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Frequent data breaches in the cloud environment have seriously afected cloud subscribers and providers. Privacy-preserving
image retrieval methods can improve the security of cloud image retrieval; however, existing methods have limited accuracy on
dynamically updated image databases and mobile lightweight devices. In this study, we propose a privacy-preserving image
retrieval method based on disordered local histograms and vision transformer in cloud computing, by designing a multiple
encryption method and transformer-based feature model to better mine the local feature value of encrypted images. Specifcally,
the user performs diferent value substitution, position substitution, and color substitution on the subblocks of the image to
protect the image information. Te cloud server extracts the unordered local histogram from the encrypted image and generates
retrievable features using transformer. Experiments show that compared with similar CNN schemes, the retrieval accuracy of this
method is improved by 8.5%, and the retrieval efciency is improved by 54.8%.

1. Introduction

Te rapid growth of global data and the COVID-19 outbreak
are driving more and more individuals and businesses to use
remote ofces and cloud servers [1]. Te cloud environment
reduces the cost of storing and managing massive amounts
of private data [2], but it signifcantly increases the risk of
data leakage [3]. Te average cost of a data breach reached
a record high of $4.35million in 2022. 45% of these data
breaches occur in the cloud [4]. Although data encryption
can reduce the loss caused by data leakage [5], it increases the
difculty of retrieving encrypted data [6, 7].

Image is one of the important component media of cloud
data. Privacy-preserving content-based image retrieval
(PPCBIR) [8] transmits the image to the cloud in encrypted
form, while maintaining its searchability [9], which better
plays the value of the cloud. In addition, more and more
users are using the cloud to store or backup images on
mobile terminal (resource-limited) devices such as mobile
phones [10], sensor networks [11, 12], and vehicle-mounted

equipment [13, 14]. In 2021, the number of active users of
Huawei’s terminal cloud in the world will exceed
730million.Terefore, it is of great value to study PPCBIR to
support real-time image updating on mobile (restricted)
terminal devices [15].

Existing PPCBIR schemes have limitations in dynamic
update and mobile terminal scenarios. PPCBIR scheme [16]
uses homomorphic encryption to protect images. Although
it has high security and retrieval accuracy, the calculation
cost is too high. PPCBIR scheme [17] extracts features from
images and builds a security index, and then, traditional
encryption protects images [18]. Although it has high se-
curity and retrieval accuracy, users are required to extract
features, build, and update indexes in real time, but mobile
devices cannot bear the computational complexity under
large-scale and dynamic image updating. PPCBIR scheme
[19] uses special encryption algorithms and feature models
to directly extract features from encrypted images for re-
trieval. Although the client only carries out encryption
operations, feature processing and retrieval calculations are
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completed in the cloud, which can better support dynamic
updates and mobile devices, but the retrieval accuracy is not
high. Terefore, this paper studies how to design encryption
algorithms and feature models to improve the retrieval
accuracy of PPCBIR under dynamic update images and
mobile terminals.

Image feature representation ability is the key factor in
determining the retrieval accuracy of PPCBIR. Some existing
PPCBIR schemes use global features such as histogram satu-
ration value (HSV) [20] and local binary patterns (LBP) [19] to
characterize encrypted images, which are relatively simple to
compute but less accurate. Some schemes use local features
such as scale-invariant feature transform (SIFT) [21, 22] and
accelerated robust features (SURF) [23] to characterize
encrypted images with better accuracy, but the relative position
information between local features is easily leaked. In addition,
some PPCBIR schemes use CNN for feature enhancement of
global features [24, 25], and the accuracy is better than that of
PPCBIR [26] based on global features. However, the rough
representation of global features limits the retrieval accuracy to
some extent. Although the disordered local feature has richer
details than the global feature, the relative location information
of the local feature will not be revealed. However, CNN cannot
model the out-of-order local features due to the spatial in-
variance of its inductive bias and regional limitations.

Te vision transformer (ViT) [27] demonstrated supe-
rior semantic features and long-range feature capture ca-
pabilities over CNN in image classifcation tasks. Te
disturbance invariance of the self-attention mechanism in
transformer enables it to learn the relationship between
disordered local features, which has more advantages than
CNN features in learning global features [28].Terefore, this
paper proposes a privacy-preserving image retrieval method
based on disordered local histograms and vision trans-
formers in cloud computing, which can satisfy the dynamic
update of the image and mobile (limited) user’s device ef-
fcient retrieval. Te main contributions of this work are
summarized as follows:

(1) A secure multiple encryption method is proposed,
where local, global, color, and texture multiple en-
cryption methods not only protect image in-
formation but also support models to extract
unordered histogram features from the encrypted
image for secure retrieval. Security analysis shows
that our encrypted images are resistant to brute force
and statistical attacks.

(2) A transformer-based feature extraction model is
proposed, which uses a transformer to fully excavate
the correlation between local features and improve
the retrieval accuracy without reducing the security.
Te retrieval experiments on benchmark datasets
show that the retrieval precision of our scheme is
better than that of some existing similar schemes.

Te rest of this paper is structured as follows. Section 2
describes the related work, Section 3 provides an in-
troduction to the system and security model, Section 4
details the proposed scheme, Section 5 provides a security

analysis of the proposed scheme, Section 6 presents the
retrieval experimental results and analysis, and Section 7
concludes the work.

2. Related Work

Existing privacy-preserving image retrieval schemes can be
classifed as homomorphic encryption, feature index en-
cryption, and pure image encryption image retrieval
schemes.

2.1. Homomorphic Encryption-Based Image Retrieval. Hsu
et al. [29] proposed a SIFT extraction method based on
homomorphic encryption. Zhang et al. [30] performed
multilevel homomorphic encryption on the histogram of
image visual words. Bellafqira et al. [31] extracted SIFT and
discrete wavelet transform features for retrieval in homo-
morphically encrypted domains. Guo et al. [32] extracted
CNN features in homomorphically encrypted domains for
retrieval. Lu et al. [33] compared homomorphic encryption
methods with feature and index encryption methods. Ho-
momorphic encryption can achieve the same retrieval ac-
curacy as the plaintext domain but is computationally
intensive and complex to communicate.

2.2. Feature Index Encryption-Based Image Retrieval.
Cheng et al. [34] studied inverse index generation using
visual words of images. Zou et al. [35] used tree structure and
Euclidean distance for secondary search to improve the
efciency and accuracy of the fuzzy search. Li et al. [36] used
feature descriptors extracted by CNN models to improve
search accuracy and designed a hierarchical index tree for K-
means clustering based on afnity propagation clustering to
enhance efciency. In addition, a limited key leakage
mechanism is constructed based on the KNN [37] algorithm
to support untrusted image users to generate trapdoors
locally without the image owner online. Li et al. [38] used
CNN to extract features, carried out K-means clustering to
build index trees, and fnally used dynamic trees to verify the
correctness of the results. Huang [39] uses the ViTmodel to
improve retrieval accuracy and design a secure multi-
indexed hash structure to flter datasets to improve re-
trieval efciency. Feature and index encryption methods
achieve better security and retrieval performance in fxed
databases, but the computational efort of index construc-
tion increases dramatically with the frequency of image li-
brary updates.

2.3. Pure Image Encryption-Based Image Retrieval. Lu et al.
[40] proposed the frst privacy-preserving content-based
image retrieval (CBIR) scheme based on an encrypted im-
age database. Te global HSV histogram is extracted to
construct visual word sets, and the similarity is measured by
the Jaccard distance between visual word sets. Ferreira et al.
[20] separated the color and texture information in the
image, protected the color values by random permutations,
retrieved the HSV histogram of the encrypted image, and
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measured the similarity by the Hamming distance of the
features. Liu et al. [41] encrypted the images by value
substitution and positional dislocation, extracted the
encrypted diference histogram as features, and measured
the similarity by calculating the Euclidean distance between
the features. Xia et al. [42] constructed features from
a combination of AC coefcient histograms and color his-
tograms extracted from encrypted Y-component histograms
and measured image similarity by calculating the Manhattan
distance between features. Xia et al. [43] encrypted the image
by block transform, intrablock transform, and order-
preserving pixel replacement to extract secure LBP de-
scriptors for retrieval. Xia et al. [44] extracted local features
from encrypted DCT blocks and then constructed a word
bag model for local features to represent the encrypted
images. Wang et al. [25] encrypted images using block-
internal scrambling, interblock scrambling, and channel
scrambling and used hashing and reversible information
hiding for leak tracking. Te global HSV is enhanced by
CNN to improve retrieval accuracy. Ma et al. [45] used an
improved DenseNet network to extract semantic features
from encrypted images. Zhou et al. [46] considered
encrypted image retrieval under a distributed environment
and extracted color histograms of encrypted images for
retrieval. Yu et al. [47] frst characterize the image by
encrypting the DCT coefcient blocks, then extracting the
local Markov features of the encrypted image, and fnally
constructing the feature vector of local features by the BOW
model. Te pure image encryption method is computa-
tionally simpler than the homomorphic encryption and
feature index encryption methods and meets the re-
quirements for real-world application.

3. Problem Formulation

Tis section will introduce the system model and the threat
model. We summarize the global symbols of the article as
detailed in Table 1, with method-specifc local symbols
declared at their frst occurrence.

3.1. System Model. Te system in this paper can be divided
into three parts: data owner, cloud server, and query user.
Te system framework is shown in Figure 1.

3.1.1. Data Owner. It is the owner of the image data. First,
the image database I � i1, i2, · · · , in  consisting of n images
is encrypted using the randomly generated key
K � k1, k2, · · · , kn , and then, the encrypted image database
E � e1, e2, · · · , en  is used to train the feature extraction
model Ψ. Finally, we upload E and Ψ to the cloud server.

3.1.2. Cloud Server. It is the provider of storage space and
computing power. First, E and Ψ from the data owner are
stored and deployed. When the query occurs, the cloud
server receives the encrypted query image EQ from the query
user and sends E and EQ to Ψ to get the encrypted image
database feature FE � fe1, fe2, · · · , fen  and the query

image feature FEQ, and similarity is measured by calculating
the Euclidean distance between the FE and FEQ features.
Finally, the k most similar encrypted query result images
ER � erID1, erID2erIDkerIDk  are returned to the query user.

3.1.3. Query User. Query user is the user who retrieves the
images. First, the query image Q is encrypted to get EQ.
Second, the query user uploads the EQ to the cloud server
after the cloud server retrieves the encrypted query result
image set ER. Ten, the query user sends the query result
image ID IDR � IDR1, IDR2, · · · , IDRk  to the data owner
and obtains the corresponding key RK � rkIDR1,

rkIDR2, · · · , rkIDRk} to decrypt the query result image
R � rIDR1, rIDR2, . . ., rIDRk .

Te deployment and retrieval process of the system is as
follows.

Step 1. Te data owner encrypts the image database I

using the key K to get the encrypted image database E.
Meanwhile, the image database is used to train the
feature extraction model Ψ.
Step 2. Te data owner uploads the encrypted image
database E and feature extraction model Ψ to the cloud
server, which performs database storage and model
deployment.
Step 3. Te querying user sends authentication in-
formation to the data owner to obtain query authori-
zation and encryptor.
Step 4. Te query user feeds the query image to the
encryptor to obtain the encrypted query image.
Step 5. Query user sends encrypted query image to the
cloud server.
Step 6. Te cloud server uses a feature extraction model
to extract features FE, FEQ from the encrypted image
database and encrypted query images.
Step 7. Te cloud server performs a similarity measure
on the features to obtain similar encrypted query results
ER � erIDR1, erIDR2, · · · , erIDRk .
Step 8. Te cloud server returns the encrypted query
results ER � erIDR1, erIDR2, · · · , erIDRk  to the
querying user.
Step 9. Te query user sends the ID
IDR � IDR1, IDR2, · · · , IDRk  of the encrypted query
result to the data owner and obtains the corresponding
key RK � rkIDR1, rkIDR2, · · · , rkIDRk .
Step 10. Te query user decrypts the encrypted image
ER � erIDR1, erIDR2, · · · , erIDRk  using the key
RK � rkIDR1, rkIDR2, · · · , rkIDRk  to obtain the query
results R � rIDR1, rIDR2, · · · , rIDRk .

Compared with the schemes of homomorphic encryp-
tion and feature index encryption, the query user in our
system only needs to perform encryption operations on
images without extracting features, which signifcantly re-
duces the device requirements on the user side and supports
the lightweight mobile user side. Te feature extraction
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model in the cloud server does not need to be updated in real
time with the database, which can better support the re-
trieval under a real-time update database.

3.2. Treat Model. Our method focuses on protecting the
privacy of images used in a cloud environment, mainly
against security issues caused by cloud servers. Similar to
many existing works, cloud servers are assumed to be
“honest-but-curious” [19]. Te cloud server can execute
commands correctly according to the protocol, but it may
record and analyze retrieved information and encrypted
image databases. Te data owner and the querying user are
fully trusted and secure objects [45], and there is no leakage
or illegal distribution of plaintext images, and attackers
cannot get plaintext data. In addition, entity objects use

secure channels to communicate without compromising any
data. Terefore, we mainly consider the ciphertext-only
attack (COA) and known-background attack (KBA) and
do not consider the selective plaintext attacks such as dif-
ferential attacks [48].

4. The Proposed Method

Tis section describes the proposed scheme in detail, via
image encryption, feature extraction, and retrieval.

4.1. Image Encryption. To achieve the availability of local
histogram features and the security of global information in
image encryption, we propose a secure step-by-step image
encryption method, processing image local and global

Cloud server Similarity

(6)

(1)(1)

Encipher

Images

Transformer
parameters

trainer

Data owner

(2) (2)

(3)

Encipher

(4)

Similar imagesQuery image
Query user

Decryption
keys

(10)

(9) Access control
(Decryption keys)

Search control
(Encipher)

(5) (8)

(6)

Encrypted query image

(7)

Similar encrypted
images

Encrypted images Transformer-based Model

Figure 1: Encrypted image retrieval system in the cloud environment.

Table 1: Te summary of notations.

Notations Defnitions
n Te size of the image dataset
m2 Number of blocks
I � i1, i2, · · · , in  Te plaintext image dataset
E � e1, e2, · · · , en  Te encrypted image dataset
K � k1, k2, . . ., kn  Te set of security keys
FE � fe1, fe2, · · · , fen  Te encrypted image feature dataset
Q Te plaintext query image
EQ Te encrypted query image
FEQ Te encrypted query image feature
Ψ Te feature extraction model
ER � erID1, erID2, · · · , erIDk  Te encrypted query result images
IDR � IDR1, IDR2, · · · , IDRk  Te query result image ID
RK � rkIDR1, rkIDR2, · · · , rkIDRk  Te key corresponding to the resulting image
R � rIDR1, rIDR2, · · · , rIDRk  Te query result image
subI � subI1, subI2, · · · , subIm2  Image subblock
subE � subE1, subE2, · · · , subEm2  Encrypted image subblock
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information in steps and processing image texture and color
information separately. Te encryption process is shown in
Figure 2.

Our encryption scheme is divided into the following
steps: frst, the image is divided into nonoverlapping image
subblocks. Next, the positions of the RGB channel values
within the subblocks are randomly scrambled to protect the
local texture information. Ten, the global texture in-
formation is protected by randomly scrambling the positions
between subblocks. Finally, the RGB channel values of the
encrypted image subblocks are replaced, the RGB channels
are swapped to protect the global color information, and the
value substitution of diferent subblocks is fxedly related to
the position of the encrypted subblocks. A random function
generates the encryption key. Te detailed image encryption
algorithm is shown in Algorithms 1–3.

4.2. Transformer-Based Feature Extractor. Tis study also
proposes a transformer-based feature extraction model that
can extract features directly from encrypted images to
support ciphertext retrieval, as shown in Figure 3.

Te feature extraction model consists of three parts:
image block, histogram extraction, and vision transformer
encoder.

4.2.1. Image Block. We divide an encrypted image
E ∈ RH×W×3 into m2 nonoverlapping encrypted subblocks

subE(i,j) 
m−1
i�0 

m−1

j�0
∈ RW/m×H/m×3, where (H, W) is the

resolution of the original encrypted image, (H/m, W/m) is
the resolution of each encrypted subblock, (i, j) represents
the position of the encrypted subblock in the original
encrypted image, and the values of i and j are in the range
[0, m − 1].

4.2.2. Histogram Extraction. First, the histograms of RGB
three channels subH(i,j) � (subR

(i,j), sub
G
(i,j), sub

B
(i,j)) are

extracted separately for the encrypted subblock

subE(i,j) 
m−1
i�0 

m−1

j�0
, where subHR

(i,j) � binR
u 

255
u�0, subHG

(i,j)

� binG
u 

255
u�0, subHB

(i,j) � binB
u 

255
u�0, and binR

u represent the
number of histograms with the value u in the R channel.
Ten, the RGB histogram (subHR

(i,j), subHG
(i,j), subHB

(i,j)) is
subjected to channel transformation and histogram trans-
lation operations (equations (1) and (2)) to obtain a three-
channel histogram subH

′
(i,j) � (subH′R(i,j), subH′G(i,j),

subH′B(i,j)), subH
′

(i,j) ∈ R
256×3, where subH′R(i,j) �

bin′Ru 
255

u�0, subH′G(i,j) � bin′Gu 
255

u�0, subH′B(i,j) � bin′Bu 
255

u�0.
Finally, the RGB three channels of the subblock are stitched
to obtain the local features subFi 

m2

i�1, subFi ∈ R768. His-
togram extraction outputs local features subFi 

m2

i�1,
subFi ∈ R768.

subH
′

(i,j) �

subH
′G
(i,j) � ϑ subH

R
(i,j),

256i

m
 ,

subH
′B
(i,j) � ϑ subH

G
(i,j),

256j

m
 ,

subH
′R
(i,j) � ϑ subH

B
(i,j),

128(i + j)

m
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

ϑ binu 
255
u�0,∆bin  �

binu⟶ bin ′u−∆bin,∆bin≤ u,

binu⟶ bin ′u−∆bin+256,∆bin> u,

⎧⎪⎨

⎪⎩

(2)

where binu is the input histogram, ϑ represents the histogram
translation operation, ∆bin is the displacement length of the
histogram translation, and binu

′ is the output histogram.

4.2.3. Vision Transformer Encoder. We use a transformer
encoder [27] to learn local features
subF � subFi 

m2

i�1, subF ∈ Rm2×768. We add a special se-
quence [S] that can be learned before the local feature se-
quence and feed the new sequence
Z � [[S], subF1, . . . , subFm2] into the transformer encoder.
Our transformer encoder stacks 12 identical blocks, each
consisting of a multihead self-attention and a two-layer
multilayer perceptron. Layer normalization is performed
before each module, and residual concatenation is per-
formed after the block to prevent gradient disappearance
and speed up convergence [S]′ in the sequence
Z′ � [[S]′, subF1′, . . . , subFm2′] output by transformer en-
coder which is used as the representational feature fe of the
encrypted image.

Te superiority of our feature extractionmodel comes from
the following three points. First, local features within subblocks
can be extracted stably and with stable feature dimensionality.
Second, the perturbation invariance of the self-attentive
mechanism in the transformer makes it possible to learn
disordered features. Tird, the transformer architecture has
better long-range feature capture capability and better feature
characterization capability and robustness.

4.3. Similar Image Search. In this paper, feature extraction
and similarity metrics are performed in a cloud environ-
ment, which dramatically reduces the computational burden
on data owners and query users. As with existing methods
[25, 45], the Euclidean distance DQ−E between query image
features FEQ and image database features
FE � fe1

, fe2
, . . . , fen

  is calculated in the cloud environ-
ment to measure the similarity of encrypted images
(equation (3)), and the retrieval results are returned
according to the similarity ranking.

DQ−E � FEQ − fei

�����

�����,where i � 1, 2, . . . , n. (3)
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Input: Original image I of size w × h × 3.
Output: Encrypted image E, Image key K.

(1) Divide Original image I⟶ subblocks subI � subI1, subI2 . . . , subIm2 , size of w/m × h/m × 3.
(2) for ∀ subIi ∈ subI do
(3) subEi, subKi � Intrablock texture(subIi)

(4) end for
(5) for i in reversed(range(m2)) do
(6) random(0, i)⟶ num⟶ img sub key[i]

(7) subE[num], subE[i]⟶ subE
′

[i], subE
′

[num]

(8) subK[num], subK[i]⟶ subK
′

[i], subK
′
[num]

(9) end for
(10) for ∀ subEi

′ ∈ subI do
(11) subEi

″ � ColorEncryption(subEi
′)

(12) end for
(13) Combine the subblocks subEi

″ to get an Encrypted image E.
(14) Combine subK′ and img sub key to get Image key K.

ALGORITHM 1: Image encryption.

Input: Subblock subI of size w/m × h/m × 3.
Output: Encrypted subblock subE, subblock key subK.

(1) Divide RGB channel of subI⟶ (lr, lg, lb) of size (w/m × h/m)
(2) for i in reversed(range(w/m × h/m)) do
(3) random(0, i)⟶ r⟶ sub img r key[i]

(4) random(0, i)⟶g⟶ sub img g key[i]

(5) random(0, i)⟶ b⟶ sub img b key[i]

(6) lr[r], lr[i]⟶ lr[i], lr[r]
(7) lg[g], lg[i]⟶ lg[i], lg[g]

(8) lb[b], lb[i]⟶ lb[i], lb[b]

(9) end for
(10) (lr, lg, lb) resize and put into RGB channel of subE.
(11) (sub img g key, sub img b key, sub img r key) put into subK.

ALGORITHM 2: Intrablock texture encryption.

Input: Subblock subE
′

[i] of size w/m × h/m × 3.
Output: Encrypted subblock subE

″
[i].

(1) Divide RGB channel of subE
′

[i]⟶ (er, eg, eb) of size (w/m × h/m)
(2) eb

′� (er + i/m × 256/m)%256
(3) er

′� (eg + (i%m) × 256/m)%256
(4) eg

′� (eb + (i/m + i%m) × 128/m)%256
(5) (er

′, eg
′, eb
′) resize and put into RGB channel of subE

″
[i].

ALGORITHM 3: Color encryption.

GlobalBlockIntra-block

Image

color encrypttexture encrypttexture encrypt

Encrypted Image

Figure 2: Image encryption process.
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5. Security Analysis

In this section, we will analyze the security of the proposed
scheme through image security and image feature security.
Algorithm 4 formalizes the desired functionality and leakage
information of this scheme.

5.1. Te Privacy Security of Image Content. We will analyze
the security of the image content in terms of both visual
security and security strength. We encrypt the position and
value of the image with random dislocation and diference
substitution to protect the texture and color information of
the image. A visual comparison of encrypted images of
diferent schemes is shown in Figure 4.

Compared with the original image (a), pixel encryption
within ordered subblocks (c) can protect local information
but still leaks global texture and color information because
the global texture information is not encrypted. Global pixel
encryption (b) and unordered subblock pixel encryption (d)
can protect global texture information better but still leak
global color statistics. Our scheme (e) can better protect
texture and color information. Te more the number of
chunks in our encryption scheme, the better the visual
encryption efect. Te visual efect of diferent numbers of
blocks in our encryption schemes is shown in Figure 5.

Under the COA, the attacker can only obtain E. For an
E ∈ RH×W×3 with m2 subblocks, the security strength for
intrablock RGB channel value alignment is log2 (HW/m2!)3

bits, the security strength for interblock alignment is
log2 m2! bits, and the security strength for RGB channel
value replacement is H × W × 3 × log2 256 bits. Terefore,
the security strength of the encrypted image in our scheme is
(log2 (HW/m2!)3 + log2 m2! + 48HW) bits under the
COA model.

Under the KBA, the attacker can obtain some statis-
tical information about the natural image in addition to E.
Te color values of natural images do not occur uniformly,
and there is a probabilistic distribution of diferences. Our
scheme performs value substitution for the RGB three-
channel values within a subblock. Te value substitution is
closely related to the position of the subblock in which it is
located, which transfers the randomness of the position to
the RGB channel values in the form of diferential rotation
to a certain extent, thus making the color histogram of the
image homogeneous. Te color histogram of the
encrypted image with diferent blocks is shown in
Figure 6.

In terms of visual security and security strength, the
higher the number of blocks, the higher the security of the
image content. However, there is a trade-of between se-
curity, retrieval accuracy, and retrieval efciency in ci-
phertext image retrieval. Te scheme in this paper focuses
more on extracting features directly from encrypted images
for efcient retrieval, thus reducing computational con-
sumption on the user side to support mobile devices and
real-time updated databases.
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Figure 3: Transformer-based feature extraction model.
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5.2. Te Privacy Security of Image Features. In our scheme,
the global histogram of the encrypted images tends to be
average (Figure 6). Due to the deep ftting between the
encryption algorithm and the model, it is difcult for the
untrained model to characterize the encrypted data. How-
ever, the weak interpretability of deep learning makes the
trained transformer model unable to be reversed parsed, so
the attacker cannot learn the connection between histogram
features and retrieval features through encrypted image
retrieval features andmodel reverse. In addition, the attacker
may analyze the correlation between the ciphertext feature

representations, and the feature dimension of ViT-EIR is
768, so the computational complexity required for analysis is
(768!), and the security strength of the feature is
log2(768!)> 512, so the safety strength is greater than
512 bits.

6. Performance Evaluation

In this section, the proposed scheme in this paper is ex-
perimentally evaluated in terms of retrieval accuracy and
efciency. Experiments on the data owner and cloud server

(a) (b) (c) (d) (e)

Figure 4: Visual comparison of encrypted images of diferent schemes. (a)Te original image, (b) the global pixel encrypted image, (c) pixel
encryption within ordered subblocks, (d) unordered subblock pixel encryption, and (e) the scheme proposed in this paper.

(a) (b) (c) (d) (e) (f )

Figure 5: Visual comparison of our encryption scheme with diferent numbers of subblocks. (a)Te original image and (b–f) the encrypted
images in 1, 22, 42, 82, and 162 subblocks, respectively.

(1) Γ. StoreImg (E):
Functionality. Te data owner uploads E to the cloud server.
Leakage. Te total number of images, resolution of each image, and encrypted images E.

(2) Γ. Feature (FE, FEQ):
Functionality. Cloud server extracts FE, FEQ from E,EQ.
Leakage. Encrypted global histogram feature, FE, FEQ, and the similarities between FE, FEQ and the frequent distribution

information of the encrypted global histogram.
(3) Γ. Search (EQ,ER):

Functionality. Query user sends EQ to cloud server and gets ER.
Leakage. EQ,ER.

ALGORITHM 4: Te ideal functionality Γ and all leakage information of the proposed scheme.
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Figure 6: Color histogram comparison of encrypted images with diferent subblocks. (a)Te original image and (b–h) the encrypted images
in 1, 22, 42, 82, 162, 322, and 642 subblocks, respectively.
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side were conducted on a Tesla V100 (32G) GPU, and
experiments on the query user side were conducted on an
Intel i7-7700HQ (2.80GHz) CPU. Te transformer part of
the feature extraction model is fne-tuned using the pre-
training parameters of ViT [27] on the ImageNet dataset.
Te batch size is 64, and the initial learning rate is 0.001. Te
code link will be https://github.com/one-zd/PPIR-DLHVT.

6.1. Datasets and Metrics. Te proposed scheme is experi-
mentally evaluated on the following two mainstream
datasets to facilitate comparison with similar schemes:

Corel 10k [49] consists of 100 categories, each with 100
color images with a resolution of 384× 256 or 256× 384. We
randomly select 20 images from each category as query
images (2000 images in total) and the remaining 8000 images
as database images, respectively.

INRIAHolidays [50] consists of 500 groups of 1491 color
images with image resolutions ranging from 480× 640 to
3888× 2592, with high-resolution images making up the
majority. We select the frst one of each group as the query
image (500 images in total) and the remaining 991 images as
the database images.

Te evaluation metrics are consistent with similar
schemes: the precision evaluation metric on the Corel
dataset is the precision of returning k query results, and the
precision evaluation metric on INRIA Holidays is MAP.Te
steps to calculate MAP include sorting the retrieval results
for each query image, calculating precision and average
precision, and calculating the average precision of all query
images as MAP values. Besides, the efciency evaluation
metrics include encryption time, feature extraction time,
feature matching time, and total retrieval time.

6.2. Experiments on Corel 10k

6.2.1. Retrieval Accuracy. Similar pure image encryption
retrieval schemes evaluated under the Corel 10k dataset are
Xia et al.’s [51] CDCBIR, Xia et al.’s [52] EPCBIR, Qin et al.’s
[22] Har-EIR, and Wang et al.’s [25] TTCBIR. We per-
formed a retrieval accuracy comparison, and the experi-
mental results are shown in Figure 7, where Hist represents
the scheme that uses only global RGB histogram features for
retrieval.

Te retrieval accuracy of our proposed scheme is nearly
40 points higher than the global histogram feature (Hist),
about 42 points higher than MPEG-7 CLD-based EPCBIR
[52], about 30 points higher than MPEG-7 CSD-based
CDCBIR [51], about 11 points higher than SURF and
Harris-based Har-EIR [22], and nearly 5 points higher than
CNN-based TTCBIR [25]. With the increase of Top-k, the
accuracy of our scheme decreases slower than other
schemes. Te retrieval accuracy of our scheme outperforms
existing pure image encryption retrieval schemes that use
local features, global, and CNN features.

Existing CNN and transformer schemes cannot learn
disordered local features to demonstrate the advantage of
disordered local features in this scheme.We further compare
with schemes [25] that use ResNet [53], ViT [27], and

PVTV2 [54] networks to enhance the retrieval after global
histogram features, and the results are shown in Table 2,
where ViT-EIR stands for the proposed methods that ab-
breviate ViT-based encrypted image retrieval.

It can be seen that ViT-EIR outperforms schemes that
directly augment global histogram features using ResNet,
ViT, and PVTV2. In the global histogram feature en-
hancement scheme, the accuracy increases from ResNet18 to
ResNet50 but decreases from ResNet50 to ResNet152. Te
reason is that the global statistical feature dimension is small
and network degradation occurs when the network is too
deep. ViT is about 4 points higher than ResNet, and PVTV2
with multiple feature reuses is 8 points higher than ViT,
indicating that the normal transformer network is stronger
than CNN for global histogram feature mining.Te accuracy
of ViT-EIR is 4 points higher than that of PVTV2, indicating
that the unordered local feature enhancement scheme in this
paper can better characterize the encrypted image than the
global feature enhancement scheme.

In this scheme, the images are divided into subblocks of
the same size without overlapping. When the number of
subblocks increases, the number of local histogram features
increases, the number of pixel points within each subblock
decreases, and the amount of information in the local his-
togram decreases. Comparison of retrieval accuracy for
diferent numbers of blocks of ViT-EIR on Corel 10k is
shown in Table 3 where ViT-EIR-4, ViT-EIR-16, ViT-EIR-
64, and ViT-EIR-256 represent the schemes with the dif-
ferent numbers of blocks proposed in this paper.

As the number of image blocks increases, the number of
unordered local sequences input to the transformer in-
creases, and the amount of information contained in each
sequence decreases. When the number of blocks increases
from 4 to 64, the transformer network can learn more se-
quences, and the best retrieval accuracy is achieved when the
number of blocks in ViT-EIR is 64. However, when there are
256 blocks, the amount of information in each sequence is
very small, which leads to a loss of accuracy.

6.2.2. Retrieval Efciency. Similar pure image encryption
retrieval schemes evaluated on Corel 10k are Xia et al.’s [51]
CDCBIR, Xia et al.’s [52] EPCBIR, Qin et al.’s [22] Har-EIR,
and Wang et al.’s [25] TTCBIR, with which the scheme in
this paper is compared for retrieval efciency, and the results
are shown in Figure 8.

Compared with some schemes using traditional local
features (e.g., CDCBIR [51], EPCBIR [52], and Har-EIR
[22]), our scheme achieves similar single-image search
times. It is worth noting that our scheme extracts feature
directly from encrypted images under cloud servers, without
index generation and construction. Te efciency advantage
of our scheme is more obvious when the database is updated
faster. Compared to TTCBIR [25], which uses a CNNmodel,
the parallel processing of local features of images and the
ViT architecture is more efcient, so the retrieval is more
efcient.

We replace the used CNN and sum transformer to test
the efciency of the global feature enhancement scheme,
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where the time is the total time for 2000 retrievals, and the
results are shown in Figure 9.

Compared to ResNet and ViT networks, ViT-EIR-4 and
ViT-EIR-16 have shorter feature enhancement times. Te
method in this paper increases the complexity of the
transformer as the number of chunks increases, so the
feature extraction time also increases. Te output feature
dimension is the same for diferent chunk number schemes,
so the feature matching time is almost unchanged. Com-
bined with the retrieval accuracy, the ViT-EIR-64 scheme
has the best retrieval accuracy and better retrieval efciency
on Corel 10k.

6.2.3. Feature Visualization. We compared 2D and 3D vi-
sualization of features including global histogram features
(Hist), features enhanced by CNN for global histogram
(CNN), and features enhanced by a transformer for un-
ordered chunked histogram (Our), and the results are shown
in Figure 10.

Hist features of diferent categories are basically clus-
tered together, and it is impossible to distinguish the cat-
egories with better security. Te intraclass distance of CNN-
enhanced features decreases, so the retrieval accuracy is
higher than that of Hist features, but there is an overlap of
features from diferent classes. Our scheme features smaller
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Figure 7: Retrieval accuracy comparison with diferent pure image encryption retrieval schemes on Corel 10k.

Table 2: Retrieval accuracy comparison with global histogram feature enhancement scheme on Corel 10K.

Network
Top-k (precision)

k� 1 k� 5 k� 10 k� 20 k� 40 k� 60 k� 80
ResNet18 0.506 0.478 0.457 0.427 0.384 0.347 0.311
ResNet50 0.518 0.491 0.477 0.456 0.416 0.375 0.332
ResNet101 0.512 0.494 0.473 0.449 0.419 0.393 0.356
ResNet152 0.488 0.487 0.475 0.453 0.420 0.389 0.354
ViT-B 0.555 0.523 0.501 0.474 0.435 0.401 0.368
PVTV2 0.633 0.607 0.594 0.581 0.557 0.533 0.513
ViT-EIR (ours)  .675  .656  .645  .631  .611  .589  .553
Bold values indicate the optimal performance in the comparison scheme.

Table 3: Retrieval accuracy comparison under diferent numbers of blocks of ViT-EIR on Corel 10k.

Number of
blocks

Top-k (precision)
k� 1 k� 5 k� 10 k� 20 k� 40 k� 60 k� 80

ViT-EIR-4 0.584 0.556 0.543 0.521 0.490 0.459 0.421
ViT-EIR-16 0.621 0.596 0.582 0.559 0.527 0.497 0.458
ViT-EIR-64  .675  .656  .645  .631  .611  .589  .553
ViT-EIR-256 0.668 0.643 0.628 0.611 0.586 0.562 0.525
Bold values indicate the optimal performance in the comparison scheme.
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intraclass distances and larger interclass distances and thus
has better retrieval accuracy.

6.3. Experiments on INRIA Holidays

6.3.1. Retrieval Accuracy. Te pure image encryption re-
trieval methods experimented on INRIA Holidays are the
methods of Lu et al. [55], Ferreira et al. [20], Liu et al. [41],
Xia et al. [42], and Xia et al. [19], and our dataset partitioning
is the same as these schemes. However, we did not have
access to the authors’ source code. To ensure fairness, we
only give the retrieval accuracy for reference. Te results are
shown in Table 4.

We compare the proposed scheme with the scheme that
uses ResNet to enhance global features. Te results are
shown in Table 5.

It can be seen that on INRIA Holidays, the accuracy of
our scheme is nearly 10 points higher than that of the

scheme using ResNet-enhanced global features. We also test
the retrieval accuracy under diferent numbers of blocks, and
the results are shown in Table 6.

From 4 to 256 blocks, increasing the number of se-
quences in the transformer improves the retrieval accuracy
as the number of blocks increases. At a block number of 256,
the ViT-EIR scheme has the best retrieval accuracy. When
the number of blocks is 1024, there is too little information
in the local features, which leads to a decreasing trend of
accuracy.

6.3.2. Retrieval Efciency. We test the retrieval efciency of
the proposed scheme. Te results are shown in Figure 11.

On INRIA Holidays, the time consumption of feature
enhancement for ViT-EIR-4 and ViT-EIR-16 is similar to
the global feature enhancement method using ResNet, due
to the former having more subblock sequences and a more
complex transformer section.
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6.4. Time Consumption of Image Encryption. We test en-
cryption time with diferent numbers of blocks and diferent
image resolutions, and the results are shown in Figure 12.

For large-resolution images (2560 × 1920), the en-
cryption time can be shortened by increasing the number
of blocks (when the number of blocks is 256, the

encryption time is nearly 7 seconds shorter than that of
global encryption). For small-resolution images
(384 × 256), the advantage of block encryption is not
obvious. Because the encryption time is too short, com-
puter performance fuctuations mask encryption time
variations.
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Figure 10: Feature visualization of the diferent schemes. (a–c) A 2D visualization plot and (d–f) a 3D visualization plot. (a, d) Te
visualization of Hist features, (b, e) the visualization of CNN features, and (c, f ) the visualization of our features, and the numbers in the
fgure represent the labels of diferent categories.

Table 4: Retrieval accuracy comparison to state-of-the-art schemes on INRIA Holidays.

Scheme Lu et al. [55] Ferreira et al. [20] Liu et al. [41] Xia et al. [42] Xia et al. [19] Our
MAP 0.491 0.504 0.464 0.529 0.515  .578
Bold values indicate the optimal performance in the comparison scheme.

Table 5: Retrieval accuracy comparison with global histogram feature enhancement scheme on INRIA Holidays.

Scheme ResNet18 ResNet50 ResNet101 ResNet150 Our
MAP 0.485 0.408 0.372 0.403  .578
Bold values indicate the optimal performance in the comparison scheme.

Table 6: Retrieval accuracy comparison under diferent numbers of blocks on INRIA Holidays.

Scheme ViT-EIR-4 ViT-EIR-16 ViT-EIR-64 ViT-EIR-256 ViT-EIR-1024
MAP 0.473 0.487 0.495  .578 0.568
Bold values indicate the optimal performance in the comparison scheme.
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7. Conclusion

Tis paper proposes a transformer-based encrypted image
retrieval method for the cloud environment, shifting the
complex computational operations to the cloud by taking
full advantage of the cloud environment. It mainly uses
secure step-by-step encryption to protect the texture and
color information of images and build feature extraction
models based on transformers to learn disordered local
features from encrypted images. Experimental results
demonstrate the superiority of this scheme in terms of re-
trieval accuracy and efciency in realistic real-time update
datasets and lightweight user-side environments.

For future work, we consider expanding the solution
to cross-media encrypted retrieval to better leverage the

value of multimedia data [56]. We will consider more
encrypted retrieval in industrial scenarios such as IoT and
sensors to improve the conversion rate of industry-
academia research.
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