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High-precision image segmentation of the spine in computed tomography (CT) images is important for the diagnosis of spinal
diseases and surgical path planning. Manual segmentation is often tedious and time consuming.Tus, an automatic segmentation
algorithm is expected to solve this problem. However, because diferent areas are scanned, the number of spines in the original CT
image and the coverage area are often diferent, making it extremely difcult to directly conduct a fully autonomous spine
segmentation. In this study, we propose a two-stage automatic spine segmentation method based on 3D Swin Transformer. In the
frst stage, the 3D Swin-YoloX algorithm is used to achieve an accurate positioning of each spine segment in the CT images. In the
second stage, 3D Swin-UNet is used to achieve a high-precision segmentation of the spine. Using an open dataset, the average Dice
of our approach can reach 0.942 and the average Hausdorf distance can reach 6.24, indicating a higher accuracy in comparison
with other published methods. Our proposed method can efectively eliminate any adverse efects of the diferent scanning areas
on a spinal image segmentation and has a high application value.

1. Introduction

CT imaging is an important source of information, assisting
doctors in the diagnosis of spinal diseases and their in-
dicators [1]. Using CT sequence data, doctors can clearly
understand the condition of the afected area and thereby
provide a reference for subsequent treatment. However, CT
images are made up of hundreds or even thousands of two-
dimensional images, which do not provide doctors an in-
tuitive three-dimensional view [2]. Terefore, in most cases,
doctors use specialized medical image processing software,
such as Mimics, to manually segment the spine in CT images
and achieve 3D reconstruction [3]. Spinal image segmen-
tation plays an important role in the diagnosis and surgical

planning of spinal disorders. Examples include spinal
fracture detection [4], spinal arthritis diagnosis [5], spinal
surgical path planning [6], and the 3D printing of auxiliary
surgical equipment [7]. However, there is an overlap be-
tween the vertebrae of the spine, and a manual segmentation
relies heavily on doctor experience and is time consuming
and laborious. In addition, as the number of patients with
spinal diseases increases, the workload of radiologists sig-
nifcantly increases [8, 9]. Moreover, the manual segmen-
tation of the spine is excessively subjective [10], and to solve
this problem, an automatic spine image segmentation al-
gorithm is required.

Owing to the uncertainty of the CTscanning area and the
high similarity between adjacent spinal segments, locating

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 8686471, 16 pages
https://doi.org/10.1155/2023/8686471

https://orcid.org/0000-0002-0670-6261
https://orcid.org/0000-0001-5839-2447
https://orcid.org/0000-0002-5338-0903
https://orcid.org/0000-0001-9512-5436
mailto:hulei9971@buaa.edu.cn
mailto:puh3liweishi@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8686471


the 3D spatial region of all spinal segments in a CT image
with an arbitrary feld of view (FOV) is the frst difcult
problem to overcome in achieving an automatic spine
segmentation. Cootes et al. proposed a method for applying
a statistical shape model to integrate global shape in-
formation [11]. Vrtovec et al. proposed a polynomial model
for describing a spine curve detected in CT images [12].
Michael Kelm et al. proposed a novel approach combining
efcient local object detection based on an iterative version
of marginal space learning (MSL) with a global probabilistic
prior model for the vertebral column [13]. Ebner et al.
proposed a landmark localization algorithm that applies
regression forests [14]. Lindner et al. used random forest
regression voting to quickly generate response images, based
on which shape model ftting can be realized [15]. Glocker
et al. proposed a spine location and recognition algorithm
based on a supervised classifcation forest to avoid using an
explicit appearance-parameter model [16]. In recent years,
with the rapid development of deep learning technology,
localization methods achieving an excellent performance
have been proposed. Chen et al. proposed a three-stage spine
positioning method for generating a group of rough cone
centroids based on a random forest classifer, used a con-
volutional neural network (CNN) algorithm to identify the
cone types and eliminate the error detection process, and
fnally applied a shape regression model to refne the pre-
dicted centroid [17]. Suzani et al. adopted an efective
method based on a depth feedforward neural network for
predicting the position of each vertebral body using the
context information in an image [18]. Based on heat map
regression, Payer et al. proposed a method for achieving an
accurate landmark positioning of each spinal segment
[19, 20]. Liao et al. developed a multitask-based fully 3D
CNN to efectively extract short-range contextual in-
formation around the target vertebrae, thereby realizing
automatic recognition and positioning of the cone [21]. In
our previous study, we proposed a two-stage spatial region-
positioning algorithm for each lumbar segment. First, LRP-
Net is used to locate the overall spatial region of the lumbar
spine in the original CT image, and LDM-Net is used to
achieve accurate positioning of each lumbar segment spatial
region [22].

Owing to the limited resolution of CT images, the
overlapping parts between adjacent vertebral bodies have
blurred edges. Terefore, achieving an accurate pixel-level
segmentation between adjacent vertebral bodies is the sec-
ond difculty in completing an automatic spine segmen-
tation. In medical image segmentation, traditional machine
learning methods have achieved certain achievements.
Gauch proposed a Markov relaxation method for seg-
menting the internal structure of 3DMR brain images based
on a watershed adjacency graph [23]. Kamiya et al. proposed
an automatic segmentation method for the paraspinal
muscles in 3D CT images of the trunk based on a multiscale
iterative random forest classifcation [24]. In addition, Oktay
et al. proposed a method for achieving a disc segmentation
using a support vector machine (SVM) and an active ap-
pearance model [25]. Lecron et al. proposed a spine seg-
mentation method based on a one-class support vector

machine [26]. Zukić et al. proposed amethod for segmenting
the spine based on the Viola–Jones object detection
framework [27]. With the rapid development of deep
learning technology in recent years, efcient medical image
segmentation algorithms have been proposed. Ronneberger
et al. proposed U-Net at the ISBI Cell Tracking Challenge
2015 and achieved excellent results [28]. In addition, Mil-
letari et al. proposed V-Net for 3D medical image seg-
mentation [29], whereas Zhou et al. proposed a deeply
supervised encoder-decoder network in which the encoder
and decoder subnetworks are connected through a series of
nested, dense skip pathways [30]. With the recent devel-
opment of attention mechanisms, various image segmen-
tation algorithms with combined attention mechanisms
have been developed. Xiao et al. proposed Res-UNet with
a weighted attention mechanism for retinal vascular seg-
mentation [31]. Oktay et al. proposed a novel attention gate
(AG) model for medical imaging that automatically learns to
focus on target structures of varying shapes and sizes, based
on which attention U-Net was developed [32]. Although
both Res-UNet and attention U-Net combine attention
mechanisms, the full potential of suchmechanisms has yet to
be shown. Vaswani et al. proposed a full attention-mech-
anism-based transformer and applied it to machine trans-
lation tasks with stunning results [33]. Dosovitskiy et al. also
introduced a transformer into the feld of computer vision
and developed it for use in ViT, proving its signifcant
potential [34]. Chen et al. combined a transformer and U-
Net in the development of TransUNet, demonstrating the
advantages of both [35]. Although both ViT and TransUNet
use a transformer, they have not exploited its full potential.
To solve the problem of insufcient local information ex-
traction and a high computational complexity of a trans-
former, Liu et al. proposed Swin Transformer with a linear
computational complexity. Te algorithm has the capability
to extract both global and local information and has
achieved an outstanding performance in various computer
vision tasks [36]. Cao et al. developed Swin-UNet with a U-
Net-like structure based on Swin Transformer [37]. How-
ever, Swin-UNet does not have the ability to process 3D
medical images. Moreover, the single-channel medical im-
ages are stacked into 3-channel images, similar to RGB
images, and thus, Swin Transformer can be directly used
with ImageNet to pretrain the weight, which has also been
acknowledged by the author to be a suboptimal solution. At
present, many scholars have proposed several improved
algorithms for spine segmentation task based on the
abovementioned algorithms [38–40].

Most of the abovementioned research studies only focus
on one of the two tasks of target location or image seg-
mentation and do not combine the two tasks. However,
several studies have combined localization and segmentation
algorithms to achieve an automatic segmentation of the
spine within the region of a CT image. Because a disease is
more likely to develop in the lumbar region, many scholars
have developed segmentation methods for this region.
Sekuboyina et al. used a multilayer perceptron to apply
nonlinear regression to locate the lumbar region [41], based
upon which 2D U-Net was used to segment the lumbar
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spine. Janssens et al. used a complete convolutional network
to locate the lumbar region and applied 3D U-Net to seg-
ment the region [42]. Although the lumbar region has
a higher incidence rate, spinal diseases can occur in various
areas of the spine; therefore, the scan area of CTimages is not
fxed. Tis requires the spine image segmentation algorithm
to accurately segment any portion of the spine in any
scanning area. Cheng et al. proposed a three-stage approach
to positioning each spinal segment through the frst and
second stages, and on this basis, fnally realized the seg-
mentation of each spinal segment. Tis method achieves
spinal positioning through probabilistic reasoning and
spinal segmentation through context-specifc foreground
and background constraints; thus, its accuracy and ro-
bustness are insufcient [43]. Lessmann et al. realized the
segmentation of various spinal areas using a sliding window
[44]; however, the realization process of this method is
complicated, and the efciency of the sliding window is low.
Payer et al. realized landmark positioning of each spinal
segment based on heatmap regression, and with each
landmark as the center, intercepted local images in the space
of a fxed size as the input of 3D U-Net, thus achieving
segmentation of each spinal segment [45]. However, owing
to the diferent sizes of the spine in diferent areas of diferent
patients and the high similarity of adjacent spine structures,
robustness is insufcient. Altini et al. automatically seg-
mented a complete spine based on a CNN and combined it
with the KNN algorithm to realize the separation of each
segment [46], but the accuracy of this method is poor. Tao
et al. developed an object detector with an internal sphere to
locate the detection center of each spinal segment. Based on
this, they used heat maps to refne the detection center.
Finally, to achieve a segmentation of this spinal segment,
with this detection center as the center, a fxed area of
[144, 144, 96] (dimensions according to ITK (z, y, x)) in size
was cut as the input of the segmentation network [47]. Te
robustness of the algorithm is insufcient owing to the
diferent sizes of the spine in each area and the high sim-
ilarity of the structure of the adjacent spine.

None of the abovementioned research schemes can
accurately locate the spatial region adaptive to the shape of
each spinal segment; therefore, the interference caused by
unnecessary background information and the similarity of
adjacent spines cannot be completely eliminated. To solve
this problem, the corresponding spinal segment should be
surrounded by a retractable area, which should completely
surround the segment and contain as little information as
possible regarding other segments. De Vos et al. used a CNN
to determine whether a specifc ROI exists in 2D CTsections
in three orthogonal directions and fnally synthesized the
fnal 3D boundary box [48]. Tis method cannot be used to
directly obtain the target region and is unsuitable for the
spatial localization of each spinal segment. In recent years,
research has been conducted on the application of object
detection algorithms in the feld of natural image processing
for medical image processing. Krawczyk and Starzyński used
the YOLO algorithm to detect the pelvic region in CT images
[49]. Xu et al. proposed a target detection algorithm for
organ location based on a faster RCNN and combined it with

the CT image features [50]. However, the algorithm com-
bined with prior knowledge of a fxed number of organs was
incapable of locating each spinal segment within an
arbitrary FOV.

Accurate positioning of the spatial region of the spine in
an arbitrary FOV is an important basis for an accurate
segmentation of spine segments. However, owing to the
uncertainty of the FOV, high levels of noise in low-dose CT,
and metal artifacts left over from surgery, it is extremely
difcult to achieve an accurate localization and segmentation
of the spine. To address these shortcomings in existing
research and achieve an accurate spinal positioning and
segmentation, we developed 3D Swin-YoloX and 3D Swin-
UNet in combination with Swin Transformer, the excellent
target detection algorithm YoloX [51], and the image seg-
mentation algorithm U-Net.

Te main innovations of this paper are as follows:

(1) We extended Swin Transformer to 3D space and
applied it to 3D medical image processing

(2) We proposed an efcient 3D medical image target
detection algorithm, 3D Swin-YoloX, which can
realize accurate positioning of each spinal segment in
CT images under arbitrary FOV, which is not only
efcient but also accurate

(3) We proposed an efcient 3D medical image seg-
mentation algorithm, 3D Swin-UNet, which has
great advantages over other medical image seg-
mentation algorithms and has excellent processing
ability for serious interference such as metal artifacts

(4) We proposed the overall scheme of frst using the
target detection algorithm to achieve accurate po-
sitioning of each spinal segment under arbitrary
FOV and then achieving accurate segmentation of
each spinal segment on this basis, which is more
efcient and accurate than the scheme proposed by
other scholars

2. Methods

We present a two-stage method for an accurate segmen-
tation of each spinal segment in an arbitrary FOV. In the frst
stage, 3D Swin-YoloX is used to achieve accurate positioning
of each spinal segment. In the second stage, 3D Swin-UNet is
used to achieve an accurate segmentation of each spinal
segment in the local area. Te overall fow of the solution is
shown in Figure 1.

2.1. Spinal Positioning. As shown in Figure 1, we included
two substeps in the frst stage. First, the whole spine is
positioned in the original CTimage, based on which accurate
positioning of each spinal segment is achieved. Both steps
are conducted using 3D Swin-YoloX. Although 3D Swin-
YoloX can directly locate each spinal segment in the original
CT image, owing to the uncertainty of the CT scan area,
some CT images contain useless background information,
including air, as well as the head, lower limbs, and other soft
tissues of the patient, with only a small amount of
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information about the spinal area being provided. However,
owing to the limited hardware level, the 3D image size of
input 3D Swin-YoloX is strictly limited, thereby requiring
compression of these CT images, resulting in blurred and
indistinguishable spinal segments. To solve this problem,
many scholars have applied the sliding window method to
their processing; however, this method requires at least two
operations. We therefore used two 3D Swin-YoloX algo-
rithms to locate the overall spine and the spatial regions of
each spinal segment. To position the overall spatial region of
the spine, it is unnecessary to obtain clear edges of each
segment of the spine, and thus, the input image resolution
can be relatively low. For the positioning of each spinal
segment spatial area, the number of human spinal segments
is limited; therefore, after realizing the positioning of the
overall spinal spatial area, the image in this local area is
scaled to a fxed size to ensure the clarity of each segment.
Terefore, through these two substeps, we can minimize the
number of calculations while ensuring positioning accuracy.

Owing to the excellent efect of Swin Transformer in the
feld of computer vision and the outstanding performance of
YoloX in terms of target detection, we extended Swin
Transformer and YoloX into three dimensions. On this basis,
to build 3D Swin-YoloX, the backbone network of 3D YoloX
is replaced with 3D Swin Transformer, the network structure
of which is shown in Figure 2.

Similar to ViT and Swin Transformer, the input CT
image is divided into nonoverlapping 3D patches of the same
size, and the 3D patch is called a token. Te 3D patch size
Ps � (Pz, Py, Px) can be adjusted according to the actual
needs. In order to achieve the initial extraction of shallow
features from an image, a 3D convolution operation is
adopted for processing CT images, and the feature di-
mension of each 3D patch is mapped to any dimension C. As
the absolute position of each pixel or region in the image is
not decisive to the information expressed by the image and
when the image is divided into nonoverlapping tokens and
expanded fat, the absolute position coding of these tokens
will jump greatly. Terefore, when absolute position em-
bedding is added into patch embedding, performance de-
grades [36]. Terefore, we do not add to patch embedding
absolute position embedding representing the absolute
position information. As shown in Figure 2, the dimensions
of the input and output tensors of the patch embedding layer
are (B, 1, Z, Y, X) and (B, L, C), respectively, where B is the
batch size, (Z, Y, X) is the size of the input image, C is the

number of feature dimensions of the output, and
L � Z × Y × X/Pz × Py × Px.

In the backbone network, we use the 3D Swin block to
extract the image features, and a 3D Swin block is composed
of multiple 3D basic Swin blocks in series.Te 3D basic Swin
block is obtained using a 3D extension based on the Swin
Transformer block, and its specifc structure is shown in
Figure 3.

In view of the shortage of absolute position embedding
and the lacking position information extraction ability in the
standard transformer, Swin Transformer introduces a rela-
tive position bias to represent the relative position in-
formation among various tokens in the window.We adopted
this method and obtained the relative position bias
B ∈ RPz×Py×Px in a 3D space. Te calculation method for
attention is, therefore, as follows:

Attention(Q, K, V) � Softmax QKT/
��
d

√
+ B V, (1)

where Q, K, V ∈ RPz×Py×Px×d are the query, key, and value
matrices and d is the dimension of Q. In each window, the
relative position index between tokens is located between
[−P + 1, P − 1], where P ∈ Pz, Py, Px . We therefore set
a learnable relative position bias table
B
⌢
∈ R(2Pz− 1)×(2Py− 1)×(2Px− 1) and remove the corresponding

relative position bias value in B
⌢
according to the relative

position index used in the calculation process. Because the
relative position index is located between [−P + 1, P − 1], we
add P − 1 to the original relative position index to correctly
obtain the corresponding value in B

⌢
.

As shown in Figure 3, the 3D basic Swin block contains
a 3D windowmultihead self-attention (3DW-MSA) module
as well as a 3D shifted window multihead self-attention (3D
SW-MSA) module. Tis is mainly because the 3D W-MSA
module divides the feature image into nonoverlapping 3D
windows of the same size and only calculates the relationship
between each token in each window, thus reducing the
computational complexity of the algorithm. However, in this
way, the information interaction between tokens in diferent
windows is isolated, and the ability to extract global in-
formation is lost. Terefore, the 3D SW-MSA module needs
to be obtained by adding a shift window operation based on
the 3D W-MSA module, and thus, an information in-
teraction can be carried out among the tokens that are not
originally in the same window but are actually connected
within the image. Tus, the ability to extract global in-
formation is obtained. Terefore, to ensure that the 3D basic
Swin block can extract both global and local information, we
set it to contain both a 3D W-MSA module and a 3D
SW-MSA module. To obtain the 3D SW-MSA module, we
extended the shift window operation to a 3D space, as shown
in Figure 4.

As shown in Figure 4, the 3D window is the same size in
all three dimensions. We move the token in the window in
three steps along the z, y, and x directions. Te number of
token layers that are moved each time is indicated by
shifted size. By default,

Localization Segmentation

Figure 1: Overall scheme of the proposed process.
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Figure 2: Structure diagram of 3D Swin-YoloX.
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shiftedsize � floor
Pw

2
 , (2)

where Pw represents the size of the 3D window in the z, y,
and x dimensions. All multihead attention modules in the
3D Swin block have the same number of heads.

To ensure that the algorithm has a strong ability to
extract global information, it is necessary to enlarge the
receptive feld of the 3D window through downsampling.
Tis is the same principle as enlarging the receptive feld of
the convolution kernel through subsampling used with the
CNN algorithm. We expanded the patch merging layer into
the 3D space and obtained the 3D patch merging layer,
replacing the pooling operation that will lose information to
realize the downsampling of the feature image to enlarge the
receptive feld of the 3D window and assist SW-MSA in
extracting global information. Te size relationship between
the input tensor and the output tensor of the 3D patch
merging layer is as follows: (B, LP, CP)⟶ (B, LP/8, 2CP).

After resampling CT images with an arbitrary FOV to
a fxed size, the size of both the whole spine and each spinal
segment is uncertain. We therefore retain the design of the
feature grid output of the three scales in YoloX such that it
has the ability to accurately detect targets of diferent sizes.
Moreover, because themultiscale feature fusionmechanisms
of both the YoloX network and YoloHead, which can re-
trieve confdence Obj, coordinate information Reg, and
target class Cls, are extremely efective, we retained these
structures in YoloX. In the decoder part of 3D Swin-YoloX,
we did not adopt a 3D patch merging layer to achieve
downsampling and instead adopted an ordinary 3D max
pooling module. We do not adopt this structure in the
decoder mainly because limited by the hardware level, the
algorithm needs to achieve a balance between precision and
complexity and the 3D patch merging layer is quite complex.
Moreover, the backbone network extracts sufciently rich
feature information, providing a good basis for the decoder
to achieve accurate target identifcation.

2.2. Spinal Image Segmentation. After achieving accurate
positioning of each spinal segment, CT images are inter-
cepted according to the local spatial area obtained through
positioning, allowing a local CT image to be created that
contains the complete spinal segment with as little in-
formation as possible about the other segments. Although
a traditional CNN such as U-Net has been able to achieve an
accurate segmentation of the spinal segments in local CT
images, such approaches cannot cope with certain cases. For
example, CT images of the spine may contain “feature holes”
caused by osteoporosis and artifacts caused by metal objects

left over from surgery. Although convolution has a strong
local information extraction capability, the global in-
formation extraction capability is weak, and the above-
mentioned problems cannot be efectively solved based only
on local information. Many scholars have proven that the
introduction of global information plays a signifcant role in
improving image segmentation [52–54]. Although most
previous convolutional neural networks can enlarge the
receptive feld of the convolution kernel through down-
sampling, thereby extracting global information owing to
the intrinsic locality of convolution operations, it is difcult
for CNN-based approaches to learn explicit global and long-
range semantic information interactions [35]. However,
based on the shifted window mechanism, Swin Transformer
retains the powerful global information extraction capability
of a transformer, and the algorithm can efectively deal with
information that needs to be focused on through the at-
tention mechanism; it therefore has the potential to solve the
abovementioned problems. In addition, Swin Transformer
efectively draws on the advantages of the convolution
operation and has the ability to extract local information by
calculating the relationship between each token in the
window. Terefore, Swin Transformer has powerful local
and global information extraction capabilities. In conclu-
sion, to develop 3D Swin-UNet, we chose Swin Transformer
based on 3D extension, and we fnally achieved an accurate
segmentation of each spinal segment. Te structure of 3D
Swin-UNet is shown in Figure 5.

Patch embedding, 3D Swin block, and the 3D patch
merging layer in the algorithm are all identical to those of 3D
Swin-YoloX. Te 3D patch expanding layer is the inverse
operation of the 3D patch merging layer, which is achieved
through a 3D expansion based on the patch expanding layer
proposed by Cao et al. [37].Te size relationship between the
input tensor and output tensor of the 3D patch expanding
layer is as follows: (B, LP, CP)⟶ (B, 8LP, CP/2). Te fnal
expanding layer has the same structure as the 3D patch
expanding layer, except that it has a higher amplifcation
ratio of the feature tensor resolution and can realize feature
integration and tensor size transformation. Te size re-
lationship between the input tensor and output tensor is as
follows: (B, L, C)⟶ (B, Pz × Py × Px × L, 1)⟶ (B, 1, Z,

Y, X).
3D Swin-UNet is the same as U-Net, including the

encoder and decoder. Te encoder expands the feld of
perception of each stereo window through the 3D patch
merging layer and efciently extracts global and local in-
formation with a 3D Swin block. Te decoder restores the
feature tensor obtained from the encoder to the same res-
olution as the input CT image to achieve an accurate pixel-
level segmentation. Between the encoder and decoder,
shallow detailed information from feature maps of diferent
scales can be combined with deep semantic information by
jumping connections. Te number of heads of multihead
attention modules in the corresponding 3D Swin block in
the encoder and decoder is the same.

We adopted Dice loss as a loss function to optimize 3D
Swin-UNet. Tis is calculated as follows:

LN 3D W-
MSA LN MLP

LN 3D SW-
MSA LN MLP

Figure 3: Structure of 3D basic Swin block.
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Dice Loss � 1 − Dice � 1 −
2 Segpre ∩ Segtar




Segpre


 + Segtar



, (3)

where Segpre represents the segmentation result output by
the network and Segtar represents the real
segmentation label.

2.3. Implementation Details. As shown in Figure 6, image A
is the input image of frst 3D Swin-YoloX, image B is the
input image of second 3D Swin-YoloX, and images C1, C2,
C3,. . .Cn are the input images of 3D Swin-UNet. Image A is
resampled to a fxed size of (256, 160, 160), image B is
resampled to a fxed size of (224, 128, 128), and images C1,

C2, C3,. . .Cn are resampled to a fxed size of (96,128,128). In
the process of image resampling, it is necessary to resample
the segmentation label corresponding to the image to ensure
that the image and label have the same size. Image
resampling is conducted based on cubic spline interpolation,
and label resampling is achieved based on the nearest-
neighbor interpolation.

For 3D Swin-YoloX, we set C � 32, Ps � (Pz, Py,

Px) � (4, 2, 2), and the number of 3D basic Swin blocks in
all 3D Swin blocks is 2. Dimensions: Pw � 3 of the 3D
window in the 3D W-MSA module and the 3D SW-MSA
module. Te number of heads of multihead attention
modules in the four 3D Swin blocks is NH � (4, 4, 8,

and 8).

Figure 4: Shift window operation extended to a 3D space.
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Figure 5: Structure diagram of 3D Swin-UNet.
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For 3D Swin-UNet, we set C � 96, Ps � (Pz,

Py, Px) � (3, 4, 4), and the number of 3D basic Swin blocks
in all 3D Swin blocks is 2. Dimensions: Pw � 3 of the 3D
window in the 3D W-MSA module and the 3D SW-MSA
module. In addition, the number of heads of the multihead
attention modules in the four 3D Swin blocks in the encoder
and decoder is NH � (8, 12, 12, and 24).

Network training and verifcation were conducted on
a server equipped with four NVIDIA Quadro RTX6000
graphic cards (we only used two of them), and the algorithm
was implemented under the Pytorch framework. In the
training process of 3D Swin-YoloX and 3D Swin-UNet, the
initial learning rate was 1e− 4, and for every 40 rounds of
training, the learning rate was reduced by half. 3D Swin-
YoloX and 3D Swin-UNet were trained for 200 rounds each,
and the batch size of frst 3D Swin-YoloX was 4, whereas the
batch size of the other two algorithms was 2. During the
training process, the Adam optimizer was used to optimize
the iterative training of the algorithm. Owing to the limited
number of CT images in the dataset, we enhanced the
random data during the training process. Te intensity
values of the images were multiplied randomly using
[0.5, 1.5], and the images were randomly rotated using
[−15°, 15]. To increase the contrast between the spine and
soft tissue, the window width and position of the image must
be adjusted before it is input into the algorithm. Te cal-
culation method is as follows:

PDes �

0, PSrc ≤MinBound,

PSrc − MinBound( 

MaxBound − MinBound( 
, MinBound <PSrc <MaxBound,

1, PSrc ≥MaxBound.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In this paper, MinBound � −200 and MaxBound � 600. By
adjusting the window width and position, CT images can
show the spine more prominently, and the image pixels are
compressed to a range of [0, 1].

3. Experiment

We trained and tested 3D Swin-YoloX and 3D Swin-UNet
on the large-scale vertebrae segmentation challenge (VerSe)
data [55]. Te VerSe 2019 challenge dataset includes 160 CT
image series and contains 220 cervical, 884 thoracic, and 621
lumbar segments for a total of 1,725 spinal segments. All
data labels in the VerSe 2019 dataset were annotated by fve
trained medical students and modifed and refned by three
trained radiologists with 30 years of experience. As a result,
the dataset is highly accurate. Because the VerSe 2019
challenge dataset contains a voxel-wise segmentation (Segtar)
for each spinal segment, we used Segtar to compute the
regional coordinates for the entire spine, as well as the
individual spinal segments. Tese regions are represented as
Roi: (zmin, ymin, xmin, zmax, ymax, xmax) and are used as labels
for 3D Swin-YoloX positioning. In addition, we intercepted
the local CT image information in the corresponding space
area of each spinal segment according to Roi, and the
corresponding segmentation labels were intercepted. All
regions corresponding to incomplete spinal segments in the
segmentation label were flled with 0 s, and all regions
corresponding to complete spinal segments were flled with
1 s. Finally, a binary image highlighting the complete spinal
segment was obtained. Te processing fow is illustrated in
Figure 7.

We used the local CT image containing the complete
intercepted spinal segment as the input of 3D Swin-UNet, as
shown in Figure 7, and used the processed binary image as
the corresponding label. We used the Dice coefcient (Dice),
Hausdorf distance (HD), boundary F1 score [56], and

(a)

(b) (c1)

(c2)

(c3)

Figure 6: Input image data from each stage of the algorithm.
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boundary IoU [57] as indicators to evaluate the segmen-
tation efect. We projected the segmentation results Segsubpre of
each spinal segment obtained through positioning and
segmentation into the all-0 image Segpre with the same size as
the original CT image and fnally calculated these indicators
based on Segpre and Segtar. As shown in Figure 8, to describe
the overall surgical process, including spinal positioning,
segmentation, and projection, we selected a set of CT images
containing only fve lumbar segments as examples.

After above processing, to observe the segmentation and
projection efect more directly, VTK was used to process
Segpre and realize the three-dimensional reconstruction of
the spine. Te reconstruction results are shown in Figure 9.

Since there are no data on the boundary F1 score and
boundary IoU in the relevant data disclosed by other
scholars, we only list Dice and HD data of the overall scheme
for comparison here. We counted the Dice and HD mean
and median values calculated according to Segpre and Segtar.
Te fnal mean values (median values) of the experimental
results are listed in Table 1.

It can be observed from Table 1 that our method
achieved better results than the most advanced method. For
the public test data, the method proposed by Sekuboyina
et al. achieved the best results before [55]. Te average Dice
and HD of Sekuboyina et al.’s method were 0.930 and 6.39,
respectively, whereas the average Dice and HD of our
method were 0.942 and 6.24, respectively, both of which are
better than those of the method proposed by Sekuboyina
et al. However, in the hidden test data, the method proposed
by Tao et al. previously obtained the best results before [47].
Temean Dice and HD of Tao et al.’s method were 0.901 and
6.68, respectively, whereas the mean Dice and HD of our
method were 0.941 and 6.00, which were also better than
those of Tao et al.’s method. Tis is closely related to the
excellent performance of 3D Swin-UNet. To prove this, we
compared 3D Swin-UNet with various excellent previously
published medical image segmentation algorithms. To
eliminate other infuences, we conducted the experiment
directly in the local CT image sequence containing the
complete spinal segment intercepted according to Segtar
instead of the local CT image provided by 3D Swin-YoloX.

In addition, we did not reproject Segsubpre segmented using
various algorithms and instead calculated each indicators
directly according to Segsubpre and the segmentation truth value
Segsubtar of the corresponding local CT image. Te fnal ex-
perimental results are shown in Table 2.

Table 2 shows that 3D Swin-UNet achieved a better
performance than the other algorithms. For the public test
data, attention U-Net previously achieved the best results
[32]. Te average Dice, HD, boundary F1 score, and
boundary IoU of attention U-Net were 0.948, 7.68, 0.942,
and 0.892, respectively, whereas the average Dice, HD,
boundary F1 score, and boundary IoU of 3D Swin-UNet
were 0.951, 5.57, 0.943, and 0.899, respectively, which are
both better than those of attention U-Net. However, in the
hidden test data, attention U-Net still obtained the previous
best result. Te average values of attention U-Net’s test
indicators were 0.944, 8.91, 0.933, and 0.896, respectively,
whereas the average values of 3D Swin-UNet’s test indicators
were 0.949, 11.2, 0.942, and 0.898, respectively. Tis is
mainly due to the excellent global information extraction
capability achieved by Swin Transformer, which can help the
algorithm efectively improve its ability to cope with in-
terference such as high levels of noise and metal artifacts. To
visualize the excellent performance of 3D Swin-UNet, we
provide some examples of actual segmentation efects in
Figure 10.

As shown in Figure 10, compared with other algorithms,
3D Swin-UNet has a signifcant advantage in processing
metal artifacts and high-noise CT images. In particular,
owing to its powerful capability to extract global in-
formation, it has an extremely strong processing capacity for
metal artifacts. In addition, by comparing the 3D Swin-UNet
segmentation results listed in Tables 1 and 2, it can be seen
that 3D Swin-YoloX achieves a high positioning accuracy for
the spatial regions of each spinal segment, and the posi-
tioning error causes a small decrease in the segmentation
accuracy, which can provide an extremely good basis for
spinal image segmentation. To prove this point, we used
3D_IOU [22] as the evaluation index and tested the com-
prehensive positioning accuracy of two 3D Swin-YoloX
models for each spinal segment space region under an

Crop Image Crop Label

Figure 7: Diagram of CT image and label processing fow (taking L5 as an example).
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Figure 8: Schematic diagram of the overall processing fow.

Figure 9: Schematic diagram of three-dimensional spine reconstruction.

Table 1: Vertebral segmentation results (mean and median (in parentheses)) from the VerSe 2019 challenge dataset were evaluated.

Ref. authors
Evaluated on public test data Evaluated on hidden test data
Dice HD Dice HD

Tao et al. [47] 0.911 (0.950) 6.34 (4.12) 0.901 (0.939) 6.68 (4.12)
Payer et al. [45] 0.910 (0.955) 6.35 (4.62) 0.898 (0.955) 7.08 (4.45)
Sekuboyina et al. [55] 0.930 (0.960) 6.39 (4.88) 0.826 (0.965) 9.98 (5.71)
Lessmann et al. [44] 0.851 (0.943) 8.58 (4.62) 0.858 (0.939) 8.20 (5.38)
Our method 0.942 (0.945)  .24 (5.99) 0.941 (0.945)  .00 (5.58)
Te best average results are highlighted in bold. Te data for the methods proposed by Sekuboyina et al., listed in the table, are derived from the VerSe ofcial
[55].

Table 2: Vertebral segmentation results (mean and median (in parentheses)) were evaluated against those of other segmentation algorithms
on the VerSe 2019 challenge dataset.

Dice HD Boundary F1 score Boundary IoU

Evaluated on public test data

U-Net [28] 0.944 (0.950) 8.05 (6.16) 0.936 (0.939) 0.890 (0.904)
V-Net [29] 0.934 (0.948) 18.1 (11.3) 0.927 (0.935) 0.872 (0.898)

U-Net++ [30] 0.947 (0.952) 6.68 (5.10) 0.942 (0.947) 0.889 (0.902)
Res-UNet [31] 0.941 (0.948) 10.7 (7.35) 0.929 (0.946) 0.890 (0.901)

Attention U-Net [32] 0.948 (0.952) 7.68 (4.90) 0.942 (0.947) 0.891 (0.901)
Our method 0.951 (0.95 ) 5.57 (4.12) 0.942 (0.948) 0.892 (0.901)

Evaluated on hidden test data

U-Net [28] 0.942 (0.948) 7.  (5.74) 0.940 (0.946) 0.887 (0.899)
V-Net [29] 0.936 (0.944) 15.7 (12.4) 0.937 (0.945) 0.882 (0.895)

U-Net++ [30] 0.942 (0.949) 8.33 (5.92) 0.942 (0.949) 0.892 (0.903)
Res-UNet [31] 0.941 (0.947) 9.04 (6.71) 0.926 (0.944) 0.866 (0.895)

Attention U-Net [32] 0.944 (0.950) 8.91 (5.83) 0.933 (0.942) 0.896 (0.905)
Our method 0.949 (0.95 ) 11.21 (6.00) 0.942 (0.951) 0.898 (0.907)

Te best average results are highlighted in bold.
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arbitrary FOV on the test dataset of the VerSe 2019 chal-
lenge. Te fnal statistical results are presented in Table 3.

As shown in Table 3, 3D Swin-YoloX achieves a high
positioning accuracy for each spinal segment space. As
shown in Figure 11, boxes were used to display the spatial
area obtained through positioning on the CT section, and
diferent colors were applied to distinguish diferent boxes to
more intuitively observe the positioning efect of the spatial
area of each spinal segment.

As indicated in Figure 11, the positioning scheme
proposed in this study can efectively deal with problems
such as an uncertain scanning area, high noise, metal ar-
tifacts, and divergence of the bone cementing agent, with
strong robustness.

In our previous relevant research, we have compared the
scheme proposed by us with that proposed by other scholars,
proving the superiority of our positioning method at that
time [22]. Te average 3D_IOU for spatial region locali-
zation of each spine segment in the previous method can
reach 0.8559, while the method proposed in this paper can
reach 0.8962. Terefore, the new localization method pro-
posed by us is excellent.

In order to test the efect of diferent parameter settings
on the 3D basic Swin block, we conducted more experi-
ments. Te confgurable parameters of the 3D basic Swin
block are mainly NH and Pw. We, respectively, tested the
efects of diferent NH when Pw is fxed and diferent Pw

when NH is fxed on 3D Swin-YoloX and 3D Swin-UNet.
When Pw � 3, the test results of the infuence of diferent

NH on 3D Swin-YoloX are shown in Table 4.
As shown in Table 4, when Pw remains unchanged,

the larger NH is, the better the 3D Swin-YoloX efect will

be. However, with the further increase of NH, the in-
crease of 3D Swin-YoloX positioning accuracy becomes
smaller and smaller. Considering the positioning accu-
racy and complexity of 3D Swin-YoloX, we fnally set
NH � (4, 4, 8, and 8).

When NH � (4, 4, 8, and 8), the test results of the in-
fuence of diferent Pw on 3D Swin-YoloX are shown in
Table 5.

As shown in Table 5, when NH is fxed, the smaller Pw is,
the higher the positioning accuracy of 3D Swin-YoloX is.
Tis is mainly because the smaller the 3D window, the
stronger the 3D basic Swin block’s ability to extract detailed
features. In addition, the smaller Pw, the smaller the com-
plexity of 3D Swin-YoloX, so we set Pw � 3.

When Pw � 3, the test results of the infuence of diferent
NH on 3D Swin-UNet are shown in Table 6.

As shown in Table 6, when Pw remains unchanged, the
larger NH is, the better the 3D Swin-UNet efect will be.
However, with the further increase of NH, the increase of 3D
Swin-UNet segmentation accuracy is also decreasing.
Considering the segmentation accuracy and complexity of
3D Swin-UNet, we fnally set NH � (8, 12, 12, and 24).

Ground
Truth

U-Net

V-Net

UNet++

Res-
UNet

Attention
U-Net

3D Swin-
UNet

Figure 10: Examples of segmentation efects of various algorithms.

Table 3: Positioning accuracy of each spinal segment space under
an arbitrary FOV.

Evaluated on public test
data

Evaluated on hidden test
data

Mean 0.896 0.898
Median 0.917 0.917
Std 0.082 0.079
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(a) (b) (c)

(d) (e) (f)

Figure 11: Spatial localization efect of each spinal segment.

Table 4: Te infuence of NH on 3D Swin-YoloX.

NH 3D_IOU

Evaluated on public test data

(4, 4, 4, 4) 0.873 (0.904)
(4, 4, 4, 8) 0.881 (0.903)
(4, 4, 8, 8) 0.896 (0.917)
(4, 8, 8, 8) 0.902 (0.921)

Evaluated on hidden test data

(4, 4, 4, 4) 0.867 (0.901)
(4, 4, 4, 8) 0.887 (0.899)
(4, 4, 8, 8) 0.898 (0.917)
(4, 8, 8, 8) 0.904 (0.915)

Table 5: Te infuence of Pw on 3D Swin-YoloX.

Pw 3D_IOU

Evaluated on public test data

3 0.896 (0.917)
4 0.892 (0.905)
5 0.884 (0.897)
6 0.860 (0.881)

Evaluated on hidden test data

3 0.898 (0.917)
4 0.891 (0.913)
5 0.881 (0.901)
6 0.869 (0.883)
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When NH � (8, 12, 12, and 24), the test results of the
infuence of diferent Pw on 3D Swin-UNet are shown in
Table 7.

As shown in Table 7, when NH is fxed, the segmentation
accuracy of 3D Swin-UNet with smaller Pw is higher, mainly
because the smaller the 3D window, the stronger the ability
of the 3D basic Swin block to extract detailed features. In
addition, the smaller Pw, the smaller the complexity of the
3D Swin-UNet. So, we set Pw � 3.

In summary, the smaller Pw is, the stronger the feature
extraction ability of the 3D basic Swin block is. Te larger
NH is, the stronger the feature extraction ability of the 3D
basic Swin block is.

Due to the potential of Hausdorf loss [58] (HD loss) in
improving the capture of boundary details by segmentation
algorithms, we also tested the efect of HD loss on 3D Swin-
UNet. Te test results are shown in Table 8.

As shown in Table 8, HD Loss does improve the ability of
3D Swin-UNet to capture boundaries, but it has certain side
efects on the overall efect. Terefore, in the fnal scheme, we
did not use HD loss for supervised training of 3D Swin-UNet.

After completing the design and development of the
overall program, we invited experienced doctors to test and
evaluate our program. Te test data were collected from
multiple hospitals, and sensitive patient information was
removed. A total of 60 CT images, including 258 spinal
segment information. We divided the evaluation levels into
A (satisfed) and B (unsatisfed). Some evaluation cases are
shown in Figure 12.

Te test results are shown in Table 9.
As shown in Table 9, the practical value of our method in

clinical application is very high, and in most cases, it is
sufcient to meet clinical needs.

4. Discussion

Autonomous spine segmentation under an arbitrary FOV
has a strong application value in medical robotic surgical
path planning, intelligent medical diagnosis, and other
methods. Although many solutions have been developed,
they have been based on the use of a CNN. Owing to the
limited ability of convolutional operations to extract global
information, their efect has certain defects. However, Swin
Transformer has an excellent global information extraction
capability and a local information extraction capability equal
to that of a convolution operation, thus achieving a better
efect.

We therefore propose a two-stage, fully autonomous
spinal segmentation method under an arbitrary FOV based
on 3D Swin Transformer. Te frst stage consists of two
steps. First, accurate positioning of the overall spine region is
achieved based on 3D Swin-YoloX, based on which accurate
positioning of each segment within the overall spine region
is achieved. In the second stage, a local CT image containing
the complete spinal segment obtained in the frst stage is
used as the input for 3D Swin-UNet, thus achieving an
accurate segmentation of the spine.

Although our method already has a lower computational
cost, particularly in the frst stage, the precise positioning of
each spinal segment is achieved through two substeps, which
avoids multiple calculations through the sliding window.
However, at present, we cannot quickly or accurately locate
each spinal segment in the original CT image in a single step.
In the future, we will develop a more efcient network
structure allowing a larger sized image to be input into the
network, and the precise location of each spinal segment can
be determined in a single step.

Table 6: Te infuence of NH on 3D Swin-UNet.

NH Dice HD F1 IOU

Evaluated on public test data

(8, 12, 12, 12) 0.948 (0.951) 6.04 (5.66) 0.940 (0.945) 0.890 (0.897)
(8, 12, 12, 24) 0.951 (0.956) 5.57 (4.12) 0.942 (0.948) 0.892 (0.901)
(8, 24, 24, 24) 0.953 (0.958) 5.26 (4.97) 0.944 (0.949) 0.894 (0.902)
(16, 24, 24, 24) 0.954 (0.961) 5.09 (5.03) 0.943 (0.948) 0.892 (0.901)

Evaluated on hidden test data

(8, 12, 12, 12) 0.947 (0.953) 11.41 (6.20) 0.940 (0.950) 0.897 (0.906)
(8, 12, 12, 24) 0.949 (0.956) 11.21 (6.00) 0.942 (0.951) 0.898 (0.907)
(8, 24, 24, 24) 0.950 (0.958) 10.57 (5.72) 0.943 (0.951) 0.900 (0.908)
(16, 24, 24, 24) 0.951 (0.963) 9.38 (5.41) 0.944 (0.952) 0.901 (0.906)

Table 7: Te infuence of Pw on 3D Swin-UNet.

Pw Dice HD F1 IOU

Evaluated on public test data

3 0.951 (0.956) 5.57 (4.12) 0.942 (0.948) 0.892 (0.901)
4 0.949 (0.954) 6.30 (5.20) 0.940 (0.941) 0.889 (0.897)
5 0.947 (0.956) 6.57 (5.32) 0.938 (0.940) 0.882 (0.891)
6 0.940 (0.945) 7.34 (5.39) 0.932 (0.934) 0.873 (0.884)

Evaluated on hidden test data

3 0.949 (0.956) 11.21 (6.00) 0.942 (0.951) 0.898 (0.907)
4 0.947 (0.952) 11.32 (6.83) 0.938 (0.946) 0.894 (0.901)
5 0.945 (0.948) 11.41 (7.10) 0.932 (0.941) 0.887 (0.897)
6 0.937 (0.942) 11.94 (8.92) 0.923 (0.929) 0.874 (0.882)
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Although we used as much data as possible when
training the algorithm, relatively few of the CTdata included
cervical vertebral segments. Moreover, the spatial overlap
rate of the adjacent cervical vertebral segments is relatively
high, and it is therefore more difcult to achieve an accurate
diferentiation and segmentation of each cervical vertebra
segment. Some defects in the segmentation efect on the
cervical vertebrae remain when applying our method.
Terefore, in the future, to improve the segmentation efect
of our method when applied to cervical segments, we will
add CT data on the cervical segments and corresponding
segmentation labels.

5. Conclusion

In this paper, we propose a two-stage arbitrary FOV seg-
mentation method for the spine based on 3D Swin Trans-
former. Tis method requires fewer computations and
achieves a better segmentation efect than various arbitrary
FOV segmentation methods proposed by other scholars.
Tis is mainly due to the following: (1) in the frst stage, as
much of the excess soft tissue and other spinal segment
interference as possible is removed. (2) In the second stage,
3D Swin-UNet has both powerful global and local in-
formation extraction capabilities and has stronger

processing capabilities compared with other image seg-
mentation algorithms based on convolutional operation for
special cases including high noise and metal artifacts.
Trough the training and testing of the algorithm, average
Dice of our method for the public test data of the VerSe 2019
challenge dataset is 0.942 and the average HD is 6.24. For the
hidden test data, average Dice is 0.941, whereas the average
HD is 6.00. Te reason why our proposed method can
achieve such a high accuracy is linked to the excellent
performance of 3D Swin-YoloX and 3D Swin-UNet. Te
average 3D_IOU of 3D Swin-YoloX on the public and
hidden test data reached 0.896 and 0.898, respectively,
whereas Dice of 3D Swin-UNet reached 0.951 and 0.949,
respectively. In short, our method achieves an excellent test
efect on the dataset and a certain reference value. In the next
step, we will test, apply, and promote clinical data to enhance
the application value and further beneft most doctors.
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Table 8: Te infuence of HD loss on 3D Swin-UNet.

Loss function Dice HD F1 IOU

Evaluated on public test data
Dice loss 0.951 (0.956) 5.57 (4.12) 0.942 (0.948) 0.892 (0.901)

HD loss +Dice loss 0.946 (0.948) 5.37 (5.23) 0.937 (0.941) 0.885 (0.888)
HD loss 0.938 (0.943) 5.23 (5.17) 0.932 (0.937) 0.881 (0.883)

Evaluated on hidden test data
Dice loss 0.949 (0.956) 11.21 (6.00) 0.942 (0.951) 0.898 (0.907)

HD loss +Dice loss 0.944 (0.952) 7.01 (5.03) 0.939 (0.941) 0.891 (0.901)
HD loss 0.942 (0.950) 6.83 (5.01) 0.935 (0.939) 0.887 (0.893)

(a) (b)

Figure 12: Evaluation case.

Table 9: Doctor’s evaluation of the system.

Satisfaction A B
Count 252 6
Ratio 97.67% 2.33%
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