
Research Article
Nonconvex Regularization withMulti-Weighted Strategy for Real
Color Image Denoising

Ying Shi,1 Tianyu Liu,2 Dong Hu,2 Chuan Li,3 and Zhi Wang 2

1Information Construction Ofce, Southwest University, Chongqing 400715, China
2College of Computer and Information Science, Southwest University, Chongqing 400715, China
3Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics,
Chongqing 401520, China

Correspondence should be addressed to Zhi Wang; chiw@swu.edu.cn

Received 12 May 2023; Revised 23 August 2023; Accepted 10 September 2023; Published 25 September 2023

Academic Editor: Alexander Hošovský
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Most existing image denoising methods commonly assume that the image is contaminated by additive white Gaussian noise
(AWGN). However, real-world color image noise exhibits more complicated distribution properties, making it challenging to
develop an accurate model. Consequently, denoising methods designed for AWGN often fail to achieve satisfactory performance
on real-world images. In this paper, we present a novel multi-channel optimization model for real-world color images denoising
within the multi-weighted Schatten p-norm minimization. Our proposed model utilizes the weighted Schatten p-norm as the
regularization term, while the data fdelity term employs two weight matrices to balance the noise level across channels and
regions. Besides, it helps to preserve as much detail as possible in the recovered image while removing noise. Although our
proposed model is nonconvex and has no analytical solution, an accurate and efcient optimization algorithm is established based
on the alternating direction method of multipliers (ADMMs) framework. Finally, we demonstrate the superior performance of
our proposed method over existing state-of-the-art models on three real image datasets.

1. Introduction

During the process of image acquisition and dissemination,
the quality of the acquired images is infuenced by a plethora
of factors, including environmental conditions and equip-
ment characteristics [1]. Tese can give rise to noise artifacts
that hinder the efective extraction of information from the
imagery, ultimately limiting its utility in subsequent pro-
cessing tasks, such as image classifcation [2, 3], segmen-
tation [4, 5], and recognition [6, 7]. In general, image
denoising is to recover a clean image x from a noisy image
y � x + n, where n is usually assumed to be the additive
white Gaussian noise (AWGN), endowed with a constant
distribution intensity [8–13]. However, AWGN is an ide-
alized model that assumes a specifc probability distribution
and intensity for noise, whichmay not accurately refect real-
world situations. In practice, realistic noise has a complex
distribution that is signal independent and infuenced by

various parameters of the capture device [14].Terefore, real
image denoising is a challenging task that requires more
attention.

In the past two decades, various methods have been
proposed for denoising images, which can be broadly
classifed into the following categories: fltering-based
[11, 15], sparse coding-based [7, 16–18], low-rank-based
[12, 19–22], deep learning-based [13, 23–27], and hybrid
methods [28, 29]. Te majority of existing methods are
intended to remove AWGN or reduce noise in grayscale
images. Unfortunately, Xu et al. [20] demonstrated that
applying gray image denoising directly to color images does
not yield satisfactory results. Tis is because the noise levels
between image channels tend to difer. In the last 10 years,
deep learning approaches have shown promising results in
denoising color images afected by AWGN. However, these
methods are highly dependent on the training dataset and
often fail to generalize well to real-world images. As a result,
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there is a need to develop a more robust denoising method
based on a more accurate model that can efectively tackle
the challenges posed by real-world color image denoising.

Recently, the low-rank minimization model [30–34] has
received considerable attention due to its superior perfor-
mance in image denoising. Since image is considered to have
low-rank property, numerous methods have been proposed
based on this property. However, in the realm of low-rank
minimization models, the widely employed convex nuclear
norm minimization leads to overshrinking of large singular
values containingmore dominant information, thus yielding
biased solutions. To counter this limitation, researchers have
delved into nonconvex optimization techniques, aiming to
more precisely capture the inherent low-rank characteristics
of the image. For instance, Gu et al. proposed the weighted
nuclear norm minimization (WNNM) model [12] and ap-
plied it to image denoising. It ensures information preser-
vation by weighting the singular values so that larger one will
be less penalized. However, WNNM still tends to overshrink
the rank component, resulting in bad performance when
noise level is high. To overcome this limitation, WSNM
employs weighted Schatten p-norm instead of weighted
nuclear norm, which provides a better approximation of the
rank function. By setting the power parameter p appro-
priately, WSNM [35] ofers greater fexibility and exhibits
superior image denoising performance compared to
WNNM. Unfortunately, WNNM and WSNM are initially
developed for grayscale image denoising. Considering that
noise level in the R, G, and B channels of color images, Xu
et al. [20] proposed the MCWNNM, which extends WNNM
to perform color image denoising. To address the same
issues encountered withWNNM, Huang et al. [21] proposed
the MCWSNM and achieved excellent results on real-world
color image denoising. Shan et al. [36] introduced a novel
multi-channel optimization framework for color image
denoising, utilizing nuclear norm minus Frobenius norm
minimization. Furthermore, Chen et al. [37] innovatively
represented color images as pure quaternion matrices and
then applied low-rank constraints to these constructed
quaternion matrices, efectively harnessing the inherent
cross-channel correlation within color channels.

Real-world images captured by CCD or CMOS cameras
exhibit complex characteristics. Tese characteristics may be
signal dependent, which can vary with diferent camera
settings (such as ISO, shutter speed, and aperture). While
MCWNNM and MCWSNM have shown promising results
in real-world image denoising, both of them do not consider
the variation in noise level across patches in the real-world
image. To address the above issues, we introduce a new
weight matrix to balance the noise diferences across various
patches and propose a novel image denoising model based
on multi-weighted Schatten p-norm minimization. Our
proposed model has three main merits. First, we use the
weighted Schatten p-norm as the rank surrogate to accu-
rately approximate the rank function, which helps to pre-
serve as much detail as possible in the recovered image while
removing noise. Second, we incorporate two weight matrices
in our proposed model to balance the noise between dif-
ferent channels and patches. Tis makes our model more

realistic and the recovered images closer to clean images.
Tird, we utilize the alternating direction method of mul-
tipliers (ADMMs) framework to decompose the nonconvex
problem into several subproblems that can be easily cal-
culated. Tis ensures the efectiveness and efciency of our
proposedmethod. Besides, wemake a detailed analysis of the
proposed algorithm, including complexity analysis, con-
vergence analysis, and its theoretical proof. Finally, extensive
experiments are conducted to demonstrate the superior
performance of our proposed method in real-world color
image denoising compared to existing state-of-the-art
models.

Tis paper is structured as follows. In Section 2, we
present the related work, including the application of low-
rank matrix approximation methods to image denoising and
real-world image denoising. Section 3 presents the proposed
multi-weighted Schatten p-norm minimization model, the
optimization method, and the theoretical analysis of the
proposed algorithm. In Section 4, the denoising perfor-
mance of our proposed method is compared with some
state-of-the-art methods on three real image datasets. Fi-
nally, we summarize our work in Section 5.

2. Related Work

In this section, we frst introduce the methods of low-rank
matrix approximation in image denoising and then discuss
the approaches for real-world image denoising.

2.1. Existing Rank Minimization Methods for Color Image
Denoising. Te color image denoising model based on low-
rank minimization relies on the assumption that natural
color images exhibit nonlocal similarity (NSS) [38]. In [19],
Dong et al. demonstrated that low-rankminimization can be
efectively utilized in image denoising by establishing NSS.
NSS suggests that a given pixel or patch of an image can be
well represented by similar pixels or patches located else-
where in the image, rather than just those adjacent neigh-
bors. Terefore, by exploiting NSS, a latent clean matrix can
be obtained by performing a low-rank minimization pro-
cedure on each patch-generated matrix and then it can be
merged to create a noise-free image.

Among the low-rank minimization models, nuclear
norm minimization (NNM) [39, 40] is the most commonly
used method. However, it treats all singular values equally,
which can lead to overshrinking of large singular values that
contain more dominant information. To address this issue,
Gu et al. proposed the weighted nuclear norm minimization
(WNNM) model [12], which can be formulated as

min
x

1
σ2

‖Y − X‖
2
F +‖X‖w,∗, (1)

where X and Y denote the matrix composed of similar
patches in the latent clean image and noisy image, re-
spectively. ‖X‖w,∗ � 􏽐

r
i�1wiσi(X) is the weighted nuclear

norm of matrix X, w � [w1, w2, . . . , wn]⊤ is the non-
descending weight vector with 0≤w1 ≤w2 ≤ . . . ≤wn, and
σi(X) is the i-th singular value ofX. ‖X‖F �

�������
tr(X⊤X)

􏽰
is the
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Frobenius norm of X. σ is the standard deviation of added
AWGN noise.

Although WNNM has been shown to achieve good
denoising results, several improved models have been
proposed [20, 35, 36, 41, 42]. In [20], Xu et al. proposed the
MCWNNM, extending WNNM to perform color image
denoising, which can be formulated as

min
x

‖W(Y − X)‖
2
F +‖X‖w,∗, (2)

with W � (σ−1
r I, σ−1

g I, σ−1
b I). W is the weight matrix char-

acterizing the noise levels in diferent channels. I is the unit
matrix. σr, σg, σb are the standard deviations of noise in R, G,
and B channels, respectively. In [21], Huang et al. proposed
the MCWSNM with the same weighted strategy, which can
be formulated as

min
x

‖W(Y − X)‖
2
F +‖X‖

p

w,Sp, (3)

where weighted Schatten p-norm ‖X‖
p

w,Sp � (􏽐
r
i�1wiσ

p

i )1/p

and power p ∈ (0, 1].
Currently, MCWSNM is considered a highly competi-

tive method for color image denoising. Building upon the
MCWSNM, we introduce a newweight matrix to balance the
noise diferences across various patches and propose a novel
model for real-world color image denoising.

2.2. Real-World Image Denoising. Over the last few decades,
researchers have extensively studied the denoising of
AWGN. However, it is essential to acknowledge that AWGN
is an artifcial addition that is used to simulate noise in real-
world scenarios. It is assumed to follow a specifc probability
distribution, which may not necessarily refect the actual
characteristics of noise in the real world as it often remains
unknown. As a result, real-world image denoising methods
can be categorized into two groups based on whether or not
they rely on the noise levels as input.

We frst discuss methods that require the noise level as
input. Since real-world noise is typically unknown, nu-
merous methods have been proposed to estimate the noise
level [43–45]. Denoising color images has been a challenging
task, and several methods have been proposed to tackle this
problem. For instance, color block-matching 3D (CBM3D)
[46] frst converts the sRGB image into the luminance-
chromaticity space and applies BM3D separately to each
channel. However, the color space conversion complicates
the structure of the noise and does not fully leverage the
correlation between the channels. LSSC [16] was the frst
method to suggest combining sparse coding with NSS for
image denoising. To suppress sparse coding noise, Zhang
et al. [18] introduced the concept of sparse coding noise and
shifted the focus of image restoration. Nevertheless, the
efcacy of sparse coding methods remains contingent upon
the selection of a suitable dictionary, while the task of
identifying the optimal dictionary to accurately represent
a signal or image patch remains a formidable challenge. By
utilizing the inherent low-rank characteristic of the NSS
generating matrix, the low-rank model attains remarkable

performance in image denoising. Considering that the noise
level varies in each channel of a color image, MCWNNM
[20], based on WNNM [12], introduces a weight matrix to
balance the noise in diferent channels of color images. In
addition, MCWSNM [21] introduces a weighted Schatten p-
norm to tackle the issue of overshrinking singular values of
the weighted nuclear norm and adds fexibility to the
denoising process. However, these methods do not consider
the patchwise variation of noise in the spatial domain.

We then discuss methods that do not require an input
noise level, commonly referred to as blind denoising. For
instance, Lebrun et al. [47] proposed a blind image algo-
rithm that can operate on arbitrary digital images as input.
Tis method estimates a signal and frequency-dependent
(SFD) noise and subsequently denoises the image by
employing a multi-scale adaptation of a nonlocal Bayesian
denoising method. Xu et al. [48] employed a nonlocal self-
similarity prior to denoise patch group- (PG-) based images,
using nonparametric Bayesian dictionary learning to extract
potentially clean structures from PG variations. In addition,
a number of deep learning-based blind denoising methods
have been proposed. Wang et al. [49] developed an end-
to-end structured multi-column convolutional neural net-
work (MC-Net) to train a denoiser using known noise levels,
which was then utilized to estimate the noise levels. Guo
et al. [26] combined synthetic noise data with real data to
train the convolutional blind denoising network (CBDNet),
resulting in improved generalization ability of model and
enhanced denoising efectiveness. While deep learning has
undoubtedly secured a dominant role in computer vision, it
also comes with its own set of challenges compared with
traditional methods. Tese include heavy dependence on
datasets, leading to potential overftting, and a lack of rig-
orous theoretical foundations.

Our approach introduces two weight matrices to model
the distinct noise distribution across channels and spatial
patches in real-world images, aiming to further improve the
denoising performance of real-world color images. More-
over, we provide the theoretical underpinnings of our
proposed method and conduct a convergence analysis for
the proposed optimization algorithm.

3. Multi-Weighted Schatten p-Norm
Minimization for Real-World
Image Denoising

In this section, we frst present the weighted Schatten
p-norm minimization model for color image denoising and
then establish an efcient algorithm to solve the proposed
model by using the framework of ADMM.

3.1. Problem Formulation. Te problem of real color image
denoising aims to recover the clean image xcm for its noisy
observation ycm:

ycm � xcm + ncm, (4)
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where c ∈ r, g, b􏼈 􏼉 is the index of R, G, and B channels in
color image, m ∈ 1, 2, . . . , M{ } is the index of the patch
number, and ncm refers to noise level in m-th patch of
channel c.

In the past decade, low-rankminimization methods have
demonstrated remarkable denoising performance by
exploiting the low-rank property of redundant nonlocal
similarity over an image. To denoise a noisy image ycm, we
identify a set of key patches sized p × p with a fxed interval
across the image. For each key patch, we select M most
similar patches, including itself, in a search window. Te
similarity between two patches is measured using the Eu-
clidean distance. For each similar patch, we reshape it as
a column vector vcm ∈ Rp2

, where v � y, x,n􏼈 􏼉 denotes the
noisy image, the clean image, and the noise, respectively. By
arranging the M vectors in each channel, we can obtain
a matrix Mc � [v⊤c1, v⊤c2, . . . , v⊤cM], and M � [M⊤r ,M⊤g ,M⊤b ]

denotes the matrix combined by all channels. Ten, we use
Y � X + N to represent a matrix stacking by M similar
patches in the noisy image, whereY denotes the noisy image,
X is the latent clean image, and N is the noise values. Te
entire clean image can then be generated by all denoised
patches.

Te distribution of noise in real-world images varies not
only in each color channel but also in each patch. To address
this issue efectively, we propose a multi-weighted Schatten
p-norm minimization model for denoising real-world color
images. Te proposed model is defned as follows:

min
X

W1(Y − X)W2
����

����
2
F

+‖X‖
p

w,Sp
, (5)

where W1 represents the weight matrix employed to
characterize the diverse noise levels in R, G, and B channels
and W2 refers to the weight matrix for describing diferent
noise levels between individual patches.Te defnition ofW1
andW2 is discussed in the next subsection. According to the
defnition in [21], we set the weight of the weighted Schatten
p-norm to be wi � c

��
M

√
/(σi(X) + ϵ) based on empirical

evidence. Here, c> 0 is a constant, and ϵ � 10− 16 is a pa-
rameter that is used to prevent division by zero. M is the
number of similar patches, and σi(X) represents the i-th
singular values of X.

3.2. Defnition of Weighted Matrices. Te values of W1 and
W2 are determined using the maximum a posteriori (MAP)
estimation framework [50]. To obtain the MAP estimate of
matrix X, given the observation matrix Y, we maximize the
log posterior probability as follows:

􏽢X � arg max
X

lnP(X |Y)

� arg max
X

lnP(Y |X) + lnP(X){ }.
(6)

Here, the likelihood term P(X |Y) is used to model the
statistics of the noise. As posited by Leung et al. [50], it can
be assumed that the noise is independently and identically

(i.i.d.) distributed in every patch and channel, following
a Gaussian distribution. Tus, we have nc∼N(0, σc) and
nm∼N(0, σm), where nc and nm denote the noise levels in
channel c and the m-th patch, respectively. According to the
log-linear model, the relationship between σc and σm can be
modeled as σcm � σl1

c σl2
m where l1 + l2 � 1. Empirically, we

consider σc and σm are of equal signifcance, so we set
σc � σm � 1/2 and defne the noise of m-th patch in channel c

as ncm � ycm − xcm∼N(0, σcm). Terefore, P(X |Y) can be
formulated as

P(Y |X) � 􏽙

c∈ r,g,b{ }

􏽙

M

m�1

���
2π

√
σcm( 􏼁

− 3q2M exp −
ycm − xcm

����
����
2
2

2σ2cm
⎛⎝ ⎞⎠.

(7)

Since the minimum Schatten p-norm property is im-
posed on underlying latent clean image X, we let P(X) be

P(X)∝ exp −
1
2
‖X‖

p

w,Sp􏼒 􏼓. (8)

Putting (7) and (8) into (6), we obtain

􏽢X � argmin
X

􏽘

c∈ r,g,b{ }

􏽘

M

m�1

1
σ2cm

ycm − xcm
����

����
2
2 + ‖X‖

p

w,Sp

� argmin
X

􏽘

c∈ r,g,b{ }

1
σc

Yc − Xc( 􏼁W2
����

����
2
F

+ ‖X‖
p

w,Sp

� argmin
X

W1(Y − X)W2
����

����
2
F

+‖X‖
p

w,Sp,

(9)

with W1 �

τ−1/2
r Ip2 0 0
0 τ−1/2

g Ip2 0
0 0 τ−1/2

b Ip2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,W2 �

σ−1/2
1 0 0
0 ⋱ 0
0 0 σ−1/2

M

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, where (τr, τg, τb) � min σr, σg, σb􏽮 􏽯/

(σr, σg, σb).

3.3. Optimization Algorithm. Tere is no analytical solution
to the proposed model (5) due to its nonconvex property.
Fortunately, we can utilize the alternating direction method
of multipliers (ADMMs) framework to decompose the
problem into a set of subproblems that can be solved iter-
atively. To achieve this, we introduce an auxiliary variable Z,
which allows us to rewrite model (5) as follows:

min
X,Z

W1(Y − X)W2
����

����
2
F

+‖Z‖
p

w,Sp

s.t.X � Z.

(10)

Te augmented Lagrangian function of (10) can be
formulated as
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L(X,Z,Λ, ρ) � W1(Y − X)W2
����

����
2
F

+‖Z‖
p

w,Sp + ΛT
(X − Z) +

ρ
2
‖X − Z‖

2
F, (11)

where Λ is the augmented Lagrange multiplier and ρ> 0 is
the parameter for penalty. Ten, the subproblem can be
achieved byminimizing each variable in turn while fxing the

other variables. Consequently, problem (10) can be solved
via following steps.

Xk+1 � argmin
X

W1(Y − X)W2
����

����
2
F

+ ΛT X − Zk( 􏼁 +
ρk

2
X − Zk

����
����
2
F
, (12)

Zk+1 � argmin
Z

Z − Xk+1 + ρ−1
k Λk􏼐 􏼑

�����

�����
2

F
+‖Z‖

p

w,Sp, (13)

Λk+1 � Λk + ρk Xk+1 − Zk+1( 􏼁, (14)

ρk+1 � min μ∗ ρk, ρmax􏼈 􏼉. (15)

(1) Updating X: to obtain X, we derive it from the right
part of (12), which yields the following equation:

W⊤1W1X +
ρk

2
X W2W

⊤
2( 􏼁

− 1
� W⊤1W1Yk +

ρk

2
Zk −

1
2
Λk􏼒 􏼓 W2W

T
2􏼐 􏼑

− 1
. (16)

Equation (16) is a standard Sylvester’s equation
which aims to fnd possible matrix X from given
matrices A,B, and C that satisfes the following
equation:

AX + XB � C. (17)

Let

A � W⊤1W1,

B �
ρk
2

W2W
⊤
2( 􏼁

− 1
,

C � W⊤1W1Yk +
ρk
2
Zk −

1
2
Λk􏼒 􏼓 W2W

T
2􏼐 􏼑

− 1
,

(18)

in (17). By using Kronecker product ⊗ and the
vectorization operator vec, we can rewrite Sylvester’s
equation in the form

IM ⊗A + BT ⊗ I3p2􏼐 􏼑vec(X) � vec(C). (19)

Ten, we can get the solution of (12) as

Xk+1 � vec− 1 IM ⊗A + BT ⊗ I3p2􏼐 􏼑
− 1
vec(C)􏼒 􏼓. (20)

(2) Updating Z: (13) is a weighted Schatten p-norm
minimization problem. Previous research [21] has
shown that if the weights wi􏼈 􏼉 adhere to a non-
descending permutation, then the optimization

problem can be transformed into independent
nonconvex subproblems of the lp-norm. Tese
subproblems can be solved efciently using the
generalized soft-thresholding (GST) algorithm. Tis
procedure is summarized as Algorithm 1.

(3) Updating Λ: In the ADMM framework, the role ofΛ
is pivotal in managing constraints. It orchestrates
updates, gradually aligning them with the optimi-
zation problem’s constraints, thereby facilitating the
algorithm in approximating the ultimate solution. Λ
is updated as follows:

Λk+1 � Λk + ρk Xk+1 − Zk+1( 􏼁. (21)

Here, ρk is a positive constant, often termed as the
step size or penalty parameter, while Xk+1 and Zk+1
correspond to the variables computed at iteration
step k + 1. Te essence of this formulation lies in
updating the Lagrange multiplier Λ progressively to
better align with the constraints of the optimization
problem. By adapting ρk and accounting for varia-
tions in the current variable Xk+1, this iterative
update gradually refnes the Lagrange multiplier,
thereby inching closer to the optimal solution.

(4) Updating ρ: Te update parameter ρ in the ADMM
algorithm is to regulate the convergence rate of the
Lagrange multipliers. Mathematically, the update of
ρ follows this formula:
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ρk+1 � min μ∗ ρk, ρmax􏼈 􏼉. (22)

Here, μ≥ 0 is a step-size parameter, ρk corresponds to the
parameter at the current iteration step, and ρmax represents
a predetermined upper threshold. Tis formula dynamically
adjusts the parameter ρ used to penalize the constraints. By
judiciously adapting this parameter, the algorithm strives for
a more efcient approximation of the problem’s solution.

Based on the above analysis, we summarize the opti-
mization procedure for solving the proposed multi-weighted
Schatten p-norm minimization model in Algorithm 2, and
the fowchart of our proposed algorithm is shown in
Figure 1.

3.4. Algorithm Analysis. We frst discuss the computational
complexity of our proposed algorithm. Te computational
cost of a single iteration in Algorithm 2 comprises two
primary parts. Te frst part is updating X. Te primary
computation here involves computing specifc functions in
Sylvester’s equation, which incurs a cost of
O(max M3, (3p2)3􏽮 􏽯). Te second component involves
updating Z. Te primary cost here arises from the SVD
operation in Algorithm 1, which costs O(max
p4M, p2M2􏼈 􏼉 + p2r4M). Given the parameter settings, we

consider M to be signifcantly larger than p and r. Tus, the
overall computational complexity of our proposed algorithm
is O(K1M

3).
We then present a theorem that provides theoretical

guarantee for the convergence of Algorithm 2.

Theorem 1. Suppose the weight vector wi is sorted in
a nondescending order and the parameter ρk is unbounded.
Under these conditions, the sequences Xk, Zk, and Λk gen-
erated by Algorithm 2 satisfy the following:

(a) lim
k⟶∞

‖Xk+1 − Zk+1‖F � 0.
(b) lim

k⟶∞
‖Zk+1 − Zk‖F � 0.

(c) lim
k⟶∞

‖Xk+1 − Xk‖F � 0.

Proof

(1) We frst prove that the sequence of the augmented
Lagrangian multiplier Λk􏼈 􏼉 is upper bounded. We let
Uk[diag(σ1, σ2, . . . , σn)]V⊤k be the SVD of
(ρ−1

k Λk + Xk+1), and Zk � Uk[diag(δ1, δ2, . . . , δn)]

V⊤k . Ten we have:

Λk+1‖‖
2
F

����
���� � Λk + ρk Xk+1 − Zk+1( 􏼁‖‖

2
F

� ρ2k ρ−1
k Λk + Xk+1 − Zk+1

����
����
2
F

� ρ2k Uk diag σ1, σ2, . . . , σn( 􏼁􏼂 􏼃V⊤k − Uk diag δ1, δ2, . . . , δn( 􏼁􏼂 􏼃V⊤k
����

����
2
F

� ρ2k 􏽘

n

i�1
σi − δi( 􏼁

2 ≤ ρ2k 􏽘

n

i�1

Jwi

ρk

���������

���������

2

2

� J
2

􏽘

n

i�1
wi

���������

���������

2

2

,

(23)

where J is the number of iterations in the GST al-
gorithm. Tus, Λk􏼈 􏼉 is bounded.

(2) We then prove the sequence of the Lagrange func-
tion Lk+1(Xk+1,Zk+1,Λk+1, ρk+1) is upper bounded.

L Xk+1,Zk+1,Λk+1, ρk+1( 􏼁

� W1 Y − Xk+1( 􏼁W2
����

����
2
F

+ Zk+1
����

����
p

w,Sp

+〈Λk+1,Xk+1 − Zk+1〉 +
ρk+1

2
Xk+1 − Zk+1

����
����
2
F

� L Xk+1,Zk+1,Λk, ρk( 􏼁
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+〈Λk+1 − Λk,Xk+1 − Zk+1〉 +
ρk+1 − ρk

2
Xk+1 − Zk+1

����
����
2
F

� L Xk+1,Zk+1,Λk, ρk( 􏼁

+〈Λk+1 − Λk,
Λk+1 − Λk

ρk

〉 +
ρk+1 − ρk

2
Λk+1 − Λk

ρk

��������

��������

2

F

� L Xk+1,Zk+1,Λk, ρk( 􏼁 +
ρk+1 + ρk

2ρ2k
Λk+1 − Λk

����
����
2
F
.

(24)

SinceΛk is upper bounded, the sequence Λk+1 − Λk􏼈 􏼉

is also upper bounded. Let u be the upper bound of
Λk+1 − Λk􏼈 􏼉, i.e., ∀k≥ 0, ‖Λk+1 − Λk‖F≤ u, and we
can obtain

L Xk+1,Zk+1,Λk+1, ρk+1( 􏼁≤L Xk+1,Zk+1,Λk, ρk( 􏼁 + u
2ρk+1 + ρk

2ρ2k

≤L X1,Z1,Λ0, ρ0( 􏼁 + u
2

􏽘

∞

k�0

ρk+1 + ρk

2ρ2k

� L X1,Z1,Λ0, ρ0( 􏼁 + u
2

􏽘

∞

k�0

1 + μ
2ρ0μ

k

≤L X1,Z1,Λ0, ρ0( 􏼁 +
u
2

ρ0
􏽘

∞

k�0

1
μk− 1.

(25)

Since 􏽐
∞
k�01/μ

k− 1 < +∞, then we establish that
Lk+1(Xk+1,Zk+1,Λk+1, ρk+1) is upper bonded.

(3) We next prove that the sequences of Xk and Zk are
upper bounded.

Input: Noisy matrix Y, weight vector wi􏼈 􏼉
r
i�1, p, iteration threshold K2;

Initialize: Y � UΣV⊤,Σ � σ1, σ2, . . . , σr;
(1) for i � 1: r do
(2) τGST(ωi) � (2ωi(1 − p))1/2− p + ωip(2ωi(1 − p))p− 1/2−p;
(3) if |σi|≤ τGST then
(4) δi � 0;
(5) else
(6) δk

i � |σi|;
(7) for k � 1: J do
(8) δk+1 � |σi| − ωip(δk

i )p− 1;
(9) k⟵ k + 1;
(10) end for
(11) δi � sgn(σi)δ

k
i ;

(12) end if
(13) Δ � diag(δ1, δ2, . . . , δr);
(14) end for
(15) Output Z∗ � UΔV⊤.

ALGORITHM 1: Solving subproblem (13) by GST.
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Start

Input: Noisy image y, estimate noise levels, iteration numbers K2,
ADMM iteration numbers K1.

Initialization: x0 = y, y0 = x, k2 = 1, n = 1

k2 ≤ K2

n ≤ N

Extracting N key patches yN–1 form yk2

Finding similar patches of yn to form Yn

Initialization:X0 = Z0 = ^0, ρ > 0, k = 1.

k ≤ K1

Updating: Xk+1 by (12).

Updating: Zk+1 by (13).

Updating: ^k+1 by (14).

Updating: ρk+1 by (15). k = k + 1

Aggregate {Xn}N
n to form the eatimated denoised image xk1.

Output: xk2

Stop

k2 = k2 + 1

Y

N

Figure 1: Te fowchart of our algorithm.
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W1 Y − Xk( 􏼁W2
����

����
2
F

+ Zk
����

����
p

w,Sp

� L Xk,Zk,Λk−1, ρk−1( 􏼁 −〈Λk−1,Xk − Zk〉 −
ρk−1

2
Xk − Zk

����
����
2
F

� L Xk,Zk,Λk−1, ρk−1( 􏼁 −〈Λk−1,
Λk − Λk−1( 􏼁

ρk−1
〉 −

ρk−1

2
Λk − Λk−1

ρk−1

��������

��������

2

F

� L Xk,Zk,Λk−1, ρk−1( 􏼁 +
Λk−1

����
����
2
F

− Λk
����

����
2
F

2ρk−1
.

(26)

Since L(Xk,Zk,Λk−1, ρk−1) and Λk􏼈 􏼉 are upper
bounded, the sequence W1(Y − Xk)W2􏼈 􏼉 and Zk are
also bounded. Since Xk+1 � Zk+1 + (Λk+1 − Λk)/ρk,
we can deduce that the sequence Xk􏼈 􏼉 is upper
bounded as well. As a result, Xk,Zk􏼈 􏼉 have at least
one accumulation point. Ten, we obtain

lim
k⟶+∞

Xk+1 − Zk+1
����

����F
� lim

k⟶+∞

1
ρk

Λk+1 − Λk
����

����F
� 0.

(27)

Consequently, the convergence criterion of equation
(a) is proved.

(4) In the fourth step, we prove the convergence crite-
rion of equation (b). As defned in Section 3.3 and
Xk � 1/ρk−1(Λk − Λk−1) + Zk, we have

lim
k⟶∞

Xk+1 − Xk

����
����F

� lim
k⟶∞

vec− 1 IM ⊗A + BT ⊗ I3p2􏼐 􏼑
− 1
vec(C)􏼒 􏼓 − ρ−1

k−1 Λk − Λk−1( 􏼁 − Zk

������

������
F

Input: Noisy matrix Y, weight matrix W1,W2, μ> 1, iteration threshold K1;
Initialize: X0 � Z0 � Λ0 � 0, ρ0 > 0, k � 0, isStop � False;
(1) while isStop� � False do
(2) update X by (12);
(3) update Z by (13);
(4) update Λ by (14);
(5) update ρ by (15);
(6) k⟵ k+ 1;
(7) end while
(8) if (Convergence criterion is satisfed) && (k≤K1) then
(9) isStop⟵ True;
(10) end if
Output: Denoised patch X∗.

ALGORITHM 2: Solving multi-weighted Schatten p-norm minimization via ADMM.
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� lim
k⟶∞

vec− 1 IM ⊗A + BT ⊗ I3p2􏼐 􏼑
− 1
vec W⊤1W1Yk − W⊤1W1Zk +

ρk
2
Zk −

1
2
Λk􏼒 􏼓 W2W

T
2􏼐 􏼑

− 1
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�������F
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����������
F

� 0.

(28)

(5) At last, we prove the convergence criterion of
equation (c).

lim
k⟶∞

Zk+1 − Zk
����

����F
� lim

k⟶∞
ρ−1
k Λk − ρ−1

k Λk+1 + Xk+1 − Zk
����

����F
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k⟶∞
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k Λk+1

����F
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􏽘
i

ρ−1
k−1Jwi

���������

���������
F
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����
����

+ ρ−1
k−1Λk−1 − ρ−1

k Λk + ρ−1
k Lk+1

����
����F

� 0.

(29)

Tis completes the proof of Teorem 1.
Teorem 1 explains that the sequences of variables

generated by Algorithm 2 are bounded and converge to their
respective stationary points. Consequently, the convergence
of Algorithm 2 can be established. □

4. Experimental Results

In our study, we conduct an extensive evaluation of the
proposed model on three real noisy color image datasets. To
assess the efectiveness of our proposed model, we compared
it with seven state-of-the-art models, including CBM3D
[46], MCWNNM [20], MCWSNM [21], Denoising Con-
volutional Neural Network (DnCNN) [13], Fast and Flexible
Denoising Network (FFDNet) [24], Guided Image
Denoising (GID) [51], and Neat Image (NI) [52]. Notably, all
experiments (except NI) are conducted on a desktop
computer running MATLAB R2020a, with a Windows 11
operating system, 2.90GHz Intel i7-10700 CPU, and 16GB
RAM. Meanwhile, NI uses the latest release version available
on its ofcial website, and the experiments are implemented
in standalone software on the same device.

Te next content is organized as follows. In Section 4.1,
we present the details of the three used real color image
datasets, and the evaluation criteria of the denoised image
are discussed in Section 4.2. Ten, we present the parameter
settings of the proposed algorithm in Section 4.3. Finally, in
Section 4.4, we show the denoised results of all compared
experiments.

4.1.DescriptionofDatasets. Obtaining ground-truth data for
a dataset of real color images can be challenging due to the
unavoidable noise generated during the image acquisition
process. Currently, one of the most widely used methods for
generating ground-truth is to capture multiple photos of the
same scene under diferent camera settings and lighting
conditions and then average them to produce a high-quality
image that serves as the ground truth.

In order to evaluate the performance of image denoising,
we utilize three widely recognized and commonly used color
image datasets. Each of these datasets is distinct in its
characteristics and presents unique challenges for denoising
algorithms. Te detailed description of these datasets is as
follows.

(1) Dataset 1: Te Noise Clinic (https://www.ipol.im/
pub/art/2015/125/) dataset [47] comprises numerous
realistic noise images captured in an uncontrolled
outdoor environment, featuring both gray and color
images. In our experiments, we selected 12 real color
images, as illustrated in Figure 2, and cropped them
into squares of equal size. However, it should be
noted that this dataset does not have a ground-truth
reference.

(2) Dataset 2: To improve the training of their model, the
authors in [53] created a real image dataset (http://
snam.ml/research/ccnoise), comprising 11 indoor
scenes, with 500 images each. To obtain noise-free
images, the authors computed the mean image of
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each scene as the ground truth. Due to the large size
of the original images (7360 × 4912 pixels), the
dataset was cropped to 15 smaller images with a size
of 512 × 512 for the experiment. Tis dataset is
available in PNG format and includes generated
ground-truth references for evaluation purposes.

(3) Dataset 3: Te PolyU (https://github.com/csjunxu/
PolyU-Real-World-Noisy-Images-Dataset) dataset
[54] is a sizable repository of real-world noisy im-
ages, each of which has been paired with a reasonably
obtained corresponding “ground-truth” image.
Similar to dataset 2, the fundamental concept of this
dataset is to capture a constant scene multiple times
and generate a mean image to be the approximate
representation of the ground truth. Tis dataset is
available in JPG format with a size of 512 × 512.

By utilizing these datasets, we can comprehensively
evaluate the performance of our image denoising method
and compare it with other state-of-the-art denoising
approaches.

4.2. Assessment Criteria for Denoising Results. We evaluate
the efcacy of denoising methods using two widely used
standards: peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM), which are defned in equations (30)
and (31). Higher PSNR and SSIM values indicate a better
denoising performance in comparison to the approximated
ground truth. However, it should be noted that for dataset 1,
the evaluation can only be based on visual inspection due to
the unavailability of the ground truth.

PSNR(x, y) � 10 × log10
MAX2

I

MSE(x, y)
􏼠 􏼡, (30)

SSIM(x, y) �
2μxμy + c1􏼐 􏼑 2σxy + c2􏼐 􏼑

μ2x + μ2y + c1􏼐 􏼑 σ2x + σ2y + c2􏼐 􏼑
, (31)

where

MSE(x, y) �
1
mn

􏽘

m−1

i�0
􏽘

n−1

j�0
xi,j − yi,j􏽨 􏽩

2
, (32)

is the mean square error of x and y. MAXI is the maximum
possible pixel value for the image. For the color image in our
experiments, the value is set to 255. x, y denotes the pixel

value matrix of clean image and denoised image with size of
m × n. μx, μy and σ2x, σ

2
y are mean value and variance of x and

y, respectively. σxy is the covariance of x and y.

4.3. Experimental Settings. Te crucial parameters in our
method are confgured as follows. Specifcally, for dataset 1, we
set the number of iterations K2 � 1, while K2 � 2 for the
second and third datasets. Additionally, the parameterp for the
weighted Schatten p-norm is set to p � 0.9 and p � 0.99 for
the frst and second/third datasets, respectively. Te remaining
parameters are maintained consistently across all datasets,
where the patch size is 7 × 7, the number of iterations K1 � 10,
the size of the search window is 40 × 40, the number of similar
patches is M � 70, the constant for the weight vector c � 2

�
2

√
,

and the updating parameter μ is set to 1.001.
Apart from NI, which is a standalone software program,

all other denoising methods require the input noise level to
be specifed. In the experiments, we utilize Chen’s method
[45] to predict the noise level of the real image, which is then
used as input to the denoising methods. For methods such as
CBM3D that only require a single noise level, we set this
value as σ �

��������������
mean(σ2r , σ2g, σ2b)

􏽱
. Regarding the noise stan-

dard deviation of patches in our algorithm, we initialize it as
σm � σ and then update it using the following equation:

σm �

��������������������

max 0, σ2 − ym − xm

����
����
2
2􏼒 􏼓

􏽲

, (33)

where ‖·‖2 is the Euclidean norm.

4.4. Experiments on the Real Noise Datasets. Due to the lack
of ground truth, we can only judge the denoising efect of
the methods from the visual inspection in dataset 1. Fig-
ure 3 presents the “frog” image from dataset 1, which is
contaminated by near-uniform, slight noise. From the
results, we can observe that all algorithms except NI
demonstrate signifcant denoising efects. DnCNN,
FFDNet, CBM3D, and GID show some remaining noise
residue, while MCWSNM results in a loss of image details.
In contrast, MCWNNM and our proposed algorithm
produce superior visual results with minimal noise residue.
Figure 4 illustrates the “dog” image from Dataset 1. Te
visual results in Figure 4 indicate that CBM3D, GID,
DnCNN, FFDNet, and NI exhibit noticeable noise re-
siduals. MCWSNM sacrifces some of the image details in

Figure 2: Te scene of dataset 1: the 12 test images cropped from NC12 dataset.
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the eye area, and MCWNNM overly smooths the image. In
contrast, our proposed method obtains the best visual
results with abundant details.

Figure 5 displays an image captured by a Canon 5D
camera with ISO � 3200. It is evident from the results that
CBM3D, DnCNN, and FFDNet failed to efectively remove
the noise. NI just removes a small part of the noise. GID
removes most of the noise, while a small portion of noise
still remained. Tough MCWNNM and MCWSNM
manage to attain respectable denoising outcomes, they
compromise texture details noticeably. In contrast, our
proposed algorithm secures the highest numerical results,
successfully eliminating noise while simultaneously con-
serving a higher degree of intricate details. Figure 6 depicts
the image captured by Nikon D800. Te results show that
CBM3D, NI, DnCNN, and FFDNet did not achieve sat-
isfactory denoising results. In addition, GID yields
a blurring efect. In comparison, while the denoising
outcomes of MCWNNM and MCWSNM are commend-
able, they encounter challenges in recovering intricate
details. Conversely, our algorithm excels in both detail
recovery and denoising efectiveness, yielding the highest
PSNR value.

Te comparison of denoising methods on datasets 2 and
3 is facilitated by the availability of ground truth, enabling
numerical evaluation of their performance. Tables 1 and 2
present the PSNR and SSIM values of the competing models,
respectively, with the highest values highlighted in bold. It
can be seen that our proposed model outperforms other
models in terms of PSNR and SSIM for most images in both
datasets. However, it should be noted that FFDNet, which is
designed as a deep neural network for color image denoising,
does not perform well on both datasets, indicating that
neural network methods can be overly reliant on the training
dataset. Additionally, NI, a commercial software program,
exhibits varying levels of denoising performance across
diferent images. CBM3D and DnCNN, on the other hand,
are methods specially designed to remove AWGN noise and
are therefore not well suited for denoising real color images.
GID is a denoising method tailored for real color images, but
its performance only outperforms other models on a few
images. Te most similar models to our proposed method
are MCWNNM and MCWSNM, and the experimental re-
sults demonstrate that by considering the noise diferences
between diferent patches, superior denoising performance
can be achieved.

Real Image

(a) CBM3D (b) MCWNNM (c) MCWSNM (d) GID

(e) DnCNN (f) FFDNet (g) NI (h) Proposed

Figure 3: Denoised images of the real noisy image “frog” in dataset 1 by diferent methods. Te ground truth of the noisy input is not
available.

Real Image

(a) CBM3D (b) MCWNNM (c) MCWSNM (d) GID

(e) DnCNN (f) FFDNet (g) NI (h) Proposed

Figure 4: Denoised images of the real noisy image “dog” in dataset 1 by diferent methods. Te ground truth of the noisy input is not
available.
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(b)(a) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: Denoised images of the real noisy image (Canon 5D (1)) in dataset 2 by diferent methods. (a) Mean image Canon 5D. (b) Real
image (noised). (c) CBM3D PSNR: 37.002 dB. (d) MCWNNMPSNR: 41.201 dB. (e) MCWSNMPSNR: 41.220 dB. (f ) GID PSNR: 40.817 dB.
(g) DnCNN PSNR: 37.624 dB. (h) FFDNet PSNR: 37.627 dB. (i) NI PSNR: 38.384 dB. (j) Proposed PSNR:  1.395 dB.

(b)(a) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Denoised images of the real noisy image (Nikon D500) by diferent methods. (a) Mean image Nikon D800. (b) Real image
(noised). (c) CBM3D PSNR: 33.816 dB. (d) MCWNNM PSNR: 39.190 dB. (e) MCWSNM PSNR: 39.092 dB. (f ) GID PSNR: 38.545 dB.
(g) DnCNN PSNR: 33.930 dB. (h) FFDNet PSNR: 33.874 dB. (i) NI PSNR: 34.124 dB. (j) Proposed PSNR: 39.323 dB.

Table 1: PSNR (dB) and SSIM results of all competing models on dataset 2.

Image CBM3D MCWNNM MCWSNM GID DnCNN FFDNet NI Proposed
PSNR
Canon 5D (3) 34.502 36.480 36.985 36.924 34.651 34.599 35.660 37.022
Nikon D600 (6) 35.313 39.563 39.526 38.675 35.431 35.384 39.090 39.728
Nikon D800 (9) 35.246 39.539 39.390 39.198 35.358 35.302 38.817 39.391
Nikon D800 (12) 33.284 39.416 39.519 37.643 33.359 33.338 38.384 39.754
Nikon D800 (15) 30.059 33.965 33.777 32.961 30.125 30.113 32.590 33.944
Average 33.681 37.793 37.840 37.080 33.785 33.747 36.908 37.968

SSIM
Canon 5D (3) 0.9346 0.9634 0.9670 0.9687 0.9367 0.9350 0.9546 0.9683
Nikon D600 (6) 0.8721 0.9711 0.9710 0.9624 0.8740 0.8747 0.9550 0.9720
Nikon D800 (9) 0.8693 0.9561 0.956 0.9532 0.8729 0.8714 0.9368 0.956 
Nikon D800 (12) 0.7874 0.9591 0.9599 0.9382 0.7909 0.7898 0.9275 0.9616
Nikon D800 (15) 0.7939 0.9215 0.9167 0.8980 0.7974 0.7963 0.8827 0.9205
Average 0.8515 0.9542 0.9542 0.9441 0.8544 0.8534 0.9313 0.9558

Te frst column of the table represents the camera settings.
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5. Conclusion

Te noise distribution in real-world images varies not only
between color channels but also spatially within each patch.
Building upon this observation, in this paper, we proposed
a new real-world color image denoising model. Te model
employed a multi-weighted strategy to denoise images by
utilizing nonconvex weighted Schatten p-norm minimization.
Specifcally, a new weight matrix was introduced into
MCWSNM to balance noise diferences between patches. Since
the proposed model is nonconvex, and without an analytical
solution, we developed an accurate and efcient optimization
algorithm based on ADMM framework to solve the proposed
model. In addition, the theoretical convergence analysis of the
optimization algorithm was also provided. Finally, the ex-
periments on three real-world noisy image datasets demon-
strated superior performance of the proposedmodel compared
to state-of-the-art methods. In our future work, we will focus
on modeling more complex statistical properties of noise and
further improving real-world color image denoising.
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