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Currently, multimodel databases are widely used in modern applications, but the default confguration often fails to achieve the
best performance. How to efciently manage and tune the performance of multimodel databases is still a problem. Terefore, in
this study, we present a confguration parameter tuning tool MMDTune+ for ArangoDB. First, the selection of confguration
parameters is based on the random forest algorithm for feature selection. Second, a workload-aware mechanism is based on k-
means++ and the Pearson correlation coefcient to detect workload changes and match the empirical knowledge of historically
similar workloads. Finally, the ArangoDB confguration parameters are optimized based on the improved TD3 algorithm. Te
experimental results show that MMDTune+ can recommend higher-quality confguration parameters for ArangoDB compared to
OtterTune and CDBTune in diferent scenarios.

1. Introduction

With the rapid development of the Internet of Tings
technology and network applications, the scale of data is
growing explosively, and the types of data are becoming
richer [1, 2]. For example, applications such as social
commerce and smart water conservancy usually include
structured relational data and unstructured graph data.
Traditional relational databases have difculty meeting
the needs of storage and querying diverse data structures.
Te emergence of multimodel database [3] (MMDB)
provides a new solution to efectively address the short-
comings of traditional database. As a new trend in the feld
of database management systems [4–6], multimodel da-
tabase can store data of various structural forms in a single
engine, without the need to deploy diferent databases for
data of various structures. Multimodel database is also
considered to be the next generation of data management
system combining fexibility, scalability, and consistency
[7, 8].

Currently, multimodel databases are widely used in
modern applications [9, 10], but their default confguration
often cannot achieve the best performance. Multimodel
databases have the problem of confguration parameter
optimization, which generally needs to be adjusted
according to the actual workload and application confgu-
ration [11]. Confguration parameter tuning is always a key
challenge and is the subject of signifcant research in the
database feld. Tuning is usually performed by a database
administrator (DBA) with extensive tuning experience.
However, the method of tuning by DBAs has some limi-
tations. First, tuning confguration parameters is an NP-hard
problem [7]. Tere are hundreds of parameters in a database
system, and there are connections between parameters,
which makes it difcult for DBAs to complete the tuning of
these confguration parameters. Second, the scheme for
confguring parameters cannot be reused for database sys-
tems deployed in diferent environments (such as local hosts,
clouds, or memory) [12–14]. It is difcult for DBAs to
achieve high database performance by efcient parameter
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tuning under changing scenarios. Finally, DBAs are usually
good at tuning the systems they are familiar with, but it is
difcult to tune unfamiliar systems. Te research on the
confguration parameter tuning of multimodel database, as
a new kind of database, is less than that of traditional da-
tabases, and the tuning experience applied to traditional
databases cannot be fully applied to multimodel database.

In our previous work [15], we proposed MMDTune,
a parameter-tuning method for multimodel databases based
on deep reinforcement learning. MMDTune has the prob-
lems of long training time and low computational efciency,
which cannot be dynamically adjusted in the course of
practical application.

To solve the above problems, we improved MMDTune
by introducing a workload-aware mechanism. A confg-
uration parameter tuning tool MMDTune+ (multimodel
database tune plus) for ArangoDB [16] is proposed, which
includes three modules: a confguration parameter se-
lection module, a workload-aware mechanism, and
a tuning algorithm. Among them, the confguration pa-
rameter selection module uses the random forest algo-
rithm for feature selection, and the confguration
parameters with high correlation to the current tuning
indicators are extracted. Random forest algorithm can
efectively handle high-dimensional, noisy, and correlated
data while avoiding overftting and providing a measure of
variable importance. Te workload-aware mechanism is
based on k-means++ and Pearson correlation coefcients
to detect changes in workload and match empirical
knowledge of historically similar workloads. Te advan-
tages of using k-means++ and Pearson correlation co-
efcients in matching similar workloads lie in their ability
to efectively cluster and measure the similarity of
workload characteristics, resulting in improved accuracy
and efciency in workload matching [17]. Finally, Ara-
ngoDB confguration parameter tuning is implemented
based on the improved TD3 algorithm [18]. TD3 can
handle high-dimensional parameter spaces, optimize
performance over long training times, and achieve great
performance on a variety of benchmark tasks [18]. At the
same time, we optimize TD3 to make it converge faster.
Considering that a benchmarking tool is needed in the
tuning experiment to generate indicators that can sim-
ulate the workload in the real environment and measure
the performance of the reaction system [19, 20], we design
and implement a benchmarking tool MMDBench (mul-
timodel database benchmarking), which includes
a workload generator and a metric collector.

Te contributions of our work are summarized as fol-
lows: (1) we propose an automatic confguration parameter
tuning tool MMDTune+ based on a workload-aware
mechanism and deep reinforcement learning for the mul-
timodel database ArangoDB. (2) We develop a database
benchmarking tool to provide comprehensive performance
testing of our proposed architecture. (3) Based on the above
performance benchmark tool, we verify our proposed
method under diferent scenarios, loads, query, and insert
modes. Compared with the existing automatic database
tuning methods OtterTune [21] and CDBTune [22], our

proposed method has the tuning efect and provides more
advantages in resource consumption.

Te subsequent sections are organized as follows: In
Section 2, we introduce some related works about database
tuning. In Section 3, we present the proposed MMDTune+
and MMDBench. In Section 4, we mainly describe our
experimental setup and experimental results. In Section 5,
we draw some conclusions and point out some future di-
rections for future work.

2. Related Work

2.1. Workload-Aware Mechanism. Te workload is an im-
portant criterion for database performance tuning [23],
which requires that automatic tuning is able to identify
workload changes. Terefore, the frst step to realizing au-
tomatic tuning of confguration parameters is to accurately
classify workload. Workload is varied, and diferent times
and scenarios may cause changes in workload. At present,
the relatedmethods for workload-awaremechanismsmainly
include two methods: supervised learning-based methods
and unsupervised learning-based methods.

Supervised learning-based workload-aware methods
have a limitation in that a large amount of labeled training
data is required. Zewdu et al. [24] chose two algorithms to
realize the awareness of database workload, including hi-
erarchical clustering and classifcation regression trees.Teir
experiments on TPC benchmark query and transaction type
workload verifed that this method could efectively predict
the category of workload. Elmafar and Martin [25] pro-
posed the prediction framework of psychic skeptic pre-
diction (PSP) to realize the self-optimization of DBMS, in
which workload identifcation is performed by using a de-
cision tree classifcation algorithm in two diferent workload
sets, TPC-H+TPC-C and TPC-W. Te workload is divided
into three types: OLTP, DSS, and hybrid, and the advantages
of PSP classifcation are verifed.

Labeled workload datasets are rare in practice, so most
database workload-aware methods use unsupervised
learning. Literature [26] only uses SQL query structures to
carry out similar matching; that is, the author carries out
vectored mapping for diferent SQL query structures and
then uses BetaCV, DunnIndex, and other methods to
standardize these structural data pairs, which improves the
accuracy of Aligon, Aouiche, and other algorithms based on
clustering. Te efectiveness of the standardized method is
verifed. Takahashi [27] proposed a perception method
based on the k-means clustering algorithm and clustering
efectiveness index, which took into account various data
specifcations such as heavy load and light load, and divided
all sensor data into multiple clusters. In research studies
[21, 28], the factor analysis (FA) method and k-means
method are used to reduce the dimension of the internal
state features of the database to improve the execution ef-
fciency, and then, the Euclidean distance is calculated
according to these features to match similar workloads.

Generally, in system tuning tasks, it is necessary to rely
on tuning the rich experience and professional knowledge of
expert databases to realize the optimal performance of the
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system. A database self-tuning system can also use this form.
According to the historical tuning experience data in the
search for a similar workload of empirical knowledge, the
tuning system can draw lessons from the experience
knowledge, which can improve the efciency of optimiza-
tion. Terefore, methods for sensing workload changes have
been studied and used, so that the tuning system can learn
from historical experience knowledge to tune after the
perceived workload changes, to efciently recommend pa-
rameters for the system.

2.2. Confguration Parameter Tuning. Most of the previous
work on automatic database tuning has focused on opti-
mizing the physical design of the database [29], such as
selecting indicators [30, 31], partitioning schemes [32], or
materialized views [33]. At present, the methods of database
confguration parameter tuning can be divided into two
representative studies according to whether the learning-
based form is used: confguration parameter tuning based on
rules and learning methods [34, 35].

Te rule-based method is the selection of database
management system knobs according to a predefned set of
rules or heuristics, and the knobs are the confguration
parameters of the database system. In most cases, this ap-
proach is designed for a specifc database and only for
a specifc set of confguration parameters. IBM DB2 [36]
releases a self-tuning memory manager to provide adaptive
tuning of the database memory heap and cumulative da-
tabase memory allocation.Tis technology combines control
theory, runtime simulation modeling, cost-beneft analysis,
and operating system resource analysis to provide memory-
tuning technology in the form of heuristics. Te authors in
[7] propose a recursive tuning method BestConfg, which
divides the high-dimensional parameter space into sub-
spaces and uses the restricted derivation principle to search
for the optimal confguration from the given confguration
resources.

Deep learning has been successfully applied to solve
computationally intensive learning tasks in many felds
[37–41]. Zheng et al. [42] propose a self-tuning method
using deep neural networks, and the authors suggest using
statistical methods to identify key system parameters and
neural networks to match the confguration of specifc
workloads. Xiong et al. [43] propose a multiobjective tuning
framework MQTuner, which not only considered the per-
formance indicators (throughput) concerned inmost studies
but also extended the latency indicators. Te overall
structure uses an artifcial neural network (ANN) to learn
the mapping relationship between confguration parameters
and performance, input the predicted performance and
confguration into the genetic algorithm at the same time,
and then use the genetic algorithm to search for the globally
optimal solution. IBTune [44] is proposed for a large-scale
cloud database cache tuning framework. Te author designs
a two-layer deep neural network, according to the charac-
teristics of the measured instance to predict the upper bound
of the request and response time.Te size of the target bufer
pool can be adjusted only when the predicted response time

is within the safety limit. However, there are still some
limitations to the above methods. It is difcult for them to
achieve optimal performance under limited training sam-
ples, and they are prone to overftting [45–47].

Reinforcement learning, as a research hotspot of ma-
chine learning methods, has been used in some studies
[22, 28, 48] to optimize the confguration parameters of
database systems [49]. Zhang et al. [22] designed an end-
to-end cloud database automatic tuning system (CDBTune)
based on the deep reinforcement learning algorithm DDPG
(deep deterministic policy gradient). Te system uses DDPG
to learn the mapping between database state features and
high-dimensional confguration features. A two-state algo-
rithm double-state deep deterministic policy gradient (DS-
DDPG) built by QTune [48] combines neural networks and
deep reinforcement learning methods. It utilizes the
structure and internal characteristics of the database query
and DS-DDPG input to perform database tuning simulta-
neously, taking into account the rich features of SQL query,
and themodel can use the query feature to predict changes in
the value system’s internal states. However, the system needs
to collect a large number of real environments generated to
train the neural network, which is a time-consuming pro-
cess. Te authors in [28] extend GPR, deep neural networks
(DNN), DDPG, and improved DDPG+ for the confguration
tuning of a real database production and application sce-
nario of an international bank. Due to the overestimation
problem of the DDPG algorithm, the errors in the training
process are constantly accumulated, which may have
a negative impact on the results.

In summary, previous studies have been able to optimize
the performance of databases to some extent. However, they
have some limitations. First, tuning with traditional machine
learning methods and deep learning methods relies on
a large number of high-quality training samples, which are
often the experience data accumulated by DBAs. However,
for multimodel databases, DBAs are relatively short of ex-
perience in this aspect. Second, there are often hundreds of
parameters in the database, which are interrelated with each
other.Te simple regressionmethod is far from sufcient for
achieving the optimal goal. Finally, as a new trend in the
database feld, the research on confguration parameter
tuning of multimodel database is less than that of traditional
databases, and the previous tuning experience cannot be
directly transferred to multimodel database. Te confgu-
ration parameter tuning method based on depth DDPG can
solve the frst two problems. In the absence of high-quality
empirical data, it can reduce the difculty of data acquisition
through empirical trial-and-error methods and achieve
better performance in high-dimensional space confgura-
tions, but the estimation problem still exists.

3. Framework of MMDTune+

To realize automatic tuning of multimodel database, a tun-
ing tool MMDTune+ for multimodel databases is proposed.
Figure 1 shows the overall process of parameter tuning,
which consists of four parts: the confguration parameter
selection module, the workload-aware mechanism, the
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tuning algorithm, and the benchmarking tool. Among them,
a feature analysis model is proposed based on the random
forest algorithm for database confguration parameter se-
lection. Te core of the workload-aware mechanism is to
detect workload changes based on k-means++ and the
Pearson correlation coefcient, calculate the similarity be-
tween the current workload and the historical workload
database, match the historical workload, and then provide
the tuning experience of similar workloads to the tuning
algorithm. Te proposed algorithm is mainly based on the
improved TD3 algorithm to provide automatic tuning of
database.

3.1. Confguration Parameter Selection Module. A multi-
model database management system provides hundreds of
confgurable parameters to meet various requirements,
which greatly increases the difculty of tuning database
confguration parameters. However, only a few confgura-
tion parameters provided by the database may have a sig-
nifcant impact on the performance. Tuning unnecessary
confguration parameters is a waste of resources and in-
efcient behavior. Terefore, we propose a feature analysis
model based on the RF algorithm. Random forest algorithm
can be used for database tuning feature selection, which
involves selecting the most important features in a database
to improve its performance. Random forest can handle large
datasets with a large number of features, which is common
in databases. Meanwhile, random forest can handle noisy
data, which can be common in databases with incomplete or
inconsistent data. Also, it can identify complex relationships
between features, which are important for identifying key
features in databases that may be related to performance
issues. Moreover, it can provide a ranking of feature im-
portance, which can help identify the most important fea-
tures that need to be tuned to improve database
performance. Overall, random forest is a powerful and
fexible algorithm for database tuning feature selection that

can provide valuable insights into the most important fea-
tures that need to be tuned to improve database perfor-
mance. So, random forest algorithm is utilized to select the
tuning parameters of the multimodel database. With con-
fguration parameters and tuning performance indicators as
inputs, a large number of confguration parameters are
screened at the initial stage, and the parameters are sorted
according to the weight of characteristic variables. Finally,
the sorted confguration parameter labels are output.
Compared with other feature selection methods, the RF
algorithm has the advantages of fast training speed, good
robustness, and high accuracy.

Te main applications of the RF algorithm are classif-
cation and regression. It is composed of multiple decision
trees, and each node in the tree is a condition about a certain
input feature. In terms of regression application, the fnal
result is the mean value of each decision tree. Te commonly
used objective functions for ftting RF regression tasks in-
clude the mean square error (MSE) and mean absolute error
(MAE). MSE is used as the objective function in this paper.
Te specifc process is shown in Algorithm 1.

After the model is trained, a feature correlation pa-
rameter feature_importance is generated. Te module can
sort confguration parameters according to featur-
e_importance. Te impact of confguration parameters on
performance is positively correlated with this value. Te
sorted confguration parameters are saved in the database.
One can set the number of confguration parameters to select
the confguration parameters that are highly relevant to the
tuning indicator.

3.2. Workload-Aware Mechanism Algorithm. Workloads in
a database environment are constantly changing over time,
and high-quality confguration parameters for a previous
workload applied to the current target workload can degrade
system performance. Terefore, the workload changes of the
system should be monitored before confguration parameter
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tuning so that the confguration parameter tuning system
can sense the workload changes and recommend high-
quality confgurations for diferent workloads. At the
same time, there are certain similarities in the confguration
parameter adjustment strategies between similar workloads.
If the tuning algorithm can be fne-tuned based on the
experience of similar workloads, the tuning efciency can be
improved to a certain extent.

Te workload data of this research are not labeled data,
so the algorithm based on supervised learning cannot be
selected. To solve the above problems, we propose a work-
load-aware mechanism solution for ArangoDB. Te k-
means ++ clustering algorithm is used to divide the his-
torical workload into various categories. Tis algorithm is
a popular clustering algorithm utilized in machine learning
for data clustering. In the domain of multimodel database
workload classifcation, the use of k-means++ ofers several
advantages. First, it is highly scalable and efcient, enabling
its application to large volumes of data. Second, it is less
sensitive to initialization conditions, thereby enhancing its
stability and performance. Finally, it can lead to more ac-
curate clustering, especially when the data are distributed in
a nonuniform manner. Tese advantages position k-
means++ as a viable option for multimodel database load
classifcation tasks. If the new workload is diferent from the
previous workload after classifcation, then the current
workload has changed. Te system can automatically use
Pearson correlation coefcients to match the most similar
workloads from the history library belonging to the new type
and then tune for the new workload.

As a clustering algorithm [50], k-means++ can classify
samples well without labeled training data, and it has the
characteristics of fast computation speed and high robust-
ness. Specifcally, k-means++ is a variant of k-means. Te k-
means algorithm itself is a distance-based clustering algo-
rithm. Clustering is based on the similarity between data;
that is, similar things are divided into a class, but it uses
random rules to determine the initial clustering center. A
poor initial cluster center setting can have a very bad efect
on the results. In view of this, k-means++, on the basis of k-
means, improves the original k-means method of initializing
cluster centers. Te basic idea is that the initial cluster
centers should be as far away from each other as possible.

First, the internal state data vector is converted to Z-
score standardization, so that these variables are on the same
order of magnitude, and then, the important information is

screened. Tis is processed by the principal component
analysis (PCA) method. Ten, k-means++ is used to detect
the change in workload, and the Pearson correlation co-
efcient is used to calculate the similarity between the new
workload and the historical workload under this workload
type. Te Pearson correlation coefcient is a measure of the
linear correlation between two variables X and Y. It is
a widely used statistical measure to evaluate the strength and
direction of the relationship between two continuous var-
iables.Te value of the Pearson correlation coefcient ranges
from −1 to +1, where a coefcient of +1 indicates a perfect
positive correlation, 0 indicates no correlation, and −1 in-
dicates a perfect negative correlation. A positive correlation
means that as one variable increases, the other variable also
tends to increase, while a negative correlation implies that as
one variable increases, the other variable tends to decrease.
Teworkload-awaremechanismmodule selects the previous
samples with high similarity as the initial model parameters
of the TD3 algorithm, which are then fne-tuned to improve
the tuning efciency and performance improvement rate.
Te whole process does not require human intervention, and
the tuning system will automatically complete the sub-
sequent tuning work after detecting the workload change.

3.3. Tuning Method. MMDTune+ implements ArangoDB
confguration parameter tuning based on the deep re-
inforcement learning algorithm TD3. To make the TD3
algorithm more suitable for database confguration pa-
rameter tuning, the network structure of TD3 is improved.
In addition, tuning algorithms SVR, GPR, DNN, and DDPG
are extended in MMDTune+ for tuning ArangoDB pa-
rameters and evaluating the efectiveness of the TD3
algorithm.

TD3 is a deep reinforcement learning algorithm that has
shown promising results in multimodel database tuning.
Tis algorithm is particularly useful in settings where the
objective function is nondiferentiable and noisy. One of the
key advantages of TD3 is its ability to handle continuous
action spaces, which is particularly relevant in the context of
database tuning, where tuning parameters typically vary
continuously. TD3 uses a deterministic policy, which en-
ables it to efectively optimize continuous action spaces.
Additionally, TD3 uses a twin network structure, which
consists of two separate critic networks, to reduce over-
estimation of the value function.Tis twin network structure

(1) Input: confguration parameter sets X � a1, a2, . . . , an 

(2) performance indicator Y � m{ }; number of trees n; feature labels labels
(3) Output: sorted confguration parameter labels F � a1′, a2′, . . . , an

′ 

(4) RFModel.construct()
(5) RFModel.train()
(6) let coefs�RFModel.feature_importance
(7) let agg_feature_coefs� zip(coefs, feature_labels)
(8) sorted(agg_feature_coefs)

ALGORITHM 1: Confguration parameter selection module.
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enables TD3 to learn more accurate value estimates and
improve the stability of the learning process. Another ad-
vantage of TD3 is its ability to handle the exploration-
exploitation tradeof efectively. In multimodel database
tuning, it is important to balance the exploration of new
parameter confgurations with the exploitation of already
learned information. TD3 uses a replay bufer to store past
experiences and a target policy network to estimate the value
of future states. By using a combination of both these
techniques, TD3 can efectively explore the search space
while also exploiting previously learned information.
Moreover, TD3 also has the advantage of being a model-free
algorithm, meaning that it does not require a priori
knowledge of the underlying system dynamics.Tis makes it
particularly useful in the context of database tuning, where
the relationship between tuning parameters and system
performance can be complex and difcult to model accu-
rately. By not requiring a model, TD3 can learn directly from
the data and adapt to changes in the environment without
needing to update a model. Tese features make TD3
a powerful tool for optimizing the performance of multi-
model databases.

TD3 consists of two kinds of networks: an Actor and two
Critics, each of which has a target network corresponding to
it. Te Actor network takes the internal state indicator s

obtained after the environment executes the workload as the
input and outputs the actions in the size range 0 to 1. Ten,
MMDTune+ obtains the confguration parameters accord-
ing to the action mapping to overwrite the original con-
fguration of the environment. As shown in Figure 2, the
target network μ′ is the same as the current network
structure μ.

In the network, the activation functions LeakyReLU and
Tanh are used to capture the nonlinear relationships between
variables. Te average function value after Tanh is close to
zero, which is conducive to the learning of neurons in the
next layer. LeakyReLU can alleviate the situation of gradient
disappearance and gradient explosion and speed up the
convergence of the model to a certain extent. Finally,
a dropout layer is added to the network to prevent overftting
of the model and increase exploration of the
confguration space.

TD3 has two Critic networks Q1 and Q2, and corre-
sponding two target Critic networks Q1′ and Q2′. Teir
network structure is the same, and they share the experience
playback pool. Te design of the network structure is similar
to that of the Actor strategy network, except that the weight
update frequency is diferent from that of the Actor. Critic
networks are used to evaluate the value of state action and
guide Actor behavior according to value feedback.

Te Critic network structure is shown in Figure 3. Both
Critic networks take the internal state s of ArangoDB and
action a output of Actor network as input. After deeply
connecting the network to learn the relationship between
state and action, the fnal output is the evaluation Q value of
state s and action a.

Te reward function is crucial for reinforcement learning
because it determines the feedback between the agent and
the environment. Te goal of the agent is to maximize the
total revenue it receives, and the reward function must make
the agent to achieve the goal while maximizing the revenue.

First, the performance time change rate with respect to
the initial performance and the time is calculated re-
spectively.Te computations are performed according to the
following equations:

Δt,0 �

yt,i − y0,i

y0,i

, mi is throughput,

y0,i − yt,i

y0,i

, mi is resource utilization,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Δt−1,t �

yt,i − yt−1,i

yt−1,i

, mi is throughput,

yt−1,i − yt,i

yt−1,i

, mi is resource utilization.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

According to equations (1) and (2), the reward function
is shown in equation (3), where Δt−1,t indicates the diference
between the current performance and the ArangoDB per-
formance under the default confguration, and Δt,0 indicates
the diference between the current performance and the
historical optimal performance of ArangoDB.

rewardmi
�

1 + Δt−1,t 
2

− 1  1 + Δt,0 , Δt−1,t ≥ 0,Δt,0 ≥ 0,

0, Δt−1,t < 0,Δt,0 ≥ 0,

1 − Δt−1,t 
2

− 1  Δt,0 − 1 , Δt,0 < 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

According to equation (3), a nonnegative reward will be
obtained only when the performance of the database is better
than the initial state and the historical optimal performance
at the same time. Considering that the ultimate goal of
tuning is to achieve better performance than the initial setup,
there is a need to reduce the impact of the intermediate
process of tuning on the design of the reward function.

Terefore, when the result of Δt−1,t is positive and Δt,0 is
negative, the reward must be set to 0.

Diferent tuning tasks may choose diferent tuning
metrics. Terefore, a weight coefcient ωi is assigned to the
tuning indicator to indicate the tuning direction, so that the
tuning system can simultaneously tune multiple indicators.
Tus, the fnal reward function is as defned in equation (4),
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where the sum of all ω is 1. In this study, the ratio of
throughput and latency is the same, both 0.5.

r � 
i

rewardmi
∗ωi. (4)

Algorithm 2 describes the proposed tuning algorithm.
First, the Actor networks, the two Critic networks, and their
corresponding parameters of the target network are ini-
tialized according to the hyperparameters, and the structure
and parameters of the target network are the same as those of
its corresponding current network. Ten, before tuning,
initialize the ArangoDB runtime environment, benchmark
with ADBench in the initial confguration, and obtain the
initial state of the database and external metrics. Ten, in the
iterative training stage, the Actor network generates future
actions according to the current moment and noise. Tis
strategy gives the Actor network a stronger exploration
ability of tuning. Tis ensures the diversity of the generated
samples and reduces the possibility of local optimization of
the algorithm. Finally, when the number of samples in the
experience pool is greater than R, samples will be taken to
train the network, and then, the parameters of the Critic
network will be updated separately according to the gra-
dient. Te corresponding parameters will be updated using
the optimizer.

3.4. Benchmarking Platform. Te benchmark measurement
tool plays an important role in the confguration parameter
tuning. Te status data and performance indicator data
during the tuning process are obtained during the bench-
marking of ArangoDB [51]. Database benchmarking tools
focus on simulating the most realistic production envi-
ronment workload and how to accurately measure the in-
dicators refecting database performance. As a result,
excellent database evaluation tools such as TPC-C [52],
TPC-DI [53], YCSB [54], Sysbench [55], and UniBench [56]
have been created, but they have some limitations.

Among them, YCSB is a relatively perfect benchmark,
but it cannot monitor the system resource utilization in-
dicator, and the workload type is relatively simple. UniBench
is designed for multimodel database, but it does not support
long-running and multithreading, and only one indicator
can be monitored. To solve the above problems, we im-
plement a benchmark measurement tool MMDBench for
ArangoDB to perform stress tests and measure performance
indicators. It consists of two main parts: the load generator
and the metric collector. Te load generator generates the
appropriate workload for the tuning task and launches the
execution workload to the ArangoDB, which includes simple
read and write operations, complex graph operations, and
aggregation operations. Te metric collector collects
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statistics that refect database performance. Tis part in-
tegrates Prometheus to monitor cloud server resource uti-
lization in real time.

4. Experiments

In Section 4.1, the relevant experimental environment and
dataset are introduced. Ten, the various components of
MMDTune+ are tested and analyzed in Section 4.2. In
Section 4.3, we compare MMDTune+ with other existing
works under diferent execution workloads.

4.1. Experimental Environment and Dataset. We utilize four
Aliyun Cloud servers to build an experimental environment,
three of which act as the server to build a three-node cluster,
and the remaining one serves as the client to access the
database cluster. Table 1 shows the cloud server
confguration.

In this study, we design related multimodel database
operations on two datasets, including one social commercial
network dataset and one hydrologic-related dataset.Te data
structure and size of each dataset are shown in Table 2.

Te databases built by these two datasets both contain
multiple data models. Te social business network includes
the collection of customer, order, stamp post, product, in-
voice, and evaluation feedback. It also contains the graph
formed by the existing relationships between these collec-
tions. Hydrologic datasets mainly contain geographic

location information and sensor data, including provinces,
cities, monitoring stations, and sensor data.

Finally, the multimodel database operations designed by
MMDBench based on the above two datasets are shown in
Table 3. Due to space limitations, only the multimodel
database operations required in the experiment are listed.

4.2. Tuning Experiment and Result Analysis. In this section,
the efect of MMDTune+ tuning on ArangoDB is evaluated,
and relevant experiments are carried out on the three
modules included in it to verify its efectiveness and
necessity.

4.2.1. Parameter Settings. To verify the generalization ability
of the TD3 algorithm in MMDTune+, we select diferent
workloads to execute. Te workloads involved in the fol-
lowing experiments, and their corresponding execution

(1) Initialize replay bufer R

(2) if isExist(model) then
(3) model.load()
(4) else
(5) Initialize actor network μ and critic network Q with weights θμ and θQ

(6) θμ
′
⟵ θμ, θQ1′⟵ θQ, θQ2′⟵ θQ

(7) Initialize s0←cost(Cd, q)

(8) for epoch � 1, 2, . . . , M do
(9) for t � 1, 2, . . . , T do
(10) at⟵ μ(st)

(11) Ct⟵ create knobs(at)
(12) Confgure multimodel database with Ct

(13) Perform workload q and observe new state st+1⟵ cost(Ct, q) and rt⟵ reward(st+1)

(14) Push (st, st+1, at, rt) into R

(15) Sample a random mini-batch (si, si+1, ai, ri) from R

(16) target⟵ ri + cmin(Q1′(si+1, μ′(si+1) + ϵ), Q2′(si+1, μ′(si+1) + ϵ)
(17) Update Critics
(18) θQm�1,2⟵ argminθQm1/Ni(target − Qm(si, ai))

2

(19) if tmod d then
(20) Update μ by 1/Ni∇Q1(si, μ(si))∇μ(si)

(21) θμ
′
⟵ τθμ + (1 − τ)θμ

′
,

(22) θQm
′⟵ τθQ + (1 − τ)θQm

′

(23) end if
(24) st⟵ st+1
(25) end for
(26) P⟵ aT

(27) end for
(28) end if

ALGORITHM 2: Parameter tuning algorithm based on TD3.

Table 1: Te experimental environment.

Attribute Information
CPU Intel Xeon platinum 8269@2.6GHz, 4 core
Memory 16GB
OS CentOS 7.6
ArangoDB version 3.7.6
PyTorch version 1.7.1
Prometheus version 2.21.0
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parameters are shown in Table 4. Considering the limitation
of the number of CPU cores in the system, it is not the case
that the larger the number of threads, the higher the
throughput. Terefore, a unifed thread number of 10 is
selected, which can be adapted according to the CPU version
of the machine.Te parameters of the data request mode are
selected according to diferent scenarios.

Te execution parameters of the tuning algorithm TD3
are set as follows: the maximum step length of ofine
training optimization is 1000, the size of the experience
playback pool is 10000, and the number of samples is 16. We
chose Adam as the optimizer for model training, with
a learning rate of 0.0005 for the Actor network and 0.0001 for
the Critic network. Te discount factor is 0.99, and the
exploration strategy parameter is set to 0.2. Te update
frequency of the target network is 2, and the soft update
coefcient is 0.01.

4.2.2. Confguration Parameter Selection Experiment. To
verify the efectiveness of the feature sorting method based
on the RF algorithm for tuning in MMDTune+, we conduct

a set of experiments in workloadW1 and tune ArangoDB by
increasing the number of confgurations sorted by the RF
algorithm.

As shown in Figure 4, with the increase in the number of
confguration parameters, the throughput improvement rate
increases, while the latency decreases continuously. Com-
pared with the default confguration, the performance is
signifcantly improved. Additionally, in the case of the same
number of confgurations, the performance improvement of
the confguration selected based on the RF algorithm is
generally higher than that of the randomly selected con-
fguration. Depending on the important feature parameters
of the selected confguration, the RF algorithm can select
a confguration with a high correlation of performance
impact, making it easier for ArangoDB to achieve optimal
performance.

Figure 5 shows the convergence rate of the TD3 network
model under diferent confgurations selected by the RF
algorithm in the previous experiment. It can be seen that
with the increase in the number of confgurations, the
number of iterations of network training also continues to
increase. Te reason for this situation is that the greater the

Table 2: Datasets.

Dataset Te number of collection Data structure Te number of records
Social network 12 Relation document key-value graph 5.77 million+
Water 10 Relation document key-value graph 14 million+

Table 3: Multimodel database operations.

Operation Data structure Technical dimensions

Q1 Document; graph (1) Document query
(2) Graph and document join query

Q2 Document; key-value; graph

(1) Document join query
(2) Document and key-value join query
(3) Graph and document join query
(4) Document aggregation

Q3 Document; key-value; graph

(1) Document join query
(2) Document and key-value join query
(3) Graph and document join query
(4) Graph query

Q4 Document; graph (1) Document join query
(2) Graph and document join query

Q5 Document; graph (1) Document query
(2) Graph DFS query

Q6 Document; graph (1) Graph shortest path query
(2) Graph and document join query

Q7 Document; graph
(1) Document query
(2) Graph and document join query
(3) Document aggregation

I1 Document Document insert
I2 Document; graph Document and graph insert
U1 Document Document update
D1 Document Document delete

T1 Document; graph (1) Document insert and update
(2) Graph update

T2 Document Document insert, update, and delete
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number of confgurations, the more parameters in the
model, the more complex the structure, and the longer it
takes the model to reach consumption. When the number of
confguration parameters ranges from 60 to 75, the increase
in the number of confguration parameters does not sig-
nifcantly improve the tuning efect. Tis is because the
increase in the number of confguration parameters does not
signifcantly afect the performance. Terefore, to improve
the efciency of tuning, one can select an appropriate
number of confgurations for tuning when the tuning efect
is met. In the subsequent throughput and delay tuning
experiments, the confguration parameters recommended by
the tuning algorithm were all 75 confgurations selected by
the RF algorithm.

4.2.3. TD3 Ofine Training Tuning Experiment. In this part,
the TD3 algorithm in MMDTune+ will be used to tune the
75 confguration parameters selected above in the ofine
phase, and the efectiveness of the TD3 algorithm for tuning
ArangoDB confguration parameters will be further verifed.
At the same time, the tuning data will be collected for use in

the online tuning phase. First, we select workloads W2, W6,
W7, and W9 as target workloads for ofine training tuning.

Table 5 shows the performance changes of the above four
workloads after tuning. Under these four workloads, the
corresponding throughput and 99% operation latency have
been optimized to diferent degrees. Terefore, it can be
concluded that the TD3 algorithm can be applied to Ara-
ngoDB confguration parameter tuning, and the perfor-
mance improvement after tuning is also considerable.Tis is
because the TD3 algorithm can adapt well to the high-
dimensional confguration space and recommend high-
quality continuous confguration parameters for the sys-
tem. Meanwhile, the trial-and-error strategy adopted is
similar to the DBA tuning strategy, which can continuously
explore the confguration space and reduce the possibility of
falling into local optima.

4.2.4. Workload-Aware Mechanism Tuning Experiments.
Without using a workload-aware mechanism, the training of
the model or tuning process has difculty using historical
experience for learning and requires the user to specify the

Table 4: Workload execution parameters.

Workload Operation Request Tread Execution time (s)
W1 Q1 SkewedLatest 10 90
W2 Q3 Uniform 10 90
W3 Q4 Zipfan 10 90
W4 Q2 Uniform 10 90
W5 I1 Uniform 10 120
W6 I2 Uniform 10 120
W7 T1 Uniform 10 120
W8 T2 Uniform 10 120
W9 30% I1 and 70% Q1 SkewedLatest 10 120
W10 50% I1 and 50% Q7 Normal 10 120
W11 30% U1 and 70% Q7 Uniform 10 120
W12 60% I1 and 40% Q1 Zipfan 10 120
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Figure 4: Te efect of the number of confgurations on the tuning result.
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workload to learn. However, the artifcial selection of
a similar workload for multimodel database applications is
more complex.

Terefore, MMDTune+ uses the k-means++ algorithm
to cluster workloads to detect changes in workloads. Te
fnal clustering result is shown in Figure 6. Historical
workloads can be roughly divided into seven types. k-
means++ can classify similar workloads into the same
class by using distance.

Te specifc operation of detecting workload changes is that
when MMDTune+ fnds that the current workload type is
diferent from the newly arrived workload type, it can start to
use the similarity calculation method to match and fne-tune
the parameters using the pretraining model of the previous
similar workload, and fnally recommend high-quality con-
fguration parameters. Next, a new type of workload, W3, will
be used to validate the subsequent actions that detected the
change using a workload-aware mechanism.

Figure 7 shows the order of correlation coefcients between
the new workload W3 and the historical workload. Te most
similar workload to the target workload is Q25, which consists
of multiple queries. Next, the pretraining model of Q25 will be
migrated to the current workloadW3 to tune its parameters to
verify whether the tuning process can take advantage of his-
torical learning to improve tuning efciency.

In the ofine phase under the condition of not using the
trainingmodel, the TD3 algorithm requires over 500 inclines

to achieve convergence. For workload W3, in the use of load
sensing history after the training model for fne-tuning
results as shown in Figure 8, one can see a new workload
tuning, and within 5 steps, one can achieve a good per-
formance. Compared with the previous results, the overall
tuning efciency is greatly improved, and the tuning efect
also increases with the increase in the number of
tuning steps.

Te following conclusions can be drawn from the above
experiments. First, MMDTune + based on the deep re-
inforcement learning algorithm TD3 can learn and gain
decision-making experience in complex environments.
Second, the tuning algorithm can learn from past experience
to improve the tuning efciency, and the workload-aware
mechanism module of MMDTune+ is able to accurately
match the empirical knowledge of the historical workload.

During the confguration tuning process, the results of
each workload execution will be stored in the data ware-
house by MMDTune+. As the confguration tuning system
continues to execute, the historical data will increase, which
will make the online tuning efect even better.

4.3. ComparisonExperimentwith ExistingTuningAlgorithms.
In this section, we fully evaluate the efects of workload-
aware mechanism tuning on all modules of MMDTune+ on
multiple diferent workloads and compare the TD3

Table 5: Confguration parameter tuning performance changes.

Workload Indicator Before tuning After tuning Performance improvement (%)

W2 Troughput (n/sec) 36.06 127.67 254.04
99% operation latency (ms) 488.61 235.09 51.88

W6 Troughput (n/sec) 7939.57 10533.61 32.67
99% operation latency (ms) 1.25 0.94 24.80

W7 Troughput (n/sec) 944.28 1186.21 25.62
99% operation latency (ms) 54.20 39.21 27.66

W9 Troughput (n/sec) 1492.43 2214.06 48.35
99% operation latency (ms) 71.63 64.14 10.46
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Figure 5: Te relationship between the convergence rate of the TD3 algorithm and the number of confgurations.
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algorithm used by MMDTune+ with other tuning algo-
rithms. First, the time consumption of fve algorithms based
on SVR, GPR, DNN, DDPG, and TD3 in the whole tuning
process was evaluated. To better understand the distribution
of execution time in the tuning steps, the time consumption
of each module of MMDTune+ is compared. Te tuning
process mainly consists of fve parts with time consumption:

data preprocessing, workload-aware mechanism, confgu-
ration parameter generation, deployment and execution of
benchmark evaluation, and model weight update. Te ex-
perimental results are shown in Table 6. Te consumption
time of data preprocessing and the workload-aware mech-
anism of each algorithm are the same, so they will not be
discussed.
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Te time complexity of machine learning algorithms is
typically expressed in terms of big O notation, which de-
scribes the upper bound on the growth rate of the com-
putational resources required to solve a problem of a given
size. SVR is a linear regression algorithm that fnds the
hyperplane that best separates the data into classes. Te time
complexity of SVR is typically O (n3), where n is the number
of training samples. Tis makes SVR relatively fast for small
datasets, but it can become slow for larger datasets. GPR is
a nonparametric regression algorithm that models the re-
lationship between the inputs and outputs using a Gaussian
process. Te time complexity of GPR is typically O (n3),
where n is the number of training samples. Tis makes GPR
relatively fast for small datasets, but it can become slow for
larger datasets. DNNs are composed of multiple layers of
artifcial neurons and are used for a wide range of tasks,
including image classifcation, speech recognition, and
natural language processing. Te time complexity of DNNs
is typically O (mn2), where m is the number of training
samples and n is the number of neurons. Tis makes DNNs
relatively slow for small datasets, but they can scale to large
datasets. DDPG is a reinforcement learning algorithm that is
used to train agents in control tasks. Te time complexity of
DDPG is highly dependent on the complexity of the envi-
ronment, and the number of interactions required to train
the agent. As a result, the time complexity of DDPG can vary
widely and can be difcult to estimate. TD3 is a variant of
DDPG that is used to train agents in control tasks. Similar to
DDPG, the time complexity of TD3 is highly dependent on

the complexity of the environment, and the number of
interactions required to train the agent. As a result, the time
complexity of TD3 can vary widely and can be difcult to
estimate. Te actual time complexity of these algorithms can
vary widely depending on the specifc implementation, the
size and structure of the data, and the hardware used.

As seen in the millisecond level, the TD3 algorithm used
byMMDTune+ is second only to DDPG in tuning efciency,
but the diference is not signifcant, and the efciency is
faster than other algorithms. SVR, GPR, and DNN are based
on supervised learning methods. Tis type of algorithm
requires each step to complete model training convergence
and add Gaussian noise for exploration to meet the tuning
requirements. Moreover, with the increase in training
samples, its time consumption will gradually increase.

Meanwhile, we compare the tuning results of diferent
algorithms with the proposed methods. First, experiments
are carried out on workload W4 composed of multiple
queries. Te workload contains three data models and
diferent data operations, which can better represent the
characteristics of a multimodel database. As can be seen
from Figure 9, multiple tuning algorithms are able to
optimize performance well, including extended related
algorithms of other studies. On workload W4, the
throughput is improved by more than 132.54%, and the
99% operation latency is reduced by more than 7%. Among
them, DDPG and TD3 are better than SVR, GPR, and
DNN which use regression characteristics, and TD3 is
the best.
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Table 6: Time consumption of diferent tuning algorithms.

Algorithms Step Confguration parameter generation
(ms)

Model
weight update (ms)

SVR 10 29.13 411.44
GPR 10 57.06 452.21
DNN 10 19.93 291100
DDPG 10 2.13 272
TD3 10 2.11 451
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Figure 10: Workload W4 and W8 tuning performance comparison.
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Related experiments were performed on write workload
W5 and transaction workload W8. As shown in Figure 10,
the throughput of workload W5 increased by 31.1% after
TD3 tuning, and the 99% operation latency decreased by
25.55%. Other tuning algorithms also achieved good tuning
efects, but they were slightly weaker than TD3, and the efect
of W8 was similar to that of W5.

Te tuning results based on the TD3 algorithm were the
best on most workloads, and its speed was not far from that
of the most efcient DDPG algorithm, which is more ef-
cient than other supervised learning methods. Tis is be-
cause reinforcement learning uses well-known exploration
and utilization strategies through the interaction of agents
with the database environment, which not only gives full
play to the capability of the model but also explores a better
confguration that has never been tried before and reduces
the possibility of falling into local optima. Although DDPG
is also a deep reinforcement learning algorithm, its cumu-
lative errors have a negative impact on the tuning efect,
which makes the tuning efect of this method inferior to that
of TD3. As supervised learning algorithms, SVR, GPR, and
DNN use the characteristics of regression to predict per-
formance by using confguration, which makes them rely on
a large amount of high-quality training data.

4.4. Limitations. MMDTune+ realizes the performance op-
timization of ArangoDB, but there are still some problems that
need to be further studied and solved. First, the MMDBench
benchmarking tool requires improvements as it currently only
conducts tests on ArangoDB, a multimodel database, and
simulates a limited number of real-world scenarios. Currently,
MMDTune+ has only been applied to one tuning object. As the
number of data models and storage engines increases, the
search space of tuning parameters can become increasingly
large, making it more challenging to fnd an optimal solution.
Te performance of the MMDTune+ may depend on the
specifc characteristics of the database, such as the number and
distribution of data types, the size of the database, and the
complexity of queries. Diferent types of queries and data access
patternsmay require diferent tuning parameters, and itmay be
difcult to identify a single set of parameters that works well
across all possible workload scenarios.

5. Conclusion

Te emergence of multimodel databases provides a new
solution to efectively address the defciencies of traditional
database. ArangoDB is a widely used multimodel database.
However, ArangoDB has a difcult problem with confgu-
ration parameter optimization, which needs to be tuned for
the actual workload or application. At the same time, the
tuning is not only for a single workload but also for the
dynamic change of the workload exploratory automatic
tuning, and how to sense the changes of the workload and
further use the historical experience to improve the tuning
efect is particularly important. Under the above back-
ground, we study the confguration parameter tuning of the
multimodel database ArangoDB.

Aiming to address the ArangoDB confguration pa-
rameter tuning problem, an ArangoDB confguration pa-
rameter tuning tool MMDTune+ combined with
a workload-aware mechanism is proposed, which includes
a confguration parameter selection module, workload-
aware mechanism, and tuning algorithm. Te confgura-
tion parameter selection module uses the random forest
algorithm to select confguration parameters with high
correlation to the tuning indicator, to meet the performance
improvement rate, and to improve the tuning efciency.
Workload-aware mechanism is based on k-means ++ and
Pearson correlation coefcients to detect workload changes
and match historical empirical data or pretraining models of
similar workloads and migrate them to the current task to
improve performance gains and efciency. Finally, based on
our improved TD3 algorithm, we perform database tuning
for ArangoDB.

Te current limitations with our existing work include
insufcient workload, a single tuning target, and a lack of
targeted optimization for diferent tuning targets in the TD3
algorithm. In future work, we can apply the confguration
parameter tuning algorithm to other multimodel databases,
build more workloads with more diverse datasets, and
simulate more realistic complex scenarios.
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