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Recent years have witnessed the success of encoder-decoder structure-based approaches in lung region segmentation of chest X-
ray (CXR) images. However, accurate lung region segmentation is still challenging due to the following three issues: (1) inaccurate
lung region segmentation boundaries, (2) existence of lesion-related artifacts (e.g., opacity and pneumonia), and (3) lack of the
ability to utilize multiscale information. To address these issues, we propose an edge-assisted computing andmask attention based
network (called EAM-Net), which consists of an encoder-decoder network, an edge-assisted computing module, and multiple
mask attention modules. Based on the encoder-decoder structure, an edge-assisted computing module is frst proposed, which
integrates the feature maps of the shallow encoding layers for edge prediction, and uses the edge evidence map as a strong cue to
guide the lung region segmentation, thereby refning the lung region segmentation boundaries. We further design a mask
attention module after each decoding layer, which employs a mask attention operation to make the model focus on lung regions
while suppressing the lesion-related artifacts. Besides, a multiscale aggregation loss is proposed to optimize EAM-Net. Extensive
experiments on the JSRT, Shenzhen, and Montgomery datasets demonstrate that EAM-Net outperforms existing state-of-the-art
lung region segmentation methods.

1. Introduction

Lung is one of the most important organs in the human
body. Tere are many types of lung diseases with high in-
cidence [1]. Among them, lung cancer is the most common
and deadliest tumor in China, with a 5-year survival rate of
16.4% [2]. Chest X-ray (CXR) is a widely used technique to
identify lung diseases. However, manual interpretation of
CXR images is usually time-consuming, laborious, and
subjective. To this end, many efcient image processing
methods have been proposed for the computer-aided di-
agnosis of lung diseases, in which lung region segmentation
is a critical task. It provides basic information on lung shape
and size measurements, which can be used for pathological
analysis [3]. Terefore, automatic lung region segmentation
of CXR images deserves an in-depth study.

Traditional image processing methods use edge de-
tection, thresholding, and clustering to segment the target

area of an image [4].Tese methods are simple to implement
but sufer from poor generalization performance. With the
development of deep learning technology, the application of
convolutional neural networks (CNNs) for image segmen-
tation is increasing. Compared with traditional image
processing methods, CNNs can automatically learn mean-
ingful features from data, thus achieving improved seg-
mentation performance.

Currently, the encoder-decoder structure is one of the
most efective CNN models in the feld of image segmen-
tation because it preserves the detailed features of images [5].
For example, Long et al. [6] proposed a fully convolutional
network, which can take an image of any size as input and
produce a pixel-wise segmentation prediction map. Ron-
neberger et al. [7] proposed a U-shaped network (called
UNet), which has been widely used in medical image
analysis. UNet consists of three parts: a shrinking path, an
expanding path, and skip connections. Te input image is
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downsampled four times on the shrinking path for feature
extraction, and upsampled four times on the expanding path
to restore to its original input size. Between the shrinking
and expanding paths, feature maps at the same level are
connected by skip connections to supplement the loss of
image details during successive downsampling.

Although encoder-decoder structure-based approaches
have achieved remarkable results in the feld of image
segmentation, precise lung region segmentation is still
challenging due to the following three issues. First, the
calculation of various pathological indicators relies on ac-
curate lung region segmentation boundaries. However, the
edge of the lung region often has some problems such as
oscillation, deformation, and noise. As a result, the edge
cannot be preserved well. Second, in more complex cases,
patients may sufer from some diseases that afect the lung
region segmentation, such as opacity, consolidation, tu-
berculosis, pulmonary nodules, and pneumonia, as shown in
Figure 1. From Figure 1, the high-intensity abnormal pixels
overlap with the real lung region, thus reducing the contrast
of the lung region boundaries. During segmentation, lung
regions that overlap with opacity may be incorrectly pre-
dicted as lung boundaries. Tird, due to the loss of in-
formation caused by successive downsampling operations,
the model cannot make full use of the efective information
of features at diferent scales during training, including
semantic features for lung region identifcation and detailed
features for edge localization.

To address the abovementioned issues, this paper pro-
poses an edge-assisted computing and mask attention based
network (called EAM-Net) for lung region segmentation of
CXR images. EAM-Net follows the classic encoder-decoder
structure, where the encoder extracts the feature map of an
input image, and the decoder restores the feature map to the
original input size. In order to learn robust lung region
segmentation boundaries, an edge-assisted computing
module is designed, which fuses the feature maps of the frst
three encoding layers to generate an edge evidence map.
Note that this edge evidence map is used as a strong cue to
guide the lung region segmentation, thus refning the edge
parts of the lung region segmentation result. We further
design a mask attention module after each decoding layer,
which employs a spatial attention mechanism to learn im-
portant regions on the segmentation features while ignoring
irrelevant artifacts. EAM-Net is optimized by a multiscale
aggregation loss, which consists of a multiscale lung region
segmentation loss and an edge prediction loss. Overall,
EAM-Net has the capability to deal with the above-
mentioned three issues in lung region segmentation of CXR
images. Te main contributions of this paper are summa-
rized as follows:

(i) We propose the edge-assisted computing module,
which integrates the feature maps of the shallow
encoding layers for edge prediction and transfers
meaningful edge information to guide the lung
region segmentation.

(ii) We design a mask attention module after each
decoding layer, which utilizes the feature map

output from the decoding layer for segmentation
prediction, and enhances the lung regions on the
segmentation features through a mask attention
operation.

(iii) A multiscale aggregation loss is proposed to jointly
supervise the lung region segmentation task and
edge prediction task in EAM-Net, which is bene-
fcial to explore the correlation between these two
tasks and can make full use of the multiscale in-
formation through a deep supervision method.

(iv) Extensive experiments are conducted on the JSRT,
Shenzhen, and Montgomery datasets to verify the
efectiveness of EAM-Net. Te results show that
EAM-Net can provide more accurate lung region
segmentation results than all its competitors.

Te rest of this paper is organized as follows: Section 2
introduces the related work. Te proposed approach, i.e.,
EAM-Net, is elaborated in Section 3. Section 4 and Section 5
present the experimental setup and the experimental results,
respectively. Finally, Section 6 concludes this paper.

2. Related Work

Since our method is based on the encoder-decoder structure
and we also make use of attention mechanism to enhance
features, their related work for lung region segmentation is
briefy introduced in this section.

2.1. Encoder-Decoder Structure. In the feld of medical image
segmentation based on deep learning [8–10], the encoder-
decoder structure is one of the most commonly used net-
work structures [11–13]. UNet [7] and SegNet [14] are two
representatives of the encoder-decoder structure-based
methods. In the following, we introduce the related work
on these two methods and their variants for lung region
segmentation.

UNet is a segmentation network proposed for medical
images. Te core of UNet is the skip connection, which
combines high-level semantic information with low-level
image details. Novikov et al. [15] proposed an improved
UNet called InvertedNet to segment the clavicle, lung, and
heart. Tey added a Gaussian decay after each convolutional
layer, and used the exponential linear unit [16] instead of
rectifed linear unit (ReLU) to speed up model training.
Yahyatabar et al. [17] proposed a lightweight UNet model
called Dense-Unet for lung region segmentation, which
utilizes dense connections among layers for feature reuse.
Rahman et al. [18] proposed a two-stage framework for lung
region segmentation. In the frst stage, a UNet model is
trained to generate initial segmentation results for lung
regions. In the second stage, the morphological processing is
performed on the initial segmentation results to obtain the
fnal refned segmentation results. Abas Hasan and Mohsin
Abdulazeez [19] proposed an improved UNet with less
parameters and network training time. Compared with the
original UNet, it reduces the number of convolution kernels
in each layer and the network training time by 75% and 70%,
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respectively. Zhang et al. [20] proposed an edge attention
guided network called ET-Net for lung region segmentation.
ET-Net employs an edge-guided module to learn edge
representations, and a weighted aggregation module to
integrate the edge representations. Solovyev et al. [21]
proposed a Bayesian-based deep learning framework for
lung region segmentation using a standard ResNet50 as the
encoder and a Bayesian feature pyramid network as the
decoder. Kholiavchenko et al. [22] proposed a contour-
aware segmentation framework for lung region segmenta-
tion, which combines the advantages of UNet, LinkNet, and
Tiramisu architectures. Arsalan et al. [23] proposed an
improved UNet called X-ray-Net for multiclass segmenta-
tion of the lung, heart, and clavicle bones. X-ray-Net uses
a residual mesh in its network to preserve the spatial edge
information. Milletari et al. [24] proposed a U-shaped ap-
proach called CFCM for lung region segmentation. Te core
idea of CFCM is to use long short-termmemory networks to
fuse features from diferent encoding layers.

Diferent from UNet, SegNet utilizes the maximum
pooling index for upsampling, with the aim of better pre-
serving the boundary feature information. In SegNet, the
index of the maximum value in the pooling layer is recorded,
which is directly used for the unpooling operation during
upsampling. Kalinovsky and Kovalev [25] combined SegNet
with histogram equalization and local contrast normaliza-
tion (LCN) for lung region segmentation. Te histogram
equalization is employed on the input image in the pre-
processing stage, and the LCN operations are implemented
in each encoding layer. In [25], the segmentation accuracy is
96.2% on 354 CXR images. Saidy and Lee [26] employed
a modifed SegNet for lung region segmentation, which
performs batch normalization and ReLU activation func-
tions after each convolutional layer, and adopts pooling
indices to restore the feature maps to the original input size.
Tey achieved the Dice coefcient of 96% on a test set of 35
unseen images. Mittal et al. [27] proposed LF-SegNet for
lung region segmentation, which upsamples feature maps by

simple replication and uses dropout layers for regularization
and avoiding overftting. On 199 images from the JSRT and
Montgomery datasets, the average accuracy and Jaccard of
LF-SegNet are 98.73% and 95.10%, respectively.

2.2.AttentionMechanism. Te attention mechanism in deep
learning is similar to human visual attention, which can
focus on information that is more important to the current
task. Many attention-based methods have been proposed to
enhance the feature representation capabilities of CNNs
[28, 29]. For example, Hu et al. [28] proposed SENet that
models the dependencies among channels to improve the
performance of the network. Fu et al. [29] proposed a dual
attention network called DANet for scene segmentation.
DANet jointly employs a position attention module and
a channel attention module to learn spatial and channel
dependencies.

Tere are also some attention-based approaches for lung
region segmentation. Tang et al. [30] proposed a criss-cross
attention [31] based network for lung region segmentation,
in which the criss-cross attention is used to capture global
contextual information and enhance pixel-level represen-
tations in both horizontal and vertical directions, thus
boosting the lung segmentation performance. Kim and Lee
[32] proposed a UNet with a self-attention module for lung
region segmentation. Tey utilized the self-attention
mechanism for feature optimization and achieved im-
proved performance on several medical image segmentation
datasets. Cao and Zhao [33] proposed a lung region seg-
mentation method to address the issue of opacity regions in
patient CXR. Tey designed a three-terminal attention
mechanism, which integrates both the channel and spatial
attention mechanisms to make the model focus on target
regions. Li et al. [34] introduced the SE module [28] into
a fully convolutional neural network for lung region seg-
mentation. Given an input feature map, the SE module can
automatically learn and generate the channel attention
weight. Ten, the input feature map can be adaptively

(a) (b) (c)

Figure 1: Some examples of CXR images of normal people (a) and patients with lung diseases such as opacity (b) and pneumonia (c).
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calibrated and optimized along the channel dimension by
using this weight.

From the above introduction, we can fnd that existing
methods usually make use of the original encoder-decoder
architecture or its attention-based variants for segmentation.
Accurate lung region segmentation is still challenging due to
inaccurate lung region segmentation boundaries, existence
of lesion-related artifacts, and lack of the ability to utilize
multiscale information. Terefore, to further improve the
performance of lung region segmentation, it is necessary to
propose a unifed framework that can address the above-
mentioned three issues.

3. Proposed Approach

3.1.Overview. Based on the analysis in Section 2, we propose
EAM-Net for lung region segmentation of CXR images,
which combines the advantages of the encoder-decoder
structure and attention mechanism to achieve accurate
segmentation of lung regions. Figure 2 shows the archi-
tecture of EAM-Net, which consists of an encoder-decoder
network, an edge-assisted computing module, and fve mask
attention modules. Te edge-assisted computing module is
placed on the side of the encoder, which utilizes the features
of shallow encoding layers for edge prediction and uses the
edge information to achieve better segmentation. Te mask
attention module is added after each decoding layer, which
employs a mask attention operation to highlight important
regions on segmentation features and ignore irrelevant ar-
tifacts on them.

3.2. Encoder-Decoder Network. Te encoder-decoder net-
work is constructed based on the classic UNet and consists of
an encoder and a decoder. In order to extract more rep-
resentative features, we adopt ResNet [35] as the backbone of
the encoder. As shown in Figure 2, the encoder consists of
fve encoding layers: conv1, conv2_x, conv3_x, conv4_x, and
conv5_x. Te encoding layers at diferent stages are used to
process feature maps with diferent resolutions. In the ex-
periments of this paper, we used ResNet18, ResNet34, and
ResNet50 as the backbone of the encoder, respectively, to
study the efect of diferent network depths on the seg-
mentation performance. Table 1 describes the structures of
ResNet18, ResNet34, and ResNet50. Note that ResNet18 and
ResNet34 use basic block as the residual module, while
ResNet50 adopts bottleNeck block instead. Figure 3 presents
the specifc structures of these two blocks. From Figure 3, the
basic block consists of two 3 × 3 convolutions and a residual
connection, while the bottleNeck block consists of two 1 × 1
convolutions, a 3 × 3 convolution, and a residual connec-
tion. Assuming that x is the input of a residual module, the
output of the residual module (denoted as y) is calculated as
follows:

y � F(x, W) + x, (1)

where F(·) represents the residual mapping of the stacked
convolutional layers in the residual module, and W repre-
sents the parameter weights of these stacked layers. In EAM-

Net, the use of residual module makes the network stack
deeper, which increases the representation ability of the
network and avoids the vanishing gradient problem.

Te decoder consists of fve decoding layers that grad-
ually restore the feature map output by the encoder to the
original input size. Note that between two adjacent decoding
layers, there is a mask attention module, which is proposed
to further optimize the decoding features. Except for the frst
decoding layer (i.e., the decoding layer connected to
conv_5), each decoding layer contains two inputs, i.e., the
feature map output by the previous mask attention module
and the feature map output by the encoding layer at the
corresponding level. Te former is frst 2× upsampled by the
bilinear interpolation operation, and then concatenated with
the latter, followed by a 3 × 3 convolution and a ReLU
activation function for feature fusion.

3.3. Edge-Assisted Computing Module. In existing encoder-
decoder based segmentation methods, the edge and struc-
ture information of an image may be lost due to successive
downsampling operations, thus leading to inaccurate seg-
mentation edges. Generally, the detailed edge and structure
information are included in the feature maps of the early
stages of the network. Based on this, we design an edge-
assisted computing module, which integrates the feature
maps of the shallow encoding layers for edge prediction and
transfers meaningful edge information to help better
segmentation.

Te structure of the edge-assisted computing module is
shown in Figure 4. Considering the trade-of between model
performance and computation complexity, we adopt the
feature maps of the frst three encoding layers to compute
the edge evidence map. We denote these three feature maps
as E1 ∈ RH/2×W/2×C1 , E2 ∈ RH/4×W/4×C2 , and
E3 ∈ RH/8×W/8×C3 , respectively, where C1, C2, and C3 are
their corresponding numbers of channels, and H and W

represent the height and width of the original input image,
respectively. From Figure 4, E1, E2, and E3 are processed by
three parallel branches to generate E1′, E2′, and E3′. Each
branch contains a 1 × 1 convolution and a 3 × 3 convolution.
Te 1 × 1 convolution is used to adjust the numbers of
channels of E1, E2, and E3 to 32, and the 3 × 3 convolution is
used to perform feature extraction. Afterward, E1′, E2′, and E3′
are upsampled to the resolution of the input image and
concatenated together to generate a fused feature map,
denoted as Ffusion ∈ RH×W×96:

Ffusion � C U
2×

E1′( 􏼁, U
4×

E2′( 􏼁, U
8×

E3′( 􏼁􏼐 􏼑, (2)

where U2×(·), U4×(·), and U8×(·) represent 2×, 4×, and 8×

bilinear interpolation operations, respectively, and C de-
notes the concatenation operation. Because Ffusion is further
used for edge prediction, this fused feature map is also called
the edge evidence map. Subsequently, on the one hand,
Ffusion is processed by a 1 × 1 convolution to reduce the
number of channels to 1 for edge prediction, which gen-
erates the edge prediction map, denoted as Fedg e. On the
other hand, as shown in Figure 2, Ffusion is concatenated with
the output feature map of the last mask attention module for
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lung region segmentation. Te purpose of this feature
concatenation operation is to connect the edge prediction
task with the lung region segmentation task, and to in-
troduce meaningful edge information included in Ffusion to
enhance the lung region segmentation performance.

3.4. Mask Attention Module. Existing attention-based
methods have achieved promising results in various seg-
mentation tasks. However, they usually rely on global av-
erage pooling operation or global max pooling operation to
learn spatial attention weights [36, 37]. Tese global pooling
operations roughly merge the features of each channel,
which may lead to the loss of some key information. To this

end, we design a mask attention module, which employs
a supervised learning branch to learn a mask feature map
representing lung regions, and adopts this mask feature map
as an attention weight to enhance the lung regions on
segmentation features.

Te structure of the mask attention module is shown in
Figure 5. Te input to this module is the output feature map
of the decoder at the ith stage, denoted as
Di(i ∈ 1, 2, 3, 4, 5{ }). For Di, we frst construct a supervised
learning branch consisting of a 3 × 3 convolution and a 1 × 1
convolution to obtain a mask feature map Ai:

Ai � F
1×1
i F

3×3
i Di; θ

3×3
i􏼐 􏼑; θ1×1

i􏼐 􏼑, (3)

Decoder
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Figure 2: Overview of the proposed EAM-Net.

Table 1: Encoder structures of EAM-Net with three network depths.

Layer name ResNet18 ResNet34 ResNet50
conv1 Conv, 7×7, stride 2 Conv, 7×7, stride 2 Conv, 7×7, stride 2

conv2_x 3×3 max pooling, stride 2
(Basic block)×2 (Basic block)×3 (BottleNeck block)×3

conv3_x (Basic block)×2 (Basic block)×4 (BottleNeck block)×4
conv4_x (Basic block)×2 (Basic block)×6 (BottleNeck block)×6
conv5_x (Basic block)×2 (Basic block)×3 (BottleNeck block)×3
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where F3×3
i and F1×1

i indicate the 3 × 3 and 1 × 1 convo-
lutions, respectively, and θ3×3

i and θ1×1
i are their corre-

sponding parameters. Herein, the 3 × 3 convolution is
employed to extract image features and the 1 × 1 convo-
lution is used to adjust the number of channels to 1. As

shown in Figure 5, on the one hand, Ai is used for lung
region segmentation, which can receive the optimization of
lung region information during training. On the other hand,
Ai is processed by the Sigmoid activation function and used
as the attention weight to multiply Di. Tis multiplication
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x

Input

Output

y

F (x)

Identity

(a)

Conv 1×1

Conv 3×3

Conv 1×1

x

Input

Output
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Figure 3: Two types of residual modules: (a) basic block and (b) bottleNeck block.
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Figure 4: Structure of the edge-assisted computing module.
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operation is called the mask attention operation. Since Ai is
optimized to characterize lung regions, the mask attention
operation can improve the lung region parts of Di while
suppressing irrelevant lesion-related distractions. To ensure
the convergence of the model, a residual connection from Di

to the output is added, which generates the fnal refned
feature map, denoted as Di

′. Te abovementioned mask
attention operation can be formulated as follows:

Di
′ � α · σ Ai( 􏼁⊙Di( 􏼁 +(1 − α) · Di, (4)

where σ represents the Sigmoid activation function, ⊙
denotes the element-wise product operation, and α is
a learnable weighting factor to adjust the contribution of the
attention part in the fnal refned feature map. α is initialized
to 0 and its value can be dynamically optimized during
network training.

3.5. Multiscale Aggregation Loss Function. Existing encoder-
decoder based segmentation methods usually design a net-
work to directly learn the mapping from an input image to
the segmentation result, and only supervise the prediction at
the last stage of the network [38]. Terefore, they cannot
make full use of the efective information at early and im-
mediate stages of the network. Unlike these methods, EAM-
Net adds an edge prediction task as the auxiliary task to
improve the segmentation boundaries, and adopts a deep
supervision method to supervise the segmentation pre-
diction at each stage of the network. In order to train EAM-
Net, we propose a multiscale aggregation loss function,
which is defned as follows:

Ltotal � Ledge + L
multi−scale
seg , (5)

where Ledge and Lmultiscale
seg denote the edge prediction loss

and multiscale segmentation loss, respectively. To deal with
the class imbalance problem in medical image segmentation
tasks, we jointly use the binary cross-entropy loss, Dice loss,

and Jaccard loss. Specifcally, Ledge and Lmultiscale
seg are cal-

culated as follows:

Ledge � LBCE Fedge, Gedge􏼐 􏼑 + LDice Fedge, Gedge􏼐 􏼑

+ LJA Fedge, Gedge􏼐 􏼑

L
multi−scale
seg � 􏽘

i∈I
LBCE Fsegi

, Gsegi
􏼐 􏼑 + LDice Fsegi

, Gsegi
􏼐 􏼑

+ LJA Fsegi
, Gsegi

􏼐 􏼑, I � 1, 2, 3, 4, 5{ },

(6)

where LBCE, LDice, and LJA represent the binary cross-
entropy, Dice, and Jaccard losses, respectively, Fedge and
Gedge are the edge prediction result and edge ground-truth
label, respectively, and Fsegi

and Gsegi
are the segmentation

result and segmentation ground-truth label at the ith stage of
the decoder, respectively. As shown in Figure 2, assuming
that the resolution of the input image is 512 × 512, the
dimensions of the feature maps output from the frst to ffth
stages of the decoder are 512 × 512, 256 × 256, 128 × 128,
64 × 64, and 32 × 32, respectively.

4. Experimental Setup

4.1. Datasets. Te performance of EAM-Net was examined
on three public datasets, i.e., the JSRT, Shenzhen, and
Montgomery datasets. Te JSRT dataset [39] is commonly
used for lung nodule detection and lung region segmenta-
tion, containing 247 CXR images from 14 institutions in
Japan and USA. Tese images are 12-bit images with
a resolution of 2048 × 2048 and include the labels of nodule
location (on 154 images) and diagnosis (malignant or be-
nign). Note that the lung region segmentation labels for
these images were obtained from [40]. Te Shenzhen dataset
[41] contains 662 CXR images, of which 326 images belong
to normal and 336 images represent pulmonary tuberculosis.
Tese images were collected at theTird People’s Hospital of
Shenzhen, Guangdong Province, China. Tey are 8-bit

Conv
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3×3

S

1–α

Di

Ai

D'
i
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Lung Region
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S

Product
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Sum

α

Figure 5: Structure of the mask attention module.
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images with the tuberculosis annotations and lung region
segmentation labels. Te Montgomery dataset [41] contains
138 CXRs images, including 80 normal and 58 pulmonary
tuberculosis images. Tese images were collected by the
Tuberculosis Control Program at the Montgomery County
Department of Health and Human Services, Maryland, USA,
and annotated with nodule location and lung region seg-
mentation labels.

From the above description, all the three datasets have
the interference of lung diseases, which makes lung region
segmentation more difcult. Many researchers have tested
their methods on these three datasets. Terefore, it is
convenient to compare EAM-Net with other methods on
them. However, due to the fact that there is no ofcial
training and test data separation for these three datasets,
existing methods employ diferent data separation methods
to evaluate their performance. In the following experiments,
we adopted a ratio of 7 : 3 to randomly split the training and
test sets, and conducted 10 independent experiments on the
proposed method.Tis separation ratio is commonly used in
the machine learning community and can refect the general
performance of the model on a dataset. In addition, we
averaged the results of the 10 independent experiments as
the model performance, which can greatly reduce the ac-
cidental error caused by the one-time data separation to the
model performance. Te detailed data distributions of the
JSRT, Shenzhen, and Montgomery datasets are shown in
Table 2.

4.2. Algorithms for Comparison. Te compared methods of
EAM-Net on the JSRT, Shenzhen, andMontgomery datasets
can be simply divided into two categories: the baseline
method and the state-of-the-art lung region segmentation
methods. Res-UNet is chosen as the baseline method, which
is a U-shaped network with ResNet as the encoder backbone.
EAM-Net also adopts ResNet as the encoder backbone, and
additionally proposes two new modules, i.e., the edge-
assisted computing module and the mask attention mod-
ule. Te state-of-the-art lung region segmentation methods
refer to those that have reported excellent performance on
the three selected datasets over the past fve years.Te details
of these methods have been introduced in Section 2. Note
that for a fair comparison with these state-of-the-art
methods, we reproduced the results of these methods using
the same training and test data separation as the proposed
EAM-Net. For [9, 20, 21, 24], we directly used their source
codes to reproduce the results under our data separation. For
those methods without source codes available (i.e.,
[8, 10, 15, 17, 18, 22, 23, 32]), we also reproduced their results
under our data separation according to the technical details
of the corresponding papers.

4.3. Implementation Details. During the training phase, all
training images of EAM-Net were prepared in the form of
edge images and multiscale segmentation images, which
have been introduced in Section 3.5. We frst resized the
original input images to the size of 512 × 512. Note that we
obtained the edge mask (i.e., the ground truth of the edge) by

applying a contour detection algorithm to the segmentation
mask, where the thickness of the edge contour was set to 8.
Ten, we performed the online data augmentation, in-
cluding random horizontal fip and random vertical fip,
with the aim of preventing the model from overftting. Te
Adaptive Moment Estimation (i.e., Adam) algorithm was
used as the optimizer. Te initial learning rate was set to
0.001, and we reduced the learning rate by 1/10 when the loss
does not decrease for three consecutive epochs. Te batch
size of the training set was set to 8. We loaded the pretrained
weights of residual blocks on ImageNet for the encoder of
EAM-Net.Temaximum number of training epochs was set
to 50. In the test phase, for an input CXR image, EAM-Net
could generate multiscale segmentation results, and the
segmentation result with the size of 512 × 512 was used as
the fnal prediction result to evaluate the performance of the
model. Te source codes of the proposed EAM-Net can be
downloaded from the publication page (https://intleo.csu.
edu.cn/publication.html) of our research group for repro-
ducing the experimental results of this paper.

4.4. Evaluation Metrics. Tree commonly used evaluation
metrics were adopted to measure the performance of lung
region segmentation: pixel Accuracy (PA), Dice, and Jaccard
(JA). Tey are defned as follows:

PA �
TP + TN

TP + FP + FN + TN

Dice �
2|X∩Y|

|X| + |Y|
�

2TP
2TP + FP + FN

JA �
|X∩Y|

|X∪Y|
�

TP
TP + FP + FN

,

(7)

where TP, TN, FP, and FN are the true positives, true
negatives, false positives, and false negatives, respectively,
and X and Y represent a segmentation map and a ground-
truth map, respectively. PA is used to calculate the per-
centage of correctly classifed pixels in an image, while Dice
and Jaccard are used to measure the similarity between the
segmentation map and the ground-truth map.

5. Results and Discussion

5.1. Comparion with the Baseline Method. First, we com-
pared EAM-Net with the baseline method (i.e., Res-UNet)
on the JSRT, Shenzhen, and Montgomery datasets. Table 3
summarizes the results of EAM-Net and Res-UNet using

Table 2: Data distributions of the JSRT, Shenzhen, and Mont-
gomery datasets.

Dataset Disease Total Training Test

JSRT Nodule 154 108 46
Non-nodule 93 65 28

Shenzhen Tuberculosis 336 235 101
Nontuberculosis 326 228 98

Montgomery Tuberculosis 58 41 17
Nontuberculosis 80 56 24
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diferent encoder backbones (i.e., ResNet18, ResNet34, and
ResNet50). From Table 3, no matter which encoder back-
bone is used, EAM-Net achieves better segmentation per-
formance than Res-UNet in terms of all the three evaluation
metrics on the three datasets. Compared with Res-UNet18,
EAM-Net18 improves JA by 1.0%, 0.9%, and 1.27% on the
JSRT, Shenzhen, and Montgomery datasets, respectively.
Compared with Res-UNet50, EAM-Net50 improves Dice by
0.42%, 0.6%, and 0.82%, respectively, and JA by 0.66%,
0.87%, and 0.92%, respectively, on these three datasets. Since
EAM-Net is the network that adds the edge-assisted com-
puting module and mask attention module to Res-UNet, the
abovementioned results demonstrate the efectiveness of
these two modules proposed in this paper.

5.2. Comparion with the State-of-the-Art Lung Region Seg-
mentation Methods. We also compared the performance of
EAM-Net with that of the state-of-the-art lung region
segmentation methods. Herein, ResNet50 was used as the
backbone in EAM-Net. Te results of these methods on the
JSRT, Shenzhen, and Montgomery datasets are reported in
Tables 4–6, respectively.

Te results in Table 4 suggest that on the JSRT dataset,
EAM-Net achieves the highest overall performance among
all the compared methods. Compared with the Bayesian
feature pyramid network [21], EAM-Net improves the
performance by a large margin, with a 4.98% improvement
in terms of Dice and a 9.01% improvement in terms of JA.
Compared with the second-best model (i.e., SED [9]), EAM-
Net improves Dice by 0.60% and JA by 1.01%.

As can be seen from Table 5, among all the compared
methods, EAM-Net obtains the highest performance in terms
of all the three evaluation metrics on the Shenzhen dataset.
Specifcally, in terms of Dice and JA, EAM-Net outperforms
the second best method (i.e., Kim and Lee [32]) by 0.68% and
1.01%, respectively. Compared with X-ray-Net [23], EAM-
Net improves Dice and JA by 1.21% and 1.94%, respectively.

From Table 6, on the Montgomery dataset, EAM-Net
achieves the highest PA of 99.16%, highest Dice of 98.23%,
and highest JA of 96.52% among all the compared methods.
Compared with X-ray-Net, which performs the second best,
EAM-Net improves PA, Dice, and JA by 0.59%, 0.83%, and
1.59%, respectively. Compared with ET-Net [20] that also
uses the edge attention mechanism, EAM-Net obtains
a 0.65% improvement in terms of PA and a 2.20% im-
provement in terms of JA.

Te abovementioned results demonstrate the superiority
of EAM-Net over the state-of-the-art lung region segmen-
tation methods.

5.3. Visualization of Segmentation Results. In order to show
the segmentation performance more intuitively, we visu-
alized some segmentation results of EAM-Net (using
ResNet50 as the backbone) in Figure 6. For each CXR
image in Figure 6, we used red and green curves to denote
the segmentation prediction and ground truth, re-
spectively, and the corresponding Dice and JA values were
also provided.

Figure 6(a) depicts the segmentation results of fve
CXR images on the JSRT dataset, in which the frst four
images represent lungs with lung nodules and the last
image represents a normal lung. It can be observed that
even in the presence of lung nodules, EAM-Net can still
obtain accurate lung region segmentation boundaries.
Figures 6(b) and 6(c) show the segmentation results on the
Shenzhen and Montgomery datasets, respectively. Te
images in the frst four columns represent lungs with
tuberculosis, and the images in the last column represent
normal lungs. From Figures 6(b) and 6(c), the presence of
tuberculosis causes a slight segmentation performance
drop, but EAM-Net still achieves promising Dice and JA
values. Overall, the abovementioned visualization results
suggest that EAM-Net can achieve precise lung region
segmentation despite the existence of lesion-related
artifacts.

5.4. Ablation Study. In EAM-Net, we proposed two kinds of
modules, i.e., the edge-assisted computing module and the
mask attention modules. Furthermore, we designed a mul-
tiscale aggregation loss to optimize EAM-Net, which con-
sists of an edge prediction loss and amultiscale segmentation
loss. To investigate their efectiveness, we conducted the
ablation experiments on each of them. Table 7 gives the
comparison results on theMontgomery dataset. Note that all
methods took ResNet50 as the backbone of the encoder for
a fair comparison.

5.4.1. Efectiveness of the Edge-Assisted Computing Module.
To validate the efectiveness of the edge-assisted computing
module, we compared EAM-Net with and without the edge-
assisted computing module. For EAM-Net without the edge-
assisted computing module, we removed the edge-assisted
computing module from the model and directly used the
output feature of the last mask attention module to generate the
fnal segmentation result. Meanwhile, the multiscale aggrega-
tion loss was degraded to a multiscale segmentation loss. From
Table 7, the edge-assisted computing module improves Dice
and JA by 0.44% and 0.47%, respectively.Te performance gain
of EAM-Net can be attributed to the fact that the edge-assisted
computingmodule could transfer meaningful edge information
from the edge prediction task to the segmentation task, thereby
improving the lung region segmentation performance.

5.4.2. Efectiveness of the Mask Attention Modules. We also
compared EAM-Net with and without the mask attention
modules. For EAM-Net without the mask attention mod-
ules, fve mask attention modules were removed from the
model, i.e., two adjacent decoding layers in the decoder were
directly connected. In addition, we only used the decoding
feature from the last stage for segmentation; thus, the loss of
the model only included the edge prediction loss and the
fnal segmentation loss. Te results in Table 7 suggest that
compared with EAM-Net, EAM-Net without the mask at-
tention modules reduces PA, Dice, and JA by 0.32%, 0.45%,
and 0.54%, respectively.Te abovementioned results suggest
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Table 3: Results of EAM-Net and Res-UNet using diferent encoder backbones on the JSRT, Shenzhen, and Montgomery datasets.

Methods
JSRT Shenzhen Montgomery

PA (%) Dice
(%) JA (%) PA (%) Dice

(%) JA (%) PA (%) Dice
(%) JA (%)

Res-UNet18 98.40 97.37 94.88 97.69 95.37 91.17 98.56 97.01 95.03
EAM-Net18 98.71 97.88 95.88 98.00 95.92 92.07 99.09 98.11 96.30
Res-UNet34 98.43 97.42 94.98 97.77 95.42 91.31 98.58 97.34 95.39
EAM-Net34 98.83 97.99 96.00 98.04 96.00 92.18 99.15 98.22 96.51
Res-UNet50 98.59 97.69 95.49 97.85 95.53 91.40 98.65 97.41 95.60
EAM-Net50 98.9 98.11 9 .15 98.20 9 .13 92.27 99.1 98.23 9 .52
Bold values represent the the highest performance for each performance metric.

Table 4: Results of EAM-Net and the state-of-the-art lung region segmentation methods on the JSRT dataset.

Methods PA (%) Dice (%) JA (%)
Bayesian feature pyramid network [21] 96.24 93.13 87.14
Kim and Lee [32] 98.17 96.68 93.57
Kholiavchenko et al. [22] 98.38 97.06 94.29
Yahyatabar et al. [17] 98.58 97.42 94.97
Novikov et al. [15] 98.55 97.36 94.86
SED [9] 98.62 97.51 95.14
EAM-Net 98.9 98.11 9 .15
Bold values represent the the highest performance for each performance metric.

Table 5: Results of EAM-Net and the state-of-the-art lung region segmentation methods on the Shenzhen dataset.

Methods PA (%) Dice (%) JA (%)
Feature selection with BN [10] 81.22 67.85 51.09
Feature selection with MLP [10] 87.82 77.85 64.74
Feature selection with RF [10] 89.19 80.25 68.15
Feature selection and vote [10] 91.06 83.65 73.04
Bayesian feature pyramid network [21] 96.17 93.04 87.00
X-ray-Net [23] 97.21 94.92 90.33
Kim and Lee [32] 97.49 95.45 91.26
EAM-Net 98.20 9 .13 92.27
Bold values represent the the highest performance for each performance metric.

Table 6: Results of EAM-Net and the state-of-the-art lung region segmentation methods on the Montgomery dataset.

Methods PA (%) Dice (%) JA (%)
Feature selection with BN [10] 78.06 62.31 43.97
Feature selection with MLP [10] 79.16 64.17 46.04
Feature selection with RF [10] 80.81 66.32 49.27
Feature selection and vote [10] 83.44 69.89 53.72
Bayesian feature pyramid network [21] 96.19 93.07 87.04
Souza et al. [8] 97.01 94.12 88.27
Rahman et al. [18] 96.84 94.25 89.13
ET-Net [20] 98.51 97.29 94.32
CFCM18 [24] 98.19 96.67 93.61
CFCM34 [24] 98.30 96.91 93.99
CFCM50 [24] 98.35 97.01 94.17
CFCM101 [24] 98.46 97.18 94.55
Yahyatabar et al. [17] 98.52 97.30 94.74
X-ray-Net [23] 98.57 97.44 94.93
EAM-Net 99.1 98.23 9 .52
Bold values represent the the highest performance for each performance metric.
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that the mask attention modules can highlight the lung
regions on the segmentation features while suppressing
irrelevant lesion-related artifacts, which is benefcial for the
lung region segmentation task.

5.4.3. Efectiveness of the Multiscale Aggregation Loss. To
investigate the efectiveness of the multiscale aggregation
loss, we compared it with the single-scale loss, which in-
cludes an edge prediction loss and a fnal segmentation loss.
Note that we still kept the mask attention operations in the
decoder, but only performed the segmentation prediction at
the last stage of the network instead of multiscale seg-
mentation prediction. From Table 7, replacing the multiscale
aggregation loss with the single-scale loss, drops Dice and JA
by 0.38% and 0.45%, respectively. Te abovementioned
results demonstrate the efectiveness of the multiscale ag-
gregation loss. In principle, the proposed multiscale seg-
mentation loss belongs to deep supervision, which adds
additional supervision (intermediate segmentation pre-
dictions) to the model, assisting the model in learning
discriminative features to obtain performance gains.

6. Conclusion

Lung region segmentation is a fundamental and critical
medical image analysis task. Existing lung region seg-
mentation methods still sufer from inaccurate lung
region segmentation boundaries, lesion-related artifacts,
and limited ability to exploit multiscale information. In
this paper, we proposed EAM-Net for lung region seg-
mentation, which included an encoder-decoder structure
and two new modules to address the abovementioned
issues. First, an edge-assisted computing module was
proposed, which integrated the shallow feature maps of
the encoder for edge prediction, and transferred the edge
prediction information to the segmentation task to op-
timize the edge parts of the segmentation results. We
further designed a mask attention module after each
decoding layer, which used the mask attention operation
to enhance the lung regions while suppressing lesion-
related artifacts. In addition, a multiscale aggregation
loss was proposed to exploit multiscale segmentation
information and jointly optimize the edge prediction and
lung region segmentation tasks.
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Figure 6: Visualization of some segmentation results of EAM-Net on the JSRT, Shenzhen, and Montgomery datasets.

Table 7: Ablation study for the edge-assisted computing module, mask attention modules, and multiscale aggregation loss on the
Montgomery dataset.

Methods PA (%) Dice (%) JA (%)
EAM-Net without the edge-assisted computing module 98.81 97.79 96.05
EAM-Net without the mask attention modules 98.84 97.78 95.98
EAM-Net replacing the multiscale aggregation loss with the single-scale loss 98.89 97.85 96.07
EAM-Net 99.1 98.23 9 .52
Bold values represent the the highest performance for each performance metric.
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Te results on the JSRT, Shenzhen, and Montgomery
datasets confrmed that EAM-Net achieved better lung re-
gion segmentation performance than the baseline and state-
of-the-art lung region segmentation methods. Our future
work includes the following two aspects. On the one hand,
we intend to extend EAM-Net to other medical image
segmentation tasks. On the other hand, we plan to explore an
end-to-end deep learning model for joint lung region seg-
mentation and lung disease classifcation.
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