Hindawi

International Journal of Intelligent Systems
Volume 2023, Article ID 8825587, 33 pages
https://doi.org/10.1155/2023/8825587

Research Article

WILEY | Q@) Hindawi

Application of Deep Neural Network with Frequency Domain
Filtering in the Field of Intrusion Detection

Zhendong Wang,' Jingfei Li ©," Zhenyu Xu,” Shuxin Yang,' Daojing He,” and Sammy Chan

4

ISchool of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
?School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
*Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Correspondence should be addressed to Jingfei Li; 6120210180@mail.jxust.edu.cn

Received 27 June 2023; Revised 29 October 2023; Accepted 2 November 2023; Published 16 November 2023

Academic Editor: Alexander HoSovsky

Copyright © 2023 Zhendong Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In the field of intrusion detection, existing deep learning algorithms have limited capability to effectively represent network data
features, making it challenging to model the complex mapping relationship between network data and attack behavior. This
limitation, in turn, impacts the detection accuracy of intrusion detection systems. To address this issue and further enhance
detection accuracy, this paper proposes an algorithm called the Fourier Neural Network (FNN). The core of FNN consists of
a Deep Fourier Neural Network Block (DFNNB), which is composed of a Hadamard Neural Network (HNN) and a Fourier
Neural Network Layer (FNNL). In a DFNNB, the HNN is responsible for sampling the network intrusion data samples in different
time domain spaces. The FNNL, on the other hand, performs a Fourier transform on the samples outputted by the HNN and maps
them to the frequency domain space, followed by a filtering process. Finally, the data processed by filtering are transformed back to
the time domain space for subsequent feature extraction work by the DENNB. Additionally, to enhance the algorithm’s detection
accuracy and filter out noise signals, this paper also introduces a High-energy Filtering Process (HFP), which eliminates noise
signals from the data signal and reduces interference on the final detection result. Due to the ability of FNN to process network
data in both the time domain space and the frequency domain space, it possesses a stronger capability in expressing data features.
Finally, this paper conducts performance evaluations on the KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017 datasets.
The results demonstrate that the proposed FNN-based IDS model achieves higher detection rates, lower false alarm rates, and
better detection performance than classical deep learning and machine learning methods.

1. Introduction

With the arrival of the information age, the Internet has
undergone significant development as an important pro-
duction tool and has gradually permeated all aspects of the
national economy and social functioning. The Internet has
long been recognized as one of the most critical in-
frastructures in every country, highlighting the importance
of network security. The primary threat to network security
is the intrusion of information systems through the network.
The process of identifying and detecting intrusion behavior,
whether attempted, ongoing, or completed, is known as
intrusion detection [1]. The core concept of intrusion

detection is to analyze collected network data to distinguish
between normal and intrusive data, and subsequently
identify unsafe network behavior. However, with the con-
tinuous advancement of network technology, the level of
attacker techniques has been improving, making it in-
creasingly difficult to distinguish between abnormal and
normal behavioral data, and network attacks are becoming
increasingly covert. In the face of the escalating level of
network attacks, existing intrusion detection technology is
gradually exhibiting shortcomings, including lower accu-
racy, higher false positive rates, and difficulties in effectively
differentiating the characteristic data of normal and ab-
normal samples.

https://orcid.org/0009-0008-7095-9096
mailto:6120210180@mail.jxust.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8825587

Commonly used intrusion detection techniques include
attack detection techniques based on statistical methods [2],
intrusion detection methods based on expert systems [3], and
methods based on machine learning and deep learning [4-8].
The main advantage of statistical methods is their ability to
“learn” user habits, resulting in high detection rates and us-
ability. However, this “learning” ability also provides intruders
with the opportunity to gradually “train” intrusion events to
mimic normal statistical patterns, leading to the failure of in-
trusion detection systems. The effectiveness of expert systems in
preventing intrusion behavior relies on the completeness of the
knowledge base, which is often impractical to achieve for large
network systems. Due to the inherent incompleteness of expert
system rules, expert systems alone are no longer suitable for
intrusion detection, especially with the continuous development
of network intrusion technology. Traditional machine learning
methods often require extensive upfront feature engineering
work, which relies heavily on expert knowledge. The quality of
feature engineering has a significant impact on the effectiveness
of the algorithm, making it susceptible to human factors.

The concept of deep learning was first introduced by
Professor G.E. Hinton at the University of Toronto in 2006
[9]. The network structure of deep learning consists of a large
number of individual components called neurons. Each
neuron is connected to other neurons, and the strength of the
connections between neurons is determined by weights that
can be optimized during the learning process to determine the
performance of the neural network. Deep learning algo-
rithms, also known as deep neural networks (DNNs) [10],
have gained significant attention in recent years as a new
research direction in the field of machine learning. Deep
neural networks have made breakthroughs in various ap-
plications, including speech recognition and computer vision
[11-15]. Network intrusion data differs from speech, text, and
image data in that its feature values do not exhibit obvious
correlations. Speech and text data are examples of time series
data. Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) models can effectively process this
type of data by capturing the interrelationships between
feature values over time [16-20]. Image data exhibit a prop-
erty known as translation invariance, and the use of con-
volutional neural networks (CNNs) can be highly effective in
processing image data by leveraging this property [21-23].
There is no fixed, stable, universal a priori knowledge known
to humans that governs the relationships between feature data
in network intrusion data. This knowledge evolves with the
development of Internet technology and is influenced by the
skill level and attack techniques employed by attackers. Since
network intrusion data differ from image data and time series
data, mainstream neural networks such as CNN, RNN, and
LSTM are not well suited for handling network intrusion
data. This limitation affects the ability of deep learning al-
gorithms to effectively capture the features of network data. In
other words, intrusion detection models based on traditional
CNN, RNN, and LSTM have limited feature expression ca-
pabilities and struggle to accurately model the complex
mapping relationship between network data and attack be-
haviors. The more complex the mapping relationship that

International Journal of Intelligent Systems

a model can capture between network data and attack be-
haviors, the more promising it is in distinguishing intricate
and covert network intrusion behaviors. In essence, a more
expressive model is capable of accurately discerning network
intrusion data. To uncover the underlying patterns within the
intricate and dynamic network intrusion data, we propose
a Fourier Neural Network (FNN) with enhanced data pro-
cessing capabilities and an expanded data mapping space.

The core of FNN is the Deep Fourier Neural Network
Block (DFNNB), which consists of the Hadamard Neural
Network (HNN) and the Fourier Neural Network Layer
(FNNL). To apply FNN to the field of intrusion detection,
this paper first designs a Hadamard Neural Network (HNN)
that combines the dot product operation of matrices with the
Hadamard product operation. By using HNN, the algorithm
can effectively fit the network intrusion data in the multi-
temporal space of the sample X', thereby enhancing the
ability to represent data features. Once X' is obtained, the
frequency spectrum X' in the frequency domain space is
computed by applying a fast Fourier transform to X’ using
FNNL. To perform effective filtering operations on the data
signal, this paper introduces the High-energy Filtering
Process (HFP) to filter X/ and obtain the high-energy
spectrum X" Subsequently, X" is inverse transformed us-
ing the Fast Fourier Transform to obtain high-energy time
domain feature data X". Finally, X" is summed, com-
pressed, and input into a fully connected neural network for
classification. By stacking multiple layers of DENNB, the
FNN can achieve a more powerful mapping ability, thereby
enhancing its performance on complex data.

Overall, we contribute to the intrusion detection field as
tollows:

(1) The Hadamard Neural Network (HNN) is proposed,
which can effectively enhance the data dimensions
and provide a new method for future applications
that require data dimension enhancement. HNN
assigns different weights to the network intrusion
data samples to obtain the sample matrix X under
different weights. Then, it performs the Hadamard
product operation between X and a weight matrix W
with the same dimension as X. This process enables
the sampling of network intrusion data samples in
different time domain spaces X,

(2) The Fourier Neural Network Layer (FNNL) is pro-
posed to integrate the Fourier transform with the
neural network algorithm. FNNL transforms the
feature data of network intrusion data into the
frequency domain for processing, and then applies
inverse Fourier transform to convert the processed
frequency domain data back to the time domain.
This process effectively enhances the feature ex-
traction capability of the neural network algorithm
for complex data, thereby improving its ability to
handle network intrusion data.

(3) The High-energy Filtering Process (HFP) is designed
to effectively process frequency domain data. It has
the capability to automatically filter out weak noise

International Journal of Intelligent Systems

signals, thereby reducing their impact on the final
performance of the neural network.

(4) In order to validate the effectiveness of our proposed
method, we conduct experimental tests on the FNN
using network intrusion datasets such as KDD
Cup99, NSL-KDD, UNSW-NBI15, and CICIDS2017.
We evaluate the performance of the FNN using
multiple evaluation metrics and compare its per-
formance with various machine learning and deep
learning algorithms.

The paper is organized as follows: Section 2 introduces
the related work; Section 3 provides a general introduction
to FNN; Section 4 offers a detailed description of the
components of FNN and analyzes the back propagation of
gradient information in the DFENNB; Section 5 elaborates on
the steps of intrusion detection using FNN; Section 6 ex-
plains the intrusion detection datasets; Section 7 presents the
evaluation criteria for the experiment; Section 8 showcases
the experimental results and analyzes the model perfor-
mance; finally, Section 9 summarizes the entire paper and
provides an outlook on future research directions for FNN.

2. Related Work

In recent years, machine learning (ML) and deep learning
(DL) algorithms have emerged as the predominant and
efficacious models for numerous data processing applica-
tions. Notably, ML algorithms have found widespread uti-
lization in the realm of intrusion detection. This section
presents an overview of ML and DL algorithms employed in
intrusion detection, with a specific focus on the KDDCUP99,
NSL-KDD, UNSW-NBI15, and CICIDS2017 datasets. The
common ML algorithms utilized in intrusion detection
encompass support vector machine (SVM), logistic re-
gression (LR), decision tree (DT), Plain Bayes, random forest
(RF), K nearest neighbors (KNN), and artificial neural
network (NN). By optimizing these classical ML algorithms
at various levels, the performance of intrusion detection
systems can be significantly enhanced.

Jan et al. [24] used SVM based IDS on CICIDS2017
dataset and achieved 98% accuracy. Safaldin et al. [25]
proposed an intrusion detection method using Improved
Binary Grey Wolf Optimizer (GWOSVM-IDS) and got 96%
accuracy on NSL-KDD dataset but the detection time of this
method is very long. Ponmalar and Dhanakotid [26]
combined ensemble support vector machine (SVM) with
Chaos Game Optimization (CGO) algorithm. The proposed
ESVM algorithm was employed for classification prediction
on the UNSW-NB15 dataset, while the CGO algorithm was
utilized to fine-tune the parameters of ESVM, thereby en-
hancing the accuracy and reducing the occurrence of false
positives. Boahen et al. [27] proposed a diversity enhance-
ment strategy based on Improved Particle Swarm Optimi-
zation (PSO) algorithm, Gravitational Search Algorithm
(GSA) and used to optimize a Random Forest classifier with
98.92% detection accuracy. Ding et al. [28] designed a KNN-
based undersampling mechanism and a generative adver-
sarial network model for oversampling attack samples. The

model undersamples normal traffic samples and over-
samples attack traffic, thus balancing the dataset, but its
detection rate is not significantly improved. Yousefnezhad
et al. [29] employed KNN and SVM for multiclassification
and used Dempster-Shafer method to combine multiple
outputs. Gu and Lu [7] applied Naive Bayes feature em-
bedding to the original data to obtain new high-quality
training data and used a support vector machine to con-
struct an intrusion detection classifier. However, the method
is sensitive to data noise and may affect the effectiveness of
the feature transformation if noise is present in the data. In
the context of intrusion detection, a substantial number of
features and data are typically involved. By employing
feature selection techniques [30], the quantity of features can
be reduced, thereby diminishing the computational costs
associated with training and testing deep learning models.
From the wide array of techniques and algorithms that have
been developed, intelligent optimization algorithms [31]
have proven successful in identifying the most representative
and significant features, consequently reducing the di-
mensionality of the feature space. This reduction in di-
mensionality serves to enhance the performance and
efficiency of intrusion detection systems. Alazab et al. [32]
used Moth Flame Optimization (MFO) method as a search
algorithm and decision tree (DT) as an evaluation algorithm
to generate an effective subset of features for intrusion
detection systems. Halim et al. [33] used a modified genetic
algorithm (GA) to search for the best features and performed
classification experiments on three machine models, namely
SVM, kNN, and XgBoost. They designed a novel objective
function for the GA which assigns fitness values to in-
dividuals in the GA population to be able to select the
chromosomes that represent the best set of features, but the
algorithm runs slowly due to multiple iterations and re-
production operations.

Although many literature works prove that intrusion
detection methods based on traditional machine learning
algorithms are indeed effective, these methods still suffer
from the following drawbacks: (1) Traditional machine
learning methods usually require human intervention and
expertise when performing feature extraction. In intrusion
detection, determining an effective feature set is challenging
because intrusion behaviors can be dynamic and diverse,
making it difficult to capture all intrusion patterns. (2)
Traditional machine learning methods may take longer to
complete training and prediction. In addition, some com-
plex machine learning algorithms, such as SVM and DT,
may be more expensive in terms of computational cost. (3)
Intrusion detection data usually have high-dimensional
features, and traditional machine learning methods may
encounter dimensionality catastrophe problems when
dealing with high-dimensional data, and it is difficult to
extract information about the nonlinear features in the data,
which results in a degradation of the model’s performance.
Given the limitations of ML algorithms and their variants, as
well as the emergence of deep learning, recent advancements
in DL algorithms have been applied to the field of intrusion
detection. These include deep neural networks (DNNs),
recurrent neural networks (RNNs), convolutional neural

networks (CNN5s), and deep belief networks (DBNs). Unlike
traditional machine learning methods, deep learning
methods can effectively extract the underlying patterns in
sample feature data by constructing multilayer nonlinear
network structures. Consequently, deep learning exhibits
superior capability in learning and predicting high-
dimensional feature data compared to traditional machine
learning methods.

Thakkar and Lohiya [34] proposed a novel feature se-
lection technique that combines statistical significance based
on standard deviation and the difference between mean and
median. They also employed deep neural networks (DNN5)
to learn and derive patterns in simplified subsets of features.
However, it should be noted that the presence of noise in the
data may significantly impact the computational results and
lead to instability in feature selection. Riyaz and Ganapathy
[35] achieved an accuracy of 98.8% on the KDDCUP99
dataset using CNN. Fu and Zhang [36] introduced a feature
fusion technique based on gradient importance enhance-
ment. They employed ResNet-18 as the detection model and
incorporated feature fusion at each layer during training.
Additionally, they applied feature enhancement at the last
layer of the classification network before forwarding the data
to the fully connected layer for classification. It is worth
mentioning that the training and inference process of CNNs
typically demands substantial computational resources,
particularly when dealing with large-scale datasets and
complex model structures. This limitation may restrict the
application of CNN in resource-constrained intrusion de-
tection environments. Ravi et al. [37] conducted a detailed
study on recurrent deep learning models. They employed
a sequential feature fusion technique to combine the
functionalities of different layers in the network, specifically
on the RNN, LSTM, and GRU hidden layer features. Sub-
sequently, the fused features from the recurrent hidden layer
were forwarded to an integrated meta-classifier for classi-
fication. However, recurrent deep learning models exhibit
slower training and testing times compared to CNNs,
particularly when processing larger datasets. Moreover, they
encounter limitations when addressing the issue of attack
class imbalance. Wang et al. [38] introduced an intrusion
detection model that leverages Improved deep belief net-
works (DBNs) employ a kernel-based extreme learning
machine (KELM) with supervised learning capability, as an
alternative to the BP algorithm in DBNs. Experimental
evaluations were conducted on the KDDCUP99, NSL-KDD,
UNSW-NB15, and CICIDS2017 datasets, demonstrating the
robustness of the proposed approach.

By applying optimization algorithms to the engineering
design problem of intrusion detection systems [39], it is
possible to identify globally optimal intrusion detection
model structures or parameters that can adapt to various
network environments and intrusion behaviors [40]. Kanna
and Santhi [41] combined Hierarchical Multiscale LSTM
(HMLSTM) and CNN to effectively extract and learn spa-
tiotemporal features. They also employed a novel meta-
heuristic method called Lion Swarm Optimization to fine-
tune the hyperparameters of the model, thereby enhancing

International Journal of Intelligent Systems

the learning rate of spatial features. In their other proposed
deep network model, BWO-CONV-LSTM, Kanna and
Santhi [42] utilized the Black Widow Optimization (BWO)
algorithm to optimize the hyperparameters and achieve the
desired architecture. However, their experiments were
limited to binary classification and did not consider the
detection of specific attack types. Balasubramaniam et al.
[43] proposed the Gradient Hybrid Leader Optimization
(GHLBO) algorithm to train Deep Stacked Autoencoders
(DSAs) for effective DDoS attack detection. Yang et al. [44]
introduced a hybrid partitioning strategy in the Negative
Selection Algorithms (NSAs), which divides the feature
space into grids based on the density of sample distributions.
This strategy generates specific candidate detectors in the
boundary grids to effectively mitigate vulnerabilities caused
by boundary diversity. Finally, the NSA is enhanced through
self-clustering and a novel gray wolf optimizer, enabling
adaptive adjustment of detector radius and position.

The use of deep learning methods in solving the in-
trusion detection problem has been shown in current re-
search to compensate for the limitations of shallow machine
learning techniques in detecting high-dimensional data and
extracting nonlinear feature information. Table 1 provides
a chronological summary of the approaches discussed in the
related literature in this section. However, deep learning-
based intrusion detection techniques still have the following
limitations: (1) they require a large number of parameters to
be trained, resulting in high time and space costs for running
the models. Currently, parallel processing with multiple
GPUs is often needed to handle large-scale data; (2) when
the model becomes too deep, it can lead to the vanishing or
exploding gradient problems due to the long back propa-
gation path during gradient descent; (3) existing deep
learning algorithms are primarily designed for solving
problems in other domains, while network traffic exhibits
characteristics of large scale and high dimensionality, and
network intrusion traffic is characterized by hidden di-
versity. As a result, many existing deep learning models are
not fully suitable for the field of intrusion detection. With the
development of information technology, network intrusion
techniques have also advanced significantly. Network in-
trusion behaviors are becoming increasingly covert, making
it more difficult to detect differences between network in-
trusion data and normal data. This paper fully considers the
complex and variable characteristics of existing network
intrusion data. Starting from improving the algorithm’s
ability to analyze data, a Fourier Neural Network (FNN) is
designed based on deep learning, which has stronger feature
extraction and representation capabilities for complex data.
The intrusion detection model designed with FNN as the
core is end-to-end and does not require manual feature
selection. It can learn features directly from the raw data,
thereby improving classification performance and demon-
strating stronger generalization ability. Additionally, the
high-energy filtering process in the model can be used to
handle data noise, reducing the impact of weak noise signals
on the neural network’s final performance and improving
the model’s performance and robustness.

International Journal of Intelligent Systems

spepowr Jurures]

anbruyos) JuswadURYUd

Aow..om »mm..mm »Nw..mm ,wm..@a QUIYDBW [EUOT)IPEI) SE JSBJ S& UNI a1njed) pue anbruyoay n. 102SdIOIO 81-1ONSY 7207 [9g] Sueyz pue ng
7866 7866 866 V866 jou ssop ppour pasodoid ayj, uorsny a1njesj pasodoig A@IISN
)) . sa0Inosax euoneindurod SLJeI) JI0MIU
mn .wm mm 86 . oe ww .w@ jueoyrudrs Surrmbax Jo sonstL)oeIeYD [erodwa) mmmZ NIST+NND 20T [c¥)
€486 ‘00T 8%'L6 £9'86 lapeordtos ppow YBI pue [eneds o Sumuesy “MSNO ‘A@ITSN Iyjueg pue euuey|
JuIDIY
066 066 0'66 0'66 Aqreuoneyndwrod ssaf st yoTyM o1} yI0MIau .
066 066 ‘066 ‘066 ‘soouanbas Suol yym Jureap woiy sarnjedy [eroduws) pue DomemOHU sTdN MO +WIST+NNI 2202 [2€] Te 10 1aBY
‘08 066 0°L6 ‘066 uoym uoneyndwod aanera)r doys [enjuanbas joenxs 03 AIqy "MSNI(1 66d10AAX
-£q-days axmbax sppowr NN
swarqoxd
T'zé v'e6 ue muuéommﬂ&wﬂoﬁ eyndwod Areurq ojut Q4N snonupuod ¢
B 168 B L'e8 WEom w:ﬁﬂ&% ﬁ&whms_gm dzpeuIq 0) dpaw Apepuirs m.mmm W,MMM/MW%%W LA+ OIN ceoe [ce] T2 32 qezety
‘966 ‘816 sursod Jursn £q uonezimnn
pue suonjerdyn o[dnmiy
2oeds ainjesy pasearou]
Apuamorys sojdures
. . . [ea1 2je10udd 03 9[qe Jureq
mw .mm ,mm .w@ Aow .mm [opouwr UoIjedyIsSe[d jou jo wa[qoxd oY) SIA[OS £102SAIDID ‘STAN .
ﬁmm.wm Rmo.wm - nmm.mm juanyye a1ow e Surudisop JjoN pue spoyiowr Jurduresioao - SN ‘66dNDAMI NVO + NNX teoe [8] T 12 Buia
wse ‘8¢'16 £€5°€6 [ewonpen seoedox
Surpepowr aanerouad doo(g
saniiqedes
€886 6896 886 96'86 $90IN0SAT MMMM W MMES owos 1S [82O1 PUE [°qO[3 2z1n 14N + + ‘Te 30 uayeo
‘€9'86 ‘8L'86 ‘78'86 9586 m:E:vohﬁcﬁsﬁ,MﬁMEOu 1oySEy A[Iny 01 Y pue vSO ‘0Sd “MSNQN ‘A@I-1SN VSO +O0d - cele [£2] e 3 watrod
i : : Jo sypuans Ay sauIqUIO))
. wonpun mwﬂowgow? opone S9OURISUI BIRP J[BIS N [92] noyeueyq
6796 o sm_m o wuwﬁ.% wmﬁm -3 jo Surpuey 1uLLIYY STAN-MSNN INAS + 09D (44114 R ——
pa30a3ap ore syoeye e 1o
— 6060 — PI60 SPENE sod A[UO parspisuod goq Sundsiep Apyemdoe AMI-ISN VSaA+OdIHD €70T et Wﬁu« M
ST SISA[eue PeayIaA0 ON I0J POUIaUI € SIPIAOIJ eruREqnseed
SV'L6 €LS6 ¥T66 09'86 paAjosaIun PO
9h'06 Op86 LSHE 9/ ce suewar uopnjos aandepe Maw:a jo buazw o 01 £1025IOID ‘STAN VSN cz0z [#5] e 1o Suex
F6L6 €T66 ‘8996 19°L6 Bunoajep jo warqoxd oy, D oo o cood TMSNAAAITISN
Mo Jo wafqoxd 3y $IA[0S
2)eIndoeUl 3q AeWI UONOIIS
6866 V666 5866 08'66 armyedy “Astou st Joserep Yy J1 SNINT Sursn sjasqns .
‘€6'96 ‘S6'86 00°S6 ‘€0'68 .uumﬁm%uﬁ J0 wmocokﬁﬁﬂuwgmﬁ amyedy payrdwrs ut Mﬁutmm DonDHAUHU sTAN NNA €200 4 [vel
‘L€'66 ‘1886 $6'66 $8°66 ay3 uo spuadap anbruyoay Surrroyur pue Surures| “MSNQ daX-ISN PAIGOT pue 1BPIPdL
3} JO SSAUIATIOYD YT,
(%) (%) (%) (%)
1 [y uoispald Ademddy uoneIWIT sadejueapy sjoseleq SPOIDIA Ieax SIOUIY

SOLI)OW UOnen[eAq

“STWYIII0S[e UOT)0219p UOISNIIUT Jo d[qe)} uospedwo)) 1 414v],

International Journal of Intelligent Systems

patoudr
aIe sUOTeLIRA MO[J Juedyrudisur
JIM S2INJEJJ PUE [[EWS 00) SI

Ayoedes aderoys
3pOUu PIIWI] pue SJUTEIISUOD

o o o £0'86 a8ue1 UONIAP Y} PAISPISUOD 22110831 Jo swoyqoid auy £10TSAIOIO IWAS 610c [ve] e 32 uef
9A]0S A[oAnoop 03 paudisop
ST UoTjedyIsse[d> A1eulq st opowr JuGPMIST
A[uo pue o[3urs st joserep ayf, PP HoRMIS v
SoLIOW %1 (cg]
— — — 8'86 uonenyead d[3uls ‘sjasejep uey) ssa[st ppowr pasodoid 66dNDAA NND 0202 Agedevesy pue zekrg
JI2MIU UO $}03J3 JO UOTJEPI[eA ON 3y} JO 2JeI ULIER 3S[e
sarnyed Terodwo) Sunoenxa
. : : : S1osEIp U SOINIRdJ JUSISYT STAN [17]
,ow.a ,9 .mm mn o mw .om Buuren a[qeymsun o [am Moog 3 mmw suor W.om - ¢ - WLST+NNO feoe IJjueg pue euue
€86 '08'96 00T €96 wroprad jou Aewr poyjow ay, 19q sdrysuonef MSNQN "dAI-ISN pueg p .|
Teoryorerary Sururea
67'L6 6186 0896 ST'L6
sjaseep oyroads
‘6L'88 F'96 0€C8 Te6 Lyxordwos reuonenduwos 0} o>swwnowzm AQMMEEH&B& .mﬁ-mn%.vwmmmwﬂnwﬂﬂvﬂ Nga 1202 [8¢] e 30 Suepy
9096 ‘0786 $9'¢6 ‘9'g6 ySry pue own Sururen Suo c.o.:muca.mﬂu e N s
‘TE96 ‘€L86 ‘076 ‘9’86 o
sjosejep
suorendurod 1amo[s 4 g
— — — 8%'96 suonyerado uoneoridar pue SAISSEUL Ut M[eUoIstowip STAN-MSNN 1500g0X 1202 [€€] Te ¥ wiey
woeasy Jo suonpadas ST JO 95IND 3} JA[OS ULD BIEP Y} INNDI/INAS + VO
WOJJ Pajod[es saInjed) 01—
Aymqedeo
9¥'66 686 oo OPTER 2IME 3O A yonoaep atp sasordur £102SAIDID X
— — 3} SJ09Yk ISIOU BIEP ‘PIIIPISUOD ‘ : sofeg aAreu + nT pue n
‘€LY6 ‘6L€6 aﬁ :OW } \% P MV. (PIYM BuIppaquud a1mye) ‘STAN-MSNN 4 oMPITINAS - T0 [nTpue o
1 uonjesyIssepd Areurq AjuQ
safeq aareu pasodoid ayf,
sy1adxa odnmnuw
) . . . NN pue woij suorspIp SunerSajur
8046 VY6 0666 L6861 o 1o sommiqeqord 1ndimo aq1 £q pousEoM SUOISIoIP £10Z5A1010 NAS + NG 7z %w@oﬁ
€866 7866 €866 0866 5)nduwoo o) swmn 1a8uoy e sae})] 3021100UT pue paudyISudIls Aad-ISN [19 peqzotyasnox
2q UeD SUOISIIAP 03110
Ayrxorduroo SJUSWIUOIIAUS NSM UI ST 4q
— — — 0096 [opowr pue swy [euoneyndwod pajersusd saInjesy jo IdqUINU A@I-ISN NAS + OMD 1207 [sz] ‘Te 30 urpreyes
yS1y ‘pasn joseyep aSurg pU® S3jeI ULIE[R 3S[E] PIONPay
(%) (%) (%) (%)
I [y uoispald Ademddy uoneIWIT sadejueapy sjaseleq SPOUIDIA bi-=) ¢ SIOUISY

SOLI)OW UOnen[eAq

‘ponunuo) 1 dIdV],

International Journal of Intelligent Systems

3. Intrusion Detection Model

The FNN-based intrusion detection model proposed in this
paper is divided into 3 main modules, and the general
framework diagram of the model is shown in Figure 1.

Data preprocessing module: (1) Conducting pre-
processing operations on the data to complete data con-
version tasks, transforming discrete data into continuous
data to meet the requirements of the input data; (2) Per-
forming data normalization operations to scale the feature
values between 0 and 1, preventing the negative impact of
significant differences in feature values on the effectiveness
of deep learning; (3) Dividing the dataset into training and
testing sets.

Intrusion detection module: Construct an intrusion
detection model based on FNN. The framework of FNN is
shown in the right half of Figure 1. The core component of
FNN is the Deep Fourier Neural Network Block (DFNNB),
which consists of Hadamard Neural Network (HNN) and
Fourier Neural Network Layer (FNNL). FNN is composed of
n (n=1) DFNNBs combined with DNNs. DFNNB is re-
sponsible for effective feature extraction of network in-
trusion data, while DNN maps the feature representation
learned by DFNNB to the sample labeling space, achieving
the goal of training classifiers and learning global features of
the target. The constructed model is trained using the
training set and saved for testing after the training is
completed.

Detection and classification module: use the test set to
test the trained FNN, and use the detection and classification
results to analyze and evaluate the model.

4. Fourier Neural Network Model

The detailed structure of the FNN is shown in Figure 2. The
FNN can be composed of multiple Deep Fourier Neural
Network Blocks (DFNNBs), and the detailed structure of the
DFNNB is shown in the upper part of Figure 2. The DFNNB
processes the data as follows:

(1) Before entering the jth DFNNB, the data are trans-
formed by the DNN to a different feature space by
mapping the learned feature representation of the
j—1th DENNB, achieving a change in data dimension;

(2) The one-dimensional data X;_; = {X;_;[0], X;_4[1], ...,
Xialkl, ..., X;1[K - 1]} (the discrete sequence X;_,

consists of K elements), obtained after processing by

the DNN, is input into the jth DFNNB;

(3) In the jth DFNNB, X, ; is first dimensionally ex-
panded by HNN, fitting the sampled network in-
trusion data Xt in the multitemporal space;

(4) After obta1nmg X;, split X’ into m 1-dimensional
tensor data X;. X}; denotes the ith time domain spatial
sampling of Tetwork intrusion data within the jth
DFNNB, and X!, = {Xt [0], X}, 1], ..., X!, [n], .

Xt [N — 1]} (the discrete sequence Xt ij con51sts of N
elements) where, 1<i<m, 1<j<M, m and M are
manually set hyperparameters and are taken as integers;

(5) The Fast Fourier Transform (FFT) is performed on this
Xt respectively, to obtain m representations of the
time domain signal in the frequency domain space,

xt x)={xfo, x5, xhn. L X IN -
l]} (discrete sequence Xf consists of N elements);

(6) Xf is filtered using a hlgh energy filtering process
that removes the noisy mass signal to obtain the
high-energy spectrum X;i';

(7) Using the inverse Fourier transform of the fast
Fourier transform, obtain the time domain repre-
sentation Xht of XZ ;

(8) Finally, each X" is summed and compressed to
obtain a feature signal X; that integrates the spatial
samples in each time domain, X; is a vector where the
number of elements is the same as X;_;

Similar to traditional DNN, VGG19, and VGG16, FNN
allows for a deeper exploration of data features by stacking
multiple DFNNBs. In FNN, a DNN is added at the end of
multiple DENNB structures, enabling the mapping of fea-
ture representations learned by the DFNNBs to the sample
labeling space, thereby achieving the goal of training clas-
sifiers and learning global features of the target.

4.1. Hadamard Neural Network. The top left part of Figure 2
provides a detailed illustration of the Hadamard Neural
Network structure. Based on Figure 2, it can be observed that
in the jth DENNB, the HNN assigns different weights Wj, to
the input data X;_; to obtain the signal expansion matrix X.
Then, a weight matrix Wj, with the same shape as X% is used
in the Hadamard product operation with X¢ to fit the
network intrusion data Xt sampled in the multitemporal
space. The above process can be represented by (1) and (2)
(the weights W, and W) are optimized using the back
propagation algorithm combined with the gradient descent
algorithm, and the specific optimization process will be
elaborated in detail in the subsequent sections).

X;:Xj_l'Wje; (1)
X=X x W, (2)

In (1), Wj, is a vector and the number of elements in W,
is m. m is a manually set hyperparameter. From the above, it
is clear that m determines how many time domain spaces the
fitted network intrusion data are sampled in.

4.2. Forward Propagation Process of Information in Fourier
Neural Network Layer. It can be seen from Figure 2 that the
forward propagation of information in FNNL mainly accom-
plishes four operations: (1) Fast Fourier Transform; (2) High-
energy Filtering Process; (3) Inverse Fast Fourier Transform
(TFFT); and (4) summation and compression process of Xf‘;. The
following paper will introduce the above four processes in detail,
of which the process 4 operation is relatively simple, and this
paper will be introduced together with the process 3.

International Journal of Intelligent Systems

i Datapreprocessingmodule i ENN
I
I L ..
I Data division data normalization | 1 ! ! Original feature
| |10 Q000 e
2 12 U
Testing Training
t t | | e
s¢ s : Hadamard Neural :
R el el I I
i Intrusion detection i ! Wi !
X module ! I @ m
I I
I I
! Binary 1 | Fourier neural |
! classification | | network layer | n Deep
! model Building : CTTTTTTTTTTTTTTTo N Fourier Neural
! : FNN g IO Network
: Multi- : P - Blocks (n>1)
| classification | l Hadamard Neural |
! model ! | Network :
1 A 1 : 1
| Training FNN || | @ —
| model ' | Fourier neural i
i ! | network layer !
1 L 1 e e e e e e e e e e
I I
! Save . Comp‘le.te the ! @ Frequency
i miode] (g ! []— conversion
[| G eigenvalue
mmmos——m—T———-——— - -
S . TOLO) () o !
\ Detection and classification \ | !
! module ! ' UV I
i | R o Deep Neural
I . - . 1 FE A
I'| test model P Display iizilalizlﬁcatlon X R ol ! Network
| —' | 1000000
I I | b e e e e =
' ' y
: Detection, identification and classification :
:_ i Classification results
FIGURE 1: Intrusion detection model structure diagram.
g e
: T H] }
| X ht |
: A [y U - I
| X, = M {2 :
! i e — x| 8 :
: = X,) g* I
i - —— H e [S |
! t =
[N ey B S mt® s[5l o
I g I
| . g |
1 = I
! Xt £ |
| Input: ! E Output;
DX, H X |
I Xm|l j ;
! | I L |
| HNN ENNL X, !
! |
i DENNB; !

DENNBM

I 1 I I I I

]] I I]]

i 1 | I I I

I I | I I 1
| | | | | | | .
| | | | | | | 3
: Z :z o | Z :z o | z z :z S | Z s
'[:>Z[:>IZE>Z:E>Z[>:ZE:>Z::>Z A A
VT E gV BTV E e V0B B = ZHInd Il gy
I 17}
| | | | | | | g
! 1 1 1 1 | 1 @)

I] I I I I

I 1 I I I I

]] I I]]

i 1 | I I I

Original
featre oL o —J 4 aL_J LI
value T[0T [
ENN M Deep Fourier Network neural Blocks (M > 1)

FIGURE 2: Structural details of Fourier Neural Network.

International Journal of Intelligent Systems

4.2.1. Fast Fourier Transform inside FNNL. The theory and
methods of the Fourier transform have a wide range of
applications in many disciplines such as mathematical
equations, linear system analysis, and signal processing.
Since computers can only handle discrete sequences of finite
length, it is the discrete Fourier transform (DFT) that really
operates on computers [45].

From the above analysis, it is evident that FNNL performs
a discrete Fourier transform on Xt = {Xf [0], Xt.[1],

Xt [n],. Xt [N -1]}. The discrete sequence X{ is
composed of N elements, and the operatlon process of obta1n1ng
x}={x}onx/n,.. X[k, X/ [N-1]} through

(
ij ij i
the discrete Fourier transform of Xt is represented by (3).

A Z X (W 3)
n=0

In (3), W"Nk = g JZmINk o is a natural constant, jis an

imaginary unit, Xf; [k] is the discrete Fourier transform
amplitude, 0 £k £ N -1, and k is an integer. From (3), it can
be seen that calculating one XJ; [k] needs to complete N
times of complex multiplication and N — 1 trmes of complex
addition, and calculating all the values of X ij [k] needs to
complete N* times of complex multiplication and N x (N —
1) times of complex addition, and the time complexity of the
algorithm is O(N?).

In order to reduce the algorithm time complexity and the
running cost of the FNN, this paper uses the Fast Fourier
Transform (FFT) with a running time complexity of
O(N/2log))) within the FNNL [46]. FFT s a fast computatronal
method for DFT. When using FFT, control N=2" and L is
a positive integer, which can be realized in FNNL by controlling
the number of neurons in the DNN part of DFNNB.

The core idea of FFT is to continuously divide the se-
quence X!; into two sets of sequences with the number of
elements: X _, and X, _, according to the odd and even
nature of the posrtrons of the elements therein, and then
perform the DFT operation on X! ij-1 and X!, ,, and the above
process can be expressed by equations (4)-(6) as follows:

2] = X [22],
j-1 7] 4
lx,sz (2] = X[, 22 + 1],)
N/2-1
x/1z] = Z X [2]- Wi, + Wy
N/2-1
C Y Xi 2]l Wi, = X [2] + W5 - Xy 2],
r=0

(5)

N/2-1

xlee 3] 4wl

+WI(\]Z+N/2 Z XtJ 2[

N (24N/2)
7] wiss

N (24N/2)
R

= X! [z] - W% - X} [z],

(6)

where 0 £z< N/2 -1 and zis an integer, and X, [z], X} [z] are
the DFT transform results of Xt _, and X 2 respectlvely
Equations (5) and (6) together form the FFT transform result
of X t.. Referring to (5) and (6) as a butterfly operation process,
the process is represented by Figure 3 as follows.

The number of complex multiplications and additions
required to compute Xj;; after one division of the sequence
Xj;is N*/2 + N/2 and N*/2, respectively, so the workload is
approximately halved by one decomposition.

According to the FFT, the elements in the sequence X;; £ are
continuously divided into two subsequences with an equal
number of elements based on the odd and even nature of their
positions, following the rule shown in (4), until each sub-
sequence contains only one element. Then, the butterfly oper-
ation, as illustrated in Figure 3, is performed on each
subsequence until the final result of the FFT transformation is
obtained. In order to illustrate the above process clearly, Figure 4
demonstrates the FFT operation with N=8 as an example.

There is a specific correspondence between the elements in
Xt and the elements in X', j-end- The correspondence is as

follows the bth element in X! ij-end> Xt jj-end [b], corresponds to
the ath element in ij, Xt : [a]. Here, b represents the inverted

bit order of the binary encoding of a. Table 2 illustrates the
relationship between each element in X! j-end and each element

in the original sequence X using N=8 as an example.

The specific 1mplementat10n process can use Rader’s al-
gorithm [47-50] to obtain the correspondence between the
sequence X j-end and the elements in the sequence X!, and then
obtain the sequence Xt j-end: Since Rader’s algonthm has been
introduced in many literature works, it will not be repeated here.

After determining the elements in the sequence X}, j-end
using Rader’s algorithm, Xf can be obtained according to
the butterfly operation rules shown in Figures 3 and 4. The
process can be represented by Algorithm 1.

In summary, in FNNL, the fast Fourier transform of Xf "
denoted as Xif-, is obtained by combining the Radix algo-
rithm with butterfly operations. This process can be rep-
resented by (7) for simplicity.

x/. = FFT(X},). (7)

4.2.2. High-Energy letermg Process. Figure 5 illustrates the
process of obtaining X]f from Xf through the high-energy
filtering process (HFP).

From Figure 5, it can be observed that before entering the

s-th high-energy filtering module, X{; needs to be assigned
{M; 100, M5 11, .., M5 (K]
M3;[N - 1]} for each X[, = {X/;[0], X/, [1),.... X[, [kl,...,
X{; [N —1]}. These coefficient vectors (M;;) are determined

during the neural network training process using gradient de-
scent algorithm.
The Hadamard product is performed between Xf and

a coeflicient vector M; ;=

M;; to obtain the primary energy wave of X; i denoted as
z;]. ={z;[01, z;;(1), ..., Z;; k), ..., Z§;[N = 1]}. In the s-th
high-energy filtering module, all Z}; are combined to form

10 International Journal of Intelligent Systems

X,'[z] @ X [2]+ W 'xX [2]
X,[z] @ ® X [z]-W XX '[z]
FIGUre 3: Butterfly operation process.
Y 1 W&o T T T T T T T T T T T
X, al0] 1 X,f0]
|
X ' ={X.'[0,X '[1],...X '[n],...X '[N-1 X' [l X1
=X 101X (100X] X IN-11} enal 1] Ciroup 1 buteerfly S
- operation
X, 2] | X,12]

According to the rule

continuously divide
the elements in the
sequence X! into two
groups of equal size
based on their odd or
even positions until
each subgroup
contains only one

shown in equation (4),

In the actual
implementation
process, it is not
necessary to follow
equation (4) to handle
the sequence X"
Instead, you can
directly use the Rader
algorithm to process
the sequence X, and

i enal3]
4]

[5]

W, “><
N_]
— o~ e R

Group 2 butterfly

Group 1 butterfly
operation

operation

Group 3 butterfly
operation i

|
element. obtain X ener Xij‘-end[6] X6l
U
0 | 3
~ t Wi i Wy -1 f
X enal] 1 5 1 Xv) (7]
! I Group 2 butterfly il Group 1 butterfly
Xx,‘,end:{Xq‘,end[O]’Xxj‘,end[l]""’Xn‘,end[n]""’Xxj‘,end[N’l]} H operation H operation
I |
Layer 1 butterfly operation :\ Layer 2 butterfly operation }I Layer 3 butterfly operation
Step one Step two

FIGURE 4: An example of FFT operation process.

TaBLE 2: Example of element relationship between ij and Xﬁj_end.

The inverted order The decimal representation The relationship between

Element number b in Binary . . . t
. . of binary coding of binary code Xii ena [b] and
Xij-end representation of b of b reverse order of b ! Xi; lal
0 000 000 0 X!, ena 0] =X, [0]
1 001 100 4 XEiena [1]= X [4]
2 010 010 2 Xijena [2]= X5 2]
3 011 110 6 Xijena [3]= X5 6]
4 100 001 1 X! iena [4]= X7, [1]
5 101 101 5 ng_end (5] :ng [5]
6 110 011 3 X,‘j—end [6] :X,'j [3]
7 111 111 7 Xt iena 171= X0, [7)
the primary energy wave matrix E}. This process can be
represented by (8) and (9).
Z3; = XJ; x My = [X/ 101 % M3 0], X, (1] x M (1), .., X k] x M3 (K], -, XU INT < M3 [N - 1]], (8)
FZ3) TZ,000 Z1) e ZiIk] - Z5IN -1
Z;j Z;]. [0] Zij[l] sz [k] --- Z;]. [N-1]
ol |z : : : :)
J ij ij [0] ij [1] ij [k] ij [N -1]
Zinj _Zinj[()] an].[l] Zinj[k] Zinj[N—l]_

International Journal of Intelligent Systems 11

Input: ij,end: {ij,end[O], Xﬁj,end[l], - ij,end[n], - ij,end[N— 11}, and N=2, k is a positive integer.
(1) initialize dep to record the number of layers of the butterfly operation in which it is currently operating; m to record the number of
elements involved in each set of butterfly operations; w,, is principal mth unit root.
(2) for dep «— 1 to log,™, do /* Determine the current layer of butterfly operation */
m= dep /+ The number of elements participating in each group of butterfly operations =/
w,, = €™M = cos (2n/m) +isin (2n/m) /* principal mth unit root */
for k «— 0 to n—1 by m /+ Perform the butterfly operation as shown in step two of Figure 4 */
w=1
for j «— 0 to —1+m/2 /+ Complete a set of butterfly operations as shown in Figure 3 */
t=wx ij_end[k +j+m/2]
u= th'j—end[k +]]
X! enalk+jl=u+t
Xijenalk+j+m/2]=u—t
; w=wXw,
Xi = ij -end
end

ALGORITHM 1: FFT algorithm.

Complete n iterations

Updated C'

Complete n iterations

Updated C*

Complete n iterations |

Complete n iterations

Updated C*

Complete n iterations

Updated C”

=i

Complete n iterations |

FiGure 5: High-energy filtering process.

12

In the actual implementation process, Xf can be ver-
tically concatenated to form a spectrum matrix X/ Simi-
larly, M;; can be vertically concatenated to form a coefficient
matrix MS The Hadamard product is then performed be-
tween X and Mj. This process can be represented by (10):

- x/
Ej—ijMj. (10)

(1) High-Energy Selection Algorithm. In this paper, the ele-
ment Z}; in row i of Ej is called the primary energy wave
correspondlng to Xf Each element in Z}; represents the
amplitude of the wave at different frequenc1es The sum of
these amplitudes at each frequency represents the total
energy of the wave. A larger amplitude indicates a more
energetic wave, which can be considered as the primary
component. To identify the main components Z}; in E; and

i ZslijS[l]]
Z;ijS[Z]

[Zy;[01xC*[1]
Z3;10]x C*[2]

Zij[l]xcs[l]
Zgj[uxcs[z]

International Journal of Intelligent Systems

attenuate the other nonmain components, this paper pro-
poses a high-energy selecting (HSE) algorithm. The oper-
ation steps of the HSE algorithm are as follows:

Step 1: Initialize the importance vector C°=[C*[1], C°
(2], ..., CTil, ..., C[m]]", initialize the summation
vector V=[V[1], V[2], ..., Vi, ..., V[m]]", initially
C° and the internal elements of V are all 1, initialize the
number of iterations n.

Step 2: Calculate the sum of the amplitudes of each
energy wave. Let ES perform Hadamard product op-
eration with C°, and the process can be expressed as
(11). Then, E’ x C° is subjected to matrix multiplication
operation with V to obtain the energy matrix aggre-
gation matrix E, and the process can be expressed as
(12).

Z;, K1 xC*[1] -
73, K] xC*[2] -

ij[N—l]xcs[l]]
Z;j[N—1]xCS[2]

E;XCS: s ' = s . S s ‘ S s ' Sy s ' S (11)
Z;;xCli] Z;l01xC il Z;[11xC[d] Z;;[k] x C°i] Z;;[N-1]xC[i]
| jnijS[m]d anj[O] x C*[m] Zinj[l] xC'[m] - Zinj[k] xC'[m] --- Zinj[N— 1] xC*[m] |
TMI(1]] T Zij[O]xCS[l]+Z§j[1]><CS[1]+ --+Z51j[k]xCS[1]+-~~+Z§j[N—1]sz[l]]
M:[2] Z;j[O] x C*[2] +Z§j[l] x C*[2] + --+Z;j[k] x C*[2] +~-+Z§j[N— 1] xC°[2]
EZ:ES'XCS'V: s = s Sre s St 's Sre s Srs
] M: [i] Z0]x C il + Z5 (1 x C il + -+ Z [k x C[i] + - + Z3; [N = 1] x C*[i]
| M [m]] an].[O]xCS[m]+anj[l]><CS[m]+ anj[k]xCS[m]+m+Zfﬂj[N—1]xCS[m]_
(12)
E, = E}xC,, (14)
Step 3: The process of processing each element within
E; using softmax is carried out with the updated im- hf s)
portance vector C°, which is represented by (13). Xij = a-Eg. (15)
. Mol In formula (15), & = [1,1,...... , 1.
C [1] = m (13) m
Qe The pseudocode for the high-energy selection algorithm

Step 4: Repeat steps 2 and 3 for n times, with the
importance vector C’ obtained during the nth iteration
serving as the final importance coefficients for each
primary energy wave.

Step 5: Replace C’ in (11) with C;, then execute (11) to
assign importance coefficients to each primary energy
wave, resulting in the final energy matrix aggregation
matrix E,. Then, calculate the columnwise sum of E;,
to obtain the hlgh energy spectrum X;: "o {X?jf [0],
X?Jf[l],.. [k] X" [N]}. The aforementloned
process can be represented’ by (14) and (15).

is shown in Algorithm 2 as follows:

Through the above analysis, it can be observed that the
HSE algorithm determines the importance of each energy
wave based on the relative magnitude of the 1-norm of the
vector. It achieves the objective of assigning distinct im-
portance coeflicients to different energy waves through it-
erative iterations. Consequently, the HSE algorithm is
capable of effectively identifying the primary components
Z;; in E; while attenuating the nonprimary components.
This process can be succinctly represented by (16).

X;} = HSE(E). (16)

International Journal of Intelligent Systems

13

Input: Primary energy wave matrix Ej
Output: Xf'jf

number of initial iterations n.
(2) for t «— 1 to n, do /* Iterate n times s/
ES — ESXC-V
Update C* /+ Use (13) to update C* * /
El «— E5xC°
Execute (14) and (15) to obtain Xfll-f
end

(1) Initialize importance vector C°, Initialize the summation vector V, Initially, the internal elements of C* and V are both 1, The

ALGORITHM 2: HSE algorithm.

4.2.3. Inverse Fast Fourier Transform inside FNNL. Sections
4.2.1 and 4.2.2 allow for the transformation of network in-
trusion data eigenvalues from the time domain signal X; to

the frequency domain representation XIC Subsequently, fil-
tering is applied to obtain the high-energy frequency spec-
trum X?jf . To maintain the invariance of the input

eigenvalues’ properties, it is necessary to convert the filtered
ht
ij?
which can be processed by neural networks. This conversion
is achieved using the inverse discrete Fourier transform on the

frequency domain data Xf'jf back to the time domain data X

high-energy spectrum X?jf , as shown in (17).

X" [K] _i'N_IW—nk_th[] (17)
ij N ~ N ij 115

where Wk = e/27/Nnk_(17) has the same structure as (3), and

only requires replacing the input X! j[n] with X lhjf [#], the output
X/ k] with XJ%[k], and Wk with WX, Thus, (3) and (17) are
completely identical. However, directly using (17) to process X ?jf
in terms of computational cost is impractical, as discussed in
Section 4.2.1. To address this, a similar approach as in Section
4.2.1 is employed here, using the inverse fast Fourier transform
(IFFT) to accelerate the computation process of (17). Since (17)
shares the same structure as (3), the operation of IFFT aligns with

that of FFT. Initially, X f']f is processed using Rader’s algorithm to

obtain the sequence X?jf _end> Which will undergo the butterfly

operation. Once X?jf _end 1s obtained, X?].t can be derived by

applying the butterfly operation rules to ijf —end- Specifically,
this can be achieved by modifying the input of Algorithm 2 to
Xf'jf —end- This entire process can be simplified as shown in (18).

X}t = IFFT(X}]). (18)

After obtaining X,’?f, it is necessary to perform a summation
and compression operation on X?jt, specifically by performing
matrix addition on X, X, .. X" . and X" This op-

j mj
eration allows for the preservation of the extracted feature
information from DFNNB while enabling further processing of
the extracted feature data by subsequent network structures.
The process of obtaining the final output X; of FNNL through

the summation and compression of Xf’jt,

is represented by (19).

as shown in Figure 2,

ht ht ht
X] - Xl] + XZ] e + Xl] Foeeennn + ij (19)

4.3. Information Back Propagation and Parameter Update.
In FNN, there are two parts: DNN and DFNNB. The back
propagation process of gradient information in the DNN part
has been extensively discussed in existing literature. Therefore, in
this paper, we focus on elaborating the back propagation process
of gradient information within the DFNNB. Specifically, we
analyze the back propagation process of internal gradient in-
formation in the jth DFNNB. The variables that require gradient
information calculation in the jth DFNNB include the coefficient
matrix M j in FNNL, and the weights W, and W), in HNN. Let
L denote the loss between the network output value and the
labeled value. From equations (10), (16), (18), and (19), the
gradient relationship between L and the coefficient matrix M?,
as presented in Section 4.1, can be expressed by (20).

oL oL 0X; 0X; OIFFT(X])) X
OM; 0X; X! OIFFT(X]{) aXj] OHSE(E))

(20)
i a(x]x)
OF; a(x[xM;) OM;

aHSE(Ej) OES

In order to be able to calculate the gradient of the co-
efficient matrix M$ in FNNL smoothly on the computer,
a further transformation of (20) is required. According to the
analysis in Section 4.1, it can be seen that (18) is equivalent to
(17), and (17) can be rewritten in the form of matrix op-
eration as shown in (21):

h hf
Xijt =V Xi, (21)

where Vi can be expressed by (22):

11 1 1 7
1wy W Wi
1
Vi=qo| 1 Wy oWy Wy (22)
i 1 W]—\;N—l) WI—\TZ(N—I) . W}—\;N—l)(N—l) |

14

In (22), Wy = e /27N,

From the analysis in Section 4.2.2 and (14) and (15), it
can be deduced that the work accomplished by (16) in the
high-energy filtering process is equivalent to (23):

International Journal of Intelligent Systems

From equations (20), (21), and (23), the gradient of the
coeflicient matrix Mj in FNNL can be expressed by (24) as
follows:

hf
Xp = a- (E5xCy). (23)
oL oL 0X; ax?jt a(VN .Xf.‘jf) E)Xf‘jf a(zx~ (Ej X Cfl)) BEj- 8(X{ X Mj) (24)
S T 3%, Ayh hf hf s S s s s
OM; 0X;ax;io(Vy-X[[) oxj o(a-(EjxC,)) OE; a(x]xm;) oM
1 1 1 1
E.quat.ion (24) represents the back Propagatipn process of 1owh o owh WD
gradient information for the coefficient matrix M? inside R . SO
FNNL in a DFENNB. X{ is a matrix formed by combining Fy=[1 Wy Wy Wy (26)
X!, where each X,f- is obtained from the corresponding X! ! : : : . :
through FFT transformation, which is equivalent to applying 1 WD w20y (DD

DFT to each X}, to obtain the corresponding Xj;. The
process of obtaining X]f by performing DFT on X;; can be
expressed by (25).

f _ t
x| =Fy X (25)
In (25), EN is represented by (26).
ht hf
oL oL 9X; 0X; A(Vy - Xij) X

hf
ij

Xf»j is the output of HNN, and the only trainable pa-
rameters in HNN are the weights W), and Wj,. According to
the chain derivation rule, the gradient information of W
and Wj, in HNN can be back propagated. Equations (27)
and (28) represent the back propagation process of gradient
information for Wj, and W,, in DENNB, respectively.

e (%))

T OX. 3yh h hf S o s
Wy 0X;axiia(vy-x/) oxy o(a-(EjxCy)) OE;
(27)
S f S f t t e
 OE; o(xX) xM3) oxi o(Fy-Xi) oX; 3(XixWy)
7 7 ‘] z M
o(x]xmj) ox] A(Fy-X)) 9Xj A(XjxWy) W
oL oL 9X; oxj a(Vy-XJ) oxhf Aa-(E5xC)) OE, (x| x M)
el j ij N~ “Hij ij j n j j j
oW, 0X;ax)i o(Vy-Xi) oxii d(a-(EjxCy)) OE; o(x] xm;) ox] o)
f t t e e
o ox] o(Fy-Xxj) oxi o(xixw,) ax5 (X, W)
t e € :
o(Fy-Xj) 0X; o(Xixw,) 0X; 93X, -W,) W,
5/ S aL
Equations (24), (27), and (28) show the back propagation Mj =M;j-n oM (29)
process of gradient information of the to-be-trained vari- !
ables M$, Wy, and W, in the jth DFNNB. The back
j j j) oL
propagation process of the gradient information of the Wy =W, - o (30)
parameters to be trained in the remaining DFNNB:s is the Wi
same as the back propagation process of the gradient in-
formation of the variables to be trained in the jth DFNNB. W =W. — n oL) 1)
From equations (24), (27), and (28) combined with the se o TowWg,

gradient descent algorithm, the updating process of the
coefficient matrices M of FNNL in the jth DENNB, and the
weights W, and W, in the HNN can be expressed in
equations (29), (30), and (31), respectively, as follows:

M;/, W]'h, and W;e denote the updated M;, Wiy, and W,
respectively, and # is the learning rate, which is able to
complete the updating of the parameters in the DFNNB
according to equations (29)-(31).

International Journal of Intelligent Systems

Sections 4.1 and 4.2 elaborate the structure and in-
formation forward propagation process of DFNNB in FNN,
and Section 4.3 describes the backward propagation process
of the information of the parameter gradient to be updated
and the parameter updating process in DFNNB.

4.4. Time Complexity Analysis. A DENNB consists of HNN
(Hadamard Neural Network) and FNNL (Fourier Neural
Network Layer). In this subsection, the time complexity of
executing a DFNNB is analyzed.

First, let us analyze the time complexity of HNN. The
computational process of HNN involves equations (1) and
(2). Equation (1) represents the matrix multiplication of an
N * 1 vector with a 1 * M vector, with a time complexity of
O(NM). Equation (2) involves the Hadamard product of an
N % M matrix with another N * M matrix, which also has
a time complexity of O(NM). Therefore, the time complexity
of HNN is O(NM).

Next, let us consider the time complexity of the Fast
Fourier Transform (FFT). As mentioned in Section 4.2, this
process requires the fast Fourier transform of M vectors,
resulting in a time complexity of O(MNlogN). Through the
FFT, a frequency domain representation of the data, Xifj, is
obtained. Subsequently, a high-energy filtering process is
performed on Xf; In this process, each Xf; is multiplied
elementwise with a coefficient vector M;, to obtain the
primary energy we'lfve Z:.. Therefore, the time complexity of
processing one X;; is O(N). Since there are M X;; in one
high-energy filtering process, the time complexity of pro-
cessing MX{; is O(MN).

All Z; together form the primary energy wave matrix E°.
E¢ is then processed using a high-energy selection algorithm
that involves K iterations. In each iteration, the key com-
putational steps include (11)-(13). Equation (11) represents
the Hadamard product of matrices, with a time complexity
of O(MN). Equation (12) represents matrix multiplication,
also with a time complexity of O(MN). Equation (13)
represents the softmax function, with a time complexity of
O(N). Therefore, the time complexity of the high-energy
selection algorithm with 1 iteration is O(MN), while the time
complexity of the high-energy selection algorithm with K
iterations is O(KMN).

Finally, according to the analysis in Section 4.2.3, the
inverse transform of the Fast Fourier Transform (FFT) needs
to be performed. Its time complexity is the same as the FFT,
which is O(MNlogN).

In summary, the time complexity of a DENNB can be
expressed as O(NM) + O(MN) + O(KMN) + O(MNlogN).

5. FNN Detection Steps

Step 1: Perform preprocessing operations on the data,
including normalization and splitting the dataset into
a training set and a test set.

Step 2: Training FNN.

(1) Determine the structure of the FNN and ini-
tialize its parameters.

15

(2) Input the training set data into the first DFNNB.
Using equations (1) and (2), the HNN fits the
network intrusion data in the multitemporal
space. Then, the fitted samples are processed by
FNNL, resulting in filtered and integrated fea-
ture data according to equations (7), (16), (18),
and (19). These data serve as the output of the
DFNNB and are also used as the input for the
next DFNNB layer.

(3) Use the output of the previous DENNB layer as
the input for the current DFNNB layer.

(4) Repeat step (3) until the output of the final
DFNNB layer is obtained. This output is then
used as the input for the DNN part of the FNN,
and the output of the DNN part becomes the
final output of the FNN.

(5) Calculate the loss value between the FNN’s
output and the labeled values. Use the gradient
descent algorithm to update the trainable pa-
rameters in the FNN, reducing the difference
between the output and the labeled values.
Continue this process until the specified training
iterations are reached.

Step 3: FNN testing. Input the test dataset into the
trained FNN to obtain the classification results for each
test data.

The overall flowchart of the FNN intrusion detection is
illustrated in Figure 6.

6. Datasets Description

In order to verify the detection capability of FNN in the face
of network intrusion data, this paper not only carries out
intrusion detection implementation on the older intrusion
detection datasets KDD CUP99 and NSL-KDD but also
conducts intrusion detection experiments on the newer
intrusion detection datasets UNSW-NB15 and CICIDS2017.
This demonstrates the intrusion detection capability of FNN
in a more comprehensive way and ensures that the exper-
iments are more convincing.

(1) KDD Cup99 [51]: This dataset is derived from the
1998 DARPA Intrusion Detection Evaluation Pro-
gram. All network data originate from a simulated
United States Air Force local area network, which
includes various simulated attacks. The dataset
consists of 41 feature attributes and 1 class label.
Among the 41 feature attributes, 9 are discrete
(symbolic) and the rest are continuous. The class
label consists of 5 categories: Normal, Probe, DoS,
U2R, and R2L. The dataset suffers from class im-
balance, resulting in biased results towards the more
frequent data. Table 3 provides a detailed description
of the KDD Cup99 dataset.

(2) NSL-KDD [52]: This dataset is an improvement over
the KDD Cup99 dataset, as it removes redundant
data and duplicate records present in the original

16

International Journal of Intelligent Systems

Dataset
preprocessing

:

Input training set

:

Build FNN and Train FNN to
initialize internal — optimize internal —
parameters parameters

N
Whether to met the
maximum number of
training
\ 4
Obt?; ;I :ﬂ (())El:lrna — Input test set

:

Output classification
results

End

FiGure 6: FNN intrusion detection flowchart.

dataset consists of one category representing normal
traffic and nine categories representing various types of

dataset. This ensures that classifiers do not exhibit
bias towards more frequent records, resulting in

more accurate detection rates. Compared to the
KDD Cup99 dataset, this dataset is more suitable for
intrusion detection. Table 3 provides a detailed de-
scription of the NSL-KDD dataset.

(3) UNSW-NBI15 [53, 54]: This dataset was created by the

Network Security Laboratory of the Australian Centre
for Cyber Security (ACCS) using the IXIA Perfect-
Storm tool. It aims to provide a more realistic repre-
sentation of real-world network data and serves as
a comprehensive dataset for network attack traffic. The

abnormal traffic. It contains 42 feature attributes and 1
class label attribute. A detailed description of the
UNSW-NBI15 dataset can be found in Table 4.

(4) CICIDS2017 [55, 56]: This dataset was developed within

the Canadian Institute for Cybersecurity and consists of
five days of both normal and attack traffic data. It
provides labeled, flow-based data for updated attacks
and normal usage in a simulated office environment.
The dataset also includes network flow analysis results
using CICFlowMeter. The dataset is labeled based on

International Journal of Intelligent Systems

flows, reflecting timestamps, source IP addresses, des-
tination IP addresses, source port numbers, and desti-
nation port numbers. It also includes metadata on
protocols and the most significant attack types. The
dataset encompasses seven attack categories, reflecting
recent attack scenarios. A detailed description of the
CICIDS2017 dataset can be found in Table 5.

7. Evaluation Index

Due to the imbalance in the intrusion detection dataset, with
a significant disparity between the number of normal and
abnormal samples, the accuracy rate alone cannot provide
a comprehensive evaluation of the intrusion detection al-
gorithm’s performance. Therefore, this paper introduces
additional evaluation metrics such as accuracy, precision,
recall, F1-score, and AUC values to assess the effectiveness of
the FNN algorithm [57]. These metrics are derived from the
confusion matrix presented in Table 6, enabling a more
comprehensive analysis of the algorithm’s performance.
The above evaluation indicators are defined as follows:

Accuracy: It estimates the ratio of the number of
correctly identified samples to the entire test set. The
higher the accuracy, the better the performance of the
neural network (accuracy € [0, 1]). It is a good metric
for test datasets containing balanced classes. The ac-
curacy rate is defined as follows:

TP + TN

Accuracy = . (32)
TP + TN + FP + FN

Precision: It estimates the ratio of the number of
correctly identified normal samples to the actual pre-
dicted normal samples. The higher the precision, the
better the performance of the neural network (pre-
cision € [0, 1]). The precision is defined as follows,
where k is the sample category:

TP

e i 33
TP + FP (33)

precision;, =

Recall: It estimates the ratio of correctly classified
normal samples to the total number of normal samples.
If the recall rate is higher, the neural network model is
better (recall € [0, 1]). Recall is defined as follows:

TP

— (34)
TP + FN

recall, =

Fl-score: It is the harmonic average of precision rate
and recall rate. The higher the F1-score, the better the
performance of the neural network (F1-score € [0, 1]).
Fl-score is defined as follows, where a; is the weight,
representing the proportion of different sample
categories:

2 - precision,, - recall;,

Flg = ,
recision, + recall

p k k (35)

2

F1 - score :(Z oy X Flk)

17

ROC (receiver operating characteristic) curve: Its hori-
zontal axis is false positive rate (FPR), and its vertical axis
is true positive rate (TPR). The value of AUC is the area
under the ROC curve, which is used as a comparison
index for neural network models together with ROC. The
higher the AUC value, the better the neural network
model. The AUC value is calculated as follows:

1 TP FP

) (36)
o TP +FN TN + FP

AUC:J

where TP (true positive) is the total number of samples
correctly classified into the normal class, TN (true negative)
is the total number of samples correctly classified into the
attack class, FP (false positive) is the total number of samples
that misclassified the normal class as an attack class, and FN
(false negative) is the total number of attack samples that are
misclassified as normal.

8. Experiments and Discussions

In this section, two sets of comparative experiments were
designed with the following objectives: the first group aimed
to validate the effectiveness of FNN and explore its per-
formance on different datasets, while the second group
aimed to investigate the impact of the number of iterations
of the HSE algorithm on the performance of FNN.

In the field of intrusion detection, it is crucial to validate
the effectiveness of an intrusion detection method by ap-
plying it to various real-world scenarios. To evaluate the
effectiveness of FNN, this study utilized FNN for detecting
intrusions in the KDD Cup99, NSL-KDD, UNSW-NB15,
and CICIDS2017 datasets. Multiple evaluation metrics such
as accuracy, precision, recall, F1-score, ROC curve, and AUC
value were employed to assess the performance of FNN.

The deep learning framework used in this study was
TensorFlow 2.13.0 (CPU version), and the machine
learning library employed was scikit-learn 1.0.2. The
programming language used was Python 3.9.1. The hard-
ware configuration for this experiment consisted of an
AMD Ryzen 7 5800H processor and 16 GB RAM. The
operating system used was Windows 11.

In the specific implementation of the experiments, for
the binary classification experiments, normal samples are
labeled as 0 and attack samples are labeled as 1. For the
multiclassification experiments using the CICIDS2017
dataset as an example, normal samples are labeled as 0, Bot
attack samples as 1, BruteForce attack samples as 2, Dos
attack samples as 3, Infiltration attack samples as 4, PortScan
attack samples as 5, and WebAttack samples as 6. One-hot
encoding is employed for the labeling process. The epoch
value for both the FNN and the comparative deep learning
models during training is set to 50. The Adam optimization
function with a learning rate of 0.001 is utilized, and the
Categorical Crossentropy is adopted as the loss function.

8.1. Comparative Experiment One. The FNN network
structure significantly influences the detection performance
of FNN. To validate the effectiveness of FNN, this paper

18 International Journal of Intelligent Systems

TaBLE 3: Training and testing connection records of KDD Cup99 and NSL-KDD.

10% dataset 20% dataset

Attack category Description KDD Cup99 NSL-KDD
Train Test Train Test
Normal Normal connection record 97277 60592 13357 9690
Probe Get detailed statistics for system and network configuration details 4107 4166 2289 2421
DoS Attack aims to reduce network resources 391438 229825 9234 7435
U2R Get permission or super user access on a specific computer 52 228 11 200
R2L Illegal access to remote computer 1126 16189 209 2754
Total 494000 311000 25100 22500
TaBLE 4: Training and testing connection records of UNSW-NBI5.
Attack_cat Description Train Test
Normal Normal connection record 56000 37000
Backdoor Technology that bypasses security controls to gain access to programs or systems 1746 583
Analysis An intrusion method to penetrate web apphcauons through ports, emails, and web 2000 677
scripts
An attack method that attempts to find security vulnerabilities in programs,
Fuzzers operating systems, or networks by inputting a large amount of random data to make 18184 6062
it crash
Shellcode An attack method that controls the target mac.h.1r.1e by sending code that exploits 1133 378
specific vulnerabilities
Reconnaissance An attack method that collects computer network information in order to evade 10491 3496
security control
Exploit A piece of code that triggers a vulnerability (or several vulnerabilities) to control the 33352 11132
target system
An attack method that directly or indirectly exhausts the resources of the attacked
DoS object, so that the target computer or network cannot provide normal services or 12264 4089
resource access
Worms A malicious computer virus that spreads through the network and actively attacks 130 44
Genertic A technology that.use.s a hash function to collide each bl?ck cipher without 40000 18871
considering the configuration of the block cipher
Total 175300 82332
TaBLE 5: Training and testing connection records of CICIDS2017.
Attack_cat Description Train Test
Normal Normal connection record 1703490 567830
Automated large-scale attacks using malicious software or programs to obtain
Bot confidential information, cause system downtime, or perform other malicious 1467 489
activities
BruteForce Brute-force a system’s security measures by trying a large number of p0§S}ble 10374 3458
password combinations or keys to gain unauthorized access or control privileges
Depleting the resources of the target by directly or indirectly depleting the resources
DoS of the target computer or network so that the target computer or network cannot 284811 94937
provide normal services or access to resources
. Gain unauthorized access by penetrating the defense layer of the target system and
Infiltration X . . . o Lo 27 9
infiltrating, controlling or stealing sensitive information in the system
PortScan Scapmng the open ports qf a target host to detect system vglnerabﬂltles and services 119103 39701
in order to find exploitable entry points for unauthorized access or attacks
WebAttack Attacks against users’ online behavior or devices such as web servers 1635 545
Total 2120907 706969
TasLE 6: Confusion matrix.
) Forecast result
Reality
NO YES
Actual: NO TN (true negative) FP (false positive)
Actual: YES EN (false negative) TP (true positive)

International Journal of Intelligent Systems

proposes three FNN network structures, namely FNNI,
FNN2, and FNN3. Each structure incorporates a varying
number of layers of DFNNB (FNN1 with 1 layer, FNN2 with
2 layers, and FNN3 with 3 layers). DNN is interleaved
between each DFNNB layer, enabling the learned feature
representations from DFNNB to be mapped to different
feature spaces. In the first set of experiments, the number of
iterations of the HSE algorithm for the different FNN
networks is fixed at 3. The detailed structure of FNNI to
FNN3 is presented in Table 7. The structure of DNN, CNN,
RNN, and LSTM used in the comparison experiments is
shown in Table 8.

When performing binary classification tasks on the data,
the number of neurons in the last layer of the DNN network
is 1, and the activation function used is the sigmoid function.
For multiclassification tasks, the number of neurons in the
last layer of the DNN network is 5, 10, and 7 according to the
different datasets (the number of neurons in the experiment
on the KDD Cup99 and NSL-KDD dataset is 5, the number
of neurons in the experiment on the UNSW-NB15 dataset is
10, and the number of neurons in the experiment on the
CICIDS2017 dataset is 7), and the activation functions are all
softmax functions.

Tables 9-16 presents the accuracy, precision, recall, and
Fl-score values of FNNI1, FNN2, and FNN3 in binary
classification and multiclassification using classical deep
learning and machine learning algorithms, including DNN,
CNN, RNN, LSTM, RF, LR, KNN, DT, and SVM, on the
KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017
datasets. Tables 9-16 demonstrate the superior detection
performance of all algorithms. Overall, the performance of
each algorithm on KDD Cup99, NSL-KDD, and
CICIDS2017 is better than that on UNSW-NB15. This
discrepancy can be attributed to the higher data complexity
of UNSW-NB15 compared to other datasets. In deep
learning methods, CNN, RNN, and LSTM exhibit relatively
poor performance. This can be attributed to the absence of
translation invariance and clear sequential relationships in
network intrusion data. Among traditional machine
learning methods, RF and KNN demonstrate more prom-
inent performance. This is primarily due to the fact that RF is
an ensemble algorithm that incorporates multiple decision
trees, providing certain advantages over individual tradi-
tional machine learning algorithms. Additionally, the net-
work intrusion data have a relatively low feature dimension,
which contributes to the advantageous performance of KNN
in handling such data. Due to the higher performance re-
quirements of algorithms for multivariate classification
compared to binary classification, the overall performance of
each algorithm decreases in various performance metrics
when performing multiclassification on each dataset. This
performance decrease is particularly evident in the classi-
fication of the UNSW-NB15 dataset, which is more complex
than the other three datasets and includes nine types of
attacks, including newer attack types. Therefore, it is ex-
pected that the algorithms would exhibit a significant de-
crease in performance on the UNSW-NBI15 dataset. In
general, each algorithm in the experiments effectively detects
the attack samples in the dataset. Analyzing Tables 9-16,

19

FNN demonstrates superior detection performance com-
pared to other algorithms in the majority of cases. Fur-
thermore, the detection performance of FNN continues to
improve with an increase in the number of DENNB layers
within the FNN.

In the vast majority of cases, FNN demonstrates superior
detection performance compared to traditional methods. In
the binary classification test on the KDD Cup99 dataset, each
detection method achieves excellent detection results. Spe-
cifically, FNN2 and FNN3 exhibit accuracy rates exceeding
0.996, which is a 19.2% improvement compared to the
worst-performing LSTM. Moreover, as the depth of FNN
increases, both precision and recall also increase. Notably,
FNN3 achieves precision and recall rates of 0.999 and 0.997,
respectively, surpassing other methods. However, overall,
the performance differences between FNN2 and FNN3 are
not significant, indicating that further increasing the depth
of FNN does not yield substantial improvements in per-
formance. In the multiclassification test on the KDD Cup99
dataset, most algorithms, except LSTM, exhibited a slight
decrease in performance. Notably, FNN3 demonstrated the
smallest decrease in accuracy. One of the factors contrib-
uting to the marginal improvement in LSTM’s performance
is the use of a multiclassification dataset, which partially
alleviates the issue of class imbalance present in the binary
classification dataset. This observation suggests that LSTM is
less adept at handling significant imbalances in sample
quantities. Furthermore, FNN consistently outperforms
other algorithms in terms of precision and recall, indicating
its superiority. Due to certain limitations of the KDD Cup99
dataset, this study proceeds with further experiments on the
NSL-KDD dataset, which is an improved version of the KDD
Cup99 dataset. The NSL-KDD dataset provides a better
means to evaluate the performance of various algorithms in
intrusion detection. Notably, the NSL-KDD dataset has
a significantly reduced number of samples in the training set,
resulting in fewer data features being learned by the de-
tection methods. As a consequence, all algorithms experi-
ence varying degrees of degradation in their detection
capabilities. However, when comparing Tables 9-16, it can
be observed that FNN demonstrates a relatively smaller
decrease in performance compared to other algorithms.
Moreover, FNN3 consistently achieves optimal performance
indicators when performing both binary classification and
multiclassification tasks, indicating its superiority over other
algorithms in classifying the KDD Cup99 and NSL-KDD
datasets.

When performing binary classification on the
UNSW-NBI15 dataset, FNN consistently outperforms other
algorithms in the majority of cases. Furthermore, increasing
the depth of FNN leads to a certain degree of performance
improvement. The UNSW-NB15 dataset is relatively new
and contains numerous novel attack types, resulting in
higher data complexity compared to the NSL-KDD and
KDD Cup99 datasets. At this stage, the accuracy rates of
DNN, CNN, LSTM, LR, DT, and SVM fall below 0.800, with
SVM achieving an accuracy rate of only 0.686. Additionally,
the accuracy rates of RNN and KNN are below 0.850. The
algorithms with accuracy rates exceeding 0.900 are FNN1,

20

International Journal of Intelligent Systems

TaBLE 7: Network structure of FNN.

Network name Network structure n Number of neurons Activation function
DNN — 42, 64 Tanh
FNN1 DFNNB1 3 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax
DNN — 42, 64 Tanh
DFNNB1 3 — —
FNN2 DNN 64, 128 Tanh
DFNNB2 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax
DNN — 42, 64 Tanh
DFNNBI 3 — —
DNN — 64, 128 Tanh
FNN3 DFNNB2 3 — —
DNN — 128, 256 Tanh
DFNNB3 3 — —
DNN — 64, 1/5/10/7 Tanh, sigmoid, softmax
TaBLE 8: Network structure of DNN, CNN, RNN, and LSTM.
Model Network layer Number of neurons Activation
Hidden layer 1 41 Tanh
Hidden layer 2 68 Tanh
DN Hidden layer 3 128 Tanh
Output layer (dense) 1/5/10/7 Sigmoid, softmax
CNN Inception-V1
LSTM 42 Tanh
LSTM Global average pooling — —
Dense 268, 1/5/10/7 Tanh, sigmoid, softmax
RNN 42 Tanh
RNN Global average pooling — —
Dense 268, 1/5/10/7 Tanh, sigmoid, softmax
TaBLE 9: KDD Cup99 binary classification test results.
Model Accuracy Precision Recall F1-score
FNNI1 0.988 0.997 0.989 0.993
FNN2 0.996 0.999 0.996 0.997
FNN3 0.997 0.999 0.997 0.998
DNN 0.971 0.999 0.965 0.982
CNN 0.961 0.999 0.953 0.975
RNN 0.961 0.992 0.960 0.976
LSTM 0.804 0.804 1.000 0.891
RF 0.967 0.999 0.959 0.979
LR 0.957 0.998 0.948 0.972
KNN 0.991 0.998 0.991 0.994
DT 0.918 0.933 0.967 0.950
SVM 0.945 0.942 0.993 0.967

FNN2, FNN3, and RF, with RF having an accuracy rate of
0.900, which is lower than that of FNN1, FNN2, and FNN3.
In terms of precision and recall, FNNI1, FNN2, and FNN3
outperform other methods. When performing multi-
classification on the UNSW-NB15 dataset, the accuracy rates
of FNN1, FNN2, and FNN3 are 0.790, 0.846, and 0.853,
respectively. At this stage, the accuracy rates of RF and KNN
are 0.809 and 0.802, respectively, which are higher than
FNNI1 but lower than FNN3 and FNN2. Overall, FNN2
performs similarly to FNN3, and both outperform other
algorithms.

Through the analysis of Tables 15 and 16, it is found that
FNN’s performance in binary classification on the
CICIDS2017 dataset is not as good as in multiclass classi-
fication. This is because the CICIDS2017 dataset has less
noise contamination, and when performing binary classi-
fication, there are only two labels, so the influence of data
noise on the classification results is relatively small. How-
ever, if the filtering frequency of FNN is too high, it will lead
to the loss of non-noise information. Therefore, the effec-
tiveness of our designed high-energy selection algorithm
cannot be fully exerted. For the selection of the

International Journal of Intelligent Systems 21
TaBLE 10: KDD Cup99 multiclass classification test results. TaBLE 13: UNSW-NBIS5 binary classification test results.
Model Accuracy Precision Recall F1-score Model Accuracy Precision Recall F1-score
FNN1 0.957 0.957 0.957 0.948 FNN1 0.927 0.932 0.936 0.934
FNN2 0.981 0.982 0.981 0.980 FNN2 0.944 0.953 0.944 0.949
FNN3 0.990 0.990 0.990 0.989 FNN3 0.944 0.954 0.943 0.949
DNN 0.939 0.898 0.939 0.916 DNN 0.761 0.867 0.668 0.755
CNN 0.928 0.876 0.928 0.899 CNN 0.690 0.740 0.674 0.706
RNN 0.928 0.874 0.928 0.898 RNN 0.813 0.815 0.854 0.834
LSTM 0.864 0.834 0.864 0.841 LSTM 0.749 0.858 0.652 0.740
RF 0.920 0.889 0.920 0.894 RF 0.900 0.898 0.924 0.911
LR 0.905 0.913 0.905 0.889 LR 0.761 0.862 0.675 0.757
KNN 0.942 0.950 0.942 0.925 KNN 0.848 0.864 0.859 0.861
DT 0.888 0.833 0.888 0.859 DT 0.799 0.826 0.804 0.815
SVM 0.932 0.922 0.932 0.909 SVM 0.686 0.735 0.673 0.703

TaBLE 11: NSL-KDD binary classification test results.

Model Accuracy Precision Recall F1-score
FNN1 0.948 0.954 0.956 0.955
FNN2 0.978 0.976 0.985 0.980
FNN3 0.982 0.982 0.986 0.984
DNN 0.950 0.931 0.984 0.957
CNN 0.833 0.922 0.771 0.840
RNN 0.890 0.961 0.841 0.897
LSTM 0.812 0.865 0.794 0.828
RF 0.938 0.927 0.968 0.947
LR 0.795 0.908 0.712 0.798
KNN 0.977 0.977 0.982 0.980
DT 0.833 0.878 0.820 0.848
SVM 0.853 0.874 0.867 0.870

TaBLE 12: NSL-KDD multiclass classification test results.

Model Accuracy Precision Recall F1-score
FNN1 0.963 0.963 0.963 0.962
FNN2 0.975 0.975 0.975 0.975
FNN3 0.977 0.977 0.977 0.977
DNN 0.933 0.931 0.933 0.930
CNN 0.743 0.580 0.743 0.647
RNN 0.801 0.789 0.801 0.781
LSTM 0.700 0.534 0.700 0.605
RF 0.827 0.867 0.827 0.796
LR 0.725 0.560 0.725 0.629
KNN 0.914 0.912 0.914 0.912
DT 0.780 0.686 0.780 0.727
SVM 0.442 0.409 0.442 0.284

hyperparameter # in the high-energy selection algorithm,
please refer to Section 8.2. From Table 16, it is evident that as
the number of DENNB layers in FNN increases, the FNN
detection performance also improves consistently, with
FNN3 achieving an high accuracy rate of 0.995. The mul-
ticlassification result of CICIDS2017 is greatly affected by
data noise, which significantly impacts its multiclassification
results. However, the high-energy selection algorithm in
FNN effectively filters out the noise information, thereby
enhancing the classification performance. Meanwhile, it can
be observed that RNN and LSTM exhibit the poorest per-
formance among the deep learning algorithms, indicating
that the unoptimized design of RNN and LSTM is not

TaBLE 14: UNSW-NB15 multiclass classification test results.

Model Accuracy Precision Recall F1-score
FNN1 0.790 0.775 0.790 0.774
FNN2 0.846 0.839 0.846 0.842
FNN3 0.853 0.844 0.853 0.847
DNN 0.676 0.586 0.676 0.592
CNN 0.771 0.685 0.771 0.705
RNN 0.641 0.439 0.641 0.520
LSTM 0.638 0.447 0.638 0.522
RF 0.809 0.809 0.809 0.759
LR 0.792 0.775 0.792 0.775
KNN 0.802 0.785 0.802 0.778
DT 0.764 0.674 0.764 0.698
SVM 0.648 0.669 0.648 0.632

TaBLE 15: CICIDS2017 binary classification test results.

Model Accuracy Precision Recall Fl-score
FNN1 0.991 0.979 0.978 0.978
FNN2 0.994 0.985 0.984 0.984
FNN3 0.993 0.984 0.981 0.983
DNN 0.994 0.981 0.991 0.986
CNN 0.964 0.905 0.915 0.910
RNN 0.945 0.890 0.820 0.854
LSTM 0.983 0.947 0.971 0.959
RF 0.998 0.997 0.998 0.997
LR 0.938 0.851 0.832 0.842
KNN 0.995 0.982 0.992 0.987
DT 0.998 0.996 0.997 0.996
SVM 0.969 0.923 0.920 0.922

suitable for intrusion detection, which also reflects the ab-
sence of clear sequential relationships in network intrusion
data. In terms of precision and recall, FNN demonstrates
a significant advantage over other algorithms, except RF. RF
performs well among machine learning algorithms, high-
lighting the strengths of RF as an ensemble algorithm.
The Fl-score is an evaluation metric that combines
precision and recall, providing a better reflection of algo-
rithm performance. Tables 9, 11, and 13 indicate that, when
performing binary classification on each dataset, FNN2 and
FNN3 consistently achieve the optimal F1-score across all
three datasets, with FNNI1 also outperforming most other
algorithms. Among the ML algorithms, RF and KNN exhibit

22

TaBLE 16: CICIDS2017 multiclass classification test results.

Model Accuracy Precision Recall F1-score
FNN1 0.993 0.993 0.993 0.992
FNN2 0.994 0.994 0.994 0.993
FNN3 0.995 0.995 0.995 0.994
DNN 0.969 0.969 0.969 0.968
CNN 0.985 0.985 0.985 0.984
RNN 0917 0.909 0.917 0.912
LSTM 0.803 0.645 0.803 0.716
RF 0.998 0.998 0.998 0.998
LR 0.963 0.965 0.963 0.963
KNN 0.995 0.995 0.995 0.995
DT 0.998 0.998 0.998 0.998
SVM 0.971 0.973 0.971 0.970

relatively higher Fl-scores compared to the others. This
highlights the superiority of RF as an ensemble algorithm
over traditional single algorithms, while also showcasing the
advantages of KNN in handling low-dimensional network
intrusion data. Overall, FNN demonstrates superior de-
tection performance in binary classification on the KDD
Cup99 dataset, the NSL-KDD dataset, and the UNSW-NB15
dataset. Tables 10, 12, 14, and 16 reveal that in most cases,
FNN2 and FNN3 exhibit a significant advantage in F1-score
compared to other algorithms when performing multi-
classification on each dataset. This suggests that other al-
gorithms are more prone to false negatives in
multiclassification tests on these datasets, whereas FNN
performs better. In summary, FNN exhibits superior de-
tection performance in both binary and multiclassification
tasks on the KDD Cup99 dataset, the NSL-KDD dataset, the
UNSW-NBI15 dataset, and the CICIDS2017 dataset. Com-
pared to other algorithms, FNN has a lower likelihood of
false negatives during the detection of network
intrusion data.

The confusion matrix is an analytical table used in
machine learning to summarize the predictions made by
classification models. It presents the relationship between
the true attributes of the sample data and the predicted
classification types in the form of a matrix. The confusion
matrix is a commonly used method for evaluating the
performance of classifiers. It allows for the visualization of
classification results and enables the calculation of various
evaluation metrics. The confusion matrix provides a clear
understanding of the classification results for normal and
abnormal samples after being evaluated by the intrusion
detection model. Figure 7 illustrates the confusion matrix of
ENN, RF, KNN, and their binary classification performance
on different datasets. From Figure 7 it is evident that, in most
cases, the FNN classification outperforms other algorithms
in terms of accuracy, with FNN3 exhibiting the lowest rates
of false positives and false negatives.

For the KDD Cup99 and NSL_KDD datasets, the KNN
algorithm performs the best overall among the machine
learning algorithms. Although KNN outperforms FNN1 in
terms of detection performance on these datasets, it falls
short compared to FNN2 and FNN3. By comparing
Figure 7(i) with Figure 7(q), we can observe that on the KDD

International Journal of Intelligent Systems

Cup99 dataset, FNN3 only misses 75 attack samples and
incorrectly identifies 11 normal samples as anomalies. FNN3
demonstrates a clear advantage in terms of both false
negatives and false positives. Similarly, comparing
Figure 7(j) with Figure 7(r) on the NSL_KDD dataset, FNN3
misclassifies 174 abnormal samples as normal samples,
whereas KNN misclassifies 234 abnormal samples as normal
samples, indicating a higher false negative rate for KNN.
When it comes to detecting the UNSW-NB15 dataset,
KNN’s performance is noticeably inferior to that of FNN
and RF. This is due to the high dimensionality and com-
plexity of the UNSW-NB15 data. For the UNSW-NB15 and
CICIDS2017 datasets, the RF algorithm achieves the best
overall performance among the machine learning algo-
rithms. Analyzing Figures 7(c), 7(g), and 7(k) together with
Figure 7(0), we can observe that RF has a higher number of
misclassifications than the FNN1, FNN2, and FNN3 on the
UNSW-NBI15 dataset, suggesting that RF does not perform
as well as FNN. Furthermore, by examining Figures 7(d),
7(h) and 7(l), it is evident that FNN2 has the fewest mis-
classifications among the FNN models on the CICIDS2017
dataset. Specifically, the number of attack samples mis-
classified as normal samples accounts for 0.016 of the total
attack samples, while the number of normal samples mis-
classified as attack samples accounts for 0.0038 of the total
normal samples. Although Figure 7(p) illustrates that RF has
fewer misclassifications than FNN on a single dataset
(CICIDS2017), an analysis of the combined confusion
matrices shown in Figure 7 indicates that FNN has fewer
false positives and false negatives across all the datasets,
suggesting its superior performance in detecting various
datasets when compared to other algorithms.

To present the multiclassification experiment results
more intuitively, we extracted 20,000 samples from each
dataset based on the proportion of each type. These samples
were processed by the respective FNN models, and the
resulting values were passed to t-SNE for visualization.
Additionally, the same 20,000 samples were directly passed
to t-SNE without any processing for visualization, resulting
in Figure 8.

From Figures 8(a), 8(c), and 8(e), it is visually evident
that the distribution of the KDD Cup99 dataset is the
simplest. In fact, applying t-SNE directly to the KDD Cup99
dataset yields satisfactory segmentation results. However,
Figure 8(a) clearly shows that there is significant overlap
between the Probe, R2L, U2R data and the Normal, Dos
data, indicating that t-SNE alone cannot effectively differ-
entiate the Probe, R2L, U2R data from the KDD Cup99
dataset. Figure 8(b) demonstrates that after processing the
data with FNN, t-SNE exhibits an improved ability to dis-
tinguish the Probe, R2L, and U2R data, particularly in
distinguishing the Probe data. Due to the limited amount of
training data for R2L and U2R, the impact of the algorithm
on enhancing the discrimination of these two types of data is
not very pronounced. Nevertheless, from Figure 8(b), it can
be observed that the R2L and U2R data are mostly located at
the edges of the Normal and Dos data. This indicates that
even with a small amount of training data, FNN still pos-
sesses the capability to differentiate attack data.

International Journal of Intelligent Systems 23
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
12000
:Zggg 500000
20000 1
< 0 6018 285 =0 9113 0000y 2912 =0 400000
= 2 -1 30000 -1
8000 < <
= 15000 J} = =
) = < 25000 300000
£ £ 6000 £ £
2 10000 =2 el 20000 3
g 2 1000 32 15000 b 200000
=1 77 21 597 £1 3083 21 136063
5000 10000 100000
2000
5000
0 1 0 0 1
True Label True Label True Label True Label
(a) (b) (c) (d)
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
12000
40000 500000
— 20000 10000 35000
3 0 6065 3 0 9397 E 0 2527 30000 3 400000
< < 8000 < <
= 15000 = — Jui|
e 5 5 25000 - 300000
2 2 6000 2 2
z 10000 32 2 20000 5
z = 4000 8 15000 B 200000
Al 30 Al 313 Al 2100 A 136882
5000 10000 100000
2000
5000
0 0 0 1
True Label True Label True Label True Label
(e) ® (8 (h)
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
12000 40000 500000
20000 10000 35000
= 0 6084 < 0 9481 < 0 2584]
3 2 2 30000 2 400000
< < 8000 < <
= 15000 = = 25000 o
b1 =1 =1 = 300000
2 e 6000 2 £
2 10000 2 2 20000 2
3 3 s000 E 15000 % 200000
Al 11 Al 229 Al 2045 % 136548
5000 10000 100000
2000
5000
0 0 0 1
True Label True Label True Label True Label
® 0 (k) (0]
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
12000 40000
500000
20000 10000 35000
E 0 1015 E 0 8730 E 32228 30000 E 0 296 400000
3 15000 5 8000 = =
9 < o 25000 o 300000
& & 6000 & £
2 10000 2 2 20000 2
2 2 4000 g 15000 E 200000
&1 23 so00 =1 980 & a1 440 138843
2000 10000 100000
5000
0 0 0 1
True Label True Label True Label True Label
(m) (n) (0) (9]
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
12000
35000 500000
5 0] 6041 200005 1 oa1y 234 10000 ¢ 6400 5
2 2 2 30000 3 400000
| 15000 = 8000 3 25000 2
= -] T 300000
8 2 6000 2 2
= 10000 = = 20000 =
= S w00 = S 200000
1 54 a1 293 S 6118 15000 & 138027
5000 2000 100000
10000
0 0 1 0 1
True Label True Label True Label True Label
(@ () (s) ®

FiGure 7: Confusion matrix. (a) KDD Cup99--FNNI. (b) NSL-KDD--FNNI1. (c¢) UNSW-NB15--FNNI1. (d) CICIDS2017--FNNI1. (e¢) KDD
Cup99--FNN2. (f) NSL-KDD--FNN2. (g) UNSW-NB15--FNN2. (h) CICIDS2017--ENN2. (i) KDD Cup99--FNN3. (j) NSL-KDD--FNN3.
(k) UNSW-NB15--FNN3. (I) CICIDS2017--FNN3. (m) KDD Cup99--REF. (n) NSL-KDD--RF. (0) UNSW-NB15--RF. (p) CICIDS2017--RF.
(q) KDD Cup99--KNN. (r) NSL-KDD--KNN. (s) UNSW-NB15--KNN. (t) CICIDS2017--KNN.

24

International Journal of Intelligent Systems

60 - % i 60
. >
40
../ 34 .0 / (40
20 4 4 i 20
0 . @ 0
N .
201 % -20 ’
« Normal "
-40 « Dos e 9.° o -40 A
¢« Probe » * H‘ s
-60 e R2L el s -60
< U2R s e
-80 4 . : . . . -80 1 ;
-80 -60 -40 -20 0 20 40 -60 -40 -20 0 20 40 60 80
(a) (b)
100 A 100
+ Normal - Normal
754 « Dos w 75 1 Dos
« Probe Probe
5071 .« R2L 50 1 R2L
U2R
25 4 25 4
0 | 0
=25 4 -25 1 7 ’
=50 -50 A -
75 4 =75 A
-100 . . a . . . 4 -100 . r . ; : - -
-100 -75 -50 -25 0 25 50 75 100 =75 =50 -25 0 25 50 75 100
(0 (d)
100 + « Normal 75
75 | + Backdoor]
« Analysis - >
50 { e DoS 504 % hd "
» Fuzzers 25 4 Normal
254 . Shellcode Backdoor
ol - Exploits 04 Analysis
« Worms DoS
-25 4 « Reconnaissance @ 25 4 Fuzzers
« Generic Shellcode
-50 A s &:“ Yy _50 | 5:::::;:‘5
.
=75 1 ?:‘ 4 _75 Reconnaissance
~100 4 - Generic
-100 -75 -50 -25 0 25 50 75 100 50 75
(e) ¢9]
1004 * Normal 1004 ° Normal -
: b - : = S
754 gruteForce pela B ” 754 e [B)ruteForce %
+ Dos * Dos
50 + « Infiltration 50 1 « Infiltration —.\ " —\\
25 4 e PortScan 254 =« PortScan
0 » WebAttack me=%eg, 0 s WebAttack "‘ —
1 2 —-‘-' T [
, @ .] N e
-25 | ¥, 3‘0’ 251 s‘
-50 A - f - =50 - " {J
-75 . 2: -75 | a0
-100 1 -100 R
-100 -75 -50 -25 0 25 50 75 100 -100 -75 -50 -25 O 25 50 75 100

(g)

(h)

FIGURE 8: Visualization of multiple classification results. (a) KDD Cup99 original data. (b) KDD Cup99 data processed by FNN3. (c) NSL-
KDD original data. (d) NSL-KDD data processed by FNN3. (e) UNSW-NB15 original data. (f) UNSW-NB15 data processed by FNN3. (g)
CICIDS2017original data. (h) CICIDS2017data processed by FNN3.

International Journal of Intelligent Systems

From Figure 8(c), it is evident that the NSL-KDD dataset,
as an improvement over the KDD Cup99 dataset, is more
complex. Unlike the KDD Cup99 dataset, which exhibits
more distinct differentiation results after direct processing
with t-SNE, the distribution of various data types in the
NSL-KDD dataset is closer after t-SNE processing, with the
R2L and U2R class data showing significant overlap with
other data types. Figure 8(d) clearly demonstrates that after
undergoing FNN processing, all data types exhibit signifi-
cant improvements compared to the nonprocessed data. At
this stage, the Normal, Dos, and Probe data show more
distinct differentiation, while the R2L and U2R data, al-
though overlapping with other data types, are mostly located
at the edges of the other data clusters.

From Figure 8(e), it is evident that the UNSW-NB15
dataset is more complex compared to the KDD Cup99 and
NSL-KDD datasets, with a greater variety of attack types and
a more chaotic distribution of various data types. Fur-
thermore, Figure 8(f) clearly demonstrates a significant and
effective differentiation between different types of attack data
after FNN processing.

Figure 9(g) illustrates that the CICIDS2017 dataset en-
compasses a wide range of attack types, resulting in a con-
fusing distribution of these attack types. Notably, Bot,
BruteForce, and WebAttack exhibit significant overlap with
the Normal class, indicating a potential misclassification as
Normal. Upon observing Figure 9(h), it becomes apparent
that FNN processing significantly enhances the data com-
pared to the unprocessed data. Specifically, a clear differ-
entiation emerges between the Normal, DoS, and PortScan
categories. Moreover, Bot, BruteForce, and WebAttack form
distinct clusters and reside at the periphery of the clusters
comprising other data types.

In conclusion, the visualized images derived from the
original dataset and processed by the FNN reveal a distinct
clustering pattern of different data types in the low-
dimensional space. The proposed FNN model in this
study demonstrates accurate identification of various types
of anomalous network traffic. While the FNN exhibits su-
perior detection performance in the field of intrusion de-
tection, as a novel neural network, there remains significant
room for further enhancement in its capabilities.

Figures 9 and 10 depict the accuracy curves and accuracy
box plots for each dataset, respectively. The accuracy curves
provide a clear visualization of the convergence of each
algorithm during the training process, while the box plots
offer insights into the presence of outliers and the distri-
bution characteristics of the data.

From Figure 9(a), it can be observed that in the binary
classification of the KDD Cup99 dataset, all deep learning
algorithms, except for CNN, converge at a faster pace.
However, CNN exhibits a sudden increase in accuracy at the
8th iteration, indicating an unstable optimization process for
its parameters. This substantial jump in performance sug-
gests instability within CNN. Furthermore, Figure 10(a)
reveals that the accuracy distribution of DNN and FNN is
more concentrated, indicating a comparatively stable
training process for these algorithms. Combining this with
Figure 9(a), it becomes evident that the training process of

25

DNN and FNN is smoother compared to other deep learning
algorithms. In the case of multiclassification on the KDD
Cup99 dataset, CNN still experiences a jump in accuracy at
the 8th iteration, further highlighting the instability of its
training process. Notably, LSTM achieves an accuracy ex-
ceeding 0.950 during training; however, Table 10 demon-
strates that LSTM’s final accuracy is only 0.864, indicating
overfitting. It is worth mentioning that the accuracy trends
of the remaining algorithms show no significant deviation
from Figure 9(a).

When binary classification is performed on the NSL-KDD
dataset, it can be seen from Figure 9(c) that FNN has the
fastest convergence speed among the deep learning algo-
rithms, and its accuracy converges to an optimal value at the
early stage of training. Figure 10(c) shows that the accuracy of
FNN is stably distributed around an optimal value, and there
are only a few outliers. As in the case of binary classification
on KDD Cup99, the accuracy of CNN also shows large jumps
in the training process when binary classifying the NSL-KDD
dataset, and it can be seen from Figure 10(c) that the accuracy
of CNN is distributed in a large range, which indicates that the
CNN training process is extremely unstable. In Figure 10(c),
there are more outliers in the accuracy rates of LSTM and
RNN, which also indicates the instability of their training
process. From Figure 9(d), it can be seen that when multi-
classification is performed on the NSL-KDD dataset, the
instability of various algorithms in the training process is
significantly improved, but CNN still shows large fluctuations
in its accuracy in the early stage of training.

Analyzing Figures 9(e) and 10(e), it can be observed that
during binary classification of the UNSW-NB15 dataset, the
training processes of all neural networks, except for DNN,
exhibit varying degrees of fluctuations. Additionally,
Figure 10(e) displays a higher number of outliers, which can
be attributed to the continuous improvement of algorithm
accuracy with increasing training iterations. Figure 9(e)
reveals that the accuracy of DNN stabilizes at a relatively
low value early in the training process, indicating that DNN
does not effectively capture more useful data features in
subsequent training stages. In the case of multiclassification
on the UNSW-NB15 dataset, LSTM and RNN initially show
improvements in accuracy during early training stages, but
quickly stabilize at a lower level. This suggests that LSTM
and RNN fail to learn significant data features through
training at this point. Moreover, Figure 10(f) clearly illus-
trates the concentrated distribution of LSTM and RNN
accuracy at a lower level.

Analyzing Figure 9(g), it can be observed that during
binary classification of the CICIDS2017 dataset, the accuracy
of various deep learning algorithms, except for DNN, con-
tinues to improve with increasing training iterations. Each
neural network’s training process exhibits varying degrees of
fluctuations, with Figure 10(g) displaying more outliers. FNN
tends to stabilize in the later stages of training, indicating that
the model has learned useful data features, reached conver-
gence, and achieved optimal performance. On the other hand,
RNN reaches its peak accuracy in the early stages of training
but experiences significant fluctuations with increasing
training iterations, suggesting that the optimization process

26
1.000 A [SRgyrIee: oy et
S =222 TPPPTITrCrSECErSrrTErELEE]
0975 1 /h'"“ —s— CNN-Accuracy
0,950 g 4= DNN:Aecuracy. L
| ~+— LSTM-Accuracy
7 0.925 4 i 1 —s— RNN-Accuracy
g ARRARANES REAASA SR R msany - v
§ 0.900 —+— FNN2-Accuracy
< 0.875 | +— FNN3-Accuracy
—+— RF
0.850 = LR
—— KNN
0.825 4 —r— DT
. 4 Loy SUM
0.800 +— " : . :
0 10 20 30 40 50
Iteration
(a)
0.95 T
0.90 4 CNN-Accuracy
DNN-Accuracy
0.85 LSTM-Accuracy
S RNN-Accuracy
Q
] 0.80 - FNN1-Accuracy
§ 0.75 | FNN2-Accuracy
< FNN3-Accuracy
0.70 RF
LR
0.65 1 KNN
0.60 4 bT
i SVM
0.55 r v v T r v
0 10 20 30 40 50
Iteration
(©
0.95 1 = AT Siis
P
0.90 4 i —=— CNN-Accuracy
¥ —<— DNN-Accuracy
085 4 « LSTM-Accuracy
5 RNN-Accuracy
£ 0.80 FNN1-Accuracy
§ FNN2-Accuracy
< 0.75 | FNN3-Accuracy
RF
0.70 A LR
KNN
0.65 - Bl
SVM
40 50
Iteration
(e)
1.00 4+ v "
LSE s iz ¥
0.98 4 %N @ é yo T2 CNN-Accﬁl;;cy
2]/_’ sctohiiiis oMo~ DNN-Accuracy
0.96 - «! —— LSTM-Accuracy -|
2 —— RNN-Accuracy
E 0.94 e b L AGUrACY
9 T —— FNN2-Accuracy
< —<— FNN3-Accuracy
0.92 =L\ rr y
W —— LR
0.90 4 — —— KNN
—r— DT
088 4 —*— SVM
0 10 20 30 40 50
Iteration
(®

1.00

0.95

Accuracy
4
o
(=]

0.85

o =
) S

I
%

Accuracy

0.8 A

e
g

Accuracy

0.5 4

1.000
0.975
0.950
0.925
0.900

Accuracy

0.875
0.850
0.825
0.800

International Journal of Intelligent Systems

Sy o e eaaaasasaasana]

CNN-Accuracy
DNN-Accuracy |
LSTM-Accuracy
RNN-Accuracy
FNN1-Accuracy
FNN2-Accuracy
FNN3-Accuracy

RF
LR
KNN
DT
SVM
0 10 20 30 40 50
Iteration
(b)

44

M&L‘MEW‘A‘*?:" Biniins Shafhafhd
s —=— CNN-Accuracy
<~ DNN-Accuracy

LSTM-Accuracy
RNN-Accuracy
FNN1-Accuracy
FNN2-Accuracy
FNN3-Accuracy

Aok et e bbb dedededebe e e e b

=
o

0 10 20 30 40 50
Iteration
(d)
+
e - CNN-ACCuracy

<~ DNN-Accuracy

f e aa o
—+»— LSTM-Accuracy
——
Ak Ak e
-

RNN-Accuracy
P e abia AR s
Pt

FNN1-Accuracy
FNN2-Accuracy
FNN3-Accuracy

20 30
Iteration

®

CNN-Accuracy
DNN-Accuracy
LSTM-Accuracy
RNN-Accuracy |
FNN1-Accuracy |
FNN2-Accuracy
FNN3-Accuracy

—+— RF
— LR
—— KNN
] == BT
—*— SVM
0 10 20 30 40 50
Iteration
(h)

FIGURE 9: Dataset classification accuracy. (a) KDD Cup99 binary classification. (b) KDD Cup99 multiple classification. (c) NSL-KDD binary
classification. (d) NSL-KDD multiple classification. (¢) UNSW-NBI15 binary classification. (f) UNSW-NB15 multiple classification. (g)
CICIDS2017 binary classification. (h) CICIDS2017 binary classification.

International Journal of Intelligent Systems 27

1.000 | 1.00 |
Fy T + v
0975 {7 T % 1 TY . T
0.950 - + -+ | 0951 Il ie
0.925 - | | 1 —
0.900 - 1| 0.90 |
!
0.875 1 + | |
0.85 |
0.850 -
0.825 - 0so lt
0.800 LT T 1 R I L4
Z Z Z o 9 9 5 ~ Z K T S I - T =
22272 2R%28g EZEZZ2ZR2NZRZ
O A A =4 T 2 & 4 %2} O N S 4 £ £ & 4 »n
(a) (b)
= 1.0 1
] - T T
0.95 T + r | L g
0.90 1 = B 0.9 | : I gl
0.85 1| i 1 4 o + ‘
0.80 = 1L =
0.75 | % B . - 0.7 |+ T
0.70 A | | | | +
1 0.6 1, +
0.65 1 1
i
0.60 1 0.5 1 :
+
0.55 - | | | | | L] |+
Z Z S zZ 5 9 9 5 < 7z = S — N N L o I
Z Z E 2z &£ &2 £~ = %ZA0¢g zZzZz%Z59 2882853
CBE R &Egzz 5 AR 227 7% g 2z
(©) @
0.95 o
+ 1T 038 | TY - |
0.90 1 T 31 : T
P Tl
0.85 1 * 0.71[?
0.80 1 L + o+ T
0.6-$?
0751 * ? = 7 7
+ I
0,70-% ! 05 |
4 +
0.65 17 -
ZI Z I Z = m LL< ;:4 Z, e zZ Z S Z S 9 95~z 2 S
zzEz%%%mAZQE 525§%§§quo>
O ABE e R 4 @ A 7 L £ & 4 @
(e) (f)
1004 = e T == | I‘O'T I T v s | L | | +
0.98-? § -3 ?l}] 0.9 |
! [t —| 08/
096 4 ® EF
) f 0.7
0.94 | ! | .
0.92 | o 05 |
0.90 - 0.4 §
0.88 | H 0.3 1 |
A 7 = QO Lo oz Z Z Z o 9 9o B X Z KB
zzEz%%%m—izDE zzégﬂ%%%“*zog
O ABE T e R 4 @ © A A £ & & 4 «»
(g) (h)

FIGURE 10: Dataset classification accuracy boxplot. (a) KDD Cup99 binary classification. (b) KDD Cup99 multiple classification. (c) NSL-
KDD binary classification. (d) NSL-KDD multiple classification. () UNSW-NB15 binary classification. (f) UNSW-NB15 multiple clas-
sification. (g) CICIDS2017 binary classification. (h) CICIDS2017 binary classification.

28

for RNN’s parameters is highly unstable. From Figure 10(h), it
can be observed that during multiclassification of the
CICIDS2017 dataset, CNN and FNN demonstrate a more
concentrated distribution of accuracy, indicating a more
stable training process. This observation, combined with
Figure 9(h), clearly indicates that the training process of CNN
and FNN is comparatively smoother than that of other deep
learning algorithms. Figure 10(h) illustrates that DNN’s ac-
curacy is centrally distributed at a lower level, indicating that
DNN fails to learn useful data features through training. On
the other hand, LSTM and RNN exhibit significant fluctua-
tions with increasing training iterations, with a higher
number of outliers in their accuracy rates, further highlighting
the instability of their training process.

Overall, in most cases, FNN demonstrates faster con-
vergence towards a higher accuracy rate than other algo-
rithms. The accuracy distribution of FNN remains more
stable during the training process, with only a few outliers in
the accuracy values. This indicates that FNN exhibits a more
consistent and stable performance.

In conclusion, the FNN exhibits superior detection per-
formance in binary and multivariate classification of network
intrusion data than traditional deep learning and machine
learning algorithms. It is worth noting that we have validated
the FNN model on multiple datasets, further enhancing the
credibility of the experimental results. This indicates that the
exceptional performance of the FNN model is not solely
attributed to chance or specific features of a particular dataset
but possesses general applicability and stability. Therefore, the
FNN model holds significant potential for application in the
field of network intrusion detection.

8.2. Comparative Experiment Two. In Section 4.2.2, we
proposed a high-energy selection algorithm. In this algorithm,
the number of iterations n needs to be manually selected.
Based on the analysis in Section 4.2.2, it is observed that
a larger value of 7 leads to a stronger filtering effect of the HSE
algorithm on the noise signal wave, but at the cost of losing
more information. Conversely, a smaller value of n results in
a weaker filtering effect on the noise signal wave but with less
information loss. Excessive noise signals can degrade the al-
gorithm’s final performance, and a higher degree of in-
formation loss can also lead to a decline in performance. To
investigate the impact of n on the final performance of FNN,
experiments were conducted with different values of n for
FNN3:n=1,2,3,4,5, 6. The performance metrics of FNN3 on
the KDD Cup99, NSL-KDD, UNSW-NB15, and CICIDS2017
datasets were recorded under each condition. The detailed
experimental results can be found in Tables 17-24.

As shown in Tables 17-24, the experimental results of
classifying the KDD Cup99, NSL-KDD, UNSW-NBI5, and
CICIDS2017 datasets indicate that the detection perfor-
mance of FNN initially increases and then decreases with the
increase in the number of iterations (n) of the HSE algo-
rithm. Specifically, the detection performance of FNN
usually reaches its peak when 7 is set to 3 or 4. When
classifying the KDD Cup99 dataset, the experimental results
demonstrate that the detection performance of FNN is

International Journal of Intelligent Systems

optimal when # is set to 3. On the other hand, for the
NSL-KDD dataset, the peak detection performance of FNN
occurs at different values of n. For the binary classification
task, the best detection performance of FNN is achieved
when 7 is set to 3, while for the multiclassification task, the
optimal detection performance is observed when 7 is set to 4.
When classifying the UNSW-NBI15 dataset, the experi-
mental results suggest that the detection performance of
FNN is highest when # is set to 4. Regarding the binary
classification task of the CICIDS2017 dataset, the best de-
tection performance of FNN is achieved when # is set to 2,
while for the multiclassification task, the optimal detection
performance is observed when # is set to 3.

From the above observations, it can be noted that in-
creasing the value of n within a certain range effectively
filters out noise signals through the HSE algorithm, thereby
improving the final detection performance of the FNN.
However, when the value of n exceeds a certain range,
excessive information filtering by the HSE algorithm may
lead to information loss and a subsequent decrease in the
FNN’s detection rate. Further analysis reveals that for
complex datasets, the FNN’s detection performance reaches
its peak at larger values of n. For instance, in the
UNSW-NBI15 dataset, the optimal value of # is found to be 4.
The identification of this phenomenon provides valuable
guidance for future research, enabling the selection of an
appropriate value of n in the FNN based on the complexity
of the dataset and specific application requirements, ulti-
mately enhancing the classification performance of the FNN.

8.3. Comparison of Performance with Other Studies.
Table 25 provides a comparison of different models in terms of
accuracy and time consumption. Each row represents a model
proposed for intrusion detection in different references. The
table includes the accuracy, precision, recall, F1-score, training
time, inference time, and loss of our proposed models on
different datasets, including KDD Cup99, NSL-KDD, UNSW-
NB15, and CICIDS2017, for comparison with existing studies.
It is important to note that the selection and division of
datasets in different references may have an impact on the
training time and inference time of the corresponding models.
In our experiments, we specifically recorded the training and
inference time for FNN1, FNN2, and FNN3 for each dataset.
The training time represents the time required to train each
epoch of the training set, while the inference time represents
the time required to make predictions on the test set.

In order to determine the superiority of the proposed
FNN compared to the other studies listed in Table 25, it is
necessary to analyze the different metrics provided, in-
cluding model accuracy, training time, and inference time.
By comparing these metrics, we can gain insights into the
advantages of the proposed FNN. The FNN achieves high
accuracy on multiple datasets, with FNN3 achieving the
highest accuracy of up to 99.7%. This demonstrates the
model’s effectiveness in accurately classifying network traffic
and detecting intrusions. In comparison to other studies, the
proposed FNN consistently maintains high accuracy, sur-
passing many other models listed in the table. Regarding

International Journal of Intelligent Systems

TaBLE 17: Binary classification test results for KDD Cup99 at
different n values.

29

TABLE 22: Multiclass classification test results for UNSW-NB15 at
different n values.

n Accuracy Precision Recall Fl-score n Accuracy Precision Recall Fl-score
1 0.992 0.998 0.992 0.995 1 0.779 0.742 0.779 0.754
2 0.994 0.999 0.994 0.996 2 0.836 0.811 0.836 0.821
3 0.997 0.999 0.997 0.998 3 0.843 0.825 0.843 0.833
4 0.989 0.997 0.989 0.993 4 0.847 0.829 0.847 0.836
5 0.987 0.997 0.987 0.992 5 0.779 0.743 0.779 0.754
6 0.987 0.995 0.988 0.992 6 0.780 0.743 0.780 0.754

The bold values indicate the best performance in these set of experiments.

TaBLE 18: Multiclass classification test results for KDD Cup99 at
different n values.

The bold values indicate the best performance in these set of experiments.

TaBLE 23: Binary classification test results for CICIDS2017 at
different n values.

n Accuracy Precision Recall Fl1-score n Accuracy Precision Recall F1-score
1 0.953 0.957 0.953 0.941 1 0.991 0.979 0.978 0.978
2 0.974 0.975 0.974 0.972 2 0.994 0.985 0.984 0.984
3 0.990 0.990 0.990 0.989 3 0.993 0.984 0.981 0.983
4 0.976 0.977 0.976 0.974 4 0.977 0.925 0.960 0.942
5 0.970 0.971 0.970 0.967 5 0.992 0.971 0.986 0.977
6 0.944 0.902 0.944 0.921 6 0.993 0.984 0.978 0.981

The bold values indicate the best performance in these set of experiments.

TaBLE 19: Binary classification test results for NSL-KDD at different
n values.

n Accuracy Precision Recall F1-score
1 0.959 0.956 0.972 0.964
2 0.962 0.966 0.968 0.967
3 0.982 0.982 0.986 0.984
4 0.955 0.956 0.967 0.961
5 0.959 0.953 0.977 0.965
6 0.944 0.932 0.973 0.952

The bold values indicate the best performance in these set of experiments.

TaBLE 20: Multiclass classification test results for NSL-KDD at
different n values.

n Accuracy Precision Recall Fl-score
1 0.962 0.962 0.962 0.962
2 0.968 0.966 0.968 0.967
3 0.977 0.977 0.977 0.977
4 0.982 0.982 0.982 0.981
5 0.976 0.976 0.976 0.975
6 0.955 0.955 0.955 0.954

The bold values indicate the best performance in these set of experiments.

TaBLE 21: Binary classification test results for UNSW-NBI5 at
different n values.

n Accuracy Precision Recall Fl-score
1 0.909 0.928 0.906 0917
2 0.936 0.961 0.921 0.941
3 0.944 0.954 0.943 0.949
4 0.953 0.969 0.945 0.957
5 0.952 0.962 0.951 0.956
6 0.935 0.958 0.922 0.940

The bold values indicate the best performance in these set of experiments.

training time, the proposed FNN exhibits relatively fast
training times compared to other models. The size and
characteristics of the datasets, as well as the division of the
training set, can influence the duration of the training

The bold values indicate the best performance in these set of experiments.

TABLE 24: Multiclass classification test results for CICIDS2017 at
different n values.

n Accuracy Precision Recall F1-score
1 0.992 0.992 0.992 0.992
2 0.992 0.992 0.992 0.992
3 0.995 0.995 0.995 0.994
4 0.993 0.993 0.993 0.992
5 0.990 0.990 0.990 0.989
6 0.992 0.992 0.992 0.992

The bold values indicate the best performance in these set of experiments.

process. The training time for the FNN ranges from 1 second
to 717 seconds. Although the table does not provide training
times for all models, the training time of the proposed FNN
appears competitive, as it falls within a reasonable range
when compared to other models in the table. Inference time
refers to the time required for the model to make predictions
on new and unseen attacks. In our experiments, we recorded
the prediction time of the test set as the inference time. The
proposed FNN demonstrates efficient inference times,
ranging from 1 to 152 seconds for different datasets. Similar
to the training time, the inference time of the proposed FNN
is competitive with other models in the table.

As shown in Table 25, some studies rely on a single dataset
to validate their proposed models. However, this approach is
not ideal as it does not ensure the generalization of the model.
This is because a single dataset may possess unique features
that the model can learn and overfit to, resulting in higher
accuracy scores on that particular dataset but lower perfor-
mance on other datasets. To test the model’s generalizability, it
is crucial to evaluate it on multiple datasets with varying
characteristics. Models that perform well across different
datasets demonstrate their applicability to diverse environ-
ments, which is a key requirement for an effective IDS. Our
proposed model has been validated on four distinct datasets,
including KDD Cup99, NSL-KDD, UNSW-NBI15, and

w
=)
g
2.
2 91 189 SPI00 ¥66'0 S660 5660 $66°0 srdnmpy
W 491 L1L 98100 €86°0 1860 ¥86°0 €660 Areurg £1025dIODS
= 01 L 096€°0 LF80 €580 780 €580 sidnmpu)
m 9 91 9€T0 6760 €960 ¥56°0 ¥6°0 Areurg STAN-MSND ENNA
= € 1 8€L0°0 LL60 LL6O LL6°0 LL6°0 srdnmuy AMITSN
o € 1 €990°0 ¥86'0 9860 7860 786°0 Lreurg
< dnm
s €4 09 ¥P000 6860 0660 0660 0660 srdnmuy
m 0T ¥s 7000 8660 L1660 6660 L660 Areurg 66dNOAMI
= 8 8G¢ 8YI00 €660 660 ¥66°0 ¥66°0 srdnmpuy
g ¥8 G8¢ 1100 ¥86'0 ¥86°0 6860 7660 Lreurg £1028AIOIO
2 ¥ 6 SETFO THFSO 9¥80 6€8°0 9%8°0 srdnmuy)
8 ¥ 6 88710 6¥60 960 €560 960 Lreurg STAN"MSNO NN [PPow Mo
g 4 9 S6L0°0 SL60 SL60 SL6°0 GL6°0 srdnmpu AMLTSN
RS 14 9 6V90°0 0860 S86°0 960 8160 Lreurg
ST €€ SP00°0 0860 1860 7860 1860 sidnmpu
ST 0€ 000 L6600 9660 6660 9660 Lreurg 66dN0AMA
81 LT 0S1I00 7660 €660 €660 €660 srdnmu
81 LT LSTO'0 860 8160 660 166°0 Lreurg £1028AI910
14 14 ¥7TS°0 ¥LLO0 06L0 SLL0O 0620 srdnmu)
4 I LTFT0 $€6'0 9€6°0 7€6°0 LT6°0 Areurg STAN-MSND INNA
I I 87800 T960 £96°0 €96°0 €960 srdnmuy AMITSN
I I 68600 SS6'0 9560 ¥56°0 8760 Areurg
8 9 LL60'0 8F6'0 LS60 L5670 LS6°0 srdnmpu
8 9 86700 €660 6860 L66°0 8860 Lreurg 66dNOAA
— — — — 8660 866°0 186°0 Areurg LOI-NOL + 10I-10€ + 810ZSAIDID SAI PaI4RmBnN [¥9] ‘Te 30 ey3easues
— — — 0€6°0 I 0€8°0 0960 srdnmpu Taken)
- m ®)9 Ieyse
_ _ _ 0560 0S60 0560 0560 freung Aa-ISN INLST WAeMMN (€91 T yseq
16°6 ST 00000 I I 1 I srdnmy 8107SAIDID NNDA [29] uressnyg
9€°6¢ ov GI00°0 96660 96660 96660 96660 sidnmpu £102SAIDID pue Jjweuy
LT 8¢ — U660 €660 SL660 €660 Lreurg A@MI-ISN NNa [19] Te 12 paaseN
¥T'8Cl 9% 0%00°0 — — — 166°0 Lreurg 8107SIADID-ASD)
- ® 19 Queu
99°¢€S ¥81 50000 — — - 66660 Areurg £102SAIDID IVINLST [oo] 1 H
— 9¢L1 - - - - 62€8°0 ddnmn e
- - - 19 1qrejo
(sw) 06 (sw) STHI o o 9SH80 - 59880 Areung AMI-ISN NNd-vOd-1d [6S] Te 10 1qrelofy
€S LLIY 17#8 1800°0 — - — 7966°0 srdnmp JoII 23pg . [85]
€0°TILI ShTe 00000 — — — I srdnmu 8107SAIDID WISTHNNOA uressny pue WeuH
yooda
sowin (%) (%) (%)
dUIJUT wﬁﬂﬁwﬁ S50T (%) T [e29yg uorsward Adeinooy UOHEIGISSED oseed PPON U

30

*SAIPNIS 1910 YIIM uosLIedurod 2dUBUIIONd] (67 H14V],

International Journal of Intelligent Systems

CICIDS2017, all of which have yielded impressive results.
Hence, our FNN model can be considered more generalizable,
indicating its ability to perform well on previously unseen
datasets. In comparison to many other models in the table, our
model exhibits strong performance across multiple datasets,
making it more reliable than models that solely excel on
a single dataset. Overall, the proposed FNN stands out due to
its high accuracy, competitive training time, and efficient
inference time, making it a superior model compared to many
other studies mentioned in Table 25.

9. Conclusion and Future Work

This paper hasproposed a novel approach called the Fourier
Neural Network (FNN). It utilizes Fast Fourier Transform to
convert network intrusion data into the frequency domain
space, applies filtering to the converted data, and can sub-
sequently convert the filtered data back to the time domain
space. By enabling processing of network data in both the time
and frequency domain spaces, FNN enhances the neural
network’s capability to handle complex data and extract fea-
tures. To eliminate noisy signals, this study has also introduced
a high-energy filtering process (HFP), which further enhances
the performance of FNN in intrusion detection by filtering out
low-energy noise signal waves based on their amplitude. The
experimental results have shown that FNN has significant
advantages over existing classical neural network algorithms
and traditional machine learning algorithms in dealing with
intrusion detection problems. In addition, this study has ex-
plored the effect of the number of iterations » in HSP on the
performance of FNN, and the results have shown that choosing
the right value of n is crucial for achieving the best perfor-
mance. In summary, the main contributions of this study are
twofold. First, the FNN framework was developed to enhance
the ability of neural networks to process complex data using
Fourier transform. Second, HSP was introduced to effectively
eliminate the noisy signals and further improve the perfor-
mance of FNN in intrusion detection. As a novel neural
network, FNN has certain limitations in its application in other
domains. For instance, currently, FNN is only capable of
performing Fourier transform on one-dimensional data,
thereby restricting its ability to handle images and videos.
Furthermore, the FNN structure is specifically suited for
classification tasks and not applicable to regression problems.
In the future, further enhancements will be made to FNN to
enable effective processing of image and video data, as well as
its applicability to regression problems. Additionally, im-
provements will be made to the HSE algorithm to develop
a more efficient filtering algorithm, thereby enhancing the
performance of FNN.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors have no relevant financial or nonfinancial in-
terests to disclose.

31

Authors’ Contributions

Zhendong Wang performed the conceptualization, data
curation, formal analysis, resources, supervision, project
administration, and review and editing. Jingfei Li performed
the conceptualization, methodology, software, validation,
investigation, original draft writing, and review and editing.
Zhenyu Xu performed the conceptualization, methodology,
visualization, and review and editing. Shuxin Yang per-
formed the conceptualization and review and editing.
Daojing He performed the conceptualization and review and
editing. Sammy Chan performed the conceptualization and
review and editing.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (grant nos. 62062037, 61562037, 62376074,
and 72261018), the Natural Science Foundation of Jiangxi
Province (grant nos. 20212BAB202014 and 20171BAB202026),
and the Shenzhen Science and Technology Program under (grant
nos. KCXST20221021111404010, JSGG20220831103400002, and
JSGGKQTD20221101115655027).

References

[1] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion de-
tection systems: a cross-domain overview,” IEEE Communi-
cations Surveys and Tutorials, vol. 21, no. 4, pp. 3639-368l,
2019.

[2] M. Ozkan-Okay, R. Samet, O. Aslan, and D. Gupta, “A
comprehensive systematic literature review on intrusion
detection systems,” IEEE Access, vol. 9, pp. 157727-157760,
2021.

[3] M. H. Nasir, S. A. Khan, M. M. Khan, and M. Fatima, “Swarm
intelligence inspired intrusion detection systems—a system-
atic literature review,” Computer Networks, vol. 205, Article
ID 108708, 2022.

[4] A.S.Dina and D. Manivannan, “Intrusion detection based on
machine learning techniques in computer networks,” Internet
of Things, vol. 16, Article ID 100462, 2021.

[5] I. E. Kilincer, F. Ertam, and A. Sengur, “Machine learning
methods for cyber security intrusion detection: datasets and
comparative study,” Computer Networks, vol. 188, Article ID
107840, 2021.

[6] M. Choras and M. Pawlicki, “Intrusion detection approach
based on optimised artificial neural network,” Neuro-
computing, vol. 452, pp. 705-715, 2021.

[7] J. Gu and S. Lu, “An effective intrusion detection approach
using SVM with naive Bayes feature embedding,” Computers
and Security, vol. 103, Article ID 102158, 2021.

[8] E. U. H. Qazi, M. Imran, N. Haider, M. Shoaib, and I. Razzak,
“An intelligent and efficient network intrusion detection
system using deep learning,” Computers and Electrical En-
gineering, vol. 99, Article ID 107764, 2022.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504-507, 2006.

[10] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered
neural network controller,” IEEE Control Systems Magazine,
vol. 8, no. 2, pp. 17-21, 1988.

32

[11] H. Aldarmaki, A. Ullah, S. Ram, and N. Zaki, “Unsupervised
automatic speech recognition: a review,” Speech Communi-
cation, vol. 139, pp. 76-91, 2022.

[12] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-
time streaming transformer transducer for speech recognition
on large-scale dataset,” in Proceedings od the ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5904-5908, IEEE, Toronto,
Canada, June 2021.

[13] M. H. Guo, T. X. Xu, J. J. Liu et al., “Attention mechanisms in
computer vision: a survey,” Computational visual media,
vol. 8, no. 3, pp. 331-368, 2022.

[14] W. Lu and J. Chen, “Computer vision for solid waste sorting:
a critical review of academic research,” Waste Management,
vol. 142, pp. 29-43, 2022.

[15] H. Li, N. Zeng, P. Wu, and K. Clawson, “Cov-Net: a com-
puter-aided diagnosis method for recognizing COVID-19
from chest X-ray images via machine vision,” Expert Systems
with Applications, vol. 207, Article ID 118029, 2022.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[17] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673-2681, 1997.

[18] L. Su, J. Guo, L. Wu, and H. Deng, “BamnetTL: bidirectional
attention memory network with transfer learning for question
answering matching,” International Journal of Intelligent
Systems, vol. 2023, Article ID 7434058, 11 pages, 2023.

[19] Y. Zhang, J. Wang, and X. Zhang, “Conciseness is better:
recurrent attention LSTM model for document-level senti-
ment analysis,” Neurocomputing, vol. 462, pp. 101-112, 2021.

[20] N.Bensalah, H. Ayad, A. Adib, and A. Ibn El Farouk, “CRAN:
an hybrid CNN-RNN attention-based model for Arabic
machine translation,” in Networking, Intelligent Systems and
Security: Proceedings of NISS 2021, pp. 87-102, Springer,
Singapore, 2022.

[21] F. Yuan, Z. Zhang, and Z. Fang, “An effective CNN and
Transformer complementary network for medical image
segmentation,” Pattern Recognition, vol. 136, Article ID
109228, 2023.

[22] G. Lokku, G. H. Reddy, and M. G. Prasad, “OPFaceNet:
OPtimized Face Recognition Network for noise and occlusion
affected face images using Hyperparameters tuned Con-
volutional Neural Network,” Applied Soft Computing, vol. 117,
Article ID 108365, 2022.

[23] L. Sun, W. Shao, Q. Zhu, M. Wang, G. Li, and D. Zhang,
“Multi-scale multi-hierarchy attention convolutional neural
network for fetal brain extraction,” Pattern Recognition,
vol. 133, Article ID 109029, 2023.

[24] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward
a lightweight intrusion detection system for the internet of
things,” IEEE Access, vol. 7, pp. 42450-42471, 2019.

[25] M. Safaldin, M. Otair, and L. Abualigah, “Improved binary
gray wolf optimizer and SVM for intrusion detection system
in wireless sensor networks,” Journal of Ambient Intelligence
and Humanized Computing, vol. 12, no. 2, pp. 1559-1576,
2021.

[26] A. Ponmalar and V. Dhanakoti, “An intrusion detection
approach using ensemble support vector machine based chaos
game optimization algorithm in big data platform,” Applied
Soft Computing, vol. 116, Article ID 108295, 2022.

[27] E. K. Boahen, B. E. Bouya-Moko, and C. Wang, “Network
anomaly detection in a controlled environment based on an

International Journal of Intelligent Systems

enhanced PSOGSARFC,” Computers and Security, vol. 104,
Article ID 102225, 2021.

[28] H. Ding, L. Chen, L. Dong, Z. Fu, and X. Cui, “Imbalanced
data classification: a KNN and generative adversarial
networks-based hybrid approach for intrusion detection,”
Future Generation Computer Systems, vol. 131, pp. 240-254,
2022.

[29] M. Yousefnezhad,]. Hamidzadeh, and M. Aliannejadi,
“Ensemble classification for intrusion detection via feature
extraction based on deep Learning,” Soft Computing, vol. 25,
no. 20, pp. 12667-12683, 2021.

[30] M. Ayar, A. Isazadeh, F. S. Gharehchopogh, and M. Seyedi,
“Chaotic-based divide-and-conquer feature selection method
and its application in cardiac arrhythmia classification,” The
Journal of Supercomputing, vol. 78, no. 4, pp. 5856-5882, 2022.

[31] F. S. Gharehchopogh, A. Ucan, T. Ibrikci, B. Arasteh, and
G. Isik, “Slime mould algorithm: a comprehensive survey of its
variants and applications,” Archives of Computational
Methods in Engineering, vol. 30, no. 4, pp. 2683-2723, 2023.

[32] M. Alazab, R. A. Khurma, A. Awajan, and D. Camacho, “A
new intrusion detection system based on Moth-Flame Op-
timizer algorithm,” Expert Systems with Applications, vol. 210,
Article ID 118439, 2022.

[33] Z.Halim, M. N. Yousaf, M. Wagqas et al., “An effective genetic
algorithm-based feature selection method for intrusion de-
tection systems,” Computers and Security, vol. 110, Article ID
102448, 2021.

[34] A. Thakkar and R. Lohiya, “Fusion of statistical importance
for feature selection in deep neural network-based intrusion
detection system,” Information Fusion, vol. 90, pp. 353-363,
2023.

[35] B. Riyaz and S. Ganapathy, “A deep learning approach for
effective intrusion detection in wireless networks using CNN,”
Soft Computing, vol. 24, no. 22, pp. 17265-17278, 2020.

[36] J.J. Fu and X. L. Zhang, “Gradient importance enhancement
based feature fusion intrusion detection technique,” Com-
puter Networks, vol. 214, Article ID 109180, 2022.

[37] V. Ravi, R. Chaganti, and M. Alazab, “Recurrent deep

learning-based feature fusion ensemble meta-classifier ap-

proach for intelligent network intrusion detection system,”

Computers and Electrical Engineering, vol. 102, Article ID

108156, 2022.

Z. Wang, Y. Zeng, Y. Liu, and D. Li, “Deep belief network

integrating improved kernel-based extreme learning machine

for network intrusion detection,” IEEE Access, vol. 9,

pp. 16062-16091, 2021.

Y. Shen, C. Zhang, F. Soleimanian Gharehchopogh, and

S. Mirjalili, “An improved whale optimization algorithm

based on multi-population evolution for global optimization

and engineering design problems,” Expert Systems with Ap-

plications, vol. 215, Article ID 119269, 2023.

[40] F. S. Gharehchopogh, “Quantum-inspired metaheuristic al-

gorithms: comprehensive survey and classification,” Artificial

Intelligence Review, vol. 56, no. 6, pp. 5479-5543, 2023.

P. Rajesh Kanna and P. Santhi, “Unified deep learning ap-

proach for efficient intrusion detection system using in-

tegrated spatial-temporal features,” Knowledge-Based

Systems, vol. 226, Article ID 107132, 2021.

[42] P. R. Kanna and P. Santhi, “Hybrid intrusion detection using

mapreduce based black widow optimized convolutional long

short-term memory neural networks,” Expert Systems with

Applications, vol. 194, Article ID 116545, 2022.

S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar et al.,

“Optimization enabled deep learning-based DDoS attack

[38

[39

[41

(43

International Journal of Intelligent Systems

(44]

(45]

(46]

(47]

(48]

(49]

(50]
(51]
(52]

(53]

(54]

(55

[56

(57]

(58]

(59]

(60]

(61]

detection in cloud computing,” International Journal of In-
telligent Systems, vol. 2023, Article ID 2039217, 16 pages, 2023.
G. Yang, L. Wang, R. Yu, J. He, B. Zeng, and T. Wu, “A
modified gray wolf optimizer-based negative selection algo-
rithm for network anomaly detection,” International Journal
of Intelligent Systems, vol. 2023, Article ID 8980876, 23 pages,
2023.

D. Sundararajan, The Discrete Fourier Transform: Theory,
Algorithms and Applications, World Scientific, Singapore,
2001.

H. J. Nussbaumer and H. J. Nussbaumer, The Fast Fourier
Transform, Springer, Berlin, Germany, 1982.

C. M. Rader, “Discrete Fourier transforms when the number
of data samples is prime,” Proceedings of the IEEE, vol. 56,
no. 6, pp. 1107-1108, 1968.

R. T. M. A. C. Lu, Algorithms for Discrete Fourier Transform
and Convolution, Springer, Switzerland, 1989.

S. Impedovo, T. Simone, and G. Dimauro, “Integration of the
cooley, rader and Winograd-Fourier algorithms for a faster
computation of the DFT,” Recent Issues in Pattern Analysis
and Recognition, pp. 52-57, 1989.

S. Engelberg, “Elementary number theory and rader’s FFT,”
SIAM Review, vol. 59, no. 3, pp. 671-678, 2017.

Kdd Cup 99 dataset, “Kdd cup99 dataset[online],” 2022,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
Nsl-Kdd dataset, “Nsl-kdd dataset[online],” 2021, http://
users.cis.fiu.edu/%7Elpeng/Datasets_detail.html.

Unsw-Nb 15 dataset, “Unsw-nb15 dataset[online],” 2019,
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersec
urity/ ADFA-NB15-Datasets/.

N. Moustafa and J. Slay, “UNSW-NBI15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proceedings of the 2015 military com-
munications and information systems conference (MilCIS),
pp. 1-6, IEEE, Canberra, Australia, November 2015.

Cic-Ids 2017 dataset, “Cic-ids2017 dataset[online],” 2017,
https://www.unb.ca/cic/datasets/ids-2017 html.

1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” in Proceedings of the 4th In-
ternational Conference on Information Systems Security and
Privacy (ICISSP 2018), vol. 1, pp. 108-116, Funchal- Madeira,
Portugal, January 2018.

D. M. Powers, “Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correla-
tion,” 2020, https://arxiv.org/abs/2010.16061.

V. Hnamte and J. Hussain, “DCNNBILSTM: an efficient
hybrid deep learning-based intrusion detection system,”
Telematics and Informatics Reports, vol. 10, Article ID 100053,
2023.

S. D. Alotaibi, K. Yadav, A. N. Aledaily et al., “Deep neural
network-based intrusion detection system through PCA,”
Mathematical Problems in Engineering, vol. 2022, Article ID
6488571, 9 pages, 2022.

V. Hnamte, H. Nhung-Nguyen, J. Hussain, and Y. Hwa-Kim,
“A novel two-stage deep learning model for network intrusion
detection: Istm-ae,” IEEE Access, vol. 11, pp. 37131-37148,
2023.

M. Naveed, F. Arif, S. M. Usman et al., “A deep learning-based
framework for feature extraction and classification of in-
trusion detection in networks,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 2215852, 11 pages,
2022.

(62]

(63]

(64]

33

V. Hnamte and J. Hussain, “Dependable intrusion detection
system using deep convolutional neural network: a Novel
framework and performance evaluation approach,” Tele-
matics and Informatics Reports, vol. 11, Article ID 100077,
2023.

G. M. H. Bashar, M. A. Kashem, and L. C. Paul, “Intrusion
detection for cyber-physical security system using long short-
term memory model,” Scientific Programming, vol. 2022,
Article ID 6172362, 11 pages, 2022.

S. K. Sangeetha, P. Mani, V. Maheshwari, P. Jayagopal,
M. Sandeep Kumar, and S. M. Allayear, “Design and analysis
of multilayered neural network-based intrusion detection
system in the internet of things network,” Computational
Intelligence and Neuroscience, vol. 2022, Article ID 9423395,
7 pages, 2022.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://users.cis.fiu.edu/%7Elpeng/Datasets_detail.html
http://users.cis.fiu.edu/%7Elpeng/Datasets_detail.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unb.ca/cic/datasets/ids-2017.html
https://arxiv.org/abs/2010.16061

