
timal response is achieved. At frst, the square error at any
moment is calculated between the desirable response and the
network output at instant t:
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E �
1
2

,

e
2

�
1
2
(∆f)

2
.

(24)

Te displacement of the roof in the x-axis is considered
as a control error in equation (24), which is represented by e.
According to the training principle of the error back-
propagation and the extended Kalman flter, the parame-
ters of the neurochaotic fuzzy network are the determining
factors for calculating the cost function.

w(t + 1) � w(t) + K(t)e(t),

p(t + 1) � p(t) I − K(t)φT
(t)􏽨 􏽩,

K(t) �
p(t)φ(t)

Rn(t) + φT
(t)p(t)φ(t)

,

(25)

where the cost function is denoted by (zE/zw) concerning
the neurochaotic fuzzy network parameters and is computed
using equation (26), in which the weights vector is repre-
sented by w in the previous subsections. Also, the derivative
output of the neurochaotic fuzzy system in relation to the
parameters of the rules is indicated by φ(t). (zE/zw) is
calculated through equation (26), employing a chain
derivative.

zE

zw
�

zE

z∆f

z∆f

zuc

zuc

z􏽢y

z􏽢y

zw
. (26)

In accordance with equation (26), the control signal is
uc, and 􏽢y denotes the MLP neural network. Considering
the neural system model, the system’s Jacobian repre-
sented by (z∆f/zuc) is computed through the following
equation:

E �
1
2

,

e
2

�
1
2
(∆f)

2⇒
zE

z∆f
� ∆f,

uc � 􏽢y⇒
zuc

z􏽢y
� 1,

􏽢y � w
T
Z⇒

z􏽢y

zw
� Z.

(27)

Te considered approach in the present research is
shown in Figure 5 as a fowchart.

3.7. Structureof theProposedController. Te beneft of using
an adaptive controller is its remarkable performance in
tackling parametric and seismic uncertainties. Besides,
a trade-of between stability and accuracy has a prominent
role in the popularity of this type of controller. Many
authors [121–129] have used smart systems for control-
ling, like fuzzy logic, artifcial neural networks (ANNs),
and or neural-fuzzy networks, to indicate complicated
systems and create state-of-the-art controllers. Te con-
trol strategies in the related studies were organized into
two classes: (1) the system dynamics is known, and the
controller is designed online. (2) Te system dynamics is
assumed to be unknown, and the controller is designed
ofine. Hence, evolutionary algorithms can be used to
optimize the controllers, and optimized parameters are
applied to the system. In fact, the system parameters are
assumed to be implicitly known. Te disadvantages of
these methods are their time-consuming nature and the
fact that they may not achieve an optimal operating point,
which increases the computational work and may lead to
control instability. Figure 6 outlines the proposed
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Figure 3: Te generative structure of a neurochaotic fuzzy set.
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approach block diagram. Te parameters of the system of
this analysis are considered unknown and are estimated
online by using the MLP neural network. Te novel
adaptive neurochaotic fuzzy controller (ANCF) is created
online so that the system’s output is online too. In this
condition, the neurochaotic fuzzy network output is
considered as the control signal. If the roof displacement
is minimized, the control purpose is obtained.

Te signifcant features of the proposed control system
compared to the previous studies in this regard are as
follows:

(i) Tere is no need to adjust the parameters of the
adaptive neurochaotic fuzzy controller through the
operator.

(ii) Tis controller can overcome uncertain parameters
and a time-varying system.

(iii) A fractional-order proportional-integral-derivative
(FOPID) has been added to the neurochaotic fuzzy
controller to raise the proposed control strategy’s
stability and robustness.

(iv) Te completely uncertain dynamics are considered
in the structural system, and there is no need for the
Jacobian of the plant.

3.8. Alternative Controller. In this paper, to evaluate the
performance of the Type-2 neural-fuzzy controller, the
simple adaptive control (SAC) controller is also considered.
Tis model-based adaptive control algorithm was in-
troduced by Sobel et al. in 1982 [79]. Since the SAC method
is a direct adaptive method, it is used in complex systems
with a high degree of freedom to maintain the performance
of the controlled system under conditions of random
loading and parametric uncertainties. In this algorithm, the
behavior of the controlled system is compared with the
behavior of an ideal reference model defned by the designer,
and by applying appropriate control forces, the behavioral
diference between them is reduced. Due to the simplicity of
the structure, the ability to maintain efciency under en-
vironmental uncertainties (dynamic loads of earthquakes
and disturbances in sensors), independence from the

The Proposed Control Approach

Fire Degrees for the Rules
MLP Structure

The Adaptive Identification of Unknown
System Dynamics

See eq. (18,19)

See eq. (21)

See fig. (2)

Neuro-Chaotic Fuzzy controller

See eq. (23)

The Output of the Neuro-Chaotic Fuzzy
Controller based on the Karnik-Mendel

Algorithm

See eq. (27,28)

See eq. (31)

See eq. (29,30)

Minimize Cost function
Training Gradient Descent

E = 1
2 e2

est =
1
2 (yd – y)2ˆ

w2 (t + 1) = w2 (t) + η eest0

System’s Jacobian
∂Δf
∂uc

∂E
∂w

∂E
∂Δf

=
∂Δf
∂uc

∂uc

∂w
∂ŷ

∂ŷ

Training Back-Propagation and
Extended Kalman filter

E = 1
2 e2 = 1

2 (Δf )2

w (t + 1) = w (t) + K (t)e (t)
p (t + 1) = p (t) [I – K (t)φT (t)]

Figure 5: Te fowchart of the proposed control strategy.
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dynamic parameters of the controlled system (efciency
under the conditions of the damaged structure), and the
freedom of the designer to select the type and order of the
reference model (the possibility of using a model with
a smaller order than the plant), the SAC algorithm is
considered a suitable optimization technique in the active
control of structures. Recent years have witnessed re-
markable growth in the use of this algorithm for controlling
structures [130]. Figure 7 shows the diagram block of this
control method.

Considering equations (28) and (29), the dynamic be-
havior of the controlled structure (plant) is shown in the
form of state space [131, 132].

_xp(t) � Apxp(t) + Bpup(t) + dp, (28)

yp(t) � Cpxp(t) + d0. (29)

According to the equations above, xp shows the state
vector of plan n × 1, the input control vector of m × 1 is
represented by up, and the output plant of q × 1 is shown by
yp. Besides, the state matrix of n × n is shown through Ap,
Bp indicates the input matrix of n × m, and Cp shows the
output matrix of q × n. It should be noted that dp(t) and
d0(t) indicate the disturbances applied to the system and the
disturbances existing in the sensors, respectively [131, 133].

Te aim here is to fnd the input control of up(t)

(without any information regarding the system parameters)
for tracking the output of the ideal reference model by the
system output. According to the state space, the reference
model is indicated in the following equations [131]:

xm(t) � Amxm(t) + Bmum(t),

ym(t) � Cmxm(t),
(30)

where xm shows the state vector of the reference model of
nm × 1, um is the input control vector of m × 1, and ym shows
the reference output vector of q × 1. Also, Am indicates the

state matrix of nm × nm, Bm denotes the input matrix of
nm × m, and the output matrix of q × nm is demonstrated by
Cm [131, 133]. It should be noted that the order of reference
model nm can be less than the order of plant n. Actually, this
value must be large enough to perform the desired command
for creating the plant [131, 134]. Accordingly, the system
behavior characterized by the designers is easily shown
through the ideal model (reference) regardless of the prior
information about the plant’s system parameters [132]. Te
output tracking error (the error between the reference model
output and the plant output), denoted by ey, is minimized
(approaching zero asymptotically) via the SAC method. Te
control commands must be calculated based on the whole
available data for the ideal model by considering the states
and inputs of the model in a feedforward confguration
[132, 135].

ey(t) � ym(t) − yp(t),

up(t) � 􏽥Ke(t)ey(t) + 􏽥Kx(t)xm(t) + 􏽥Ku(t)um(t)

� 􏽥K(t)􏽥r(t),

(31)

where

K(t) � 􏽥Ke(t) 􏽥Kx(t) 􏽥Ku(t)􏼂 􏼃,

􏽥r(t)
T

� ey(t) xm(t) um(t)􏽨 􏽩
T
.

(32)

Te term 􏽥Ke(t) is considered for indicating the time-
varying stabilizing control gain matrix. Only 􏽥Ke(t)ey(t)

needs the stability of the control system here. Basically,
􏽥Kx(t) and 􏽥Ku(t) are considered to show the time-varying
feedforward control gains for achieving the zero output
tracking error. Such control gains for ensuring the con-
trolled system’s stability and minimizing the tracking error
to zero asymptotically are achieved using the SAC technique.
Calculating the adaptive control gains, 􏽥K(t) can be extracted
when the form of integral and proportional terms are in-
tegrated [132, 135].

System’s Jacobian

Model Approximation

U
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Plant
Δf
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+
-
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Network 

+

x

∂Δf
∂uc

dx
dt
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Figure 6: Te structure of the proposed control system.
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􏽥K(t) � 􏽥KI(t) + 􏽥Kp(t), (33)

where
_􏽥KI(t) � ey(t)􏽥r(t)

T 􏽢T − 􏽥σ 􏽥KI(t), (34)

􏽥Kp(t) � ey(t)􏽥r(t)
T
T, (35)

where 􏽢T is the diagonal positive-defnite matrix, and this
term defnes the adaptation rate of the control gains. On the
other hand, the constant coefcient matrix is shown by T.
Te proportional term 􏽥Kp(t) also indicates the immediate
fne for large-scale errors. Using this term, the system is
directed toward small-scale errors [131, 135]. Furthermore,
in order to prevent integral gain divergence, 􏽥σ denotes the
forgetting term matrix in equation (34) according to the
disturbances that can be signifcantly small. When the 􏽥σ is
not considered, 􏽥KI is a full integrator, and this term con-
stantly rises whenever total tracking (ey � 0) is not
achievable. Consequently, this term might reach un-
necessarily excessive values or even diverge [131].

As represented in equation (33) earlier, the integral
adaptive control terms are considered for assuring stability
in the direct adaptive method. Te proportional adaptive
control terms can be considered to increment the closed-
loop system’s convergence toward complete tracking
[132, 135]. In order to adjust the SAC controller, the pa-
rameters of equations (34) and (35) must be regulated ac-
curately. Trial and error are frequently used in the selection
process for these parameters. Consequently, many sensi-
tivity analyses are required, and it is unclear whether this
results in the most suitable values or not [136, 137].

Regarding equation (36), the reference model is chosen
at any time; the output ym is confned to
−􏽥Ymax and 􏽥Ymax (−􏽥Ymax ≤ym ≤ 􏽥Ymax) under unknown um

inputs. It is assumed that any sensor does not measure the
acceleration of the earthquake. Tus, the term 􏽥Ku(t)um(t) is
excluded from the process of creating the control command.
Te following are the conditions of the reference model:

xm �
􏽥Xm

_􏽥Xm

⎡⎢⎣ ⎤⎥⎦

�
􏽚 _􏽥Xmdt

_􏽥Xm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
􏽚 ymdt

ym

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

ym � yp, if   yp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 􏽥Ymax,

ym � sign yp􏼐 􏼑􏽥Ymax, if yp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 􏽥Ymax.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

According to equation (36), 􏽥Xm and _􏽥Xm show the dis-
placement and velocity of the reference model, respectively.
Also, 􏽥Ymax is considered to show the maximum acceptable
amount of the model output, which might be any value
equivalent to or more than zero. Te optimal value for 􏽥Ymax
is determined by the study’s goal based on minimizing the
drift, acceleration, or other structural responses. In the
present study, 􏽥Ymax � 0, according to which the control is
designed to reduce the displacement of the structure’s top
foor. As an innovation, the suitable values of the parameters
of the matrix 􏽥σ and diagonal matrices 􏽢T and T are tuned by
employing PSO at any time. Terefore, an improved form of
SAC, namely ISAC, is proposed in this research. Te lim-
itation of the ISAC controller method includes considering
the maximum control force equal to 5% of the structure’s
weight. Te PSO algorithm and its objective function are as
follows.

Tis is a population-based optimization method, where
the population is called a group. A group of N particles
moving around a D-dimensional search space. In this case,
in the algorithm, the position of the i-th particle in each
group is defned as xi � (xi1, xi2, . . . , xij, . . . , xik) and the
speed for the i th particle of the algorithm can be as
vi � (vi1, vi2, . . . , vij, . . . , vik).
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Device Structure
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Figure 7: Block diagram of the simple adaptive control (SAC) system.
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In general, the position and speed of each particle are in
the range of [−Xmax, Xmax]

D and [−Vmax, Vmax]
D. Each

particle is searching for the optimal point and is moving;
otherwise, it cannot search, and because of this displace-
ment, it also has speed. In fact, each particle is simulta-
neously based on shared information. It evolves with its
neighboring particles. Tis work causes particles to choose
a suitable solution using memory and group knowledge.

Particle swarm optimization begins when a group of
particles (solutions) are randomly generated and tries to fnd
the optimal solution by updating the generations. In the
initialization phase, the initial population of particles must
be created. In the particle optimization algorithm, each
particle represents a solution to the problem, and a solution
here is the vehicle’s route; in each step, each route is updated
using the two best values. To be the frst case is the best
position that the particle has reached so far.

Te said position is known as pbest. If we defne the
position of the particles as a set pi � (pi1, pi2, . . . , piD), the
best position of the i-th particle is called pbesti. If we defne
the value of the positions obtained by pbesti of particles as
a set gi � (g1, g2, . . . , gD). Te best value of this set is gbesti.
PSO is initialized with a random particle population. Ten
the algorithm is executed by searching for optimal solutions
and continuously updating the generation. In each gener-
ation, the position and velocity of the i-th particle are in-
dicated by pbesti and gbesti and are updated using relations
(37) and (38). In fact, the goal of the algorithm is to update
particle position.

v
new
id � w × v

old
id + c1 × r1 × pbestid − x

old
id􏼐 􏼑 + c2

+ r2 × gbestd − x
old
id􏼐 􏼑,

(37)

x
new
id � x

old
id + v

new
id . (38)

In the above relations, r1 and r2 are random numbers in
the interval (0, 1), c1 and c2 are acceleration constants that
control how a particle moves in one generation. Te speeds
vnewid and voldid represent the speed of new and old particles,
respectively. xold

id shows the current position of the particle,
and xnew

id shows the updated position of the particle. w is the
inertial weight that is defned to control the efect of the
previous speed of particles in a fow, B is the number of
iterations, and N is the number of particle populations.
Terefore, in this article, the objective function is to min-
imize the displacement of the roof foor and the parameters
of the algorithm PSO are selected as follows:

B � 100,

N � 20,

Vmax � 2,

w � 1,

c1 � c1 � 2.

(39)

4. Numerical Analysis

4.1. Structure Specifcations and Dynamics. In this sub-
section, the major information regarding the 11-story
structure considered for numerical analysis is given,
and the benefts of the proposed control method are
outlined. Tis building is located in Rasht. Each foor in
this building has a rigid diaphragm, and all of the building
mass is lumped at the foor levels. Also, a simplifed linear
model is adopted here. Te structure used in this study has
rigid beams and columns with axially rigid and fexible
features to lateral deformation. Instead of the equivalent
stifness for the foors, spring stifness is considered. A
two-dimensional shear-type building model was selected
to analyze the problem concerning the mentioned as-
sumptions. Te displacements of each foor are defned by
a degree of freedom (DOF). Te top foor has a TMD so
that the total displacement of the foors plus TMD is
shown by 12 degrees of freedom. Besides, the control
system contains an ATMD on the highest foor of the
structure. Table 1 illustrates the mass and stifness values
for each foor in this structure [43].

Employing a linear spring and a viscous damper, the
TMD is modeled. Notably, the frequency ratio denoted by
βTMD is assumed to specify the ratio between the natural
frequency of the TMD and the frst modal frequency in the
primary building. Besides, αTMD-percent of the total mass
is regarded as the TMD’s mass, and ξTMD-percent of the
critical damping value is allocated to the damping ratio of
the TMD. Considering a genetic algorithm, αTMD, ξTMD,
and βTMD have the optimal percentages of 3%, 7%, and 1.0,
respectively. In the uncontrolled structure’s initial and
secondary natural frequencies, the values of ω1 � 6.57 and
ω2 � 19.36 rad/s are calculated. Furthermore, the struc-
tural damping ratio value is equal to 5% of the critical
damping value in the frst two modes.Te damping matrix
is achieved using Rayleigh’s method (equation (5)) [43].
Also, information regarding the ΔM and ΔK values is
presented in Table 2.

4.2. Earthquake Site. Four known earthquakes were used to
assess the performance of the proposed adaptive neuro-
chaotic fuzzy controller on a structural system equipped
with ATMD under the analysis of the time history of the
structure using the MATLAB/Simulink software package
[43, 138]. Te International Association of Structural
Control (IASC) has reported two far-felds (El Centro 1940
and Hachinohe 1968) and two near-felds (Northridge 1994
and Kobe 1995) ground acceleration records to investigate
the performance of control systems for seismic applications.
Tese earthquakes had an absolute peak ground acceleration
(PGA) of 0.3417, 0.2250, 0.8267, and 0.8178 g, respectively
(see Figure 8).
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5. Results and Discussion

In order to prove the unique performance of the ANCF
controller over the state-of-the-art ones, an assessment is
made between the ANCF and ISAC controllers in terms of
the main parameters, such as maximum displacement, ac-
celeration, drift, base shear, and robustness against un-
certainties. For this purpose, the 11-story building equipped
with ATMD subjected to four well-known earthquakes is
investigated by time history analysis.

5.1. Analytical Results. As regards Tables 3–6, the perfor-
mance of the controllers is compared with the previous ones,
respectively. Accordingly, these tables indicate the maxi-
mum displacement of stories under seismic excitations in
the uncontrolled condition for the structure equipped TMD

(passive) [43] and the controlled structure by LQR [43], FLC
[43], OSMC [56], FOPID [61], OSAC [113], and AT2NF
[113]. Overall, the ability of the proposed ISAC and ANCF
controllers by far outperforms the other state-of-the-art
control strategies, considering the maximum displacement
reduction. Considering the top story, ISAC controller de-
creased 74%, 75.2%, 68.1%, and 66.8% based on the reported
earthquakes. Interestingly, such values for the ANCF con-
troller are 90%, 91.1%, 80.6%, and 84.1%, representing the
superiority of the ANCF controller over the ISAC controller.
Te proposed controllers have better performance in far-
feld earthquakes than in near-feld ones. Also, the lowest
and highest reductions on average are related to the
Northridge earthquake, controlled by TMD, with 6.5%, and
the Hachinohe earthquake, controlled by ANCF controller,
with 90.2%. Te results represent the dependency of TMD

Table 1: Te main parameters’ values for the proposed building.

Story no. Mass/(×103kg) Stiffness/(×106N/m)

1 215 468
2 201 476
3 201 468
4 200 450
5 201 450
6 201 450
7 201 450
8 203 437
9 203 437
10 203 437
11 176 312

Table 2: Te nominal and perturbed models with their uncertainty factors’ values.

Models Nominal model Model (1) Model (2) Model (3) Model (4)
ΔM 0.00 +0.15 +0.15 −0.15 −0.15
ΔK 0.00 +0.20 −0.20 +0.20 −0.20
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Figure 8: Time history of earthquake records considered. (a) El centro 1940. (b) Hachinohe 1968. (c) Northridge 1994. (d) Kobe 1995.
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on the seismic inputs. It should be noted that the FOPID
controller’s performance with the top story’s maximum
displacement reductions of 66.7%, 53.6%, 48.8%, and 21.1%
exposed to the considered earthquakes compete with the
performance of LQR, FLC, and OSMC controllers. Addi-
tionally, the OSMC, FLC, and LQR compete in terms of
efciency. Comparing the results with the previous studies
shows that ISAC and OSAC controllers almost have the

same performance in terms of percentage of reduction, while
the ANCF controller presents better results than the AT2NF
controller so that the average percentage of displacement
reduction in the ANCF controller under the El Centro
earthquake is 88.9, which is about 3% better than the AT2NF
controller; this percentage improvement decrease under the
Hachinohe and Kobe earthquakes is about 5.5 and 5,
respectively.
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It is noteworthy that the root means squared (RMS)
values of 3.01, 1.60, and 0.51 cm are attributed to the dis-
placement of the highest foor subjected to the El Centro
earthquake for the uncontrolled, ISAC, and ANCF con-
trollers, which represents 46.9% and 83% reduction for ISAC
and ANCF controllers. Besides, the ISAC controller gives the
RMS values of 44.5%, 64.6%, and 58.6% reduction under the
Hachinohe, Kobe, and Northridge earthquakes. Such values
are 87.5%, 85.4%, and 82.0% for the ANCF controller.

All these highlight the better performance of the ANCF
controller over the ISAC controller in terms of minimizing
the structure’s response. On the other hand, considering
the seismic excitations, the highest limit of the allowable
control force, which is typically 5% of the whole weight of
the structure, is demanded by ISAC and ANCF controllers.
As mentioned earlier, the control algorithm directly afects
the tuning process of the control force. Due to the fact that
the ANCF controller is not related to the structural pa-
rameters and is highly benefcial for identifcation, it
successfully estimates the vibrations’ intensifcation con-
cerning the structure condition in which that applies the
control force. Such advantages are highlighted by the su-
perior performance of the ANCF controller, which is
preferred to ISAC.

Moreover, considering the mentioned seismic excita-
tions, Figure 9 compares the total average reduction of
maximum structural responses between the state-of-the-art
controllers, TMD, and adaptive ones proposed here. Clearly,
the TMD performance is only acceptable in the limited range
of load disturbances. Overall, the ANFC and ISAC con-
trollers have delivered substantially better performance than
the rest. However, the ANCF controller shows superiority
with a total average reduction of 87.3%, about 16% more
than the ISAC controller.

Regarding the maximum acceleration in the foor, the
performance of the uncontrolled structure compared to the
structure controlled with ANCF and ISAC controller is
assessed in Figure 10. For example, the maximum acceler-
ation reduction of 56% and 84.4% is obtained for ISAC and
ANCF controllers under the Kobe earthquake. Overall, the
ANCF and ISAC controllers indicate an average acceleration
reduction of 84.1% and 64% for all earthquakes. Hence, the
ANCF controller performedmore successfully in this regard.

Figure 11 shows the drift (the diference between the
displacement of the upper and lower foors) of the proposed
ANCF and ISAC controllers, which indicates the superiority
of the ANCF controller in reducing the drift compared to the
ISAC controller.
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Figure 13: Time history of displacement and acceleration in the top story under the Hachinohe earthquake.
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Furthermore, Figures 12–15 show the various time
histories of the top story displacement and acceleration
under the ISAC and ANCF controllers. According to the
report on El Centro, Hachinohe, Kobe, and Northridge
earthquakes and the obtained results, the ANCF controller
performs better than the ISAC controller in reducing the
maximum displacement and acceleration of foors.

In addition to the maximum displacement and accel-
eration, the proposed controllers’ performance is compared
in terms of base shear. For instance, according to Figure 16,
the maximum responses in base shear under the El Centro
earthquake are about 12700KN, 8212KN, and 3361KN for
uncontrolled conditions, ISAC, and ANCF controllers, re-
spectively, which represent about 35.3% and 73.5% re-
duction for ISAC and ANCF controllers. In other words, the
ANCF controller ofers more base shear reduction of ap-
proximately 38% than the ISAC.

5.2.ValidationBasedon theUncertainties. In this subsection,
the performance of the proposed controller under un-
certainties is examined to prove its validity. For this purpose,
the initial stifness matrix with −15% uncertainty is given as
a perturbation (see Figure 17).

Te maximum displacement response of the structure’s
top foor under the nominal and the perturbed models has
been compared for both proposed adaptive controllers. Te

ACNF and ISAC controllers have been able to overcome the
uncertainty in the stifness of the structural system and
efectively reduce the maximum displacement response of
the structure’s top foor. Accordingly, the percentage of
deviation in the maximum displacement response of the
structure’s top foor compared to the nominal model of
9.2%, 10.4%, 13.2%, and 11.8% are observed when the
structure was subjected to the El Centro, Hachinohe, Kobe,
and Northridge earthquakes, respectively, and are controlled
through the ISAC controller. However, the ACNF controller
performs better than its counterpart here as the percentage
of deviation in the maximum displacement response of the
structure’s top foor compared to the nominal model is 4.7%,
5.1%, 7.9%, and 6.9%, respectively. Finally, the maximum
displacement values of the structure’s top foor for ACNF
and ISAC controllers under diferent uncertainties are
compared, as shown in Figure 18. Regarding Table 2, the
control system will likely lose its acceptable performance
under the parametric variations. Hence, the proposed
controllers’ robustness against such variations is assessed
here. Te obtained results reveal that the ISAC controller is
more susceptible to parametric changes than the ACNF
controller. Notably, the ACNF controller performs well and
signifcantly outperforms the ISAC controller in tackling
parametric uncertainties. For instance, in model 2, the
percentage of deviation in the maximum displacement re-
sponse of the top foor of the structure compared to the
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Figure 14: Time history of displacement and acceleration in the top story under the Kobe earthquake.
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Figure 15: Time history of displacement and acceleration in the top story under the Northridge earthquake.
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El Centro Hachinohe Kobe Northridge Total Average

Nominal Model 1.50 0.98 7.60 3.50 3.40

Model 1 1.42 0.88 7.18 3.14 3.16

Model 2 1.68 1.10 8.42 3.98 3.79

Model 3 1.38 0.86 6.83 3.07 3.04

Model 4 1.61 1.07 8.25 3.91 3.71
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nominal model in the ACNF controller are observed at 12%,
12.5%, 10.7%, 13.7%, and 11.7% under El Centro, Hachi-
nohe, Kobe, and Northridge earthquakes, respectively. Such
values for the controller of the ISAC controller are 18.2%,
17.6%, 20.5%, and 20.1%. Notably, a total average deviation
for models 1–4 is 7%, 11.8%, 10.6%, and 9.2% relative to the
ACNF controller, while these values for the ISAC controller
are 14.2%, 20.1%, 16%, and 17% under the same seismic
excitations.

6. Conclusion

Tis paper presents two new adaptive controllers with
unique performance, ACNF and ISAC controllers, which
have signifcantly reduced the maximum displacement,
acceleration, drift, and base shear of the structure and have
sufcient strength against uncertainties. Te primary aim of
this study is to reduce the dynamic responses of the structure
exposed to near-feld and far-feld earthquakes regardless of
the structural system’s dynamics and the information re-
garding the seismic input excitations. Te ACNF controller
is based on the neurochaotic fuzzy system in which an
FOPID controller enhances its stability and robustness. Te
Jacobian of the system is extracted using the MLP neural
network, whose coefcients are adaptive, and the structural
system model is predicted. According to the extended
Kalman flter and the error back-propagation method, the
controller parameters are trained for adjusting the control
force used in the ATMD. Te ISAC controller is an im-
proved simple adaptive controller whose parameters are
optimized online by PSO as a novelty. As distinct from the
fact that both controllers are regarded as novel adaptive

controllers and have never been presented in the literature,
their performance considerably outperforms the other state-
of-the-art controllers based on the comparison fndings.
However, the ACNF controller by far precedes the ISAC
controller in reducing the maximum displacement, accel-
eration, drift, and base shear. Te signifcant conclusions
obtained from the analysis of this research are summarized
as follows:

(i) Te ACNF controller performs better than the ISAC
controller in mitigating the maximum displacement
under the El Centro, Hachinohe, Kobe, and
Northridge earthquakes by 16.5%, 15.5%, 17.1%,
and 15.1% on average.

(ii) According to the fndings, the RMS value obtained
from the time history responses is lower in the
ANCF controller than in the ISAC controller.

(iii) Te ACNF controller outperforms the ISAC con-
troller regarding the maximum acceleration re-
duction under the seismic excitations by 16.1% on
the total average.

(iv) Another signifcant fnding was that the ACNF
controller showcased greater resilience in main-
taining its exceptional performance under para-
metric uncertainties compared to the ISAC
controller.

In conclusion, this study has provided valuable insights
into the efectiveness of the ACNF and ISAC controllers in
mitigating dynamic responses of structures subjected to
earthquakes. Te ACNF controller, with its neurochaotic
fuzzy system and FOPID, proved to be a superior choice,

El Centro Hachinohe Kobe Northridge Total Average

Nominal Model 3.80 2.70 15.90 7.60 7.50

Model 1 3.52 2.41 13.59 6.24 6.44

Model 2 4.49 3.18 19.16 9.20 9.01

Model 3 3.48 2.39 13.12 6.20 6.30

Model 4 4.32 3.05 18.98 8.77 8.78
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Figure 18: Te performance of (a) the ACNF controller and (b) the ISAC controller considering maximum displacement values of the top
foor of the structure under various uncertainties.
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outperforming the ISAC controller in reducing maximum
displacement and acceleration. Besides, this controller is able
to tackle the uncertain parameters and the time-varying
system successfully. Tis controller obtains a more accurate
estimation of the structure’s condition. Tese results con-
tribute to the advancement of adaptive control strategies for
enhancing the seismic resilience of structures. Further re-
search can be conducted to explore additional applications
and optimize the performance of these controllers in dif-
ferent scenarios.

Research in the future should examine the potential
efects of using other neural networks more carefully; for
example, using the emotional neural network (ENN) or RBF
neural network rather thanMLB neural network may lead to
more accurate identifcation of systems. Furthermore, the
online self-organizing fuzzy neural network (SOFNN)
controller can perform as well as or better than the ACNF
controller. In addition, we plan to consider deep learning
neural networks in the future to provide a more efcient
control algorithm than the ACNF controller. It may be
possible to add an adaptive Type-2 Gaussian fuzzy PID
controller or fractional-order type-3 fuzzy controller to the
control system in the future in order to increase stability and
robustness. An adaptive fuzzy sliding mode controller of
type-2 can also be benefcial.

Also, future research in the feld of adaptive control
strategies for the seismic resilience of structures can build
upon the fndings and insights obtained from this study.
Here are some suggestions for further investigation:

Comparative analysis: Conduct a more extensive
comparative analysis of the ACNF and ISAC con-
trollers with other adaptive control strategies, consid-
ering a wider range of seismic input excitations and
structural systems. Tis would provide a comprehen-
sive understanding of their performance and identify
specifc scenarios where each controller excels.
Controller optimization: Explore advanced optimiza-
tion algorithms beyond the PSO used in the ISAC
controller to enhance the performance of the con-
trollers further. Techniques such as genetic algorithms,
particle swarm optimization variants, or machine
learning-based optimization algorithms could be
employed to optimize the controller parameters for
improved seismic response mitigation.

Nonlinear structures: Investigate the applicability and
performance of the ACNF and ISAC controllers on
nonlinear structures. Nonlinear systems pose addi-
tional challenges in adaptive control, and exploring
how these controllers handle nonlinearities would be
valuable for practical applications.
Real-time implementation: Evaluate the real-time
implementation of the ACNF and ISAC controllers

on physical structures. Tis would involve considering
hardware constraints, communication delays, and
practical limitations to assess the feasibility and ef-
fectiveness of these controllers in real-world scenarios.
Robustness analysis: Conduct a comprehensive ro-
bustness analysis of the ACNF and ISAC controllers to
account for uncertainties in structural parameters,
earthquake characteristics, and sensor measurements.
Assessing the controllers’ robustness to these un-
certainties would provide insights into their reliability
and resilience in practical applications.
Multiobjective optimization: Consider multiobjective
optimization frameworks to simultaneously optimize
multiple performance criteria, such as displacement,
acceleration, and energy dissipation. Tis would enable
the design of controllers that strike a balance between
diferent objectives and ofer more comprehensive
control strategies.
Experimental validation: Perform experimental studies
to validate the ACNF and ISAC controllers’ perfor-
mance in physical testing setups. Tis would provide
empirical evidence of their efectiveness and practical
applicability, further bolstering their credibility.
Other applications: Explore the ACNF and ISAC
controllers’ adaptability to other engineering applica-
tions beyond seismic resilience, such as wind-induced
vibrations or structural control under extreme loading
conditions. Assessing their performance in diferent
contexts would broaden their scope and potential
impact.
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