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Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for
fnding BrCa at an earlier stage and monitoring BrCa during treatment.Te computer-aided detection methods have been used to
interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is
generated for the treatment, it will not classify correctly.Temain objective of this research is to classify the BrCa images for newly
generated images. Te model performs preprocessing, segmentation, feature extraction, and classifcation. In preprocessing,
a hybrid median fltering (HMF) is used to eliminate the noise in the images. Te contrast of the images is enhanced using
quadrant dynamic histogram equalization (QDHE). Ten, ROI segmentation is performed using the USE-Net deep learning
model. Te CafeNet model is used for feature extraction on the segmented images, and fnally, classifcation is made using the
improved random forest (IRF) with extreme gradient boosting (XGB). Te model obtained 97.87% accuracy, 98.45% sensitivity,
95.24% specifcity, 98.96% precision, and 98.70% f1-score for ultrasound images. Te model gives 98.31% accuracy, 99.29%
sensitivity, 90.20% specifcity, 98.82% precision, and 99.05% f1-score for mammogram images.

1. Introduction

Breast cancer (BrCa) is a common disease in women and is
one of the leading causes of cancer-related deaths world-
wide. According to the report released by the National
Research Council and the Institute of Medicine, there is now
a signifcant demand for breast imaging professionals [1].
Te development of computer-aided detection (CAD) sys-
tems for BrCa detection and diagnosis uses several imaging
modalities, such as mammograms and ultrasounds. Mam-
mography has been shown to lessen the risk of mortality
from BrCa. On the other hand, the sensitivity of mam-
mography is not ideal and is lower in women who are
described as having “dense breasts.” As a result, there has
been a recent update worldwide on using breast ultraso-
nography as an adjuvant to mammographic screening. In
addition to mammographic screening, it has been

demonstrated that screening with automated 3D breast
ultrasound systems and handheld ultrasound devices can
boost the cancer detection rate in women with thick breast
tissue. Te automated breast ultrasonography screening
function was the primary motivation for its development.
Compared to handheld ultrasonography, it is less dependent
on the operator and can obtain complete three-dimensional
breast ultrasound volumes reproducible over time [2]. Ul-
trasound is the most sensitive method when detecting in-
vasive cancer in thick breasts. Nevertheless, it is a modality
dependent on the operator, and the interpretation of its
images calls for the radiologist to have specialized
knowledge.

In order to overcome operator dependency and increase
the accurate diagnosis rate, CAD systems are required for
detecting and classifying the BrCa [4]. Figure 1 represents
the mammogram and ultrasound view of the BrCa image of
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a 45-year-old woman with an infltrating ductal carcinoma
in the left breast. In digital mammography, the patient’s
breast is irradiated with X-rays, which are then detected by
a digital X-ray detector to produce a two-dimensional (2D)
breast image. It is a method that is both quick and simple.
However, it has the issue of tissue superposition, a signifcant
drawback. Te likelihood of fbro glandular tissue covering
up lesions increases when the breast has a high density of
fbro glandular tissue, as this type of breast is known to be
dense. Te mediolateral oblique (MLO) view and the cra-
niocaudal (CC) view are taken during a mammogram to
help alleviate some of the difculties associated with this
issue. During an ultrasound, sound waves are passed
through the breast, and at the same time, waves that have
been backscattered are identifed. An ultrasound image is
generated using the waves that have been detected. As
a result, ultrasound does not use ionizing radiation, which is
a signifcant beneft [3]. Te difculty in interpreting ul-
trasound images is due to speckle and low contrast despite
the numerous benefts that may be gained from using ul-
trasound [5]. Tis causes the images to be degraded, even
though the numerous benefts ultrasound can gain.

CAD systems are designed to minimize costs and in-
crease radiologists’ ability to interpret medical pictures and
diferentiate between benign and malignant tissues. Addi-
tionally, CAD systems are being developed in order to
improve patient care. Increase the efectiveness of the ra-
diologist’s interpretation by increasing its accuracy and
consistency in terms of detection and diagnosis and cutting
down on the amount of time needed for interpreting the
images. Te CAD system aims to provide radiologists with
more objective evidence and boost their diagnostic conf-
dence. CAD methods have been created to improve the
detection of BrCa during screening by lowering the count of
false-negative interpretations [6]. Although the present
condition of performances for the CAD system is promising,
more is needed to create CAD models with fully in-
dependent identifcation and clinical diagnosis frameworks.
CAD models would continue to be used as the second
opinion clinical procedure unless their performance is
signifcantly improved from its present stage by advancing

the conventional approaches, implementing new successful
approaches in recognizing patterns such as augmentation of
data in deep learning, and utilizing advanced models in the
computation power of systems. A CAD system includes
diferent stages, i.e., dataset collection, preprocessing
methods, segmentation methods, feature extraction
methods, classifcation methods, and evaluation metrics. In
this work, an efcient USE-Net deep learning model was
designed to detect BrCa using two diferent imaging models:
mammogram and ultrasound.

Te main contribution of the paper is summarized as
follows:

(i) A deep learning-based CAD model is developed for
BrCa detection using ultrasound images.

(ii) A hybrid median flter is used to minimize the
speckle noise in the ultrasound BrCa image. After
fltering, the contrasts of the images are enhanced
using the quadrant dynamic histogram equalization
(QDHE) technique in the preprocessing stage. Tis
process helps the classifer to improve the classif-
cation performance.

(iii) A combination of U-Net with the SE network model
is used for ROI segmentation, and for feature ex-
traction, a pretrained deep learning model called
CafeNet is used.

(iv) Finally, the classifcation is performed using the
improved random forest classifer with XGBoost.

Te remaining paper is organized as follows; related
work is discussed in Section 2. Implementation of the
proposed research model is presented in Section 3. Dis-
cussion on experimental results is presented in Section 4.
Section 5 discusses the conclusion and future works.

2. Related Works

A CAD method was presented in [7] based on the termi-
nology scores of screening ultrasound images from the
breast imaging reporting and data system (BI-RADS).
Evaluating the BI-RADS category is an important stage in

Figure 1: Digital mammogram and ultrasound image of a BrCa patient [3].
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the diagnostic process for BrCa. Te image obtained from
breast ultrasonography can provide valuable information
collected during the examination procedure. In order to
identify between cancerous and benign BrCa, the decision
tree method was used to assess the BI-RADS information.
Te CARTdecision tree algorithm was used to classify BrCa
based on the features scored using BI-RADS. A deep
learning algorithm could have been used for the automated
scoring of ultrasound images, which could improve the
performance. Another CAD model was proposed in [8] to
detect BrCa using ultrasound images. Tis CAD model
includes preprocessing, segmentation, feature extraction,
and classifcations. During the preprocessing stage, the noise
was removed using a method known as speckle reducing
anisotropic difusion (SRAD), and the active contour model
was utilized for the segmentation process. Te grey level co-
occurrence matrix (GLCM) was used to extract the char-
acteristics of the texture, and those features were then used
as input by the classifer. Te k nearest neighbors (KNN)
method, the decision trees algorithm, and the RF classifers
were applied. Te classifers’ accuracy was computed to
determine the most efective for identifying BrCa using
ultrasound pictures. Te RF classifer ranks top, out-
performing the other two classifers in terms of accuracy. An
image fusion approach, several image content representa-
tions, and an ensemble of distinct CNN architectures were
used in [9] with a CAD framework for diagnosing tumors.
ResNet, VGG-Net, and DenseNet are all CNN-based
methods incorporated into this system’s implementation.
Te ensemble method that incorporates a weighted average
has the potential to both lessen the amount of variation in
the diagnostic results and produce the most accurate di-
agnosis. In [10], a medical decision-support framework for
the classifcations and diagnosis of BrCa utilizing ultrasound
pictures enabled by an ensemble of deep learning was
proposed. In this particular model, the preprocessing was
carried out with the help of a Wiener flter and contrast
enhancement. Te process of segmentation was continued
with the application of the Chaotic Krill Herd approach
along with Kapur’s entropy. Feature extraction was also
done with the help of the ensemble of deep learning tech-
niques: VGG16, Squeeze Net, and VGG-19. In the end,
classifcation was accomplished through cat swarm opti-
mization in conjunction with a multilayered perceptron
technique.

Te CAD system was created [11] to detect and classify
breast lesions as benign or malignant. In the preprocessing
step, additional data were added and spatial alterations were
carried out, both of which were done to construct breast
lesion identifcation. Ten, applying localization error in
conjunction with intersection over the union, we improved
the evaluation of breast lesion detection in ultrasound im-
ages. Compared to the Viola–Jones-based approach, the
YOLOv3 algorithm’s breast lesion identifcation was more
reliable and reproducible. In the end, the efective radionics
signature for BrCa classifcation was obtained only from
detection bounding boxes, with the segmentation task being
entirely left out of the work. In [12], a meta-heuristic al-
gorithm was used to tune the parameters of the neural

network. Compounding the wavelet neural network (WNN)
and the grey wolf optimizations led to the development of
a CAD method that can identify abnormalities in breast
ultrasound pictures. In this study, breast ultrasound images
were preprocessed using the sigmoid flters, interferences-
basedde-speckling was performed, and fnally, anisotropic
difusion was carried out. After selecting the ROI using the
automatic segmentation algorithm, morphological and
textural features were computed. In the end, the GWO tuned
WNNwas the one that was utilized for the classifcation task.

Transfer learning is applying the skills and information
obtained through resolving one challenge to another chal-
lenge of a similar nature. A deep learning model based on
transfer-learning models was presented in [13] to efectively
assist in the automated diagnosis and detection of BrCa
infected zones based on two models, namely, 80–20 and
cross-validations. Te architecture of deep learning was
modeled in such a way as to be problem-specifc. Using
pretrained CNN models such as Inception V3, VGG-19,
ResNet50, VGG16, and Inception-V2 ResNet, the charac-
teristics of this model were collected from the MIAS dataset.
A deep learning-based breast density classifcation model
was proposed in [14]. A residual CNN was constructed,
trained, and the responses of the model to various modi-
fcations in inputs were evaluated. Tese input adjustments
included varying class label distributions in test and training
sets and appropriate image preprocessing. Te grad-CAM
approach for CNN was used to generate salient maps.
Spearman’s rank correlations within the saliency maps and
input images were computed to evaluate the model’s ac-
curacy.Tere is a high correlation between the saliency maps
and the dense pattern. In [15], a framework for the seg-
mentation and classifcation of BrCa images was developed.
Tis framework makes use of a variety of models, which
include DenseNet121, InceptionV3, VGG16, ResNet50, and
Mobile-netV2 models. In addition, the trained version of the
modifed U-Net approach was applied to extract breast areas
from mammograms. Tis method assists radiologists in the
process of early detection and improves the efectiveness of
the system. Te problem of tagged data was approached via
transfer learning and data augmentation. Te classifcation
was accomplished with full CNNs.

Te efectiveness of various multiscale architectures in
locating breast calcifcations on an entire feld digital
mammogram was analyzed in [16]. Both the MLO and CC
perspectives were analyzed simultaneously within the ar-
chitectures used, and both were later merged to give
a prediction score in an end-to-end manner. Te networks
were then trained and tested using high-resolution digital
mammogram images that contained only calcifcations in
the breast and no masses that had been analyzed locally. As
a result, the AU-ROC curve of the multiscale attention-
residual architecture with DLA is quite large. A BrCa
classifcation model was presented in [17] for identifying
benign or malignant BrCa based on mammography. Te
ROI was performed using a machine learning algorithm and
hybrid thresholding. Te multifractal dimension model was
used to extract the denoised blocks’ features. Te feature
dimensions were decreased using the genetic algorithm.
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However, this method does not extract features required for
classifying the BrCa. In [18], a model was developed using
the transferable texture convolutional neural network
(TTCNN) for classifying benign or malignant in the early
stage. Instead of the pooling layer, the suggested method
uses three convolutional layers and one energy layer. Tey
were using deep features from the convolutional neural
network models examined. TTCNN performed in the third
stage. In order to improve classifcation accuracy, the best
layers are chosen, fromwhich the deep features are retrieved.
A BrCa classifcation model was proposed in [19] by
combing the best available features with deep learning. Te
DarkNet-53 deep learning algorithm is retrained, and
augmented breast cancer images are inputted into the
DarkNet-53. Te features are extracted from the input, and
an optimization algorithm is used to select the features from
the input images. Meraj et al. [20] used the U-Net and
Independent Component Analysis (ICA) for breast cancer
classifcations. Te developed model is evaluated based on
the breast ultrasound images dataset (BUSI). Table 1 pres-
ents the merits and demerits of existing works.

3. Methodology

Our system is being developed in this research work to detect
BrCa using two diferent imaging models, such as mam-
mogram and ultrasound. Te proposed model uses both the
mammogram and ultrasound images as the input separately.
Te mammogram dataset [21] and dataset of breast ultra-
sound images [22] are used for checking our proposed
model performances. In the preprocessing stage, a hybrid
median fltering eliminates the noises in the input images.
Further, the contrasts of the images are enhanced by utilizing
the quadrant dynamic histogram equalization. After en-
hancement, ROI segmentation is performed using the USE-
Net deep learning model. Te CafeNet model is used for
feature extraction on the segmented images, and fnally,
classifcation is made using the IRF-XGB method. Tis
model is experimented with to analyze the classifcations’
performances by comparing the results based on the image
types. Figure 2 displays the pipelining architecture of the
proposed model.

3.1. Image Preprocessing. Te speckle noises and poor
contrasts in breast ultrasound images degrade the overall
quality of the images, which in turn hurts the efciency of the
proposed algorithms. Preprocessing has developed into an
essential step to overcome these limitations. As can be seen
in Figure 2, there are two diferent kinds of preprocessing
procedures that are utilized. Tese are enhancement-based
approaches and fltering methods. In the fltering approach,
speckle noise has been reduced via the application of HMF.
In the enhancement method, the contrast has been increased
by applying QDHE.

3.2. Hybrid Median Filter (HMF). Te HMF is a nonlinear
windowed flter that makes it easy to get rid of noise while
maintaining the boundaries of the image. Te HMF ofers

corner preservation qualities that are superior to those of the
basic form of the flter. An HMF calculates its output by frst
determining the median value of a variety of pixels located
inside a variety of neighborhood shapes and then de-
termining the value of the median of the previous acquired
in addition to the initial values of the pixel. Te neigh-
borhood shapes are considered in a “+” shape and an “x”
shape, respectively, and they are taken in a straight line and
a diagonal line around the center pixel. Compared to
a traditional median flter, the HMF is superior in main-
taining edge characteristics. Tis is because it is a ranking
process that takes place throughout three steps [23].

(i) A window is chosen according to the size of the
images; hence, an ‘X-shaped subwindow and a “+”-
shaped subwindow are picked out of the available
options

(ii) Te diagonal median, denoted by the Mx, can be
determined by sorting the pixels either descending
or ascendingly before performing the calculation

(iii) Te horizontal-vertical median, also known as M+,
can be determined by sorting the pixels descending
or ascendingly before performing the calculation

(iv) Te output is determined by calculating the Mx, M+
median, and the values in the center of the pixel

AnHMF is advantageous for several reasons, one of which
is that it requires less computational complexity to operate.
Tis is because it only functions on fewer pixels within the
windows than every pixel within the square masks of the
equivalent sizes [24]. Figure 3(a) presents the original images
and Figure 3(b) presents corresponding fltered images.

3.3. Quadrants Dynamic Histogram Equalization (QDHE).
Improving an image is one of the primary processes involved
in image analysis. Te purpose of enhancing contrast is to
increase the quality of an image so that it is better suited for
specifc use. As a result, the QDHE enhancement technique
is utilized in this research to improve the contrasts of the
medical images. Te most reliable method for extracting the
features from images with low contrast is the QDHE al-
gorithm. Histogram equalization, allocation of grey level
range, clipping, and partitioning of the histograms are the
processes used to perform QDHE. Figure 4 depicts the
workfow of QDHE.

When splitting the histogram, the proposed QDHE uses
the intensity values located in the middle of the histogram of
input images. At the outset, the original image’s histogram
was split to create dual subhistograms. Likewise, the medians
of the divided subhistograms were applied as split points to
divide each dual subhistogram into two small subhisto-
grams. Consequently, four subhistograms were achieved.
Te highest andminimum input histogram’s intensity values
were then used as separation starting and ending points [25].
Figure 5 depicts the architecture of USE-Net. Te recursive
subimage HE and the partitioning strategy utilized in the
QDHE algorithm are comparable. Te strategy of parti-
tioning based on the median prefers to segment the total of
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pixels evenly across all subhistograms. Terefore, the fol-
lowing equation can be used to determine the location of
each dividing point:

k1 � 0.25 × IH × IW( 

k2 � 0.50 × IH × IW( 

k3 � 0.75 × IH × IW( 

⎫⎪⎪⎬

⎪⎪⎭
. (1)

In this equation, the intensities k1, k2, and k3 are fxed to
0.25, 0.50, and 0.75, individually, for the overall count of
pixels that make up the histograms of the input images. Te
height and width of the input image, respectively, are

denoted by the variables IH and I.W. Te purpose of the
clipping was to exercise control over the HE enhancement
rate to prevent the processed image from appearing un-
natural and excessively enhanced. Tis is accomplished by
mitigating the efects of clipping. It does this by adjusting the
form of the input histograms by decreasing or raising the
values in the histogram bins according to the threshold
known as Tc, which was equivalent to the image intensity
average values. Te grey level dynamic ranges allotted to all
the subhistograms by QDHE are determined by the ratio of
the total number of grey level spans to the total number of
pixels in that subhistogram. Tis ensures that the

(a) (b)

Figure 3: Filtered ultrasound image. (a) Original image and (b) fltered.
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improvement spaces for all the subhistograms are even. Te
mathematical description of this process is given in the
following equation:

spani � ki+1 − ki, (2)

factori � spani × log10Ki( 
c
, (3)

rangei � (P − 1) ×
factori


4
k�1 factorm

. (4)

Here, spani is the dynamic grey level that the ith sub-
histogram of the input images was using. In equation (3), ki

denotes the ith separation point, and Ki represents the
pixel’s total count in the ith subhistogram. Te dynamic
ranges for the ith subhistograms in the output images were
denoted by rangei, and the degree of emphasis placed on Ki

in equation (4) is denoted by c. Terefore, c must be
modifed so that the span of all the subhistograms in the
output histograms may be accurately determined. As
a consequence of the QDHE approach using a virtually
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identical pixel’s total count for all the subhistograms,
equation (3) does not signifcantly impact the newly created
dynamic range. Equation (4) can be rewritten as follows in
order to simplify the QDHE and get rid of the parameter c.

rangei � (P − 1) ×
spani


4
k�1 spanm

. (5)

Te new dynamic range for the ith subhistogram is
allotted from [istart, iend] specifed by the following equations,
respectively:

istart � (i − 1)end + 1, (6)

iend � istart + rangei. (7)

Te frst value of istart is set to the minimized intensity
values of a range of new dynamics when it is initially ini-
tialized. Te last phase in the QDHE was to independently
balance all the subhistograms after the ranges of new dy-
namics for every quadrant subhistogram had been de-
termined. If the ith histogram was assigned at the grey level
from [istart, iend], then the result of HE, h(x), of this segment
could be found by utilizing the transfer mapping function in
the following. In this particular subhistogram, the cumu-
lative density function is denoted by c(Xm).

h(x) � istart − iend(  × c Xm(  + istart. (8)

3.4. Segmentation Using USE-Net. Te U-Net segmentation
model was used with the Squeeze and Excitation (SE) layers
to segment BrCa images. Te S.E. blocks that followed each
encoder or encoder-decoder of the U-Net model were in-
corporated into the U-Net model. On the encoder stage of
this USE-Net model, the model can successfully extricate
the features of input images by using the sequent convo-
lution and pooling layers; in the decoder section of this
architecture, the model will methodically map the extricated
features to the raw images by using the sequent upsampling
layers, and it will eventually generate the predicted masks.
Specifcally, the S.E. layers were inserted before all the
encoder’s pooling layers and after all the decoder’s
upsampling layers [26]. Te blocks of S.E. were more ef-
fective in the encoding paths than in the decoding paths and
very efective in the decoding paths than after the classifer
because they impact low-level features in the U-Net design
and, as a result, considerably boost the overall performance
of the network. Terefore, rather than integrating just one
S.E. block after the initial encoder/decoder, the blocks of
S.E. are placed after every encoder/decoder to achieve the
best possible segmentation performance. Tis allows for
detecting coarse-grained contexts in the last layers and fne-
grained localizations in the deep layers.Te skip connection
technique was utilized to concatenate two sequence con-
volution layers and a layer of activation into the block,
which was then renamed the CONV block.

Let V � [v1, v2, . . . , vD] be an input feature map. Here,
vd ∈ ZP×Q is a single channel with size P × Q. A global
average pooling layer, defned by its spatial dimensions P ×

Q, produces channel-wise statistics denoted by r ∈ ZD, the
d-the element of which is represented by the following
equation:

rd �
1

P × Q


P

p�1


Q

q�1
vd i,j. (9)

To reduce the model’s complexity and increase its
generalizability, two fully connected (FC) layers in con-
junction with the rectifed linear unit (ReLU) function δ to
convert r using a sigmoid activation function, as shown in
the following equation:

t � σ(c(r, Q))

� σ Q2δ Q1r( ( .
(10)

Here, Q1 ∈ ZD/z×D, Q2 ∈ ZD×D/z, and z represent the
reduction ratio that controls the capacity as well as the
computational costs of the blocks of S.E. Te blocks of S.E.
could overft the training set’s channel interdependencies
despite the decreased count of weights regarding the actual
structure. To produce the adaptive recalibration that avoids
low signifcant channels and accentuates essential ones, V
was resized into H � [h1,

h2, . . . , hD] by applying (10):
hd � Dscale vd, td( 

� td · vd  for d � 1, 2, . . . , D.
(11)

In (11), the term denoted by Dscale(vd, td) refects the
multiplication of channel-wise that occurs among the fea-
ture maps denoted by vd ∈ ZP×Q and the scalar denoted by
td ∈ [0, 1]. Te layer of S.E. was a helpful technique to boost
the capability to learn the model by reinforcing more sig-
nifcant features [27].

3.5. Feature ExtractionUsing CafeNet. SafeNet, a CNN with
improved performance derived from AlexNet, was the
neural network used in this study to extract the features. Five
convolutional layers were included in the CafeNet, along
with three FC layers. Te problem of overftting was avoided
by employing the dropout approach at the initial two FC
layers, with the likelihood of dropout being set at half.
CafeNet utilized the local response normalization method
for normalizing the feature maps to increase the signal of
activated neurons while simultaneously decreasing the signal
of surrounding neurons, which contributed to an im-
provement in the model’s capacity for generalization. All the
ROIs from this work was scaled using bilinear interpolations
to equal the input layer size (227× 227). Te mean of the
training set was subtracted from the data using standard
practices in deep learning experiments [28]. Table 2 shows
the CafeNet architecture confguration.

In this research, a method was used to extract the fea-
tures from the CNN model to get higher performance than
classifying directly with the CNN. Tis method was used to
achieve the goal.Te IRF-XGB classifer was trained with the
help of the features that were taken into consideration.
Taking the activations from just one layer of the CafeNet
network, the model can be interpreted as a feature extractor
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once the CafeNet has been fne-tuned. In general, dis-
criminative characteristics were provided by the higher
layers, and the fnal FC layer just produced the score of the
class prediction. As a result, the FC7’s output was utilized as
the representation of features of the BrCa image. Te fea-
tures that were extricated from FC7 were the vector with
4096 dimensions, and the values of the features are scaled
using the vector’s most excellent absolute value to fall within
the range [1, 29].

3.6. Classifcation Using IRF-XGB. RF is a type of ensemble
algorithm that is used for machine learning. RF produces
a powerful learner by combining several weak learners in the
form of decision trees. Te term “random” used in RF refers
to two diferent kinds of randomness, including random
samples and features. Initially, RF will use bootstrap ag-
gregating or bagging to partition the initial dataset into
a series of random samples. Te training portion of the
bagging method employs two-thirds of the original dataset,
whereas the testing portion uses just one-third. In order to
generate random samples, the training dataset is frst sub-
jected to a uniform selection of instances followed by in-
stance replacements. After the samples had been obtained
randomly, an unpruned decision tree was constructed using
every collected dataset. Instead of describing the optimal
split in all the tree nodes, random features are employed
instead rather than using all of the features. Te trees in the
forest carry out their tasks uniquely and produce their
outputs simultaneously. Te outcome of the forest is de-
termined by conducting a signifcant vote on the outcomes
of each decision tree. Since RF employs the bagging ap-
proach, it does not need to undergo an additional validation
process [30]. A regression model sequence,
k1(a), k2(a), . . . , kt(a) , is obtained through n-time model
training. Tis sequence is then used to form a multi-
regression model system. After collecting the results of the
prediction of the N estimators’ regression trees, a simple
average methodology is utilized for calculating the values of
the newer samples. Te expression for deciding whether or
not to perform regression is given by the following equation:

d
T

sd(a) �
1
T



T

t�1
ki(a). (12)

Te integrated regression model is denoted by d
T

sd(a). In
contrast, ki denotes a regression model of the single decision

tree, and T indicates a total count of the regression tree (N
estimator). Te decisions made by each tree are considered
by IRF, which helps to enhance accuracy. Te bagging is
used to get a random result. Te term “bagging” refers to the
process of “bootstrap aggregating,” which enhances both the
accuracy and stability of the algorithm.

Bag �
1
X



X

x�1
dx a′( . (13)

Here, a′ represents the predictions for unseen samples
derived from (13), and x represents the number of trees, with
values ranging from x� 1, 2, 3, . . ., X; and dx represents the
training of a decision tree using Bx and Lx as inputs to
improve the functionality of RF while simultaneously
addressing the problem of imbalanced classifcation. Te RF
is made better through sampling, which results in a balanced
RF. Te bootstrap sampling method, which selects samples
from a dataset randomly and uniformly with replacement, is
the one that is used in the initial RF. Tis method does not
take into account the requirements of the class. As a result,
a bootstrap sample taken from the initial RF can have only
a few or even no data about the minority classes. Because of
this, the accuracy of the predictions made by all the decision
trees formed on such a bootstrap sample would sufer when
classifying data about minority classes. Te proposed
technique executes the sampling with the considerations of
the majority and the minority classes to make up for the
current shortage. In this improved RF, initial draws are
made from the provided dataset using a random number
generator to select “n” samples from the minority group. As
a direct result, the same quantity of samples from the class
that constitutes the majority is likewise extracted via re-
placement. Tus, these random samples were pooled to
provide even random sample sets that include an equal
number of data samples representing both the minority and
the majority. An unpruned decision tree is developed based
on this evenly distributed set of samples. Expanding and
integrating the balanced decision trees makes it possible to
arrive at a balanced RF in this manner [31].

XGB is a paradigm for improving tree structures that is
both scalable and adaptable. It can manage sparse data,
increase the speed of algorithms, and decrease the com-
putation time and memory required for large-scale data.Te
XGB algorithm can be stated more technically as follows
[32]. Te objective function can be defned as in equation
K � (a1, b1), (a2, b2), . . . , (an, bn) , ai ∈ Zw, bi ∈ Z if there
is a training dataset including n samples in the following
equation:

θ � 
n

i

y bi,
bi  + 

K

k�1
Ω dk( . (14)

Here, the value of y(bi,
bi) indicates the distance that

separates the target bi from the prediction bi, and dk is the
tree’s score assigned to its prediction ability. It is possible to
compute an estimated loss function using the Taylor ex-
pansion of the objective function, as shown in the following
equation:

Table 2: CafeNet architecture confguration.

Layers Kernel size Stride Output size
Data 3× 227× 227
Conv1 11 4 96× 55× 55
Conv2 5 1 256× 27× 27
Conv3 3 1 384×13×13
Conv4 3 1 384×13×13
Conv5 3 1 256×13×13
FC6 4096×1× 1
FC7 4096×1× 1
FC8 2×1× 1
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Y
(k)≃

t

i�1
y bi,

b
(k− 1)

  + hidk ai(  + 1/2gid
2
k ai(   +Ω dk( .

(15)

In this equation, the frst derivative of each sample is
denoted by hi � z

b
(k−1) y(bi,

b
(k− 1)

), and the second derivative

of each sample is denoted by hi � zb
b

(k− 1)

y(bi,
b

(k− 1)
); the

loss function only needs the frst and second derivatives of
each data element. Te use of XGB as a method for making
model predictions has recently gained popularity. Te speed
of RF is the technique’s most signifcant downside [https://
bit.ly/3WlQzfs]. Terefore, XGB was paired with it to ac-
quire better research results and circumvent the problem
with speed caused by it. XGB is used for regression and
classifcation approaches to produce more accurate pre-
dictions. Additionally, XGB assists in the reduction of errors
caused by bias and helps to decrease bias overall.

4. Experimental Results and Discussion

Te proposed research model was used to analyze the ul-
trasound and mammogram images, and the results showed
that all the classifed images belonged to two categories:
malignant and benign.Te researchmodel was implemented
on MATLAB R2019 on a Windows-1064-bit O.S., Intel i7-
CPU@2.60GHz, 16GB RAM, and 1TB. hard disk. Te
classifcation model was applied to the ultrasound and
KAU-BCMD dataset images. Tese datasets contain ultra-
sound and mammogram images.

4.1. Breast Ultrasound Images Dataset. Te medical pictures
of BrCa obtained from an ultrasound scan are analyzed in
this data set. Te images in the breast ultrasound dataset can
be divided into three categories: standard, benign, or ma-
lignant. When integrated with machine learning, breast
ultrasound images can yield excellent outcomes in the
classifcation, identifcation, and segmentation of BrCa. Te
breast ultrasound scans of participants aged 25 to 75 were
included in the data. Tere are a total of 600 female patients
within the population. Te collection contains 830 images,
each of which has an average of 500 pixels by 500 pixels in
size. PNG is the fle format used for these pictures. Te
images of the ground truth are exhibited alongside the
original images. Normal, benign, and malignant are the
three groups into which the images have been placed for
classifcation [22].

4.2. KAU-BCMDDataset. One of the main contributions of
this research is that it used a new digital mammography data
set for BrCa from King Abdulaziz University, Saudi Arabia.
Te dataset was a digital mammogram and ultrasound
images collected between 2019 and 2020 from the Sheikh
Mohammed Hussein Al-Amoudi Center of Excellence in
BrCa at King Abdulaziz University. It is the frst data set in
Saudi Arabia that manages a considerable volume of
mammography images. Tis research used mammogram
images from the dataset, comprising 1416 mammogram

cases, with both MLO and CC views for the left and right
breasts, thus totaling 5662 images. Te mammogram images
are in the format of DICOM and JPG. From a total of 5662
images, only 3778 images were used for the experiment
analysis, and the remaining 1884 images were excluded
regarding the images considered to be in the normal
category [21].

4.3. Performance Computation. Te proposed classifcation
model’s performances were calculated using the result pa-
rameters often used for evaluating the classifer’s perfor-
mance in image processing. Such parameters are accuracy,
sensitivity, specifcity, precision, and f1-score [33]. Based on
these parameters’ computation scores, the research model’s
performances were compared and analyzed with those of
conventional models for validation.

4.4.Discussion onResults. In this section, the results obtained
from the performance analysis are discussed. Tis result
section is discussed into two sections: the frst one discusses
the results obtained for the ultrasound images using the
research model and its comparison, and the second part
discusses the results obtained for the mammogram images
using the research model and its comparison. In order to
reduce issues like overftting and selection bias, cross-
validation uses new data that was not used to train the
model to assess the model’s performance.We have performed
K-foldcross-validations to evaluate our proposed models’
performances. We selected K values as 10. A 10-foldcross-
validation technique tests the model for the unseen data. Te
entire dataset is divided into ten groups and computed ac-
curacy for the 10-fold. Te proposed performance model for
ultrasound images using stratifed-10-fold is presented in
Table 3, and Table 4 displays the proposed model for
mammograms using stratifed-10-Fold. From Tables 3 and 4,
we can understand that our model is balanced.

Figure 6 depicts our model’s training and test accuracy
for the ultrasound images. Figure 7 depicts the training and
test measures of the research technique using mammogram
images. Tis performance analysis was evaluated into
training and testing results based on the classifcation result
parameters discussed above. Te research model obtained
the best performance in the training set compared to the
test set in this work using ultrasound images. Te research
model obtained 99.15% accuracy in training and 97.87% in
testing; the training result is 1.28% higher than the test
result. Te sensitivity of the research model was 99.50% in
training and 98.45% in testing. In this parameter, there is
a diference of 1.05% between training and test result. Te
research model obtained 97.22% specifcity in training and
95.24% in testing; the training result is 1.98% higher than
the test result. Te precision score in training and testing
was 99.50% and 98.96%, where the diference is 0.54%
among them. Te f1-score in training and testing was
99.50% and 98.70%, in which the training result is 0.8%
higher than the test result. Figure 7 depicts the training and
test measures of the research technique using mammogram
images.
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Table 5 compares the results of the research model using
ultrasound images with the existing classifcation models
from the literature survey, such as CNN-DenseNet-161,
CNN-VGG-16, CART, R-Boost, and M-Tree. For this
comparison, the research model’s test results are used.

According to this comparison, the research model obtained
the best accuracy using ultrasound images. Te accuracy of
the research model was 97.87%, which is 3.29% to 9.15%
higher than the compared models. Te least accuracy was
obtained by CNN-VGG-16 [9].Te researchmodel obtained
98.45% sensitivity, which is 7.65% to 14.67% improved than
the other models in this work. Te specifcity score of the
research model was 95.24%, which is 2.65% to 3.71% higher
than the CNN-DenseNet and V.G.G. models. Te CART
model obtained the highest specifcity score of 98.84%. Te
researchmodel obtained 98.96% precision, which is 0.05% to
9.7% higher than the comparedmodels.Te CNN-DenseNet
model obtained the least precision score of 89.26%. Te f1-
score of the research model was 98.70%, which are 9.14% to
11.99% improved than the CNN-DenseNet and V.G.G.
models. Figure 8 represents the performance analysis
comparison in a graphical plot. Tis performance analysis
was evaluated into training and testing results based on
classifcation parameters. Te research model obtained the
best performance in the training set compared to the test set
in this work using mammogram images.

Te research model obtained 99.58% accuracy in
training and 98.31% accuracy in testing; the training result is
1.27% higher than the test result. Te sensitivity of the re-
search model was 99.65% in training and 99.29% in testing.
In this parameter, there is a diference of 0.36% between the
training and test results. Te research model obtained
98.90% specifcity in training and 90.20% in testing; the
training result is 8.7% higher than the test result. Te
precision scores in training and testing were 99.88% and
98.82%, where the diference is 1.06% among them. Te f1-
score in training and testing was 99.77% and 99.05%, in
which the training result is 0.72% higher than the test result.
Figure 9 represents the performance analysis comparison in
a graphical plot.Te research model’s results were compared
using mammogram images with the existing classifcation
models from the literature survey, such as LBP-ANN, VGG-

Table 4: Performance proposed model for mammogram using
stratifed-10-fold.

Folds Accuracy Sensitivity Specifcity Precision F1-scores
1 99.12 99.49 91.02 98.82 99.04
2 97.83 99.28 90.17 99.12 99.06
3 98.46 98.87 89.01 98.82 99.25
4 98.07 99.05 91.2 98.77 99.16
5 98.55 99.65 90.1 98.88 99.29
6 98.82 99.78 90.01 98.94 99.34
7 97.21 99.41 91.17 98.67 99.37
8 98.71 97.99 90.1 98.9 99.12
9 98.46 99.81 89.06 98.49 98.91
10 97.96 99.63 90.2 98.82 98.03
Mean 98.31 99.29 90.20 98.82 99.05
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Figure 6: Training and test measures of research model using
ultrasound images.
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Figure 7: Training and testing measures of research model using
mammogram images.

Table 3: Performance proposed model for ultrasound images using
stratifed-10-fold.

Folds Accuracy Sensitivity Specifcity Precision F1-scores
1 96.84 97.45 95.24 98.72 98.2
2 98.8 98.26 94.64 97.89 99.5
3 96.9 98.83 96.14 98.49 98.1
4 98 98.6 95.14 98.96 99.2
5 99.45 98.35 95.04 98.84 98.4
6 98.6 99.34 95.2 99.91 97.9
7 97.7 97.91 97.28 98.96 98.2
8 97.33 98.45 93.14 98.96 99.6
9 96.4 98.43 96.38 99.92 98.8
10 98.77 98.95 94.2 98.96 99.1
Mean 97.879 98.457 95.24 98.961 98.7
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19-SVM, TTCNN, ResNet50-SVM, and Inception-
v2ResNet-SVM, as shown in Table 6. Te research
model’s test results are used for comparison. Based on this
comparison, the research model obtained the best accuracy
using mammogram images. Te accuracy of the research
model was 98.31%, which is 1.44% to 3.55% higher than the
compared models.

Additionally, the research model has obtained higher
accuracy in mammogram classifcation than the ultrasound
classifcation. Te least accuracy was obtained by Inception-
v2ResNet-SVM [13]. Te research model obtained 99.29%
sensitivity, which is 5.05% to 10.43% improved than the
other models in this work. Te specifcity score of the re-
search model was 90.20%, whereas the other compared
models achieved a higher specifcity score than the research
model. Te ResNet50-SVM model obtained the highest
specifcity score of 96.99%. Te research model obtained
98.82% precision, which is 3.37% to 10.68% higher than the
compared models. Te f1-score of the research model was
99.05%, which is 4.21% to 10.56% improved than the other
models. Te model complexity is measured against USE-Net
architecture using FLOPS. Te computational complexity is
reported in Table 7. Tis work has some limitations, where
the performance analysis comparison was made on diferent
datasets related to the compared models. Because each work

Table 5: Performance analysis comparison based on ultrasound classifcation models.

Models Accuracy (%) Sensitivity (%) Specifcity (%) Precision (%) F1-scores (%)
CNN-DenseNet-161 [9] 90.80 89.86 91.53% 89.26 89.56%
CNN-VGG-16 [9] 88.72 83.78 92.59% 89.86 86.71%
CART [7] 94.58 90.80 98.84% 98.91 NA
R-boost [20] 97.06 97.48 NA 98.16 97.82%
M-tree [20] 96.10 97.91 NA 96.61 97.16%
Proposed model 97.87 98.45 95.24% 98.96 98.70%
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Figure 8: Comparison of performance analysis based on ultrasound images.
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Figure 9: Comparison of performance analysis based on mam-
mogram images.

12 International Journal of Intelligent Systems



has its objectives and purposes for performing the classif-
cation process on BrCa images, the proposed QDHEmodel’s
performance could have been more efective, which im-
pacted the segmentation and classifcation results. A limited
dataset was used for ultrasound images, which degraded the
model’s performance.

5. Conclusion

Te proposed model used both the ultrasound and mam-
mogram images as the input individually. Te research
model comprised preprocessing, segmentation, feature ex-
traction, and classifcation stages. Initially, in the pre-
processing stage, hybrid median fltering was used to
eliminate the noises present in the input images, and further,
the contrast of the images was enhanced using the QDHE.
After noise removal and enhancement, segmentation of ROI
was performed using the USE-Net deep learning model.
With the CafeNet model, feature extraction was performed
on the segmented images, and fnally, classifcation was
made using the IRF-XGB technique. Tis research model
was experimented with to analyze the performances of the
classifcation by comparing the results utilizing the ultra-
sound and mammogram image types. Te performance
analysis was evaluated separately for both image classif-
cations. For ultrasound images, the research model obtained
97.87% accuracy, 98.45% sensitivity, 95.24% specifcity,
98.96% precision, and 98.70% f1-score. For mammogram
images, the model obtained 98.31% accuracy, 99.29% sen-
sitivity, 90.20% specifcity, 98.82% precision, and 99.05% f1-
score. Te proposed model achieved better performances in
classifying mammogram images than ultrasound images. In
the future, the performance of this model can be improved
by adding more images for training, and a feature selection
model can be integrated for selecting the best features for the
classifcation.
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