
Research Article
Application of Deep Neural Network with Frequency Domain
Filtering in the Field of Intrusion Detection

ZhendongWang,1 JingfeiLi ,1ZhenyuXu,2ShuxinYang,1DaojingHe,3 andSammyChan4

1School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
3School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
4Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Correspondence should be addressed to Jingfei Li; 6120210180@mail.jxust.edu.cn

Received 27 June 2023; Revised 29 October 2023; Accepted 2 November 2023; Published 16 November 2023

Academic Editor: Alexander Hošovský

Copyright © 2023 Zhendong Wang et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In the feld of intrusion detection, existing deep learning algorithms have limited capability to efectively represent network data
features, making it challenging to model the complex mapping relationship between network data and attack behavior. Tis
limitation, in turn, impacts the detection accuracy of intrusion detection systems. To address this issue and further enhance
detection accuracy, this paper proposes an algorithm called the Fourier Neural Network (FNN). Te core of FNN consists of
a Deep Fourier Neural Network Block (DFNNB), which is composed of a Hadamard Neural Network (HNN) and a Fourier
Neural Network Layer (FNNL). In a DFNNB, the HNN is responsible for sampling the network intrusion data samples in diferent
time domain spaces.Te FNNL, on the other hand, performs a Fourier transform on the samples outputted by the HNN andmaps
them to the frequency domain space, followed by a fltering process. Finally, the data processed by fltering are transformed back to
the time domain space for subsequent feature extraction work by the DFNNB. Additionally, to enhance the algorithm’s detection
accuracy and flter out noise signals, this paper also introduces a High-energy Filtering Process (HFP), which eliminates noise
signals from the data signal and reduces interference on the fnal detection result. Due to the ability of FNN to process network
data in both the time domain space and the frequency domain space, it possesses a stronger capability in expressing data features.
Finally, this paper conducts performance evaluations on the KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017 datasets.
Te results demonstrate that the proposed FNN-based IDS model achieves higher detection rates, lower false alarm rates, and
better detection performance than classical deep learning and machine learning methods.

1. Introduction

With the arrival of the information age, the Internet has
undergone signifcant development as an important pro-
duction tool and has gradually permeated all aspects of the
national economy and social functioning. Te Internet has
long been recognized as one of the most critical in-
frastructures in every country, highlighting the importance
of network security. Te primary threat to network security
is the intrusion of information systems through the network.
Te process of identifying and detecting intrusion behavior,
whether attempted, ongoing, or completed, is known as
intrusion detection [1]. Te core concept of intrusion

detection is to analyze collected network data to distinguish
between normal and intrusive data, and subsequently
identify unsafe network behavior. However, with the con-
tinuous advancement of network technology, the level of
attacker techniques has been improving, making it in-
creasingly difcult to distinguish between abnormal and
normal behavioral data, and network attacks are becoming
increasingly covert. In the face of the escalating level of
network attacks, existing intrusion detection technology is
gradually exhibiting shortcomings, including lower accu-
racy, higher false positive rates, and difculties in efectively
diferentiating the characteristic data of normal and ab-
normal samples.

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 8825587, 33 pages
https://doi.org/10.1155/2023/8825587

https://orcid.org/0009-0008-7095-9096
mailto:6120210180@mail.jxust.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8825587

Commonly used intrusion detection techniques include
attack detection techniques based on statistical methods [2],
intrusion detection methods based on expert systems [3], and
methods based on machine learning and deep learning [4–8].
Te main advantage of statistical methods is their ability to
“learn” user habits, resulting in high detection rates and us-
ability. However, this “learning” ability also provides intruders
with the opportunity to gradually “train” intrusion events to
mimic normal statistical patterns, leading to the failure of in-
trusion detection systems.Te efectiveness of expert systems in
preventing intrusion behavior relies on the completeness of the
knowledge base, which is often impractical to achieve for large
network systems. Due to the inherent incompleteness of expert
system rules, expert systems alone are no longer suitable for
intrusion detection, especially with the continuous development
of network intrusion technology. Traditional machine learning
methods often require extensive upfront feature engineering
work, which relies heavily on expert knowledge. Te quality of
feature engineering has a signifcant impact on the efectiveness
of the algorithm, making it susceptible to human factors.

Te concept of deep learning was frst introduced by
Professor G.E. Hinton at the University of Toronto in 2006
[9]. Te network structure of deep learning consists of a large
number of individual components called neurons. Each
neuron is connected to other neurons, and the strength of the
connections between neurons is determined by weights that
can be optimized during the learning process to determine the
performance of the neural network. Deep learning algo-
rithms, also known as deep neural networks (DNNs) [10],
have gained signifcant attention in recent years as a new
research direction in the feld of machine learning. Deep
neural networks have made breakthroughs in various ap-
plications, including speech recognition and computer vision
[11–15]. Network intrusion data difers from speech, text, and
image data in that its feature values do not exhibit obvious
correlations. Speech and text data are examples of time series
data. Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) models can efectively process this
type of data by capturing the interrelationships between
feature values over time [16–20]. Image data exhibit a prop-
erty known as translation invariance, and the use of con-
volutional neural networks (CNNs) can be highly efective in
processing image data by leveraging this property [21–23].
Tere is no fxed, stable, universal a priori knowledge known
to humans that governs the relationships between feature data
in network intrusion data. Tis knowledge evolves with the
development of Internet technology and is infuenced by the
skill level and attack techniques employed by attackers. Since
network intrusion data difer from image data and time series
data, mainstream neural networks such as CNN, RNN, and
LSTM are not well suited for handling network intrusion
data. Tis limitation afects the ability of deep learning al-
gorithms to efectively capture the features of network data. In
other words, intrusion detection models based on traditional
CNN, RNN, and LSTM have limited feature expression ca-
pabilities and struggle to accurately model the complex
mapping relationship between network data and attack be-
haviors. Te more complex the mapping relationship that

a model can capture between network data and attack be-
haviors, the more promising it is in distinguishing intricate
and covert network intrusion behaviors. In essence, a more
expressive model is capable of accurately discerning network
intrusion data. To uncover the underlying patterns within the
intricate and dynamic network intrusion data, we propose
a Fourier Neural Network (FNN) with enhanced data pro-
cessing capabilities and an expanded data mapping space.

Te core of FNN is the Deep Fourier Neural Network
Block (DFNNB), which consists of the Hadamard Neural
Network (HNN) and the Fourier Neural Network Layer
(FNNL). To apply FNN to the feld of intrusion detection,
this paper frst designs a Hadamard Neural Network (HNN)
that combines the dot product operation of matrices with the
Hadamard product operation. By using HNN, the algorithm
can efectively ft the network intrusion data in the multi-
temporal space of the sample Xt, thereby enhancing the
ability to represent data features. Once Xt is obtained, the
frequency spectrum Xf in the frequency domain space is
computed by applying a fast Fourier transform to Xt using
FNNL. To perform efective fltering operations on the data
signal, this paper introduces the High-energy Filtering
Process (HFP) to flter Xf and obtain the high-energy
spectrum Xhf. Subsequently, Xhf is inverse transformed us-
ing the Fast Fourier Transform to obtain high-energy time
domain feature data Xht. Finally, Xht is summed, com-
pressed, and input into a fully connected neural network for
classifcation. By stacking multiple layers of DFNNB, the
FNN can achieve a more powerful mapping ability, thereby
enhancing its performance on complex data.

Overall, we contribute to the intrusion detection feld as
follows:

(1) Te Hadamard Neural Network (HNN) is proposed,
which can efectively enhance the data dimensions
and provide a new method for future applications
that require data dimension enhancement. HNN
assigns diferent weights to the network intrusion
data samples to obtain the sample matrix X under
diferent weights. Ten, it performs the Hadamard
product operation between X and a weight matrixW
with the same dimension as X. Tis process enables
the sampling of network intrusion data samples in
diferent time domain spaces Xt.

(2) Te Fourier Neural Network Layer (FNNL) is pro-
posed to integrate the Fourier transform with the
neural network algorithm. FNNL transforms the
feature data of network intrusion data into the
frequency domain for processing, and then applies
inverse Fourier transform to convert the processed
frequency domain data back to the time domain.
Tis process efectively enhances the feature ex-
traction capability of the neural network algorithm
for complex data, thereby improving its ability to
handle network intrusion data.

(3) Te High-energy Filtering Process (HFP) is designed
to efectively process frequency domain data. It has
the capability to automatically flter out weak noise

2 International Journal of Intelligent Systems

signals, thereby reducing their impact on the fnal
performance of the neural network.

(4) In order to validate the efectiveness of our proposed
method, we conduct experimental tests on the FNN
using network intrusion datasets such as KDD
Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017.
We evaluate the performance of the FNN using
multiple evaluation metrics and compare its per-
formance with various machine learning and deep
learning algorithms.

Te paper is organized as follows: Section 2 introduces
the related work; Section 3 provides a general introduction
to FNN; Section 4 ofers a detailed description of the
components of FNN and analyzes the back propagation of
gradient information in the DFNNB; Section 5 elaborates on
the steps of intrusion detection using FNN; Section 6 ex-
plains the intrusion detection datasets; Section 7 presents the
evaluation criteria for the experiment; Section 8 showcases
the experimental results and analyzes the model perfor-
mance; fnally, Section 9 summarizes the entire paper and
provides an outlook on future research directions for FNN.

2. Related Work

In recent years, machine learning (ML) and deep learning
(DL) algorithms have emerged as the predominant and
efcacious models for numerous data processing applica-
tions. Notably, ML algorithms have found widespread uti-
lization in the realm of intrusion detection. Tis section
presents an overview of ML and DL algorithms employed in
intrusion detection, with a specifc focus on the KDDCUP99,
NSL-KDD, UNSW-NB15, and CICIDS2017 datasets. Te
common ML algorithms utilized in intrusion detection
encompass support vector machine (SVM), logistic re-
gression (LR), decision tree (DT), Plain Bayes, random forest
(RF), K nearest neighbors (KNN), and artifcial neural
network (NN). By optimizing these classical ML algorithms
at various levels, the performance of intrusion detection
systems can be signifcantly enhanced.

Jan et al. [24] used SVM based IDS on CICIDS2017
dataset and achieved 98% accuracy. Safaldin et al. [25]
proposed an intrusion detection method using Improved
Binary Grey Wolf Optimizer (GWOSVM-IDS) and got 96%
accuracy on NSL-KDD dataset but the detection time of this
method is very long. Ponmalar and Dhanakotid [26]
combined ensemble support vector machine (SVM) with
Chaos Game Optimization (CGO) algorithm. Te proposed
ESVM algorithm was employed for classifcation prediction
on the UNSW-NB15 dataset, while the CGO algorithm was
utilized to fne-tune the parameters of ESVM, thereby en-
hancing the accuracy and reducing the occurrence of false
positives. Boahen et al. [27] proposed a diversity enhance-
ment strategy based on Improved Particle Swarm Optimi-
zation (PSO) algorithm, Gravitational Search Algorithm
(GSA) and used to optimize a Random Forest classifer with
98.92% detection accuracy. Ding et al. [28] designed a KNN-
based undersampling mechanism and a generative adver-
sarial network model for oversampling attack samples. Te

model undersamples normal trafc samples and over-
samples attack trafc, thus balancing the dataset, but its
detection rate is not signifcantly improved. Yousefnezhad
et al. [29] employed KNN and SVM for multiclassifcation
and used Dempster–Shafer method to combine multiple
outputs. Gu and Lu [7] applied Naive Bayes feature em-
bedding to the original data to obtain new high-quality
training data and used a support vector machine to con-
struct an intrusion detection classifer. However, the method
is sensitive to data noise and may afect the efectiveness of
the feature transformation if noise is present in the data. In
the context of intrusion detection, a substantial number of
features and data are typically involved. By employing
feature selection techniques [30], the quantity of features can
be reduced, thereby diminishing the computational costs
associated with training and testing deep learning models.
From the wide array of techniques and algorithms that have
been developed, intelligent optimization algorithms [31]
have proven successful in identifying themost representative
and signifcant features, consequently reducing the di-
mensionality of the feature space. Tis reduction in di-
mensionality serves to enhance the performance and
efciency of intrusion detection systems. Alazab et al. [32]
used Moth Flame Optimization (MFO) method as a search
algorithm and decision tree (DT) as an evaluation algorithm
to generate an efective subset of features for intrusion
detection systems. Halim et al. [33] used a modifed genetic
algorithm (GA) to search for the best features and performed
classifcation experiments on three machine models, namely
SVM, kNN, and XgBoost. Tey designed a novel objective
function for the GA which assigns ftness values to in-
dividuals in the GA population to be able to select the
chromosomes that represent the best set of features, but the
algorithm runs slowly due to multiple iterations and re-
production operations.

Although many literature works prove that intrusion
detection methods based on traditional machine learning
algorithms are indeed efective, these methods still sufer
from the following drawbacks: (1) Traditional machine
learning methods usually require human intervention and
expertise when performing feature extraction. In intrusion
detection, determining an efective feature set is challenging
because intrusion behaviors can be dynamic and diverse,
making it difcult to capture all intrusion patterns. (2)
Traditional machine learning methods may take longer to
complete training and prediction. In addition, some com-
plex machine learning algorithms, such as SVM and DT,
may be more expensive in terms of computational cost. (3)
Intrusion detection data usually have high-dimensional
features, and traditional machine learning methods may
encounter dimensionality catastrophe problems when
dealing with high-dimensional data, and it is difcult to
extract information about the nonlinear features in the data,
which results in a degradation of the model’s performance.
Given the limitations of ML algorithms and their variants, as
well as the emergence of deep learning, recent advancements
in DL algorithms have been applied to the feld of intrusion
detection. Tese include deep neural networks (DNNs),
recurrent neural networks (RNNs), convolutional neural

International Journal of Intelligent Systems 3

networks (CNNs), and deep belief networks (DBNs). Unlike
traditional machine learning methods, deep learning
methods can efectively extract the underlying patterns in
sample feature data by constructing multilayer nonlinear
network structures. Consequently, deep learning exhibits
superior capability in learning and predicting high-
dimensional feature data compared to traditional machine
learning methods.

Takkar and Lohiya [34] proposed a novel feature se-
lection technique that combines statistical signifcance based
on standard deviation and the diference between mean and
median. Tey also employed deep neural networks (DNNs)
to learn and derive patterns in simplifed subsets of features.
However, it should be noted that the presence of noise in the
data may signifcantly impact the computational results and
lead to instability in feature selection. Riyaz and Ganapathy
[35] achieved an accuracy of 98.8% on the KDDCUP99
dataset using CNN. Fu and Zhang [36] introduced a feature
fusion technique based on gradient importance enhance-
ment. Tey employed ResNet-18 as the detection model and
incorporated feature fusion at each layer during training.
Additionally, they applied feature enhancement at the last
layer of the classifcation network before forwarding the data
to the fully connected layer for classifcation. It is worth
mentioning that the training and inference process of CNNs
typically demands substantial computational resources,
particularly when dealing with large-scale datasets and
complex model structures. Tis limitation may restrict the
application of CNN in resource-constrained intrusion de-
tection environments. Ravi et al. [37] conducted a detailed
study on recurrent deep learning models. Tey employed
a sequential feature fusion technique to combine the
functionalities of diferent layers in the network, specifcally
on the RNN, LSTM, and GRU hidden layer features. Sub-
sequently, the fused features from the recurrent hidden layer
were forwarded to an integrated meta-classifer for classi-
fcation. However, recurrent deep learning models exhibit
slower training and testing times compared to CNNs,
particularly when processing larger datasets. Moreover, they
encounter limitations when addressing the issue of attack
class imbalance. Wang et al. [38] introduced an intrusion
detection model that leverages Improved deep belief net-
works (DBNs) employ a kernel-based extreme learning
machine (KELM) with supervised learning capability, as an
alternative to the BP algorithm in DBNs. Experimental
evaluations were conducted on the KDDCUP99, NSL-KDD,
UNSW-NB15, and CICIDS2017 datasets, demonstrating the
robustness of the proposed approach.

By applying optimization algorithms to the engineering
design problem of intrusion detection systems [39], it is
possible to identify globally optimal intrusion detection
model structures or parameters that can adapt to various
network environments and intrusion behaviors [40]. Kanna
and Santhi [41] combined Hierarchical Multiscale LSTM
(HMLSTM) and CNN to efectively extract and learn spa-
tiotemporal features. Tey also employed a novel meta-
heuristic method called Lion Swarm Optimization to fne-
tune the hyperparameters of the model, thereby enhancing

the learning rate of spatial features. In their other proposed
deep network model, BWO-CONV-LSTM, Kanna and
Santhi [42] utilized the Black Widow Optimization (BWO)
algorithm to optimize the hyperparameters and achieve the
desired architecture. However, their experiments were
limited to binary classifcation and did not consider the
detection of specifc attack types. Balasubramaniam et al.
[43] proposed the Gradient Hybrid Leader Optimization
(GHLBO) algorithm to train Deep Stacked Autoencoders
(DSAs) for efective DDoS attack detection. Yang et al. [44]
introduced a hybrid partitioning strategy in the Negative
Selection Algorithms (NSAs), which divides the feature
space into grids based on the density of sample distributions.
Tis strategy generates specifc candidate detectors in the
boundary grids to efectively mitigate vulnerabilities caused
by boundary diversity. Finally, the NSA is enhanced through
self-clustering and a novel gray wolf optimizer, enabling
adaptive adjustment of detector radius and position.

Te use of deep learning methods in solving the in-
trusion detection problem has been shown in current re-
search to compensate for the limitations of shallow machine
learning techniques in detecting high-dimensional data and
extracting nonlinear feature information. Table 1 provides
a chronological summary of the approaches discussed in the
related literature in this section. However, deep learning-
based intrusion detection techniques still have the following
limitations: (1) they require a large number of parameters to
be trained, resulting in high time and space costs for running
the models. Currently, parallel processing with multiple
GPUs is often needed to handle large-scale data; (2) when
the model becomes too deep, it can lead to the vanishing or
exploding gradient problems due to the long back propa-
gation path during gradient descent; (3) existing deep
learning algorithms are primarily designed for solving
problems in other domains, while network trafc exhibits
characteristics of large scale and high dimensionality, and
network intrusion trafc is characterized by hidden di-
versity. As a result, many existing deep learning models are
not fully suitable for the feld of intrusion detection.With the
development of information technology, network intrusion
techniques have also advanced signifcantly. Network in-
trusion behaviors are becoming increasingly covert, making
it more difcult to detect diferences between network in-
trusion data and normal data. Tis paper fully considers the
complex and variable characteristics of existing network
intrusion data. Starting from improving the algorithm’s
ability to analyze data, a Fourier Neural Network (FNN) is
designed based on deep learning, which has stronger feature
extraction and representation capabilities for complex data.
Te intrusion detection model designed with FNN as the
core is end-to-end and does not require manual feature
selection. It can learn features directly from the raw data,
thereby improving classifcation performance and demon-
strating stronger generalization ability. Additionally, the
high-energy fltering process in the model can be used to
handle data noise, reducing the impact of weak noise signals
on the neural network’s fnal performance and improving
the model’s performance and robustness.

4 International Journal of Intelligent Systems

Ta
bl

e
1:

C
om

pa
ri
so
n
ta
bl
e
of

in
tr
us
io
n
de
te
ct
io
n
al
go
ri
th
m
s.

Re
fe
re
nc
es

Ye
ar

M
et
ho

ds
D
at
as
et
s

A
dv
an
ta
ge
s

Li
m
ita

tio
n

Ev
al
ua
tio

n
m
et
ri
cs

A
cc
ur
ac
y

(%
)

Pr
ec
isi
on

(%
)

Re
ca
ll

(%
)

F1 (%
)

T
ak
ka
r
an
d
Lo

hi
ya

[3
4]

20
23

D
N
N

N
SL

-K
D
D
,U

N
SW

-
N
B1

5,
C
IC

ID
S2
01
7

Le
ar
ni
ng

an
d
in
fe
rr
in
g

pa
tte

rn
s
in

sim
pl
if
ed

fe
at
ur
e

su
bs
et
s
us
in
g
D
N
N
s

T
e
ef
ec
tiv

en
es
s
of

th
e

te
ch
ni
qu

e
de
pe
nd

s
on

th
e

re
pr
es
en
ta
tiv

en
es
so

ft
he

da
ta
se
t.

If
th
e
da
ta
se
t
is
no

isy
,f
ea
tu
re

se
le
ct
io
n
m
ay

be
in
ac
cu
ra
te

99
.8
4,

89
.0
3,

99
.8
0

99
.9
4,

95
.0
0,

99
.8
5

98
.8
1,

98
.9
5,

99
.9
4

99
.3
7,

96
.9
3,

99
.8
9

Ya
ng

et
al
.[
44
]

20
23

N
SA

N
SL

-K
D
D
,U

N
SW

-
N
B1

5,
C
IC

ID
S2
01
7

So
lv
es

th
e
pr
ob

le
m

of
lo
w

bo
un

da
ry

de
te
ct
io
n
ra
te

du
e

to
th
e
di
ve
rs
ity

of
sa
m
pl
e

bo
un

da
ri
es

T
e
pr
ob

le
m

of
de
te
ct
in
g

ad
ap
tiv

e
ev
ol
ut
io
n
re
m
ai
ns

un
re
so
lv
ed

97
.6
1,

95
.7
6,

98
.6
0

96
.6
8,

94
.5
7,

99
.2
4

99
.2
3,

98
.4
6,

95
.7
3

97
.9
4,

96
.4
8,

97
.4
5

Ba
la
su
br
am

an
ia
m

et
al
.[
43
]

20
23

G
H
LB

O
+
D
SA

N
SL

-K
D
D

Pr
ov
id
es

a
m
et
ho

d
fo
r

ac
cu
ra
te
ly

de
te
ct
in
g
D
D
oS

at
ta
ck
s

N
o
ov
er
he
ad

an
al
ys
is
is

co
ns
id
er
ed
,o

nl
y
D
D
oS

at
ta
ck
s

ar
e
de
te
ct
ed

0.
91
4

—
0.
90
9

—

Po
nm

al
ar

an
d

D
ha
na
ko

ti
[2
6]

20
22

C
G
O
+
SV

M
U
N
SW

-N
B1

5
Ef

ci
en
th

an
dl
in
g
of

la
rg
e-

sc
al
e
da
ta

in
st
an
ce
s

Si
ng

le
da
ta

se
t;
it
is
sli
gh

tly
af

ec
te
d
w
ith

ha
lti
ng

fu
nc
tio

n
re
vi
sio

ns
96
.2
9

—
—

—

Bo
ah
en

et
al
.[
27
]

20
22

PC
O
+
G
SA

+
RF

N
SL

-K
D
D
,U

N
SW

-
N
B1

5

C
om

bi
ne
s
th
e
st
re
ng

th
s
of

PS
O
,G

SA
an
d
RF

to
fu
lly

ut
ili
ze

gl
ob

al
an
d
lo
ca
ls
ea
rc
h

ca
pa
bi
lit
ie
s

H
ig
he
r
co
m
pl
ex
ity

,r
eq
ui
ri
ng

so
m
e
co
m
pu

ta
tio

na
lr
es
ou

rc
es

an
d
tim

e

98
.5
6,

98
.9
6

98
.8
2,

98
.8
2

98
.7
8,

96
.8
9

98
.6
3,

98
.8
3

D
in
g
et

al
.[
28
]

20
22

K
N
N
+
G
A
N

K
D
D
C
U
P9

9,
U
N
SW

-
N
B1

5,
C
IC

ID
S2
01
7

D
ee
p
ge
ne
ra
tiv

e
m
od

el
in
g

re
pl
ac
es

tr
ad
iti
on

al
ov
er
sa
m
pl
in
g
m
et
ho

ds
an
d

so
lv
es

th
e
pr
ob

le
m

of
no

t
be
in
g
ab
le

to
ge
ne
ra
te

re
al

sa
m
pl
es

ef
ci
en
tly

N
ot

de
sig

ni
ng

a
m
or
e
ef

ci
en
t

cl
as
sif

ca
tio

n
m
od

el

93
.5
3,

92
.3
9,

95
.8
6

—
91
.3
8,

94
.0
3,

94
.7
9

95
.2
2,

94
.3
9,

95
.8
1

A
la
za
b
et

al
.[
32
]

20
22

M
FO

+
D
T

K
D
D
C
U
P9

9,
N
SL

-
K
D
D
,U

N
SW

-N
B1

5

In
cr
ea
se
d
fe
at
ur
e
sp
ac
e

ut
ili
za
tio

n
by

us
in
g
co
sin

e
sim

ila
ri
ty

m
et
ri
c
to

bi
na
ri
ze

co
nt
in
uo

us
M
FO

in
to

bi
na
ry

pr
ob

le
m
s

M
ul
tip

le
ite
ra
tio

ns
an
d

ev
al
ua
tio

ns
,r
eq
ui
ri
ng

so
m
e

co
m
pu

ta
tio

na
lr
es
ou

rc
es

an
d

tim
e

97
.8
,

89
.7
,

92
.4

—
99
.6
,

89
.1
,

92
.1

—

Ra
vi

et
al
.[
37
]

20
22

RN
N
+
LS

TM
+
G
RU

K
D
D
C
U
P9

9,
U
N
SW

-
N
B1

5,
C
IC

ID
S2
01
7

A
bi
lit
y
to

ex
tr
ac
ts

eq
ue
nt
ia
l

an
d
te
m
po

ra
lf
ea
tu
re
s
fr
om

ne
tw
or
k
tr
af

c

RN
N

m
od

el
s
re
qu

ir
e
st
ep
-b
y-

st
ep

ite
ra
tiv

e
co
m
pu

ta
tio

n
w
he
n

de
al
in
g
w
ith

lo
ng

se
qu

en
ce
s,

w
hi
ch

is
le
ss

co
m
pu

ta
tio

na
lly

ef
ci
en
t

99
.0
,

99
.0
,

99
.0

97
.0
,

99
.0
,

99
.0

99
.0
,

99
.0
,

99
.0

98
.0
,

99
.0
,

99
.0

K
an
na

an
d
Sa
nt
hi

[4
2]

20
22

C
N
N
+
LS

TM
N
SL

-K
D
D
,U

N
SW

-
N
B1

5

Le
ar
ni
ng

th
e
sp
at
ia
la

nd
te
m
po

ra
lc

ha
ra
ct
er
ist
ic
s
of

ne
tw
or
k
tr
af

c

H
ig
h
m
od

el
co
m
pl
ex
ity

,
re
qu

ir
in
g
sig

ni
fc
an
t

co
m
pu

ta
tio

na
lr
es
ou

rc
es

98
.6
7,

98
.6
6

97
.4
8,

10
0

10
0,

98
.7
7

98
.7
3,

98
.7
7

Fu
an
d
Zh

an
g
[3
6]

20
22

Re
sN

et
-1
8

N
SL

-K
D
D
,

C
IC

ID
S2
01
7

Pr
op

os
ed

fe
at
ur
e
fu
sio

n
te
ch
ni
qu

e
an
d
fe
at
ur
e

en
ha
nc
em

en
t
te
ch
ni
qu

e

T
e
pr
op

os
ed

m
od

el
do

es
no

t
ru
n
as

fa
st
as

tr
ad
iti
on

al
m
ac
hi
ne

le
ar
ni
ng

m
od

el
s

99
.8
4,

99
.7
8

99
.8
4,

99
.8
2

99
.8
4,

99
.7
9

99
.8
4,

99
.8
0

International Journal of Intelligent Systems 5

Ta
bl

e
1:

C
on

tin
ue
d.

Re
fe
re
nc
es

Ye
ar

M
et
ho

ds
D
at
as
et
s

A
dv
an
ta
ge
s

Li
m
ita

tio
n

Ev
al
ua
tio

n
m
et
ri
cs

A
cc
ur
ac
y

(%
)

Pr
ec
isi
on

(%
)

Re
ca
ll

(%
)

F1 (%
)

Sa
fa
ld
in

et
al
.[
25
]

20
21

G
W
O
+
SV

M
N
SL

-K
D
D

Re
du

ce
d
fa
lse

al
ar
m

ra
te
s
an
d

nu
m
be
r
of

fe
at
ur
es

ge
ne
ra
te
d

by
ID

S
in

W
SN

en
vi
ro
nm

en
ts

Si
ng

le
da
ta
se
t
us
ed
,h

ig
h

co
m
pu

ta
tio

na
lt
im

e
an
d
m
od

el
co
m
pl
ex
ity

96
.0
0

—
—

—

Yo
us
ef
ne
zh
ad

et
al
.

[2
9]

20
21

K
N
N
+
SV

M
N
SL

-K
D
D
,

C
IC

ID
S2
01
7

C
or
re
ct

de
ci
sio

ns
ca
n
be

st
re
ng

th
en
ed

an
d
in
co
rr
ec
t

de
ci
sio

ns
w
ea
ke
ne
d
by

in
te
gr
at
in
g
de
ci
sio

ns
fr
om

m
ul
tip

le
ex
pe
rt
s

It
ta
ke
sa

lo
ng

er
tim

e
to

co
m
pu

te
th
e
ou

tp
ut

pr
ob

ab
ili
tie
s
of

SV
M

an
d
K
N
N

99
.8
0,

98
.9
7

99
.8
3,

99
.9
0

99
.8
4,

94
.4
2

99
.8
3,

97
.0
8

G
u
an
d
Lu

[7
]

20
21

SV
M

+
nä
ıv
e
Ba

ye
s

U
N
SW

-N
B1

5,
C
IC

ID
S2
01
7

T
e
pr
op

os
ed

nä
ıv
e
Ba

ye
s

fe
at
ur
e
em

be
dd

in
g,

w
hi
ch

im
pr
ov
es

th
e
de
te
ct
io
n

ca
pa
bi
lit
y

O
nl
y
bi
na
ry

cl
as
sif

ca
tio

n
is

co
ns
id
er
ed
;d

at
a
no

ise
af

ec
ts
th
e

ef
ec
to

ff
ea
tu
re

tr
an
sf
or
m
at
io
n

93
.7
5,

98
.9
2

—
94
.7
3,

99
.4
6

—

H
al
im

et
al
.[
33
]

20
21

G
A
+
SV

M
/K

N
N
/

X
gB

oo
st

U
N
SW

-N
B1

5

8–
10

fe
at
ur
es

se
le
ct
ed

fr
om

th
e
da
ta

ca
n
so
lv
e
th
e
cu
rs
e
of

di
m
en
sio

na
lit
y
in

m
as
siv

e
da
ta
se
ts

M
ul
tip

le
re
pe
tit
io
ns

of
ite
ra
tio

n
an
d
re
pl
ic
at
io
n
op

er
at
io
ns
,

slo
w
er

co
m
pu

ta
tio

ns
96
.4
8

—
—

—

W
an
g
et

al
.[
38
]

20
21

D
BN

K
D
D
C
U
P9

9,
N
SL

-
K
D
D
,U

N
SW

-N
B-
15
,

C
IC

ID
S2
01
7

St
ab
le

cl
as
sif

ca
tio

n
pe
rf
or
m
an
ce
,i
ns
en
sit
iv
e
to

sp
ec
if
c
da
ta
se
ts

Lo
ng

tr
ai
ni
ng

tim
e
an
d
hi
gh

co
m
pu

ta
tio

na
lc

om
pl
ex
ity

98
.6
,

98
.6
,

93
.4
2,

97
.1
5

94
.0
,

93
.6
4,

82
.3
0,

96
.8
0

98
.7
3,

98
.4
0,

96
.4
,

98
.1
9

96
.3
1,

96
.0
6,

88
.7
9,

97
.4
9

K
an
na

an
d
Sa
nt
hi

[4
1]

20
21

C
N
N
+
LS

TM
N
SL

-K
D
D
,U

N
SW

-
N
B1

5

Le
ar
ni
ng

hi
er
ar
ch
ic
al

re
la
tio

ns
hi
ps

be
tw
ee
n

di
fe
re
nt

fe
at
ur
es

an
d

ex
tr
ac
tin

g
te
m
po

ra
lf
ea
tu
re
s

T
e
m
et
ho

d
m
ay

no
tp

er
fo
rm

w
el
lo

n
un

su
ita

bl
e
tr
ai
ni
ng

da
ta
se
ts

96
.3
3,

90
.6
7

10
0,

86
.7
1

95
.8
0,

95
.1
9

98
.1
3,

91
.4
6

Ri
ya
z
an
d
G
an
ap
at
hy

[3
5]

20
20

C
N
N

K
D
D
C
U
P9

9
Fa
lse

al
ar
m

ra
te

of
th
e

pr
op

os
ed

m
od

el
is
le
ss

th
an

1%

N
o
va
lid

at
io
n
of

ef
ec
ts
on

ne
w
er

da
ta
se
ts
,s
in
gl
e
ev
al
ua
tio

n
m
et
ri
cs

98
.8

—
—

—

Ja
n
et

al
.[
24
]

20
19

SV
M

C
IC

ID
S2
01
7

A
lig
ht
w
ei
gh

t
m
od

el
is

de
sig

ne
d
to

ef
ec
tiv

el
y
so
lv
e

th
e
pr
ob

le
m
s
of

re
so
ur
ce

co
ns
tr
ai
nt
s
an
d
lim

ite
d
no

de
st
or
ag
e
ca
pa
ci
ty

T
e
da
ta
se
t
is
sin

gl
e,
an
d
on

ly
bi
na
ry

cl
as
sif

ca
tio

n
is

co
ns
id
er
ed
;t
he

de
te
ct
io
n
ra
ng

e
is
to
o
sm

al
l,
an
d
fe
at
ur
es

w
ith

in
sig

ni
fc
an
t
fo

w
va
ri
at
io
ns

ar
e

ig
no

re
d

98
.0
3

—
—

—

6 International Journal of Intelligent Systems

3. Intrusion Detection Model

Te FNN-based intrusion detection model proposed in this
paper is divided into 3 main modules, and the general
framework diagram of the model is shown in Figure 1.

Data preprocessing module: (1) Conducting pre-
processing operations on the data to complete data con-
version tasks, transforming discrete data into continuous
data to meet the requirements of the input data; (2) Per-
forming data normalization operations to scale the feature
values between 0 and 1, preventing the negative impact of
signifcant diferences in feature values on the efectiveness
of deep learning; (3) Dividing the dataset into training and
testing sets.

Intrusion detection module: Construct an intrusion
detection model based on FNN. Te framework of FNN is
shown in the right half of Figure 1. Te core component of
FNN is the Deep Fourier Neural Network Block (DFNNB),
which consists of Hadamard Neural Network (HNN) and
Fourier Neural Network Layer (FNNL). FNN is composed of
n (n≧ 1) DFNNBs combined with DNNs. DFNNB is re-
sponsible for efective feature extraction of network in-
trusion data, while DNN maps the feature representation
learned by DFNNB to the sample labeling space, achieving
the goal of training classifers and learning global features of
the target. Te constructed model is trained using the
training set and saved for testing after the training is
completed.

Detection and classifcation module: use the test set to
test the trained FNN, and use the detection and classifcation
results to analyze and evaluate the model.

4. Fourier Neural Network Model

Te detailed structure of the FNN is shown in Figure 2. Te
FNN can be composed of multiple Deep Fourier Neural
Network Blocks (DFNNBs), and the detailed structure of the
DFNNB is shown in the upper part of Figure 2. Te DFNNB
processes the data as follows:

(1) Before entering the jth DFNNB, the data are trans-
formed by the DNN to a diferent feature space by
mapping the learned feature representation of the
j− 1th DFNNB, achieving a change in data dimension;

(2) Te one-dimensional dataXj− 1 � {Xj− 1[0],Xj− 1[1], . . . ,
Xj− 1[k], . . . , Xj− 1[K − 1]} (the discrete sequence Xj− 1
consists of K elements), obtained after processing by
the DNN, is input into the jth DFNNB;

(3) In the jth DFNNB, Xj− 1 is frst dimensionally ex-
panded by HNN, ftting the sampled network in-
trusion data Xt

j in the multitemporal space;
(4) After obtaining Xt

j, split Xt
j into m 1-dimensional

tensor data Xt
ij. Xt

ij denotes the ith time domain spatial
sampling of network intrusion data within the jth
DFNNB, and Xt

ij � Xt
ij[0], Xt

ij[1], . . . , Xt
ij[n], . . . ,􏽮

Xt
ij[N − 1]} (the discrete sequence Xt

ij consists of N
elements), where, 1≤ i≤m, 1≤ j≤M, m and M are
manually set hyperparameters and are taken as integers;

(5) Te Fast Fourier Transform (FFT) is performed on this
Xt

ij, respectively, to obtain m representations of the
time domain signal in the frequency domain space,
X

f
ij. X

f
ij � 􏼈X

f
ij[0], X

f
ij[1], . . . , X

f
ij[n], . . . , X

f
ij[N −

1]􏼉 (discrete sequence X
f
ij consists of N elements);

(6) X
f
ij is fltered using a high-energy fltering process

that removes the noisy mass signal to obtain the
high-energy spectrum X

hf
ij ;

(7) Using the inverse Fourier transform of the fast
Fourier transform, obtain the time domain repre-
sentation Xht

ij of X
hf
ij ;

(8) Finally, each Xht
ij is summed and compressed to

obtain a feature signal Xj that integrates the spatial
samples in each time domain, Xj is a vector where the
number of elements is the same as Xj− 1.

Similar to traditional DNN, VGG19, and VGG16, FNN
allows for a deeper exploration of data features by stacking
multiple DFNNBs. In FNN, a DNN is added at the end of
multiple DFNNB structures, enabling the mapping of fea-
ture representations learned by the DFNNBs to the sample
labeling space, thereby achieving the goal of training clas-
sifers and learning global features of the target.

4.1. HadamardNeural Network. Te top left part of Figure 2
provides a detailed illustration of the Hadamard Neural
Network structure. Based on Figure 2, it can be observed that
in the jth DFNNB, the HNN assigns diferent weightsWje to
the input data Xj− 1 to obtain the signal expansion matrix Xe

j.
Ten, a weight matrixWjh with the same shape as Xe

j is used
in the Hadamard product operation with Xe

j to ft the
network intrusion data Xt

j sampled in the multitemporal
space. Te above process can be represented by (1) and (2)
(the weights We and Wh are optimized using the back
propagation algorithm combined with the gradient descent
algorithm, and the specifc optimization process will be
elaborated in detail in the subsequent sections).

X
e
j � Xj− 1 · Wje, (1)

X
t
j � X

e
j × Wjh. (2)

In (1),Wje is a vector and the number of elements inWje
ism.m is a manually set hyperparameter. From the above, it
is clear thatm determines howmany time domain spaces the
ftted network intrusion data are sampled in.

4.2. Forward Propagation Process of Information in Fourier
Neural Network Layer. It can be seen from Figure 2 that the
forward propagation of information in FNNL mainly accom-
plishes four operations: (1) Fast Fourier Transform; (2) High-
energy Filtering Process; (3) Inverse Fast Fourier Transform
(IFFT); and (4) summation and compression process ofXht

ij .Te
following paper will introduce the above four processes in detail,
of which the process 4 operation is relatively simple, and this
paper will be introduced together with the process 3.

International Journal of Intelligent Systems 7

Data division data normalization

Training
set

Testing
set

Training FNN
model

Binary
classification

model

Multi-
classification

model

Save
model

Intrusion detection
module

………………

n Deep
Fourier Neural

Network
Blocks (n ≥ 1)

……

……

……

…
…

…
…

…
…

…
…

…
…

…
… Deep Neural

Network

Original feature
value

Frequency
conversion
eigenvalue

Classification results

Hadamard Neural
Network

Fourier neural
network layer

Fourier neural
network layer

FNN

Complete the
training

test model Display of classification
results

Detection, identification and classification

Detection and classification
module

Hadamard Neural
Network

Data preprocessing module

……

Building
FNN

Figure 1: Intrusion detection model structure diagram.

H
N

N

FN
N

L

H
N

N

FN
N

L

Cl
as

sif
ic

at
io

n
re

su
lts

H
N

N

FN
N

L

FNN

Original
feature
value

DFNNB1 DFNNB2 DFNNBM

HEP1

HEP2

HEP3

HEPm
FNNL

DFNNBj

Xmj
hf Xmj

ht

X3j
ht

X2j
ht

X1j
ht

X3j
hf

X2j
hf

X2j
f

X3j
f

X1j
hf

X1j
f

X2j
t

X3j
t

Xj
t

Xmj
t Xmj

f

X1j
t

Input:
Xj-1

Output:
Xj

HNN

D
N

N

D
N

N

D
N

N

D
N

N

D
N

N

Su
m

m
at

io
n

an
d

co
m

pr
es

sio
n

FF
T

IF
FT

M3j
f

Mmj
f

M2j
f

M1j
f

M Deep Fourier Network neural Blocks (M ≥ 1)

…

…

…
…

…

…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

Figure 2: Structural details of Fourier Neural Network.

8 International Journal of Intelligent Systems

4.2.1. Fast Fourier Transform inside FNNL. Te theory and
methods of the Fourier transform have a wide range of
applications in many disciplines such as mathematical
equations, linear system analysis, and signal processing.
Since computers can only handle discrete sequences of fnite
length, it is the discrete Fourier transform (DFT) that really
operates on computers [45].

From the above analysis, it is evident that FNNL performs
a discrete Fourier transform on Xt

ij � Xt
ij[0], Xt

ij[1],􏽮

. . . , Xt
ij[n], . . . , Xt

ij[N − 1]}. Te discrete sequence Xt
ij is

composed ofN elements, and the operation process of obtaining
X

f
ij � X

f
ij[0], X

f
ij[1], . . . , X

f
ij[k], . . . , X

f
ij[N − 1]􏽮 􏽯 through

the discrete Fourier transform of Xt
ij is represented by (3).

X
f
ij[k] � 􏽘

N− 1

n�0
X

t
ij[n]W

nk
N . (3)

In (3), Wnk
N � e− j·2·π/N·nk, e is a natural constant, j is an

imaginary unit, X
f
ij[k] is the discrete Fourier transform

amplitude, 0≦ k≦N − 1, and k is an integer. From (3), it can
be seen that calculating one X

f

ij[k] needs to complete N
times of complex multiplication and N − 1 times of complex
addition, and calculating all the values of X

f

ij[k] needs to
complete N2 times of complex multiplication and N × (N −

1) times of complex addition, and the time complexity of the
algorithm is O(N2).

In order to reduce the algorithm time complexity and the
running cost of the FNN, this paper uses the Fast Fourier
Transform (FFT) with a running time complexity of
O(N/2logN

2) within the FNNL [46]. FFT is a fast computational
method for DFT. When using FFT, control N� 2L and L is
a positive integer, which can be realized in FNNL by controlling
the number of neurons in the DNN part of DFNNB.

Te core idea of FFT is to continuously divide the se-
quence Xt

ij into two sets of sequences with the number of
elements: Xt

ij− 1 and Xt
ij− 2 according to the odd and even

nature of the positions of the elements therein, and then
perform the DFToperation on Xt

ij− 1 and Xt
ij− 2, and the above

process can be expressed by equations (4)–(6) as follows:

X
t
ij− 1[z] � X

t
ij[2z],

X
t
ij− 2[z] � X

t
ij[2z + 1],

􏼨 (4)

X
f

ij[z] � 􏽘
N/2− 1

r�0
X

t
ij− 1[z] · W

rz
N/2 + W

z
N

· 􏽘
N/2− 1

r�0
X

t
ij− 2[z] · W

rz
N/2 � X

t
1[z] + W

z
N · X

t
2[z],

(5)

X
f
ij z +

N

2
􏼔 􏼕 � 􏽘

N/2− 1

r�0
X

t
ij− 1 z +

N

2
􏼔 􏼕 · W

r·(z+N/2)
N/2

+ W
(z+N/2)
N · 􏽘

N/2− 1

r�0
X

t
ij− 2 z +

N

2
􏼔 􏼕 · W

r·(z+N/2)
N/2

� X
t
1[z] − W

z
N · X

t
2[z],

(6)

where 0≦ z≦N/2 − 1 and z is an integer, and Xt
1[z], Xt

2[z] are
the DFT transform results of Xt

ij− 1 and Xt
ij− 2, respectively.

Equations (5) and (6) together form the FFT transform result
ofXt

ij. Referring to (5) and (6) as a butterfy operation process,
the process is represented by Figure 3 as follows.

Te number of complex multiplications and additions
required to compute X

f
ij after one division of the sequence

Xt
ij is N2/2 + N/2 and N2/2, respectively, so the workload is

approximately halved by one decomposition.
According to the FFT, the elements in the sequence Xt

ij are
continuously divided into two subsequences with an equal
number of elements based on the odd and even nature of their
positions, following the rule shown in (4), until each sub-
sequence contains only one element. Ten, the butterfy oper-
ation, as illustrated in Figure 3, is performed on each
subsequence until the fnal result of the FFT transformation is
obtained. In order to illustrate the above process clearly, Figure 4
demonstrates the FFT operation with N� 8 as an example.

Tere is a specifc correspondence between the elements in
Xt

ij and the elements in Xt
ij-end. Te correspondence is as

follows: the bth element in Xt
ij-end, Xt

ij-end [b], corresponds to
the ath element in Xt

ij, Xt
ij[a]. Here, b represents the inverted

bit order of the binary encoding of a. Table 2 illustrates the
relationship between each element inXt

ij-end and each element
in the original sequence Xt

ij, using N� 8 as an example.
Te specifc implementation process can use Rader’s al-

gorithm [47–50] to obtain the correspondence between the
sequenceXt

ij-end and the elements in the sequenceXt
ij, and then

obtain the sequence Xt
ij-end. Since Rader’s algorithm has been

introduced inmany literatureworks, it will not be repeated here.
After determining the elements in the sequence Xt

ij-end
using Rader’s algorithm, X

f
ij can be obtained according to

the butterfy operation rules shown in Figures 3 and 4. Te
process can be represented by Algorithm 1.

In summary, in FNNL, the fast Fourier transform of Xt
ij,

denoted as X
f
ij, is obtained by combining the Radix algo-

rithm with butterfy operations. Tis process can be rep-
resented by (7) for simplicity.

X
f
ij � FFT X

t
ij􏼐 􏼑. (7)

4.2.2. High-Energy Filtering Process. Figure 5 illustrates the
process of obtaining X

hf
ij from X

f
ij through the high-energy

fltering process (HFP).
From Figure 5, it can be observed that before entering the

s-th high-energy fltering module, X
f
ij needs to be assigned

a coefcient vector Ms
ij � Ms

ij[0], Ms
ij[1],􏽮 . . . , Ms

ij [k], . . . ,

Ms
ij[N − 1]} for each X

f
ij � X

f
ij[0], X

f
ij[1], . . . , X

f
ij􏽮 [k], . . . ,

X
f
ij[N − 1]}. Tese coefcient vectors (Ms

ij) are determined
during the neural network training process using gradient de-
scent algorithm.

Te Hadamard product is performed between X
f
ij and

Ms
ij to obtain the primary energy wave of X

f
ij, denoted as

Zs
ij � Zs

ij[0], Zs
ij[1], . . . , Zs

ij[k], . . . , Zs
ij[N − 1]􏽮 􏽯. In the s-th

high-energy fltering module, all Zs
ij are combined to form

International Journal of Intelligent Systems 9

the primary energy wave matrix Es
j. Tis process can be

represented by (8) and (9).

Z
s
ij � X

f

ij × M
s
ij � X

f

ij[0] × M
s
ij[0], X

f

ij[1] × M
s
ij[1], . . . , X

f

ij[k] × M
s
ij[k], . . . , X

f

ij[N] × M
s
ij[N − 1]􏽨 􏽩, (8)

E
s
j �

Z
s
1j

Z
s
2j

⋮
Z

s
ij

⋮
Z

s
mj

⎡⎢⎢⎣

⎤⎥⎥⎦

�

Z
s
1j[0] Z

s
1j[1] · · · Z

s
1j[k] · · · Z

s
1j[N − 1]

Z
s
2j[0] Z

s
2j[1] · · · Z

s
2j[k] · · · Z

s
2j[N − 1]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Z

s
ij[0] Z

s
ij[1] · · · Z

s
ij[k] · · · Z

s
ij[N − 1]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Z

s
mj[0] Z

s
mj[1] · · · Z

s
mj[k] · · · Z

s
mj[N − 1]

⎡⎢⎢⎣

⎤⎥⎥⎦

. (9)

X1
t[z]

X2
t[z]

WN
-1

X2
t[z]-WN

z×X1
t[z]

X1
t[z]+WN

z×X2
t[z]

z

Figure 3: Butterfy operation process.

Xij
t={Xij

t[0],Xij
t[1],...,Xij

t[n],...,Xij
t[N-1]}

According to the rule
shown in equation (4),
continuously divide
the elements in the
sequence Xij

t into two
groups of equal size
based on their odd or
even positions until
each subgroup
contains only one
element.

Xij
t
-end={Xij

t
-end[0],Xij

t
-end[1],...,Xij

t
-end[n],...,Xij

t
-end[N-1]}

Step one

In the actual
implementation
process, it is not
necessary to follow
equation (4) to handle
the sequence Xij

t.
Instead, you can
directly use the Rader
algorithm to process
the sequence Xij

t and
obtain Xij

t
-end.

Layer 3 butterfly operationLayer 2 butterfly operation

Xij
t
-end[0]

-1

-1

-1

-1

-1 -1

-1

-1

WN
0

-1

WN
1

-1

WN
2

WN
2

WN
2

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

-1

WN
3

-1

Xij
f[1]

Xij
f[2]

Xij
f[3]

Xij
f[4]

Xij
f[5]

Xij
f[6]

Xij
f[0]

Xij
f[7]

Xij
t
-end[1]

Xij
t
-end[2]

Xij
t
-end[3]

Xij
t
-end[4]

Xij
t
-end[5]

Xij
t
-end[6]

Xij
t
-end[7]

Layer 1 butterfly operation

Group 1 butterfly
operation

Group 2 butterfly
operation

Group 3 butterfly
operation

Group 4 butterfly
operation

Group 1 butterfly
operation

Group 2 butterfly
operation

Group 1 butterfly
operation

Step two

Figure 4: An example of FFT operation process.

Table 2: Example of element relationship between Xt
ij and Xt

ij-end.

Element number b in
Xt

ij-end

Binary
representation of b

Te inverted order
of binary coding

of b

Te decimal representation
of binary code

reverse order of b

Te relationship between
Xt

ij-end [b] and
Xt

ij [a]

0 000 000 0 Xt
ij-end [0]� Xt

ij[0]

1 001 100 4 Xt
ij-end [1]� Xt

ij [4]
2 010 010 2 Xt

ij-end [2]� Xt
ij [2]

3 011 110 6 Xt
ij-end [3]� Xt

ij [6]
4 100 001 1 Xt

ij-end [4]� Xt
ij [1]

5 101 101 5 Xt
ij-end [5]� Xt

ij [5]
6 110 011 3 Xt

ij-end [6]� Xt
ij [3]

7 111 111 7 Xt
ij-end [7]� Xt

ij [7]

10 International Journal of Intelligent Systems

Input: Xt
ij-end � {Xt

ij-end[0], Xt
ij-end[1], . . ., Xt

ij-end[n], . . ., Xt
ij-end[N − 1]}, and N� 2k, k is a positive integer.

(1) initialize dep to record the number of layers of the butterfy operation in which it is currently operating;m to record the number of
elements involved in each set of butterfy operations; wm is principal mth unit root.

(2) for dep⟵ 1 to log2N, do /∗ Determine the current layer of butterfy operation ∗/
m� 2dep /∗ Te number of elements participating in each group of butterfy operations ∗/
wm � ei2π/m � cos(2π/m) + i sin(2π/m) /∗ principal mth unit root ∗/
for k⟵ 0 to n − 1 by m /∗ Perform the butterfy operation as shown in step two of Figure 4∗/

w � 1
for j⟵ 0 to − 1 +m/2 /∗ Complete a set of butterfy operations as shown in Figure 3∗/
t� w × Xt

ij-end[k+ j+m/2]
u� Xt

ij-end[k+ j]
Xt

ij-end[k+ j]� u + t
Xt

ij-end[k+ j+m/2]� u − t
w � w × wm

X
f
ij � Xt

ij-end
end

ALGORITHM 1: FFT algorithm.

X1j
f × M1j

1

X2j
f × M2j

1

X3j
f × M3j

1

Xmj
f × Mmj

1

VC1 Cn
1

Cn
2

× Sofmax
C1

Updated C1

×

Complete n iterations

Sum

X1j
hf

X2j
hf

X3j
hf

Xmj
hf

HFP1

Mj
1 M1j

f

C2 C2

M2j
f

Mj
2

Cn
3C3 C3

Mj
3

Cn
mCm Cm

Mj
m

M3j
f

Mmj
f

V× Sofmax

Updated C2

×

Complete n iterations

Sum

HFP2

V× Sofmax

Updated C3

×

Complete n iterations

Sum

HFP3

V× Sofmax

Updated Cm

×

Complete n iterations

Sum

HFPm

X1j
f × M1j

1

X1j
f × M1j

1

X1j
f × M1j

1

Xmj
f × Mmj

1

X1j
f × M1j

2

X2j
f × M2j

2

X3j
f × M3j

2

Xmj
f × Mmj

2

X1j
f × M1j

3

X2j
f × M2j

3

X3j
f × M3j

3

Xmj
f × Mmj

3

X1j
f × M1j

3

X2j
f × M2j

3

X3j
f × M3j

3

Xmj
f × Mmj

3

X1j
f × M1j

m

X2j
f × M2j

m

X3j
f × M3j

m

Xmj
f × Mmj

m

X1j
f × M1j

m

X2j
f × M2j

m

X3j
f × M3j

m

Xmj
f × Mmj

m

X1j
f × M1j

2

X2j
f × M2j

2

X3j
f × M3j

2

Xmj
f × Mmj

1

X1j
f

X2j
f

X3j
f

Xmj
f

Complete n iterations

Complete n iterations

Complete n iterations

Complete n iterations

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…… ……

…… ……

…… ……

…… ……

Figure 5: High-energy fltering process.

International Journal of Intelligent Systems 11

In the actual implementation process, X
f
ij can be ver-

tically concatenated to form a spectrum matrix X
f
j . Simi-

larly, Ms
ij can be vertically concatenated to form a coefcient

matrix Ms
j. Te Hadamard product is then performed be-

tween X
f
j and Ms

j. Tis process can be represented by (10):

E
s
j � X

f
j × M

s
j. (10)

(1) High-Energy Selection Algorithm. In this paper, the ele-
ment Zs

ij in row i of Es
j is called the primary energy wave

corresponding to X
f
ij. Each element in Zs

ij represents the
amplitude of the wave at diferent frequencies. Te sum of
these amplitudes at each frequency represents the total
energy of the wave. A larger amplitude indicates a more
energetic wave, which can be considered as the primary
component. To identify the main components Zs

ij in Es
j and

attenuate the other nonmain components, this paper pro-
poses a high-energy selecting (HSE) algorithm. Te oper-
ation steps of the HSE algorithm are as follows:

Step 1: Initialize the importance vector Cs � [Cs[1], Cs

[2], . . . , Cs[i], . . . , Cs[m]]T, initialize the summation
vector V� [V[1], V[2], . . . , V[i], . . . , V[m]]T, initially
Cs and the internal elements of V are all 1, initialize the
number of iterations n.
Step 2: Calculate the sum of the amplitudes of each
energy wave. Let Es

j perform Hadamard product op-
eration with Cs, and the process can be expressed as
(11). Ten, Es

j ×Cs is subjected to matrix multiplication
operation with V to obtain the energy matrix aggre-
gation matrix Es

e, and the process can be expressed as
(12).

E
s
j × C

s
�

Z
s
1j × C

s
[1]

Z
s
2j × C

s
[2]

⋮

Z
s
ij × C

s
[i]

⋮

Z
s
mj × C

s
[m]

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

�

Z
s
1j[0] × C

s
[1] Z

s
1j[1] × C

s
[1] · · · Z

s
1j[k] × C

s
[1] · · · Z

s
1j[N − 1] × C

s
[1]

Z
s
2j[0] × C

s
[2] Z

s
2j[1] × C

s
[2] · · · Z

s
2j[k] × C

s
[2] · · · Z

s
2j[N − 1] × C

s
[2]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Z
s
ij[0] × C

s
[i] Z

s
ij[1] × C

s
[i] · · · Z

s
ij[k] × C

s
[i] · · · Z

s
ij[N − 1] × C

s
[i]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Z
s
mj[0] × C

s
[m] Z

s
mj[1] × C

s
[m] · · · Z

s
mj[k] × C

s
[m] · · · Z

s
mj[N − 1] × C

s
[m]

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

, (11)

E
s
e � E

s
j × C

s
· V �

M
s
e[1]

M
s
e[2]

⋮
M

s
e[i]

⋮
M

s
e[m]

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

�

Z
s
1j[0] × C

s
[1] + Z

s
1j[1] × C

s
[1] + · · · + Z

s
1j[k] × C

s
[1] + · · · + Z

s
1j[N − 1] × C

s
[1]

Z
s
2j[0] × C

s
[2] + Z

s
2j[1] × C

s
[2] + · · · + Z

s
2j[k] × C

s
[2] + · · · + Z

s
2j[N − 1] × C

s
[2]

⋮
Z

s
ij[0] × C

s
[i] + Z

s
ij[1] × C

s
[i] + · · · + Z

s
ij[k] × C

s
[i] + · · · + Z

s
ij[N − 1] × C

s
[i]

⋮
Z

s
mj[0] × C

s
[m] + Z

s
mj[1] × C

s
[m] + · · · + Z

s
mj[k] × C

s
[m] + · · · + Z

s
mj[N − 1] × C

s
[m]

⎡⎢⎢⎣

⎤⎥⎥⎦

.

(12)

Step 3: Te process of processing each element within
Es

e using softmax is carried out with the updated im-
portance vector Cs, which is represented by (13).

C
s
[i] �

e
Ms

e[i]

􏽐
m
j�1e

Ms
e[j]

. (13)

Step 4: Repeat steps 2 and 3 for n times, with the
importance vector Cs obtained during the nth iteration
serving as the fnal importance coefcients for each
primary energy wave.
Step 5: Replace Cs in (11) with Cs

n, then execute (11) to
assign importance coefcients to each primary energy
wave, resulting in the fnal energy matrix aggregation
matrix Es

ee. Ten, calculate the columnwise sum of Es
ee

to obtain the high-energy spectrum X
hf

ij � X
hf

ij [0],􏽮

X
hf

ij [1], . . . , X
hf

ij [k], . . . , X
hf

ij [N]}. Te aforementioned
process can be represented by (14) and (15).

E
s
ee � E

s
j × C

s
n, (14)

X
hf
ij � α · E

s
ee. (15)

In formula (15), α � [1, 1, , 1]􏽼√√√√√√􏽻􏽺√√√√√√􏽽
m

.

Te pseudocode for the high-energy selection algorithm
is shown in Algorithm 2 as follows:

Trough the above analysis, it can be observed that the
HSE algorithm determines the importance of each energy
wave based on the relative magnitude of the 1-norm of the
vector. It achieves the objective of assigning distinct im-
portance coefcients to diferent energy waves through it-
erative iterations. Consequently, the HSE algorithm is
capable of efectively identifying the primary components
Zs

ij in Es
j while attenuating the nonprimary components.

Tis process can be succinctly represented by (16).

X
hf
ij � HSE E

s
j􏼐 􏼑. (16)

12 International Journal of Intelligent Systems

4.2.3. Inverse Fast Fourier Transform inside FNNL. Sections
4.2.1 and 4.2.2 allow for the transformation of network in-
trusion data eigenvalues from the time domain signal Xt

ij to

the frequency domain representation X
f
ij. Subsequently, fl-

tering is applied to obtain the high-energy frequency spec-
trum X

hf
ij . To maintain the invariance of the input

eigenvalues’ properties, it is necessary to convert the fltered
frequency domain dataX

hf
ij back to the time domain dataXht

ij ,
which can be processed by neural networks. Tis conversion
is achieved using the inverse discrete Fourier transform on the
high-energy spectrum X

hf
ij , as shown in (17).

X
ht
ij [k] �

1
N

· 􏽘

N− 1

n�0
W

− nk
N · X

hf
ij [n], (17)

where W− nk
N � ej·2·π/N·nk, (17) has the same structure as (3), and

only requires replacing the inputXt
ij[n] withX

hf
ij [n], the output

X
f

ij[k] with Xht
ij [k], and Wnk

N with W− nk
N . Tus, (3) and (17) are

completely identical. However, directly using (17) to processX
hf
ij

in terms of computational cost is impractical, as discussed in
Section 4.2.1. To address this, a similar approach as in Section
4.2.1 is employed here, using the inverse fast Fourier transform
(IFFT) to accelerate the computation process of (17). Since (17)
shares the same structure as (3), the operation of IFFTalignswith
that of FFT. Initially,Xhf

ij is processed usingRader’s algorithm to

obtain the sequence X
hf

ij -end, which will undergo the butterfy

operation. Once X
hf
ij -end is obtained, Xht

ij can be derived by

applying the butterfy operation rules to X
hf
ij -end. Specifcally,

this can be achieved by modifying the input of Algorithm 2 to
X

hf
ij -end. Tis entire process can be simplifed as shown in (18).

X
ht
ij � IFFT X

hf
ij􏼐 􏼑. (18)

After obtainingXht
ij , it is necessary to perform a summation

and compression operation on Xht
ij , specifcally by performing

matrix addition on Xht
1j, Xht

2j, . . . , Xht
ij , . . . , andXht

mj. Tis op-
eration allows for the preservation of the extracted feature
information fromDFNNBwhile enabling further processing of
the extracted feature data by subsequent network structures.
Te process of obtaining the fnal output Xj of FNNL through

the summation and compression of Xht
ij , as shown in Figure 2,

is represented by (19).

Xj � X
ht
1j + X

ht
2j + · · · · · · + X

ht
ij + · · · · · · + X

ht
mj. (19)

4.3. Information Back Propagation and Parameter Update.
In FNN, there are two parts: DNN and DFNNB. Te back
propagation process of gradient information in the DNN part
has been extensively discussed in existing literature.Terefore, in
this paper, we focus on elaborating the back propagation process
of gradient information within the DFNNB. Specifcally, we
analyze the back propagation process of internal gradient in-
formation in the jth DFNNB.Te variables that require gradient
information calculation in the jthDFNNB include the coefcient
matrix Ms

j in FNNL, and the weightsWjh andWje in HNN. Let
L denote the loss between the network output value and the
labeled value. From equations (10), (16), (18), and (19), the
gradient relationship between L and the coefcient matrix Ms

j,
as presented in Section 4.1, can be expressed by (20).

zL

zM
s
j

�
zL

zXj

zXj

zX
ht
ij

zX
ht
ij

zIFFT X
hf
ij􏼐 􏼑

zIFFT X
hf
ij􏼐 􏼑

zX
hf
ij

zX
hf
ij

zHSE E
s
j􏼐 􏼑

·
zHSE E

s
j􏼐 􏼑

zE
s
j

zE
s
j

z X
f

j × M
s
j􏼐 􏼑

z X
f

j × M
s
j􏼐 􏼑

zM
s
j

.

(20)

In order to be able to calculate the gradient of the co-
efcient matrix Ms

j in FNNL smoothly on the computer,
a further transformation of (20) is required. According to the
analysis in Section 4.1, it can be seen that (18) is equivalent to
(17), and (17) can be rewritten in the form of matrix op-
eration as shown in (21):

X
ht
ij � VN · X

hf
ij , (21)

where VN can be expressed by (22):

VN �
1
N

·

1 1 1 · · · 1

1 W
− 1
N W

− 2
N · · · W

− (N− 1)
N

1 W
− 2
N W

− 4
N · · · W

− 2(N− 1)
N

⋮ ⋮ ⋮ ⋱ ⋮

1 W
− (N− 1)
N W

− 2(N− 1)
N · · · W

− (N− 1)(N− 1)
N

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (22)

Input: Primary energy wave matrix Es
j.

Output: X
hf
ij

(1) Initialize importance vector Cs, Initialize the summation vector V, Initially, the internal elements of Cs and V are both 1, Te
number of initial iterations n.

(2) for t⟵ 1 to n, do /∗ Iterate n times ∗ /
Es

e⟵ Es
j × Cs · V

Update Cs /∗ Use (13) to update Cs∗ /
Es

e⟵ Es
j × Cs

Execute (14) and (15) to obtain X
hf

ij

end

ALGORITHM 2: HSE algorithm.

International Journal of Intelligent Systems 13

In (22), WN � e− j2π/N.
From the analysis in Section 4.2.2 and (14) and (15), it

can be deduced that the work accomplished by (16) in the
high-energy fltering process is equivalent to (23):

X
hf
ij � α · E

s
j × C

s
n􏼐 􏼑. (23)

From equations (20), (21), and (23), the gradient of the
coefcient matrix Ms

j in FNNL can be expressed by (24) as
follows:

zL

zM
s
j

�
zL

zXj

zXj

zX
ht
ij

zX
ht
ij

z VN · X
hf
ij􏼐 􏼑

z VN · X
hf
ij􏼐 􏼑

zX
hf
ij

zX
hf
ij

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

zE
s
j

zE
s
j

z X
f

j × M
s
j􏼐 􏼑

z X
f
j × M

s
j􏼐 􏼑

zM
s
j

. (24)

Equation (24) represents the back propagation process of
gradient information for the coefcient matrix Ms

j inside
FNNL in a DFNNB. X

f
j is a matrix formed by combining

Xt
ij, where each X

f

ij is obtained from the corresponding Xt
ij

through FFT transformation, which is equivalent to applying
DFT to each Xt

ij to obtain the corresponding Xt
ij. Te

process of obtaining X
f
j by performing DFT on Xt

ij can be
expressed by (25).

X
f

j � FN · X
t
j. (25)

In (25), FN is represented by (26).

FN �

1 1 1 · · · 1

1 W
1
N W

2
N · · · W

(N− 1)
N

1 W
2
N W

4
N · · · W

2(N− 1)
N

⋮ ⋮ ⋮ ⋱ ⋮

1 W
(N− 1)
N W

2(N− 1)
N · · · W

(N− 1)(N− 1)
N

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (26)

Xt
ij is the output of HNN, and the only trainable pa-

rameters in HNN are the weightsWje andWjh. According to
the chain derivation rule, the gradient information of Wje
and Wjh in HNN can be back propagated. Equations (27)
and (28) represent the back propagation process of gradient
information for Wjh and Wje in DFNNB, respectively.

zL

zWjh

�
zL

zXj

zXj

zX
ht
ij

zX
ht
ij

z VN · X
hf
ij􏼐 􏼑

z VN · X
hf
ij􏼐 􏼑

zX
hf
ij

zX
hf
ij

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

zE
s
j

·
zE

s
j

z X
f
j × M

s
j􏼐 􏼑

z X
f

j × M
s
j􏼐 􏼑

zX
f
j

zX
f

j

z FN · X
t
j􏼐 􏼑

z FN · X
t
j􏼐 􏼑

zX
t
j

zX
t
j

z X
e
j × Wjh􏼐 􏼑

z X
e
j × Wjh􏼐 􏼑

zWjh

,

(27)

zL

zWje

�
zL

zXj

zXj

zX
ht
ij

zX
ht
ij

z VN · X
hf
ij􏼐 􏼑

z VN · X
hf
ij􏼐 􏼑

zX
hf
ij

zX
hf
ij

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

z α · E
s
j × C

s
n􏼐 􏼑􏼐 􏼑

zE
s
j

zE
s
j

z X
f

j × M
s
j􏼐 􏼑

z X
f
j × M

s
j􏼐 􏼑

zX
f

j

·
zX

f
j

z FN · X
t
j􏼐 􏼑

z FN · X
t
j􏼐 􏼑

zX
t
j

zX
t
j

z X
e
j × Wh􏼐 􏼑

z X
e
j × Wh􏼐 􏼑

zX
e
j

zX
e
j

z Xj− 1 · Wje􏼐 􏼑

z Xj− 1 · Wje􏼐 􏼑

zWje

.

(28)

Equations (24), (27), and (28) show the back propagation
process of gradient information of the to-be-trained vari-
ables Ms

j, Wjh, and Wje in the jth DFNNB. Te back
propagation process of the gradient information of the
parameters to be trained in the remaining DFNNBs is the
same as the back propagation process of the gradient in-
formation of the variables to be trained in the jth DFNNB.

From equations (24), (27), and (28) combined with the
gradient descent algorithm, the updating process of the
coefcient matrices Ms

j of FNNL in the jth DFNNB, and the
weights Wjh and Wje in the HNN can be expressed in
equations (29), (30), and (31), respectively, as follows:

M
s′

j � M
s
j − η

zL

zM
s
j

, (29)

W
′

jh � Wjh − η
zL

zWjh

, (30)

W
′

je � Wje − η
zL

zWje

. (31)

Ms′

j , W
′

jh, and W
′

je denote the updated Ms
j, Wjh, and Wje,

respectively, and η is the learning rate, which is able to
complete the updating of the parameters in the DFNNB
according to equations (29)–(31).

14 International Journal of Intelligent Systems

Sections 4.1 and 4.2 elaborate the structure and in-
formation forward propagation process of DFNNB in FNN,
and Section 4.3 describes the backward propagation process
of the information of the parameter gradient to be updated
and the parameter updating process in DFNNB.

4.4. Time Complexity Analysis. A DFNNB consists of HNN
(Hadamard Neural Network) and FNNL (Fourier Neural
Network Layer). In this subsection, the time complexity of
executing a DFNNB is analyzed.

First, let us analyze the time complexity of HNN. Te
computational process of HNN involves equations (1) and
(2). Equation (1) represents the matrix multiplication of an
N∗ 1 vector with a 1∗M vector, with a time complexity of
O(NM). Equation (2) involves the Hadamard product of an
N∗M matrix with another N∗M matrix, which also has
a time complexity of O(NM).Terefore, the time complexity
of HNN is O(NM).

Next, let us consider the time complexity of the Fast
Fourier Transform (FFT). As mentioned in Section 4.2, this
process requires the fast Fourier transform of M vectors,
resulting in a time complexity of O(MNlogN). Trough the
FFT, a frequency domain representation of the data, X

f

ij, is
obtained. Subsequently, a high-energy fltering process is
performed on X

f
ij. In this process, each X

f
ij is multiplied

elementwise with a coefcient vector Ms
ij to obtain the

primary energy wave Zs
ij. Terefore, the time complexity of

processing one X
f
ij is O(N). Since there are MX

f
ij in one

high-energy fltering process, the time complexity of pro-
cessing MX

f
ij is O(MN).

All Zs
ij together form the primary energy wavematrix Es

j.
Es

j is then processed using a high-energy selection algorithm
that involves K iterations. In each iteration, the key com-
putational steps include (11)–(13). Equation (11) represents
the Hadamard product of matrices, with a time complexity
of O(MN). Equation (12) represents matrix multiplication,
also with a time complexity of O(MN). Equation (13)
represents the softmax function, with a time complexity of
O(N). Terefore, the time complexity of the high-energy
selection algorithmwith 1 iteration is O(MN), while the time
complexity of the high-energy selection algorithm with K
iterations is O(KMN).

Finally, according to the analysis in Section 4.2.3, the
inverse transform of the Fast Fourier Transform (FFT) needs
to be performed. Its time complexity is the same as the FFT,
which is O(MNlogN).

In summary, the time complexity of a DFNNB can be
expressed as O(NM)+O(MN) +O(KMN)+O(MNlogN).

5. FNN Detection Steps

Step 1: Perform preprocessing operations on the data,
including normalization and splitting the dataset into
a training set and a test set.
Step 2: Training FNN.

(1) Determine the structure of the FNN and ini-
tialize its parameters.

(2) Input the training set data into the frst DFNNB.
Using equations (1) and (2), the HNN fts the
network intrusion data in the multitemporal
space. Ten, the ftted samples are processed by
FNNL, resulting in fltered and integrated fea-
ture data according to equations (7), (16), (18),
and (19). Tese data serve as the output of the
DFNNB and are also used as the input for the
next DFNNB layer.

(3) Use the output of the previous DFNNB layer as
the input for the current DFNNB layer.

(4) Repeat step (3) until the output of the fnal
DFNNB layer is obtained. Tis output is then
used as the input for the DNN part of the FNN,
and the output of the DNN part becomes the
fnal output of the FNN.

(5) Calculate the loss value between the FNN’s
output and the labeled values. Use the gradient
descent algorithm to update the trainable pa-
rameters in the FNN, reducing the diference
between the output and the labeled values.
Continue this process until the specifed training
iterations are reached.

Step 3: FNN testing. Input the test dataset into the
trained FNN to obtain the classifcation results for each
test data.

Te overall fowchart of the FNN intrusion detection is
illustrated in Figure 6.

6. Datasets Description

In order to verify the detection capability of FNN in the face
of network intrusion data, this paper not only carries out
intrusion detection implementation on the older intrusion
detection datasets KDD CUP99 and NSL-KDD but also
conducts intrusion detection experiments on the newer
intrusion detection datasets UNSW-NB15 and CICIDS2017.
Tis demonstrates the intrusion detection capability of FNN
in a more comprehensive way and ensures that the exper-
iments are more convincing.

(1) KDD Cup99 [51]: Tis dataset is derived from the
1998 DARPA Intrusion Detection Evaluation Pro-
gram. All network data originate from a simulated
United States Air Force local area network, which
includes various simulated attacks. Te dataset
consists of 41 feature attributes and 1 class label.
Among the 41 feature attributes, 9 are discrete
(symbolic) and the rest are continuous. Te class
label consists of 5 categories: Normal, Probe, DoS,
U2R, and R2L. Te dataset sufers from class im-
balance, resulting in biased results towards the more
frequent data. Table 3 provides a detailed description
of the KDD Cup99 dataset.

(2) NSL-KDD [52]: Tis dataset is an improvement over
the KDD Cup99 dataset, as it removes redundant
data and duplicate records present in the original

International Journal of Intelligent Systems 15

dataset. Tis ensures that classifers do not exhibit
bias towards more frequent records, resulting in
more accurate detection rates. Compared to the
KDD Cup99 dataset, this dataset is more suitable for
intrusion detection. Table 3 provides a detailed de-
scription of the NSL-KDD dataset.

(3) UNSW-NB15 [53, 54]: Tis dataset was created by the
Network Security Laboratory of the Australian Centre
for Cyber Security (ACCS) using the IXIA Perfect-
Storm tool. It aims to provide a more realistic repre-
sentation of real-world network data and serves as
a comprehensive dataset for network attack trafc.Te

dataset consists of one category representing normal
trafc and nine categories representing various types of
abnormal trafc. It contains 42 feature attributes and 1
class label attribute. A detailed description of the
UNSW-NB15 dataset can be found in Table 4.

(4) CICIDS2017 [55, 56]:Tis dataset was developed within
the Canadian Institute for Cybersecurity and consists of
fve days of both normal and attack trafc data. It
provides labeled, fow-based data for updated attacks
and normal usage in a simulated ofce environment.
Te dataset also includes network fow analysis results
using CICFlowMeter. Te dataset is labeled based on

Dataset
preprocessing

Input training set

Train FNN to
optimize internal

parameters

Build FNN and
initialize internal

parameters

Whether to met the
maximum number of

training

Obtain the optimal
FNN model

Output classification
results

End

Input test set

N

Y

Start

Figure 6: FNN intrusion detection fowchart.

16 International Journal of Intelligent Systems

fows, refecting timestamps, source IP addresses, des-
tination IP addresses, source port numbers, and desti-
nation port numbers. It also includes metadata on
protocols and the most signifcant attack types. Te
dataset encompasses seven attack categories, refecting
recent attack scenarios. A detailed description of the
CICIDS2017 dataset can be found in Table 5.

7. Evaluation Index

Due to the imbalance in the intrusion detection dataset, with
a signifcant disparity between the number of normal and
abnormal samples, the accuracy rate alone cannot provide
a comprehensive evaluation of the intrusion detection al-
gorithm’s performance. Terefore, this paper introduces
additional evaluation metrics such as accuracy, precision,
recall, F1-score, and AUC values to assess the efectiveness of
the FNN algorithm [57]. Tese metrics are derived from the
confusion matrix presented in Table 6, enabling a more
comprehensive analysis of the algorithm’s performance.

Te above evaluation indicators are defned as follows:

Accuracy: It estimates the ratio of the number of
correctly identifed samples to the entire test set. Te
higher the accuracy, the better the performance of the
neural network (accuracy ∈ [0, 1]). It is a good metric
for test datasets containing balanced classes. Te ac-
curacy rate is defned as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
. (32)

Precision: It estimates the ratio of the number of
correctly identifed normal samples to the actual pre-
dicted normal samples. Te higher the precision, the
better the performance of the neural network (pre-
cision ∈ [0, 1]). Te precision is defned as follows,
where k is the sample category:

precisionk �
TP

TP + FP
. (33)

Recall: It estimates the ratio of correctly classifed
normal samples to the total number of normal samples.
If the recall rate is higher, the neural network model is
better (recall ∈ [0, 1]). Recall is defned as follows:

recallk �
TP

TP + FN
. (34)

F1-score: It is the harmonic average of precision rate
and recall rate. Te higher the F1-score, the better the
performance of the neural network (F1-score ∈ [0, 1]).
F1-score is defned as follows, where αk is the weight,
representing the proportion of diferent sample
categories:

F1K �
2 · precisionk · recallk
precisionk + recallk

,

F1 − score � 􏽘 αk × F1k􏼐 􏼑
2
.

(35)

ROC (receiver operating characteristic) curve: Its hori-
zontal axis is false positive rate (FPR), and its vertical axis
is true positive rate (TPR). Te value of AUC is the area
under the ROC curve, which is used as a comparison
index for neural networkmodels together with ROC.Te
higher the AUC value, the better the neural network
model. Te AUC value is calculated as follows:

AUC � 􏽚
1

0

TP
TP + FN

d
FP

TN + FP
, (36)

where TP (true positive) is the total number of samples
correctly classifed into the normal class, TN (true negative)
is the total number of samples correctly classifed into the
attack class, FP (false positive) is the total number of samples
that misclassifed the normal class as an attack class, and FN
(false negative) is the total number of attack samples that are
misclassifed as normal.

8. Experiments and Discussions

In this section, two sets of comparative experiments were
designed with the following objectives: the frst group aimed
to validate the efectiveness of FNN and explore its per-
formance on diferent datasets, while the second group
aimed to investigate the impact of the number of iterations
of the HSE algorithm on the performance of FNN.

In the feld of intrusion detection, it is crucial to validate
the efectiveness of an intrusion detection method by ap-
plying it to various real-world scenarios. To evaluate the
efectiveness of FNN, this study utilized FNN for detecting
intrusions in the KDD Cup99, NSL-KDD, UNSW-NB15,
and CICIDS2017 datasets. Multiple evaluation metrics such
as accuracy, precision, recall, F1-score, ROC curve, and AUC
value were employed to assess the performance of FNN.

Te deep learning framework used in this study was
TensorFlow 2.13.0 (CPU version), and the machine
learning library employed was scikit-learn 1.0.2. Te
programming language used was Python 3.9.1. Te hard-
ware confguration for this experiment consisted of an
AMD Ryzen 7 5800H processor and 16GB RAM. Te
operating system used was Windows 11.

In the specifc implementation of the experiments, for
the binary classifcation experiments, normal samples are
labeled as 0 and attack samples are labeled as 1. For the
multiclassifcation experiments using the CICIDS2017
dataset as an example, normal samples are labeled as 0, Bot
attack samples as 1, BruteForce attack samples as 2, Dos
attack samples as 3, Infltration attack samples as 4, PortScan
attack samples as 5, and WebAttack samples as 6. One-hot
encoding is employed for the labeling process. Te epoch
value for both the FNN and the comparative deep learning
models during training is set to 50. Te Adam optimization
function with a learning rate of 0.001 is utilized, and the
Categorical Crossentropy is adopted as the loss function.

8.1. Comparative Experiment One. Te FNN network
structure signifcantly infuences the detection performance
of FNN. To validate the efectiveness of FNN, this paper

International Journal of Intelligent Systems 17

Table 6: Confusion matrix.

Reality
Forecast result

NO YES
Actual: NO TN (true negative) FP (false positive)
Actual: YES FN (false negative) TP (true positive)

Table 3: Training and testing connection records of KDD Cup99 and NSL-KDD.

Attack category Description
10% dataset 20% dataset
KDD Cup99 NSL-KDD

Train Test Train Test
Normal Normal connection record 97277 60592 13357 9690
Probe Get detailed statistics for system and network confguration details 4107 4166 2289 2421
DoS Attack aims to reduce network resources 391438 229825 9234 7435
U2R Get permission or super user access on a specifc computer 52 228 11 200
R2L Illegal access to remote computer 1126 16189 209 2754
Total 494000 311000 25100 22500

Table 4: Training and testing connection records of UNSW-NB15.

Attack_cat Description Train Test
Normal Normal connection record 56000 37000
Backdoor Technology that bypasses security controls to gain access to programs or systems 1746 583

Analysis An intrusion method to penetrate web applications through ports, emails, and web
scripts 2000 677

Fuzzers
An attack method that attempts to fnd security vulnerabilities in programs,

operating systems, or networks by inputting a large amount of random data to make
it crash

18184 6062

Shellcode An attack method that controls the target machine by sending code that exploits
specifc vulnerabilities 1133 378

Reconnaissance An attack method that collects computer network information in order to evade
security control 10491 3496

Exploit A piece of code that triggers a vulnerability (or several vulnerabilities) to control the
target system 33352 11132

DoS
An attack method that directly or indirectly exhausts the resources of the attacked
object, so that the target computer or network cannot provide normal services or

resource access
12264 4089

Worms A malicious computer virus that spreads through the network and actively attacks 130 44

Genertic A technology that uses a hash function to collide each block cipher without
considering the confguration of the block cipher 40000 18871

Total 175300 82332

Table 5: Training and testing connection records of CICIDS2017.

Attack_cat Description Train Test
Normal Normal connection record 1703490 567830

Bot
Automated large-scale attacks using malicious software or programs to obtain
confdential information, cause system downtime, or perform other malicious

activities
1467 489

BruteForce Brute-force a system’s security measures by trying a large number of possible
password combinations or keys to gain unauthorized access or control privileges 10374 3458

DoS
Depleting the resources of the target by directly or indirectly depleting the resources
of the target computer or network so that the target computer or network cannot

provide normal services or access to resources
284811 94937

Infltration Gain unauthorized access by penetrating the defense layer of the target system and
infltrating, controlling or stealing sensitive information in the system 27 9

PortScan Scanning the open ports of a target host to detect system vulnerabilities and services
in order to fnd exploitable entry points for unauthorized access or attacks 119103 39701

WebAttack Attacks against users’ online behavior or devices such as web servers 1635 545
Total 2120907 706969

18 International Journal of Intelligent Systems

proposes three FNN network structures, namely FNN1,
FNN2, and FNN3. Each structure incorporates a varying
number of layers of DFNNB (FNN1 with 1 layer, FNN2 with
2 layers, and FNN3 with 3 layers). DNN is interleaved
between each DFNNB layer, enabling the learned feature
representations from DFNNB to be mapped to diferent
feature spaces. In the frst set of experiments, the number of
iterations of the HSE algorithm for the diferent FNN
networks is fxed at 3. Te detailed structure of FNN1 to
FNN3 is presented in Table 7. Te structure of DNN, CNN,
RNN, and LSTM used in the comparison experiments is
shown in Table 8.

When performing binary classifcation tasks on the data,
the number of neurons in the last layer of the DNN network
is 1, and the activation function used is the sigmoid function.
For multiclassifcation tasks, the number of neurons in the
last layer of the DNN network is 5, 10, and 7 according to the
diferent datasets (the number of neurons in the experiment
on the KDD Cup99 and NSL-KDD dataset is 5, the number
of neurons in the experiment on the UNSW-NB15 dataset is
10, and the number of neurons in the experiment on the
CICIDS2017 dataset is 7), and the activation functions are all
softmax functions.

Tables 9–16 presents the accuracy, precision, recall, and
F1-score values of FNN1, FNN2, and FNN3 in binary
classifcation and multiclassifcation using classical deep
learning and machine learning algorithms, including DNN,
CNN, RNN, LSTM, RF, LR, KNN, DT, and SVM, on the
KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017
datasets. Tables 9–16 demonstrate the superior detection
performance of all algorithms. Overall, the performance of
each algorithm on KDD Cup99, NSL-KDD, and
CICIDS2017 is better than that on UNSW-NB15. Tis
discrepancy can be attributed to the higher data complexity
of UNSW-NB15 compared to other datasets. In deep
learning methods, CNN, RNN, and LSTM exhibit relatively
poor performance. Tis can be attributed to the absence of
translation invariance and clear sequential relationships in
network intrusion data. Among traditional machine
learning methods, RF and KNN demonstrate more prom-
inent performance.Tis is primarily due to the fact that RF is
an ensemble algorithm that incorporates multiple decision
trees, providing certain advantages over individual tradi-
tional machine learning algorithms. Additionally, the net-
work intrusion data have a relatively low feature dimension,
which contributes to the advantageous performance of KNN
in handling such data. Due to the higher performance re-
quirements of algorithms for multivariate classifcation
compared to binary classifcation, the overall performance of
each algorithm decreases in various performance metrics
when performing multiclassifcation on each dataset. Tis
performance decrease is particularly evident in the classi-
fcation of the UNSW-NB15 dataset, which is more complex
than the other three datasets and includes nine types of
attacks, including newer attack types. Terefore, it is ex-
pected that the algorithms would exhibit a signifcant de-
crease in performance on the UNSW-NB15 dataset. In
general, each algorithm in the experiments efectively detects
the attack samples in the dataset. Analyzing Tables 9–16,

FNN demonstrates superior detection performance com-
pared to other algorithms in the majority of cases. Fur-
thermore, the detection performance of FNN continues to
improve with an increase in the number of DFNNB layers
within the FNN.

In the vast majority of cases, FNN demonstrates superior
detection performance compared to traditional methods. In
the binary classifcation test on the KDDCup99 dataset, each
detection method achieves excellent detection results. Spe-
cifcally, FNN2 and FNN3 exhibit accuracy rates exceeding
0.996, which is a 19.2% improvement compared to the
worst-performing LSTM. Moreover, as the depth of FNN
increases, both precision and recall also increase. Notably,
FNN3 achieves precision and recall rates of 0.999 and 0.997,
respectively, surpassing other methods. However, overall,
the performance diferences between FNN2 and FNN3 are
not signifcant, indicating that further increasing the depth
of FNN does not yield substantial improvements in per-
formance. In the multiclassifcation test on the KDD Cup99
dataset, most algorithms, except LSTM, exhibited a slight
decrease in performance. Notably, FNN3 demonstrated the
smallest decrease in accuracy. One of the factors contrib-
uting to the marginal improvement in LSTM’s performance
is the use of a multiclassifcation dataset, which partially
alleviates the issue of class imbalance present in the binary
classifcation dataset. Tis observation suggests that LSTM is
less adept at handling signifcant imbalances in sample
quantities. Furthermore, FNN consistently outperforms
other algorithms in terms of precision and recall, indicating
its superiority. Due to certain limitations of the KDD Cup99
dataset, this study proceeds with further experiments on the
NSL-KDD dataset, which is an improved version of the KDD
Cup99 dataset. Te NSL-KDD dataset provides a better
means to evaluate the performance of various algorithms in
intrusion detection. Notably, the NSL-KDD dataset has
a signifcantly reduced number of samples in the training set,
resulting in fewer data features being learned by the de-
tection methods. As a consequence, all algorithms experi-
ence varying degrees of degradation in their detection
capabilities. However, when comparing Tables 9–16, it can
be observed that FNN demonstrates a relatively smaller
decrease in performance compared to other algorithms.
Moreover, FNN3 consistently achieves optimal performance
indicators when performing both binary classifcation and
multiclassifcation tasks, indicating its superiority over other
algorithms in classifying the KDD Cup99 and NSL-KDD
datasets.

When performing binary classifcation on the
UNSW-NB15 dataset, FNN consistently outperforms other
algorithms in the majority of cases. Furthermore, increasing
the depth of FNN leads to a certain degree of performance
improvement. Te UNSW-NB15 dataset is relatively new
and contains numerous novel attack types, resulting in
higher data complexity compared to the NSL-KDD and
KDD Cup99 datasets. At this stage, the accuracy rates of
DNN, CNN, LSTM, LR, DT, and SVM fall below 0.800, with
SVM achieving an accuracy rate of only 0.686. Additionally,
the accuracy rates of RNN and KNN are below 0.850. Te
algorithms with accuracy rates exceeding 0.900 are FNN1,

International Journal of Intelligent Systems 19

FNN2, FNN3, and RF, with RF having an accuracy rate of
0.900, which is lower than that of FNN1, FNN2, and FNN3.
In terms of precision and recall, FNN1, FNN2, and FNN3
outperform other methods. When performing multi-
classifcation on the UNSW-NB15 dataset, the accuracy rates
of FNN1, FNN2, and FNN3 are 0.790, 0.846, and 0.853,
respectively. At this stage, the accuracy rates of RF and KNN
are 0.809 and 0.802, respectively, which are higher than
FNN1 but lower than FNN3 and FNN2. Overall, FNN2
performs similarly to FNN3, and both outperform other
algorithms.

Trough the analysis of Tables 15 and 16, it is found that
FNN’s performance in binary classifcation on the
CICIDS2017 dataset is not as good as in multiclass classi-
fcation. Tis is because the CICIDS2017 dataset has less
noise contamination, and when performing binary classi-
fcation, there are only two labels, so the infuence of data
noise on the classifcation results is relatively small. How-
ever, if the fltering frequency of FNN is too high, it will lead
to the loss of non-noise information. Terefore, the efec-
tiveness of our designed high-energy selection algorithm
cannot be fully exerted. For the selection of the

Table 7: Network structure of FNN.

Network name Network structure n Number of neurons Activation function

FNN1
DNN — 42, 64 Tanh

DFNNB1 3 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax

FNN2

DNN — 42, 64 Tanh
DFNNB1 3 — —
DNN — 64, 128 Tanh

DFNNB2 3 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax

FNN3

DNN — 42, 64 Tanh
DFNNB1 3 — —
DNN — 64, 128 Tanh

DFNNB2 3 — —
DNN — 128, 256 Tanh

DFNNB3 3 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax

Table 8: Network structure of DNN, CNN, RNN, and LSTM.

Model Network layer Number of neurons Activation

DNN

Hidden layer 1 41 Tanh
Hidden layer 2 68 Tanh
Hidden layer 3 128 Tanh

Output layer (dense) 1/5/10/7 Sigmoid, softmax
CNN Inception-V1

LSTM
LSTM 42 Tanh

Global average pooling — —
Dense 268, 1/5/10/7 Tanh, sigmoid, softmax

RNN
RNN 42 Tanh

Global average pooling — —
Dense 268, 1/5/10/7 Tanh, sigmoid, softmax

Table 9: KDD Cup99 binary classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.988 0.997 0.989 0.993
FNN2 0.996 0.999 0.996 0.997
FNN3 0.997 0.999 0.997 0.998
DNN 0.971 0.999 0.965 0.982
CNN 0.961 0.999 0.953 0.975
RNN 0.961 0.992 0.960 0.976
LSTM 0.804 0.804 1.000 0.891
RF 0.967 0.999 0.959 0.979
LR 0.957 0.998 0.948 0.972
KNN 0.991 0.998 0.991 0.994
DT 0.918 0.933 0.967 0.950
SVM 0.945 0.942 0.993 0.967

20 International Journal of Intelligent Systems

hyperparameter n in the high-energy selection algorithm,
please refer to Section 8.2. From Table 16, it is evident that as
the number of DFNNB layers in FNN increases, the FNN
detection performance also improves consistently, with
FNN3 achieving an high accuracy rate of 0.995. Te mul-
ticlassifcation result of CICIDS2017 is greatly afected by
data noise, which signifcantly impacts its multiclassifcation
results. However, the high-energy selection algorithm in
FNN efectively flters out the noise information, thereby
enhancing the classifcation performance. Meanwhile, it can
be observed that RNN and LSTM exhibit the poorest per-
formance among the deep learning algorithms, indicating
that the unoptimized design of RNN and LSTM is not

suitable for intrusion detection, which also refects the ab-
sence of clear sequential relationships in network intrusion
data. In terms of precision and recall, FNN demonstrates
a signifcant advantage over other algorithms, except RF. RF
performs well among machine learning algorithms, high-
lighting the strengths of RF as an ensemble algorithm.

Te F1-score is an evaluation metric that combines
precision and recall, providing a better refection of algo-
rithm performance. Tables 9, 11, and 13 indicate that, when
performing binary classifcation on each dataset, FNN2 and
FNN3 consistently achieve the optimal F1-score across all
three datasets, with FNN1 also outperforming most other
algorithms. Among the ML algorithms, RF and KNN exhibit

Table 11: NSL-KDD binary classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.948 0.954 0.956 0.955
FNN2 0.978 0.976 0.985 0.980
FNN3 0.982 0.982 0.986 0.984
DNN 0.950 0.931 0.984 0.957
CNN 0.833 0.922 0.771 0.840
RNN 0.890 0.961 0.841 0.897
LSTM 0.812 0.865 0.794 0.828
RF 0.938 0.927 0.968 0.947
LR 0.795 0.908 0.712 0.798
KNN 0.977 0.977 0.982 0.980
DT 0.833 0.878 0.820 0.848
SVM 0.853 0.874 0.867 0.870

Table 10: KDD Cup99 multiclass classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.957 0.957 0.957 0.948
FNN2 0.981 0.982 0.981 0.980
FNN3 0.990 0.990 0.990 0.989
DNN 0.939 0.898 0.939 0.916
CNN 0.928 0.876 0.928 0.899
RNN 0.928 0.874 0.928 0.898
LSTM 0.864 0.834 0.864 0.841
RF 0.920 0.889 0.920 0.894
LR 0.905 0.913 0.905 0.889
KNN 0.942 0.950 0.942 0.925
DT 0.888 0.833 0.888 0.859
SVM 0.932 0.922 0.932 0.909

Table 12: NSL-KDD multiclass classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.963 0.963 0.963 0.962
FNN2 0.975 0.975 0.975 0.975
FNN3 0.977 0.977 0.977 0.977
DNN 0.933 0.931 0.933 0.930
CNN 0.743 0.580 0.743 0.647
RNN 0.801 0.789 0.801 0.781
LSTM 0.700 0.534 0.700 0.605
RF 0.827 0.867 0.827 0.796
LR 0.725 0.560 0.725 0.629
KNN 0.914 0.912 0.914 0.912
DT 0.780 0.686 0.780 0.727
SVM 0.442 0.409 0.442 0.284

Table 13: UNSW-NB15 binary classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.927 0.932 0.936 0.934
FNN2 0.944 0.953 0.944 0.949
FNN3 0.944 0.954 0.943 0.949
DNN 0.761 0.867 0.668 0.755
CNN 0.690 0.740 0.674 0.706
RNN 0.813 0.815 0.854 0.834
LSTM 0.749 0.858 0.652 0.740
RF 0.900 0.898 0.924 0.911
LR 0.761 0.862 0.675 0.757
KNN 0.848 0.864 0.859 0.861
DT 0.799 0.826 0.804 0.815
SVM 0.686 0.735 0.673 0.703

Table 14: UNSW-NB15 multiclass classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.790 0.775 0.790 0.774
FNN2 0.846 0.839 0.846 0.842
FNN3 0.853 0.844 0.853 0.847
DNN 0.676 0.586 0.676 0.592
CNN 0.771 0.685 0.771 0.705
RNN 0.641 0.439 0.641 0.520
LSTM 0.638 0.447 0.638 0.522
RF 0.809 0.809 0.809 0.759
LR 0.792 0.775 0.792 0.775
KNN 0.802 0.785 0.802 0.778
DT 0.764 0.674 0.764 0.698
SVM 0.648 0.669 0.648 0.632

Table 15: CICIDS2017 binary classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.991 0.979 0.978 0.978
FNN2 0.994 0.985 0.984 0.984
FNN3 0.993 0.984 0.981 0.983
DNN 0.994 0.981 0.991 0.986
CNN 0.964 0.905 0.915 0.910
RNN 0.945 0.890 0.820 0.854
LSTM 0.983 0.947 0.971 0.959
RF 0.998 0.997 0.998 0.997
LR 0.938 0.851 0.832 0.842
KNN 0.995 0.982 0.992 0.987
DT 0.998 0.996 0.997 0.996
SVM 0.969 0.923 0.920 0.922

International Journal of Intelligent Systems 21

relatively higher F1-scores compared to the others. Tis
highlights the superiority of RF as an ensemble algorithm
over traditional single algorithms, while also showcasing the
advantages of KNN in handling low-dimensional network
intrusion data. Overall, FNN demonstrates superior de-
tection performance in binary classifcation on the KDD
Cup99 dataset, the NSL-KDD dataset, and the UNSW-NB15
dataset. Tables 10, 12, 14, and 16 reveal that in most cases,
FNN2 and FNN3 exhibit a signifcant advantage in F1-score
compared to other algorithms when performing multi-
classifcation on each dataset. Tis suggests that other al-
gorithms are more prone to false negatives in
multiclassifcation tests on these datasets, whereas FNN
performs better. In summary, FNN exhibits superior de-
tection performance in both binary and multiclassifcation
tasks on the KDD Cup99 dataset, the NSL-KDD dataset, the
UNSW-NB15 dataset, and the CICIDS2017 dataset. Com-
pared to other algorithms, FNN has a lower likelihood of
false negatives during the detection of network
intrusion data.

Te confusion matrix is an analytical table used in
machine learning to summarize the predictions made by
classifcation models. It presents the relationship between
the true attributes of the sample data and the predicted
classifcation types in the form of a matrix. Te confusion
matrix is a commonly used method for evaluating the
performance of classifers. It allows for the visualization of
classifcation results and enables the calculation of various
evaluation metrics. Te confusion matrix provides a clear
understanding of the classifcation results for normal and
abnormal samples after being evaluated by the intrusion
detection model. Figure 7 illustrates the confusion matrix of
FNN, RF, KNN, and their binary classifcation performance
on diferent datasets. From Figure 7 it is evident that, in most
cases, the FNN classifcation outperforms other algorithms
in terms of accuracy, with FNN3 exhibiting the lowest rates
of false positives and false negatives.

For the KDD Cup99 and NSL_KDD datasets, the KNN
algorithm performs the best overall among the machine
learning algorithms. Although KNN outperforms FNN1 in
terms of detection performance on these datasets, it falls
short compared to FNN2 and FNN3. By comparing
Figure 7(i) with Figure 7(q), we can observe that on the KDD

Cup99 dataset, FNN3 only misses 75 attack samples and
incorrectly identifes 11 normal samples as anomalies. FNN3
demonstrates a clear advantage in terms of both false
negatives and false positives. Similarly, comparing
Figure 7(j) with Figure 7(r) on the NSL_KDD dataset, FNN3
misclassifes 174 abnormal samples as normal samples,
whereas KNNmisclassifes 234 abnormal samples as normal
samples, indicating a higher false negative rate for KNN.
When it comes to detecting the UNSW-NB15 dataset,
KNN’s performance is noticeably inferior to that of FNN
and RF. Tis is due to the high dimensionality and com-
plexity of the UNSW-NB15 data. For the UNSW-NB15 and
CICIDS2017 datasets, the RF algorithm achieves the best
overall performance among the machine learning algo-
rithms. Analyzing Figures 7(c), 7(g), and 7(k) together with
Figure 7(o), we can observe that RF has a higher number of
misclassifcations than the FNN1, FNN2, and FNN3 on the
UNSW-NB15 dataset, suggesting that RF does not perform
as well as FNN. Furthermore, by examining Figures 7(d),
7(h) and 7(l), it is evident that FNN2 has the fewest mis-
classifcations among the FNN models on the CICIDS2017
dataset. Specifcally, the number of attack samples mis-
classifed as normal samples accounts for 0.016 of the total
attack samples, while the number of normal samples mis-
classifed as attack samples accounts for 0.0038 of the total
normal samples. Although Figure 7(p) illustrates that RF has
fewer misclassifcations than FNN on a single dataset
(CICIDS2017), an analysis of the combined confusion
matrices shown in Figure 7 indicates that FNN has fewer
false positives and false negatives across all the datasets,
suggesting its superior performance in detecting various
datasets when compared to other algorithms.

To present the multiclassifcation experiment results
more intuitively, we extracted 20,000 samples from each
dataset based on the proportion of each type. Tese samples
were processed by the respective FNN models, and the
resulting values were passed to t-SNE for visualization.
Additionally, the same 20,000 samples were directly passed
to t-SNE without any processing for visualization, resulting
in Figure 8.

From Figures 8(a), 8(c), and 8(e), it is visually evident
that the distribution of the KDD Cup99 dataset is the
simplest. In fact, applying t-SNE directly to the KDD Cup99
dataset yields satisfactory segmentation results. However,
Figure 8(a) clearly shows that there is signifcant overlap
between the Probe, R2L, U2R data and the Normal, Dos
data, indicating that t-SNE alone cannot efectively difer-
entiate the Probe, R2L, U2R data from the KDD Cup99
dataset. Figure 8(b) demonstrates that after processing the
data with FNN, t-SNE exhibits an improved ability to dis-
tinguish the Probe, R2L, and U2R data, particularly in
distinguishing the Probe data. Due to the limited amount of
training data for R2L and U2R, the impact of the algorithm
on enhancing the discrimination of these two types of data is
not very pronounced. Nevertheless, from Figure 8(b), it can
be observed that the R2L and U2R data are mostly located at
the edges of the Normal and Dos data. Tis indicates that
even with a small amount of training data, FNN still pos-
sesses the capability to diferentiate attack data.

Table 16: CICIDS2017 multiclass classifcation test results.

Model Accuracy Precision Recall F1-score
FNN1 0.993 0.993 0.993 0.992
FNN2 0.994 0.994 0.994 0.993
FNN3 0.995 0.995 0.995 0.994
DNN 0.969 0.969 0.969 0.968
CNN 0.985 0.985 0.985 0.984
RNN 0.917 0.909 0.917 0.912
LSTM 0.803 0.645 0.803 0.716
RF 0.998 0.998 0.998 0.998
LR 0.963 0.965 0.963 0.963
KNN 0.995 0.995 0.995 0.995
DT 0.998 0.998 0.998 0.998
SVM 0.971 0.973 0.971 0.970

22 International Journal of Intelligent Systems

True Label

Pr
ed

ic
te

d
La

be
l

Confusion Matrix

20000

15000

10000

5000

0

1

0 1

6018 285

2475377

(a)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

9113 566

12268597

12000

10000

8000

6000

4000

2000

(b)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

33917

3083 42420

2912

40000
35000
30000
25000

15000

5000

20000

10000

(c)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

564895 3076

2935 136063

500000

400000

300000

200000

100000

(d)
Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

20000

15000

10000

5000

True Label
0 1

6065 106

2493230

(e)

Confusion Matrix
Pr

ed
ic

te
d

La
be

l 0

1

True Label
0 1

1949397

313 12640

12000

10000

8000

6000

4000

2000

(f)

Confusion Matrix

True Label
0 1

2527

428052100

34900

Pr
ed

ic
te

d
La

be
l 0

1

40000
35000
30000
25000

15000

5000

20000

10000

(g)

Confusion Matrix

True Label
0 1

2257

1368822115

565715

Pr
ed

ic
te

d
La

be
l 0

1

500000

400000

300000

200000

100000

(h)
Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

20000

15000

10000

5000

True Label
0 1

6084 75

2496311

(i)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

229

9481 174

12660

12000

10000

8000

6000

4000

2000

(j)

Confusion Matrix

True Label
0 1

34955

2045 42748

2584

Pr
ed

ic
te

d
La

be
l 0

1

40000
35000
30000
25000

15000

5000

20000

10000

(k)

Confusion Matrix

True Label
0 1

565680 2591

1365482150Pr
ed

ic
te

d
La

be
l 0

1

500000

400000

300000

200000

100000

(l)
Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

20000

15000

10000

5000

True Label
0 1

1015

2402323

6072

(m)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

4078730

980 12427

12000

10000

8000

6000

4000

2000

(n)

Confusion Matrix

True Label
0 1

3458

418744772

32228

Pr
ed

ic
te

d
La

be
l 0

1

40000
35000
30000
25000

15000

5000

20000

10000

(o)

Confusion Matrix

True Label
0 1

567390

440 138843

296

Pr
ed

ic
te

d
La

be
l 0

1

500000

400000

300000

200000

100000

(p)
Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

20000

15000

10000

5000

True Label
0 1

6041 228

2481054

(q)

Confusion Matrix

Pr
ed

ic
te

d
La

be
l 0

1

True Label
0 1

293

9417 234

12600

12000

10000

8000

6000

4000

2000

(r)

Confusion Matrix

True Label
0 1

30882

6118

6400

38932Pr
ed

ic
te

d
La

be
l 0

1

35000

30000

25000

15000

10000

20000

(s)

Confusion Matrix

True Label
0 1

565369 1112

1380272461Pr
ed

ic
te

d
La

be
l 0

1

500000

400000

300000

200000

100000

(t)

Figure 7: Confusion matrix. (a) KDD Cup99--FNN1. (b) NSL-KDD--FNN1. (c) UNSW-NB15--FNN1. (d) CICIDS2017--FNN1. (e) KDD
Cup99--FNN2. (f) NSL-KDD--FNN2. (g) UNSW-NB15--FNN2. (h) CICIDS2017--FNN2. (i) KDD Cup99--FNN3. (j) NSL-KDD--FNN3.
(k) UNSW-NB15--FNN3. (l) CICIDS2017--FNN3. (m) KDD Cup99--RF. (n) NSL-KDD--RF. (o) UNSW-NB15--RF. (p) CICIDS2017--RF.
(q) KDD Cup99--KNN. (r) NSL-KDD--KNN. (s) UNSW-NB15--KNN. (t) CICIDS2017--KNN.

International Journal of Intelligent Systems 23

60

40

40

20

20

0

0

–20

–20

–40

–40

–60

–60
–80

–80

(a)

40 60 80–60 –40 –20 0 20

60

40

20

0

–20

–40

–60

–80

(b)

100

100

75

75

50

50

25

25

0

0

–25

–25

–50

–50

–75

–75
–100

–100

(c)

–75 –50 –25 0 25 50 75 100

100

75

50

25

0

–25

–50

–75

–100

(d)

–100 –75 –50 –25 0 25 50 75 100

100
75
50
25

0
–25
–50
–75

–100

(e)

–75 –50 –25 0 25 50 75

75

50

25

0

–25

–50

–75

(f)

–100 –75 –50 –25 0 25 50 75 100

100
75
50
25

0
–25
–50
–75

–100

(g)

–100 –75 –50 –25 0 25 50 75 100

100
75
50
25

0
–25
–50
–75

–100

(h)

Figure 8: Visualization of multiple classifcation results. (a) KDD Cup99 original data. (b) KDD Cup99 data processed by FNN3. (c) NSL-
KDD original data. (d) NSL-KDD data processed by FNN3. (e) UNSW-NB15 original data. (f) UNSW-NB15 data processed by FNN3. (g)
CICIDS2017original data. (h) CICIDS2017data processed by FNN3.

24 International Journal of Intelligent Systems

From Figure 8(c), it is evident that the NSL-KDDdataset,
as an improvement over the KDD Cup99 dataset, is more
complex. Unlike the KDD Cup99 dataset, which exhibits
more distinct diferentiation results after direct processing
with t-SNE, the distribution of various data types in the
NSL-KDD dataset is closer after t-SNE processing, with the
R2L and U2R class data showing signifcant overlap with
other data types. Figure 8(d) clearly demonstrates that after
undergoing FNN processing, all data types exhibit signif-
cant improvements compared to the nonprocessed data. At
this stage, the Normal, Dos, and Probe data show more
distinct diferentiation, while the R2L and U2R data, al-
though overlapping with other data types, are mostly located
at the edges of the other data clusters.

From Figure 8(e), it is evident that the UNSW-NB15
dataset is more complex compared to the KDD Cup99 and
NSL-KDD datasets, with a greater variety of attack types and
a more chaotic distribution of various data types. Fur-
thermore, Figure 8(f) clearly demonstrates a signifcant and
efective diferentiation between diferent types of attack data
after FNN processing.

Figure 9(g) illustrates that the CICIDS2017 dataset en-
compasses a wide range of attack types, resulting in a con-
fusing distribution of these attack types. Notably, Bot,
BruteForce, and WebAttack exhibit signifcant overlap with
the Normal class, indicating a potential misclassifcation as
Normal. Upon observing Figure 9(h), it becomes apparent
that FNN processing signifcantly enhances the data com-
pared to the unprocessed data. Specifcally, a clear difer-
entiation emerges between the Normal, DoS, and PortScan
categories. Moreover, Bot, BruteForce, andWebAttack form
distinct clusters and reside at the periphery of the clusters
comprising other data types.

In conclusion, the visualized images derived from the
original dataset and processed by the FNN reveal a distinct
clustering pattern of diferent data types in the low-
dimensional space. Te proposed FNN model in this
study demonstrates accurate identifcation of various types
of anomalous network trafc. While the FNN exhibits su-
perior detection performance in the feld of intrusion de-
tection, as a novel neural network, there remains signifcant
room for further enhancement in its capabilities.

Figures 9 and 10 depict the accuracy curves and accuracy
box plots for each dataset, respectively. Te accuracy curves
provide a clear visualization of the convergence of each
algorithm during the training process, while the box plots
ofer insights into the presence of outliers and the distri-
bution characteristics of the data.

From Figure 9(a), it can be observed that in the binary
classifcation of the KDD Cup99 dataset, all deep learning
algorithms, except for CNN, converge at a faster pace.
However, CNN exhibits a sudden increase in accuracy at the
8th iteration, indicating an unstable optimization process for
its parameters. Tis substantial jump in performance sug-
gests instability within CNN. Furthermore, Figure 10(a)
reveals that the accuracy distribution of DNN and FNN is
more concentrated, indicating a comparatively stable
training process for these algorithms. Combining this with
Figure 9(a), it becomes evident that the training process of

DNN and FNN is smoother compared to other deep learning
algorithms. In the case of multiclassifcation on the KDD
Cup99 dataset, CNN still experiences a jump in accuracy at
the 8th iteration, further highlighting the instability of its
training process. Notably, LSTM achieves an accuracy ex-
ceeding 0.950 during training; however, Table 10 demon-
strates that LSTM’s fnal accuracy is only 0.864, indicating
overftting. It is worth mentioning that the accuracy trends
of the remaining algorithms show no signifcant deviation
from Figure 9(a).

When binary classifcation is performed on theNSL-KDD
dataset, it can be seen from Figure 9(c) that FNN has the
fastest convergence speed among the deep learning algo-
rithms, and its accuracy converges to an optimal value at the
early stage of training. Figure 10(c) shows that the accuracy of
FNN is stably distributed around an optimal value, and there
are only a few outliers. As in the case of binary classifcation
on KDD Cup99, the accuracy of CNN also shows large jumps
in the training process when binary classifying the NSL-KDD
dataset, and it can be seen from Figure 10(c) that the accuracy
of CNN is distributed in a large range, which indicates that the
CNN training process is extremely unstable. In Figure 10(c),
there are more outliers in the accuracy rates of LSTM and
RNN, which also indicates the instability of their training
process. From Figure 9(d), it can be seen that when multi-
classifcation is performed on the NSL-KDD dataset, the
instability of various algorithms in the training process is
signifcantly improved, but CNN still shows large fuctuations
in its accuracy in the early stage of training.

Analyzing Figures 9(e) and 10(e), it can be observed that
during binary classifcation of the UNSW-NB15 dataset, the
training processes of all neural networks, except for DNN,
exhibit varying degrees of fuctuations. Additionally,
Figure 10(e) displays a higher number of outliers, which can
be attributed to the continuous improvement of algorithm
accuracy with increasing training iterations. Figure 9(e)
reveals that the accuracy of DNN stabilizes at a relatively
low value early in the training process, indicating that DNN
does not efectively capture more useful data features in
subsequent training stages. In the case of multiclassifcation
on the UNSW-NB15 dataset, LSTM and RNN initially show
improvements in accuracy during early training stages, but
quickly stabilize at a lower level. Tis suggests that LSTM
and RNN fail to learn signifcant data features through
training at this point. Moreover, Figure 10(f) clearly illus-
trates the concentrated distribution of LSTM and RNN
accuracy at a lower level.

Analyzing Figure 9(g), it can be observed that during
binary classifcation of the CICIDS2017 dataset, the accuracy
of various deep learning algorithms, except for DNN, con-
tinues to improve with increasing training iterations. Each
neural network’s training process exhibits varying degrees of
fuctuations, with Figure 10(g) displaying more outliers. FNN
tends to stabilize in the later stages of training, indicating that
the model has learned useful data features, reached conver-
gence, and achieved optimal performance. On the other hand,
RNN reaches its peak accuracy in the early stages of training
but experiences signifcant fuctuations with increasing
training iterations, suggesting that the optimization process

International Journal of Intelligent Systems 25

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

0.950

0.925

0.900

0.875

0.850

0.825

0.800

1.000

0.975

(a)

1.00

0.95

0.90

Ac
cu

ra
cy

0.85

0.80

0 10 20 30 40
Iteration

50

(b)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

(c)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

1.0

0.9

0.8

0.7

0.6

0.5

(d)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

0.95

0.90

0.85

0.80

0.75

0.70

0.65

(e)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

0.8

0.7

0.6

0.5

(f)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

1.00

0.98

0.96

0.94

0.92

0.90

0.88

(g)

Ac
cu

ra
cy

0 10 20 30 40
Iteration

50

0.950

0.925

0.900

0.875

0.850

0.825

0.800

1.000

0.975

(h)

Figure 9: Dataset classifcation accuracy. (a) KDDCup99 binary classifcation. (b) KDDCup99multiple classifcation. (c) NSL-KDD binary
classifcation. (d) NSL-KDD multiple classifcation. (e) UNSW-NB15 binary classifcation. (f) UNSW-NB15 multiple classifcation. (g)
CICIDS2017 binary classifcation. (h) CICIDS2017 binary classifcation.

26 International Journal of Intelligent Systems

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

0.950
0.925
0.900
0.875
0.850
0.825
0.800

1.000
0.975

(a)

0.80

0.85

0.90

1.00

0.95

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

(b)

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55

(c)

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

1.0

0.9

0.8

0.7

0.6

0.5

(d)

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

0.95

0.90

0.85

0.80

0.75

0.70

0.65

(e)

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

0.8

0.7

0.6

0.5

(f)

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

1.00

0.98

0.96

0.94

0.92

0.90

0.88

(g)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

CN
N

D
N

N

LS
TM RN

N

FN
N

1

FN
N

2

FN
N

3 RF LR D
T

KN
N

SV
M

(h)

Figure 10: Dataset classifcation accuracy boxplot. (a) KDD Cup99 binary classifcation. (b) KDD Cup99 multiple classifcation. (c) NSL-
KDD binary classifcation. (d) NSL-KDD multiple classifcation. (e) UNSW-NB15 binary classifcation. (f) UNSW-NB15 multiple clas-
sifcation. (g) CICIDS2017 binary classifcation. (h) CICIDS2017 binary classifcation.

International Journal of Intelligent Systems 27

for RNN’s parameters is highly unstable. From Figure 10(h), it
can be observed that during multiclassifcation of the
CICIDS2017 dataset, CNN and FNN demonstrate a more
concentrated distribution of accuracy, indicating a more
stable training process. Tis observation, combined with
Figure 9(h), clearly indicates that the training process of CNN
and FNN is comparatively smoother than that of other deep
learning algorithms. Figure 10(h) illustrates that DNN’s ac-
curacy is centrally distributed at a lower level, indicating that
DNN fails to learn useful data features through training. On
the other hand, LSTM and RNN exhibit signifcant fuctua-
tions with increasing training iterations, with a higher
number of outliers in their accuracy rates, further highlighting
the instability of their training process.

Overall, in most cases, FNN demonstrates faster con-
vergence towards a higher accuracy rate than other algo-
rithms. Te accuracy distribution of FNN remains more
stable during the training process, with only a few outliers in
the accuracy values. Tis indicates that FNN exhibits a more
consistent and stable performance.

In conclusion, the FNN exhibits superior detection per-
formance in binary and multivariate classifcation of network
intrusion data than traditional deep learning and machine
learning algorithms. It is worth noting that we have validated
the FNN model on multiple datasets, further enhancing the
credibility of the experimental results. Tis indicates that the
exceptional performance of the FNN model is not solely
attributed to chance or specifc features of a particular dataset
but possesses general applicability and stability.Terefore, the
FNN model holds signifcant potential for application in the
feld of network intrusion detection.

8.2. Comparative Experiment Two. In Section 4.2.2, we
proposed a high-energy selection algorithm. In this algorithm,
the number of iterations n needs to be manually selected.
Based on the analysis in Section 4.2.2, it is observed that
a larger value of n leads to a stronger fltering efect of the HSE
algorithm on the noise signal wave, but at the cost of losing
more information. Conversely, a smaller value of n results in
a weaker fltering efect on the noise signal wave but with less
information loss. Excessive noise signals can degrade the al-
gorithm’s fnal performance, and a higher degree of in-
formation loss can also lead to a decline in performance. To
investigate the impact of n on the fnal performance of FNN,
experiments were conducted with diferent values of n for
FNN3: n� 1, 2, 3, 4, 5, 6.Te performancemetrics of FNN3 on
the KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017
datasets were recorded under each condition. Te detailed
experimental results can be found in Tables 17–24.

As shown in Tables 17–24, the experimental results of
classifying the KDD Cup99, NSL-KDD, UNSW-NB15, and
CICIDS2017 datasets indicate that the detection perfor-
mance of FNN initially increases and then decreases with the
increase in the number of iterations (n) of the HSE algo-
rithm. Specifcally, the detection performance of FNN
usually reaches its peak when n is set to 3 or 4. When
classifying the KDD Cup99 dataset, the experimental results
demonstrate that the detection performance of FNN is

optimal when n is set to 3. On the other hand, for the
NSL-KDD dataset, the peak detection performance of FNN
occurs at diferent values of n. For the binary classifcation
task, the best detection performance of FNN is achieved
when n is set to 3, while for the multiclassifcation task, the
optimal detection performance is observed when n is set to 4.
When classifying the UNSW-NB15 dataset, the experi-
mental results suggest that the detection performance of
FNN is highest when n is set to 4. Regarding the binary
classifcation task of the CICIDS2017 dataset, the best de-
tection performance of FNN is achieved when n is set to 2,
while for the multiclassifcation task, the optimal detection
performance is observed when n is set to 3.

From the above observations, it can be noted that in-
creasing the value of n within a certain range efectively
flters out noise signals through the HSE algorithm, thereby
improving the fnal detection performance of the FNN.
However, when the value of n exceeds a certain range,
excessive information fltering by the HSE algorithm may
lead to information loss and a subsequent decrease in the
FNN’s detection rate. Further analysis reveals that for
complex datasets, the FNN’s detection performance reaches
its peak at larger values of n. For instance, in the
UNSW-NB15 dataset, the optimal value of n is found to be 4.
Te identifcation of this phenomenon provides valuable
guidance for future research, enabling the selection of an
appropriate value of n in the FNN based on the complexity
of the dataset and specifc application requirements, ulti-
mately enhancing the classifcation performance of the FNN.

8.3. Comparison of Performance with Other Studies.
Table 25 provides a comparison of diferent models in terms of
accuracy and time consumption. Each row represents a model
proposed for intrusion detection in diferent references. Te
table includes the accuracy, precision, recall, F1-score, training
time, inference time, and loss of our proposed models on
diferent datasets, including KDDCup99, NSL-KDD, UNSW-
NB15, and CICIDS2017, for comparison with existing studies.
It is important to note that the selection and division of
datasets in diferent references may have an impact on the
training time and inference time of the corresponding models.
In our experiments, we specifcally recorded the training and
inference time for FNN1, FNN2, and FNN3 for each dataset.
Te training time represents the time required to train each
epoch of the training set, while the inference time represents
the time required to make predictions on the test set.

In order to determine the superiority of the proposed
FNN compared to the other studies listed in Table 25, it is
necessary to analyze the diferent metrics provided, in-
cluding model accuracy, training time, and inference time.
By comparing these metrics, we can gain insights into the
advantages of the proposed FNN. Te FNN achieves high
accuracy on multiple datasets, with FNN3 achieving the
highest accuracy of up to 99.7%. Tis demonstrates the
model’s efectiveness in accurately classifying network trafc
and detecting intrusions. In comparison to other studies, the
proposed FNN consistently maintains high accuracy, sur-
passing many other models listed in the table. Regarding

28 International Journal of Intelligent Systems

training time, the proposed FNN exhibits relatively fast
training times compared to other models. Te size and
characteristics of the datasets, as well as the division of the
training set, can infuence the duration of the training

process.Te training time for the FNN ranges from 1 second
to 717 seconds. Although the table does not provide training
times for all models, the training time of the proposed FNN
appears competitive, as it falls within a reasonable range
when compared to other models in the table. Inference time
refers to the time required for the model to make predictions
on new and unseen attacks. In our experiments, we recorded
the prediction time of the test set as the inference time. Te
proposed FNN demonstrates efcient inference times,
ranging from 1 to 152 seconds for diferent datasets. Similar
to the training time, the inference time of the proposed FNN
is competitive with other models in the table.

As shown in Table 25, some studies rely on a single dataset
to validate their proposed models. However, this approach is
not ideal as it does not ensure the generalization of the model.
Tis is because a single dataset may possess unique features
that the model can learn and overft to, resulting in higher
accuracy scores on that particular dataset but lower perfor-
mance on other datasets. To test themodel’s generalizability, it
is crucial to evaluate it on multiple datasets with varying
characteristics. Models that perform well across diferent
datasets demonstrate their applicability to diverse environ-
ments, which is a key requirement for an efective IDS. Our
proposed model has been validated on four distinct datasets,
including KDD Cup99, NSL-KDD, UNSW-NB15, and

Table 17: Binary classifcation test results for KDD Cup99 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.992 0.998 0.992 0.995
2 0.994 0.999 0.994 0.996
3 0. 7 0. 0. 7 0. 8
4 0.989 0.997 0.989 0.993
5 0.987 0.997 0.987 0.992
6 0.987 0.995 0.988 0.992
Te bold values indicate the best performance in these set of experiments.

Table 18: Multiclass classifcation test results for KDD Cup99 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.953 0.957 0.953 0.941
2 0.974 0.975 0.974 0.972
3 0. 0 0. 0 0. 0 0. 8
4 0.976 0.977 0.976 0.974
5 0.970 0.971 0.970 0.967
6 0.944 0.902 0.944 0.921
Te bold values indicate the best performance in these set of experiments.

Table 19: Binary classifcation test results for NSL-KDD at diferent
n values.

n Accuracy Precision Recall F1-score
1 0.959 0.956 0.972 0.964
2 0.962 0.966 0.968 0.967
3 0. 82 0. 82 0. 86 0. 84
4 0.955 0.956 0.967 0.961
5 0.959 0.953 0.977 0.965
6 0.944 0.932 0.973 0.952
Te bold values indicate the best performance in these set of experiments.

Table 20: Multiclass classifcation test results for NSL-KDD at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.962 0.962 0.962 0.962
2 0.968 0.966 0.968 0.967
3 0.977 0.977 0.977 0.977
4 0. 82 0. 82 0. 82 0. 81
5 0.976 0.976 0.976 0.975
6 0.955 0.955 0.955 0.954
Te bold values indicate the best performance in these set of experiments.

Table 21: Binary classifcation test results for UNSW-NB15 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.909 0.928 0.906 0.917
2 0.936 0.961 0.921 0.941
3 0.944 0.954 0.943 0.949
4 0. 53 0. 6 0. 45 0. 57
5 0.952 0.962 0.951 0.956
6 0.935 0.958 0.922 0.940
Te bold values indicate the best performance in these set of experiments.

Table 22: Multiclass classifcation test results for UNSW-NB15 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.779 0.742 0.779 0.754
2 0.836 0.811 0.836 0.821
3 0.843 0.825 0.843 0.833
4 0.847 0.82 0.847 0.836
5 0.779 0.743 0.779 0.754
6 0.780 0.743 0.780 0.754
Te bold values indicate the best performance in these set of experiments.

Table 23: Binary classifcation test results for CICIDS2017 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.991 0.979 0.978 0.978
2 0. 4 0. 85 0. 84 0. 84
3 0.993 0.984 0.981 0.983
4 0.977 0.925 0.960 0.942
5 0.992 0.971 0.986 0.977
6 0.993 0.984 0.978 0.981
Te bold values indicate the best performance in these set of experiments.

Table 24: Multiclass classifcation test results for CICIDS2017 at
diferent n values.

n Accuracy Precision Recall F1-score
1 0.992 0.992 0.992 0.992
2 0.992 0.992 0.992 0.992
3 0. 5 0. 5 0. 5 0. 4
4 0.993 0.993 0.993 0.992
5 0.990 0.990 0.990 0.989
6 0.992 0.992 0.992 0.992
Te bold values indicate the best performance in these set of experiments.

International Journal of Intelligent Systems 29

Ta
bl

e
25
:P

er
fo
rm

an
ce

co
m
pa
ri
so
n
w
ith

ot
he
r
st
ud

ie
s.

Re
fe
re
nc
e

M
od

el
D
at
as
et

C
la
ss
if
ca
tio

n
A
cc
ur
ac
y

(%
)

Pr
ec
isi
on

(%
)

Re
ca
ll

(%
)

F1
(%

)
Lo

ss
Tr
ai
ni
ng

tim
es
/

ep
oc
h

In
fe
re
nc
e

tim
es

H
na
m
te

an
d
H
us
sa
in

[5
8]

D
C
N
N
Bi
LS

TM
C
IC

ID
S2
01
8

M
ul
tip

le
1

—
—

—
0.
00
00

32
45

17
12
.0
3

Ed
ge
_I
Io
T

M
ul
tip

le
0.
99
62

—
—

—
0.
00
81

84
21

41
77
.5
3

A
lo
ta
ib
ie

ta
l.
[5
9]

D
T-
PC

A
-D

N
N

N
SL

-K
D
D

Bi
na
ry

0.
88
64

—
0.
84
56

—
—

14
.1
5
(m

s)
57
.8
6
(m

s)
M
ul
tip

le
0.
83
29

—
—

—
—

17
.3
6

—

H
na
m
te

et
al
.[
60
]

LS
TM

-A
E

C
IC

ID
S2
01
7

Bi
na
ry

0.
99
99

—
—

—
0.
00
05

18
4

53
.6
6

C
SE

-C
IC

D
IS
20
18

Bi
na
ry

0.
99
1

—
—

—
0.
00
40

46
2

12
8.
24

N
av
ee
d
et

al
.[
61
]

D
N
N

N
SL

-K
D
D

Bi
na
ry

0.
99
73

0.
99
75

0.
99
73

0.
99
72

—
13
8

2.
7

H
na
m
te

an
d

H
us
sa
in

[6
2]

D
C
N
N

C
IC

ID
S2
01
7

M
ul
tip

le
0.
99
96

0.
99
96

0.
99
96

0.
99
96

0.
00
15

40
29
.3
6

C
IC

ID
S2
01
8

M
ul
tip

le
1

1
1

1
0.
00
00

15
9.
91

Ba
sh
ar

et
al
.[
63
]

M
ul
til
ay
er

LS
TM

N
SL

-K
D
D

Bi
na
ry

0.
95
0

0.
95
0

0.
95
0

0.
95
0

—
—

—
M
ul
tip

le
0.
96
0

0.
83
0

1
0.
93
0

—
—

—
Sa
ng

ee
th
a
et

al
.[
64
]

M
ul
til
ay
er
ed

ID
S

C
IC

ID
S2
01
8
+
Bo

T-
Io
T
+
To

N
-I
oT

Bi
na
ry

0.
98
1

0.
99
8

0.
99
8

—
—

—
—

O
ur

m
od

el

FN
N
1

K
D
D
C
U
P9

9
Bi
na
ry

0.
98
8

0.
99
7

0.
98
9

0.
99
3

0.
02
38

6
8

M
ul
tip

le
0.
95
7

0.
95
7

0.
95
7

0.
94
8

0.
09
77

6
8

N
SL

-K
D
D

Bi
na
ry

0.
94
8

0.
95
4

0.
95
6

0.
95
5

0.
09
89

1
1

M
ul
tip

le
0.
96
3

0.
96
3

0.
96
3

0.
96
2

0.
08
48

1
1

U
N
SW

-N
B1

5
Bi
na
ry

0.
92
7

0.
93
2

0.
93
6

0.
93
4

0.
14
27

1
2

M
ul
tip

le
0.
79
0

0.
77
5

0.
79
0

0.
77
4

0.
52
24

2
2

C
IC

ID
S2
01
7

Bi
na
ry

0.
99
1

0.
97
9

0.
97
8

0.
97
8

0.
02
57

27
18

M
ul
tip

le
0.
99
3

0.
99
3

0.
99
3

0.
99
2

0.
01
50

27
18

FN
N
2

K
D
D
C
U
P9

9
Bi
na
ry

0.
99
6

0.
99
9

0.
99
6

0.
99
7

0.
00
42

30
15

M
ul
tip

le
0.
98
1

0.
98
2

0.
98
1

0.
98
0

0.
00
45

33
15

N
SL

-K
D
D

Bi
na
ry

0.
97
8

0.
97
6

0.
98
5

0.
98
0

0.
06
49

6
2

M
ul
tip

le
0.
97
5

0.
97
5

0.
97
5

0.
97
5

0.
07
95

6
2

U
N
SW

-N
B1

5
Bi
na
ry

0.
94
4

0.
95
3

0.
94
4

0.
94
9

0.
12
88

9
4

M
ul
tip

le
0.
84
6

0.
83
9

0.
84
6

0.
84
2

0.
42
35

9
4

C
IC

ID
S2
01
7

Bi
na
ry

0.
99
4

0.
98
5

0.
98
4

0.
98
4

0.
01
71

38
5

84
M
ul
tip

le
0.
99
4

0.
99
4

0.
99
4

0.
99
3

0.
01
48

35
8

82

FN
N
3

K
D
D
C
U
P9

9
Bi
na
ry

0.
99
7

0.
99
9

0.
99
7

0.
99
8

0.
00
41

54
20

M
ul
tip

le
0.
99
0

0.
99
0

0.
99
0

0.
98
9

0.
00
44

60
21

N
SL

-K
D
D

Bi
na
ry

0.
98
2

0.
98
2

0.
98
6

0.
98
4

0.
06
63

11
3

M
ul
tip

le
0.
97
7

0.
97
7

0.
97
7

0.
97
7

0.
07
38

11
3

U
N
SW

-N
B1

5
Bi
na
ry

0.
94
4

0.
95
4

0.
94
3

0.
94
9

0.
13
06

16
6

M
ul
tip

le
0.
85
3

0.
84
4

0.
85
3

0.
84
7

0.
39
60

7
10

C
IC

ID
S2
01
7

Bi
na
ry

0.
99
3

0.
98
4

0.
98
1

0.
98
3

0.
01
86

71
7

15
2

M
ul
tip

le
0.
99
5

0.
99
5

0.
99
5

0.
99
4

0.
01
45

68
1

13
6

30 International Journal of Intelligent Systems

CICIDS2017, all of which have yielded impressive results.
Hence, our FNNmodel can be consideredmore generalizable,
indicating its ability to perform well on previously unseen
datasets. In comparison tomany othermodels in the table, our
model exhibits strong performance across multiple datasets,
making it more reliable than models that solely excel on
a single dataset. Overall, the proposed FNN stands out due to
its high accuracy, competitive training time, and efcient
inference time, making it a superior model compared to many
other studies mentioned in Table 25.

9. Conclusion and Future Work

Tis paper hasproposed a novel approach called the Fourier
Neural Network (FNN). It utilizes Fast Fourier Transform to
convert network intrusion data into the frequency domain
space, applies fltering to the converted data, and can sub-
sequently convert the fltered data back to the time domain
space. By enabling processing of network data in both the time
and frequency domain spaces, FNN enhances the neural
network’s capability to handle complex data and extract fea-
tures. To eliminate noisy signals, this study has also introduced
a high-energy fltering process (HFP), which further enhances
the performance of FNN in intrusion detection by fltering out
low-energy noise signal waves based on their amplitude. Te
experimental results have shown that FNN has signifcant
advantages over existing classical neural network algorithms
and traditional machine learning algorithms in dealing with
intrusion detection problems. In addition, this study has ex-
plored the efect of the number of iterations n in HSP on the
performance of FNN, and the results have shown that choosing
the right value of n is crucial for achieving the best perfor-
mance. In summary, the main contributions of this study are
twofold. First, the FNN framework was developed to enhance
the ability of neural networks to process complex data using
Fourier transform. Second, HSP was introduced to efectively
eliminate the noisy signals and further improve the perfor-
mance of FNN in intrusion detection. As a novel neural
network, FNN has certain limitations in its application in other
domains. For instance, currently, FNN is only capable of
performing Fourier transform on one-dimensional data,
thereby restricting its ability to handle images and videos.
Furthermore, the FNN structure is specifcally suited for
classifcation tasks and not applicable to regression problems.
In the future, further enhancements will be made to FNN to
enable efective processing of image and video data, as well as
its applicability to regression problems. Additionally, im-
provements will be made to the HSE algorithm to develop
a more efcient fltering algorithm, thereby enhancing the
performance of FNN.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors have no relevant fnancial or nonfnancial in-
terests to disclose.

Authors’ Contributions

Zhendong Wang performed the conceptualization, data
curation, formal analysis, resources, supervision, project
administration, and review and editing. Jingfei Li performed
the conceptualization, methodology, software, validation,
investigation, original draft writing, and review and editing.
Zhenyu Xu performed the conceptualization, methodology,
visualization, and review and editing. Shuxin Yang per-
formed the conceptualization and review and editing.
Daojing He performed the conceptualization and review and
editing. Sammy Chan performed the conceptualization and
review and editing.

Acknowledgments

Tis work is supported by the National Natural Science
Foundation of China (grant nos. 62062037, 61562037, 62376074,
and 72261018), the Natural Science Foundation of Jiangxi
Province (grant nos. 20212BAB202014 and 20171BAB202026),
and the Shenzhen Science andTechnology Programunder (grant
nos. KCXST20221021111404010, JSGG20220831103400002, and
JSGGKQTD20221101115655027).

References

[1] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion de-
tection systems: a cross-domain overview,” IEEE Communi-
cations Surveys and Tutorials, vol. 21, no. 4, pp. 3639–3681,
2019.

[2] M. Ozkan-Okay, R. Samet, Ö. Aslan, and D. Gupta, “A
comprehensive systematic literature review on intrusion
detection systems,” IEEE Access, vol. 9, pp. 157727–157760,
2021.

[3] M. H. Nasir, S. A. Khan, M. M. Khan, and M. Fatima, “Swarm
intelligence inspired intrusion detection systems—a system-
atic literature review,” Computer Networks, vol. 205, Article
ID 108708, 2022.

[4] A. S. Dina and D. Manivannan, “Intrusion detection based on
machine learning techniques in computer networks,” Internet
of Tings, vol. 16, Article ID 100462, 2021.

[5] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning
methods for cyber security intrusion detection: datasets and
comparative study,” Computer Networks, vol. 188, Article ID
107840, 2021.

[6] M. Choraś and M. Pawlicki, “Intrusion detection approach
based on optimised artifcial neural network,” Neuro-
computing, vol. 452, pp. 705–715, 2021.

[7] J. Gu and S. Lu, “An efective intrusion detection approach
using SVM with naı̈ve Bayes feature embedding,” Computers
and Security, vol. 103, Article ID 102158, 2021.

[8] E. U. H. Qazi, M. Imran, N. Haider, M. Shoaib, and I. Razzak,
“An intelligent and efcient network intrusion detection
system using deep learning,” Computers and Electrical En-
gineering, vol. 99, Article ID 107764, 2022.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.

[10] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered
neural network controller,” IEEE Control Systems Magazine,
vol. 8, no. 2, pp. 17–21, 1988.

International Journal of Intelligent Systems 31

[11] H. Aldarmaki, A. Ullah, S. Ram, and N. Zaki, “Unsupervised
automatic speech recognition: a review,” Speech Communi-
cation, vol. 139, pp. 76–91, 2022.

[12] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-
time streaming transformer transducer for speech recognition
on large-scale dataset,” in Proceedings od the ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5904–5908, IEEE, Toronto,
Canada, June 2021.

[13] M. H. Guo, T. X. Xu, J. J. Liu et al., “Attention mechanisms in
computer vision: a survey,” Computational visual media,
vol. 8, no. 3, pp. 331–368, 2022.

[14] W. Lu and J. Chen, “Computer vision for solid waste sorting:
a critical review of academic research,” Waste Management,
vol. 142, pp. 29–43, 2022.

[15] H. Li, N. Zeng, P. Wu, and K. Clawson, “Cov-Net: a com-
puter-aided diagnosis method for recognizing COVID-19
from chest X-ray images via machine vision,” Expert Systems
with Applications, vol. 207, Article ID 118029, 2022.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, 1997.

[18] L. Su, J. Guo, L. Wu, and H. Deng, “BamnetTL: bidirectional
attention memory network with transfer learning for question
answering matching,” International Journal of Intelligent
Systems, vol. 2023, Article ID 7434058, 11 pages, 2023.

[19] Y. Zhang, J. Wang, and X. Zhang, “Conciseness is better:
recurrent attention LSTM model for document-level senti-
ment analysis,” Neurocomputing, vol. 462, pp. 101–112, 2021.

[20] N. Bensalah, H. Ayad, A. Adib, and A. Ibn El Farouk, “CRAN:
an hybrid CNN-RNN attention-based model for Arabic
machine translation,” in Networking, Intelligent Systems and
Security: Proceedings of NISS 2021, pp. 87–102, Springer,
Singapore, 2022.

[21] F. Yuan, Z. Zhang, and Z. Fang, “An efective CNN and
Transformer complementary network for medical image
segmentation,” Pattern Recognition, vol. 136, Article ID
109228, 2023.

[22] G. Lokku, G. H. Reddy, and M. G. Prasad, “OPFaceNet:
OPtimized Face Recognition Network for noise and occlusion
afected face images using Hyperparameters tuned Con-
volutional Neural Network,”Applied Soft Computing, vol. 117,
Article ID 108365, 2022.

[23] L. Sun, W. Shao, Q. Zhu, M. Wang, G. Li, and D. Zhang,
“Multi-scale multi-hierarchy attention convolutional neural
network for fetal brain extraction,” Pattern Recognition,
vol. 133, Article ID 109029, 2023.

[24] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward
a lightweight intrusion detection system for the internet of
things,” IEEE Access, vol. 7, pp. 42450–42471, 2019.

[25] M. Safaldin, M. Otair, and L. Abualigah, “Improved binary
gray wolf optimizer and SVM for intrusion detection system
in wireless sensor networks,” Journal of Ambient Intelligence
and Humanized Computing, vol. 12, no. 2, pp. 1559–1576,
2021.

[26] A. Ponmalar and V. Dhanakoti, “An intrusion detection
approach using ensemble support vector machine based chaos
game optimization algorithm in big data platform,” Applied
Soft Computing, vol. 116, Article ID 108295, 2022.

[27] E. K. Boahen, B. E. Bouya-Moko, and C. Wang, “Network
anomaly detection in a controlled environment based on an

enhanced PSOGSARFC,” Computers and Security, vol. 104,
Article ID 102225, 2021.

[28] H. Ding, L. Chen, L. Dong, Z. Fu, and X. Cui, “Imbalanced
data classifcation: a KNN and generative adversarial
networks-based hybrid approach for intrusion detection,”
Future Generation Computer Systems, vol. 131, pp. 240–254,
2022.

[29] M. Yousefnezhad, J. Hamidzadeh, and M. Aliannejadi,
“Ensemble classifcation for intrusion detection via feature
extraction based on deep Learning,” Soft Computing, vol. 25,
no. 20, pp. 12667–12683, 2021.

[30] M. Ayar, A. Isazadeh, F. S. Gharehchopogh, and M. Seyedi,
“Chaotic-based divide-and-conquer feature selection method
and its application in cardiac arrhythmia classifcation,” Te
Journal of Supercomputing, vol. 78, no. 4, pp. 5856–5882, 2022.

[31] F. S. Gharehchopogh, A. Ucan, T. Ibrikci, B. Arasteh, and
G. Isik, “Slimemould algorithm: a comprehensive survey of its
variants and applications,” Archives of Computational
Methods in Engineering, vol. 30, no. 4, pp. 2683–2723, 2023.

[32] M. Alazab, R. A. Khurma, A. Awajan, and D. Camacho, “A
new intrusion detection system based on Moth–Flame Op-
timizer algorithm,” Expert Systems with Applications, vol. 210,
Article ID 118439, 2022.

[33] Z. Halim, M. N. Yousaf, M. Waqas et al., “An efective genetic
algorithm-based feature selection method for intrusion de-
tection systems,” Computers and Security, vol. 110, Article ID
102448, 2021.

[34] A. Takkar and R. Lohiya, “Fusion of statistical importance
for feature selection in deep neural network-based intrusion
detection system,” Information Fusion, vol. 90, pp. 353–363,
2023.

[35] B. Riyaz and S. Ganapathy, “A deep learning approach for
efective intrusion detection in wireless networks using CNN,”
Soft Computing, vol. 24, no. 22, pp. 17265–17278, 2020.

[36] J. J. Fu and X. L. Zhang, “Gradient importance enhancement
based feature fusion intrusion detection technique,” Com-
puter Networks, vol. 214, Article ID 109180, 2022.

[37] V. Ravi, R. Chaganti, and M. Alazab, “Recurrent deep
learning-based feature fusion ensemble meta-classifer ap-
proach for intelligent network intrusion detection system,”
Computers and Electrical Engineering, vol. 102, Article ID
108156, 2022.

[38] Z. Wang, Y. Zeng, Y. Liu, and D. Li, “Deep belief network
integrating improved kernel-based extreme learning machine
for network intrusion detection,” IEEE Access, vol. 9,
pp. 16062–16091, 2021.

[39] Y. Shen, C. Zhang, F. Soleimanian Gharehchopogh, and
S. Mirjalili, “An improved whale optimization algorithm
based on multi-population evolution for global optimization
and engineering design problems,” Expert Systems with Ap-
plications, vol. 215, Article ID 119269, 2023.

[40] F. S. Gharehchopogh, “Quantum-inspired metaheuristic al-
gorithms: comprehensive survey and classifcation,” Artifcial
Intelligence Review, vol. 56, no. 6, pp. 5479–5543, 2023.

[41] P. Rajesh Kanna and P. Santhi, “Unifed deep learning ap-
proach for efcient intrusion detection system using in-
tegrated spatial–temporal features,” Knowledge-Based
Systems, vol. 226, Article ID 107132, 2021.

[42] P. R. Kanna and P. Santhi, “Hybrid intrusion detection using
mapreduce based black widow optimized convolutional long
short-term memory neural networks,” Expert Systems with
Applications, vol. 194, Article ID 116545, 2022.

[43] S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar et al.,
“Optimization enabled deep learning-based DDoS attack

32 International Journal of Intelligent Systems

detection in cloud computing,” International Journal of In-
telligent Systems, vol. 2023, Article ID 2039217, 16 pages, 2023.

[44] G. Yang, L. Wang, R. Yu, J. He, B. Zeng, and T. Wu, “A
modifed gray wolf optimizer-based negative selection algo-
rithm for network anomaly detection,” International Journal
of Intelligent Systems, vol. 2023, Article ID 8980876, 23 pages,
2023.

[45] D. Sundararajan, Te Discrete Fourier Transform: Teory,
Algorithms and Applications, World Scientifc, Singapore,
2001.

[46] H. J. Nussbaumer and H. J. Nussbaumer, Te Fast Fourier
Transform, Springer, Berlin, Germany, 1982.

[47] C. M. Rader, “Discrete Fourier transforms when the number
of data samples is prime,” Proceedings of the IEEE, vol. 56,
no. 6, pp. 1107-1108, 1968.

[48] R. T. M. A. C. Lu, Algorithms for Discrete Fourier Transform
and Convolution, Springer, Switzerland, 1989.

[49] S. Impedovo, T. Simone, and G. Dimauro, “Integration of the
cooley, rader and Winograd-Fourier algorithms for a faster
computation of the DFT,” Recent Issues in Pattern Analysis
and Recognition, pp. 52–57, 1989.

[50] S. Engelberg, “Elementary number theory and rader’s FFT,”
SIAM Review, vol. 59, no. 3, pp. 671–678, 2017.

[51] Kdd Cup 99 dataset, “Kdd cup99 dataset[online],” 2022,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[52] Nsl-Kdd dataset, “Nsl-kdd dataset[online],” 2021, http://
users.cis.fu.edu/%7Elpeng/Datasets_detail.html.

[53] Unsw-Nb 15 dataset, “Unsw-nb15 dataset[online],” 2019,
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersec
urity/ADFA-NB15-Datasets/.

[54] N.Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proceedings of the 2015 military com-
munications and information systems conference (MilCIS),
pp. 1–6, IEEE, Canberra, Australia, November 2015.

[55] Cic-Ids 2017 dataset, “Cic-ids2017 dataset[online],” 2017,
https://www.unb.ca/cic/datasets/ids-2017.html.

[56] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
trafc characterization,” in Proceedings of the 4th In-
ternational Conference on Information Systems Security and
Privacy (ICISSP 2018), vol. 1, pp. 108–116, Funchal- Madeira,
Portugal, January 2018.

[57] D. M. Powers, “Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correla-
tion,” 2020, https://arxiv.org/abs/2010.16061.

[58] V. Hnamte and J. Hussain, “DCNNBiLSTM: an efcient
hybrid deep learning-based intrusion detection system,”
Telematics and Informatics Reports, vol. 10, Article ID 100053,
2023.

[59] S. D. Alotaibi, K. Yadav, A. N. Aledaily et al., “Deep neural
network-based intrusion detection system through PCA,”
Mathematical Problems in Engineering, vol. 2022, Article ID
6488571, 9 pages, 2022.

[60] V. Hnamte, H. Nhung-Nguyen, J. Hussain, and Y. Hwa-Kim,
“A novel two-stage deep learningmodel for network intrusion
detection: lstm-ae,” IEEE Access, vol. 11, pp. 37131–37148,
2023.

[61] M. Naveed, F. Arif, S. M. Usman et al., “A deep learning-based
framework for feature extraction and classifcation of in-
trusion detection in networks,”Wireless Communications and
Mobile Computing, vol. 2022, Article ID 2215852, 11 pages,
2022.

[62] V. Hnamte and J. Hussain, “Dependable intrusion detection
system using deep convolutional neural network: a Novel
framework and performance evaluation approach,” Tele-
matics and Informatics Reports, vol. 11, Article ID 100077,
2023.

[63] G. M. H. Bashar, M. A. Kashem, and L. C. Paul, “Intrusion
detection for cyber-physical security system using long short-
term memory model,” Scientifc Programming, vol. 2022,
Article ID 6172362, 11 pages, 2022.

[64] S. K. Sangeetha, P. Mani, V. Maheshwari, P. Jayagopal,
M. Sandeep Kumar, and S. M. Allayear, “Design and analysis
of multilayered neural network-based intrusion detection
system in the internet of things network,” Computational
Intelligence and Neuroscience, vol. 2022, Article ID 9423395,
7 pages, 2022.

International Journal of Intelligent Systems 33

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://users.cis.fiu.edu/%7Elpeng/Datasets_detail.html
http://users.cis.fiu.edu/%7Elpeng/Datasets_detail.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unb.ca/cic/datasets/ids-2017.html
https://arxiv.org/abs/2010.16061

