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Data-hunger is a persistent challenge in machine learning, particularly in the feld of image processing based on convolutional
neural networks (CNNs). Tis study systematically investigates the factors contributing to data-hunger in machine-learning-
based image-processing algorithms. Te results revealed that the proliferation of model parameters, the lack of interpretability,
and the complexity of model structure are signifcant factors infuencing data-hunger. Based on these fndings, this paper
introduces a novel semi-white-box neural network model construction strategy. Tis approach efectively reduces the number of
model parameters while enhancing the interpretability of model components. It accomplishes this by constraining uninterpretable
processes within the model and leveraging prior knowledge of image processing for model. Rather than relying on a single all-
in-one model, a semi-white-box model is composed of multiple smaller models, each responsible for extracting fundamental
semantic features. Te fnal output is derived from these features and prior knowledge. Te proposed strategy holds the potential
to substantially decrease data requirements under specifc data source conditions while improving the interpretability of model
components. Validation experiments are conducted on well-established datasets, includingMNIST, Fashion MNIST, CIFAR, and
generated data. Te results demonstrate the superiority of the semi-white-box strategy over the traditional all-in-one approach in
terms of accuracy when trained with equivalent data volumes. Impressively, on the tested datasets, a simplifed semi-white-box
model achieves performance close to that of ResNet while utilizing a small number of parameters. Furthermore, the semi-
white-box strategy ofers improved interpretability and parameter reusability features that are challenging to achieve with the all-
in-one approach. In conclusion, this paper contributes to mitigating data-hunger challenges in machine-learning-based image
processing through the introduction of a novel semi-white-box model construction strategy, backed by empirical evidence of its
efectiveness.

1. Introduction

In the ever-evolving landscape of machine learning, the past
decade has witnessed an exhilarating pace of development.
Among the remarkable milestones achieved during this
period, the widespread adoption of convolutional neural
networks (CNNs) for diverse image-processing tasks stands
as a testament to the transformative power of these tech-
niques. Tese methods, when applied to image problems
with well-defned requirements and ample data, have
demonstrated their prowess in crafting efcacious models.

However, beneath this facade of simplicity lies a complex
dichotomy—the data that fuels machine learning is both its
lifeblood and weak link.

In practice, it is highly difcult to obtain sufcient valid
data due to the difculty associated with obtaining high-
quality original data and the high cost of labeling. Moreover,
it is imperative to acknowledge the hunger for data exhibited
by machine learning methodologies, especially neural net-
works. Tis always leads to problems of overftting and poor
model performances in common practical applications
[1–3].
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For example, the ImageNet image classifcation dataset
includes 1,281,167 training images and 1000 labeled se-
mantic categories [4]. Despite its vast scale, it remains in-
sufcient to encompass the myriad of scenarios encountered
in real-world applications. Tis data-hunger extends beyond
image processing into other domains, such as natural lan-
guage processing, where models such as GPT-3 require
billions of training data, each incurring signifcant com-
putational overhead [5].

Terefore, it is critical to inhibit the data-hunger ten-
dencies of machine learning algorithms. Tis study was
focused on the abovementioned issue within the context of
image processing and CNNs.

Existing research on the problem of data-hunger is
conducted mainly with respect to two aspects: the data side
and the model side. Te underlying principle of the data side
approach is to augment a dataset. Basic data augmentation
methods expand dataset size through geometric changes
such as rotation, stretching, and fipping [6, 7].

Te advent of generative adversarial networks (GANs)
[8], introduced by Ian et al. in 2014, has opened new avenues
for data augmentation [9, 10]. GANs, comprised of gen-
erative and discriminator networks, generate pseudoimages
that gradually approach reality through iterative refnement.
Te pseudoimages generated by GAN are considered to be
the exploration of existing image information instead of
meaningless noise information. Terefore, these pseu-
doimages ofer realism surpassing geometric trans-
formations. However, while data generation potential is
evident, it fails to alleviate the computational overhead
associated with training. Up to now, research related to
GANs remains active, but it primarily focuses on improving
generative quality rather than reducing computational
burden [10–12].

Among model-side solutions, the most efective appli-
cation is parameter transfer, which is widely used in natural
image processing and medical image-processing research
[13–17].Tis technique initializes untrained neural networks
by transplanting parameters from related networks. Tis
cooperates with fxed training epochs to reduce the possible
state space of the model and data requirements. However,
parameter transfer faces limitations, such as necessitating
identical network structures and the lack of parameter in-
terpretability, restricting its broad applicability.

Tis study takes a diferent approach by investigating the
data-hunger issue from the model side. It reevaluates the
commonly attributed cause, recognizing that data-hunger is
not intrinsically tied to the statistical nature of machine
learning. In fact, for single-parameter statistical estimation,
an increase in the amount of data has a diminishing efect on
the improvement of the estimation accuracy [18]. In the case
of uniform sampling, the estimates of 1,000 samples and
10,000 samples generally difer only in the fnal few efective
numbers. Terefore, in the case of certain accuracy re-
quirements, the minimum data requirements for single-
parameter estimates do not increase indefnitely.

Drawing upon possible approximate correct (PAC)
learning theory, initially proposed by Valiant in 1984 [19],
this study unveils the positive correlation between the

minimum required sample size for training and the model’s
possible state space [20, 21]. Based on the PAC learning
theory, as the number of model parameters escalates, the
possible state space of the model expands signifcantly.
Consequently, the minimum number of samples required to
train a model is positively related to the size of the possible
state space of the model. Tis revelation identifes the
proliferation of model parameters as the core driver of data-
hunger. Despite recent trends favoring the construction of
complex monolithic end-to-end neural networks [22–24],
this study challenges the wisdom of structuring such in-
tricate models all-in-one frameworks, advocating for a more
data-efcient paradigm.

Te conventional all-in-one framework restricts trained
models to specifc scenarios, necessitating retraining for
minor changes in tasks or scenes. Additionally, it isolates
human-refned image-processing knowledge from the
model’s behavior, especially in high-order semantic
domains.

To address these challenges, this study introduces a novel
semi-white-box network construction strategy. Te primary
contributions of this paper are as follows:

(1) A PAC-based theoretical argument of this strategy
was performed. Teoretical analyses reveal that the
networks split at the semantic level demand a smaller
minimum sample size compared to the all-in-one
model when the data conform to hypothesized
distributions.

(2) Introduction of a strategy called the “semi-white-box
strategy” for constructing networks based on se-
mantic decomposition. Tis strategy achieves efects
that are difcult to attain with an all-in-one ap-
proach, especially in scenarios with limited available
data and smaller model scales.

(3) Implementation of instances of the semi-white-box
strategy and validation on bothMonte Carlo datasets
and real datasets, including MNIST, Fashion
MNIST, and CIFAR-10. Te results demonstrate the
superiority of this approach, particularly in scenarios
where data are scarce. Furthermore, the interface
developed using the semi-white-box strategy enables
modular separation and reuse of model components.

2. Related Works

In model-based approaches targeting the data-hunger issue,
network parameter transfer is widely adopted. Tis method
assumes similarity between optimal model parameters for
related problems, initializing the network model for the
target problem with parameters from a model pretrained on
other datasets [3, 16, 17]. However, this method becomes
inapplicable when suitable approximate datasets for transfer
are scarce. Tis presents a signifcant limitation in practical
applications, as diverse real-world scenarios might lack
appropriate datasets for pretraining. Moreover, parameter
transfer methods only modify network parameters without
altering the network’s structure, thereby failing to alleviate
data-hunger problems resulting from parameter bloating.
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Pruning techniques were initially employed in decision
tree models and later extended to neural network models
[25]. Trough appropriate pruning, the computational
structures of neural networks are streamlined, enabling
them to eliminate the infuence of redundant parameters
and enhance their generalization performance [26, 27].
However, due to current limitations in neural network
computation methods, pruning methods require trained
models.

Terefore, while pruned models exhibit improved gen-
eralization, the initial network model before pruning still
necessitates a considerable amount of data for training. In
other words, when data scarcity is not severe, pruning
techniques can mitigate overftting and enhance model
generalization. Yet, in scenarios with extremely limited
available data, training the networks before pruning becomes
challenging, resulting in less-than-ideal pruning outcomes.

In systematic research regarding the dissection and re-
construction of neural network model internal structures,
split learning has emerged as a recent focus. Tese tech-
niques involve disassembling all-in-one neural network
models into several modules, each possessing varying de-
grees of independence [28–31]. Tese split modules can
operate on diferent computing devices and communicate
with each other via data links. Tis approach is meaningful
for enhancing training efciency and fostering an un-
derstanding of neural network structures. However, current
research primarily focuses on distributed computing; hence,
these methods are not particularly efective in addressing
data-hunger issues.

Additionally, directly and manually simplifying network
model structures may also reduce the network’s data re-
quirements. Such attempts are often observed in network
practice. However, due to the noninterpretable nature of
neural networks and the lack of a unifed theoretical analysis
method, the efects of directly and manually simplifying
existing network structures are often unpredictable.
Terefore, this paper uses several classic neural network
structures to represent this type of method in Section 4.

Among these methods, transfer learning relies on ap-
proximate datasets and hence lacks comparability with other
methods. Te comparison of characteristics between the
remaining methods and the semi-white-box strategy is
shown in Table 1.

As shown in Table 1, the semi-white-box strategy can
reduce data requirements while improving training and
runtime efciency. Additionally, as the semi-white-box
strategy decomposes semantic labels, each of its components
can operate independently from the whole, thereby pos-
sessing a certain degree of interpretability.

3. The Semi-White-Box Strategy and
Theoretical Analysis

3.1. Te Semi-White-Box Neural Network Construction
Strategy. A digital image is the result of discretely sampling
the light projected onto a plane. While the potential state
space of a discretized pixel matrix is vast, only a small

portion of it can be decoded by the human visual system.Te
remaining portion is essentially noise devoid of specifc
semantics [32].

In current image-processing and computational vision
research, there is a general consensus that the human visual
system consists of multilayer convolutional structures.
Convolutional neural networks (CNNs) can achieve ade-
quate results in the feld of image processing due to their
structural similarities to the human visual system.

In studies with well-defned objectives, all-in-one end-
to-end CNNs are often employed as the exclusive model.
However, these networks are sometimes expected to directly
generate interpretable results using highly complex semantic
information, which can be an overestimation of their ca-
pabilities. To draw a comparison, it is assumed that a con-
volutional network can process visual information as
comprehensively as the human visual system. While human
vision is innate, comprehending abstract concepts necessi-
tates a prolonged learning process. Te transition from
specifc images to intricate semantic labels demands a har-
monious synergy between these two capacities. Conse-
quently, the all-in-one end-to-end CNN is tasked with both
visual processing and semantic inference in such scenarios.
Nevertheless, for the latter task, CNNsmay not always be the
optimal choice. Furthermore, due to a lack of in-
terpretability, CNNs cannot utilize existing formal knowl-
edge bases or generate interpretable formal knowledge in
semantic inference tasks.

Hence, the approach in this study is to decompose the
image-processing task of generating semantic labels into two
distinct phases, as follows. Te frst phase involves visual
feature extraction, and the second phase centers on semantic
inference to ascertain the semantic labels. To bridge these
phases, we introduce a set of semantic features denoted asH,
where H� hi and i� 1...k. Figure 1 illustrates a schematic of
the semi-white box strategy model.

It is important to note that H does not represent
a specifc vision feature but encompasses a collection of
visual features that resist further decomposition and are
readily discernible.Tese features include attributes such as
surface texture, boundary clarity, texture complexity, color
bias, texture directionality, and more. Fully enumerating
the composition of H within a visual scene is a formidable
task; however, prior research in computational vision has
identifed some features. Tis study, which focuses on the
semi-white-box strategy, refrains from explicitly listing the
constituents of H in the theoretical section. Suppose that H
satisfes the following requirements:

(1) Each hi ∈H should represent an intuitive visual
feature that does not rely on semantic inferences. For
example, “fufy” is a more suitable feature than “cat.”

(2) hi ∈H should be distinguishable by human vision,
rejecting statistical diferences that are imperceptible
to the human eye, such as higher-order moments. If
CNNs demonstrate potential comparable to human
vision, this implies the existence of a suitable con-
volutional network for extracting hi.
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(3) hi ∈H should align with the vocabulary of existing
knowledge bases, ensuring the interpretability of
results.

(4) Te features within H should be orthogonal and
maximally independent of one another, reducing
redundancy within the feature set.

In the feature extraction phase, a feature extractor fi

was designed for each feature hi ∈H. Notably, when
nonneural network methods are available, they can be
utilized. However, given the strong feature extraction ca-
pabilities of neural networks and the complexity of their
visual features, neural networks often serve as feature
extractors. Given that each fi uses hi as a training target,
even if fi is not internally interpretable, its external output
is interpretable. In cases where neural networks are
employed as fi, data labeling is necessary for each neural
network. Nevertheless, as detailed in Section 3.2, the data
labeling requirements are signifcantly reduced compared
to those of all-in-one neural networks. Furthermore, these
feature extractors, with externally interpretable outputs,
can be reused for various tasks.

Semantic inference leverages the features provided by
the feature extractor set F (fi ∈ F), to derive the fnal se-
mantic label. In this study, to enable interaction with
a formal knowledge base, we employ the formal logic
method to facilitate this function. Tis necessitates
a knowledge base expressed in a formal language as
a foundation. Te inference process takes the formalized
knowledge and the extracted image semantic features as

premises, drawing conclusions through propositional logic
inference. In cases where no suitable knowledge base is
available, this stage can be substituted with ftting a statistical
decision model using methods like decision trees. In the
experiments conducted in this study, the fnal output is
attained through logical operations guided by prior
knowledge and informed by feature vectors extracted by the
feature extractors.

Te diference in the construction process of the all-
in-one model and the semi-white-box model is visually
depicted in Figure 2.

Te semi-white-box strategy does not build an end-
to-end convolutional neural network to directly complete
the image classifcation. Instead, it initiates the process by
conducting a semantic analysis of the classifcation labels
pertinent to the images. Tis initial step aims to discern
whether these labels can be decomposed as several funda-
mental and simpler concepts.

In cases where the desired classifcation labels indeed
emerge from a combination of relatively basic concepts, the
subsequent task is to delineate the constituents of this
foundational concept set. Tis involves identifying the
specifc members of the set denoted as H tailored to the
problem at hand. Following this, the strategy leverages se-
mantic inferences between these conceptual elements to
establish a mapping function linking the set H to the desired
classifcation labels. Tis process is done by humans based
on prior knowledge. At the same time, this process is also
a process in which prior knowledge exerts an infuence on
the model and reduces the uninterpretable part.

Input Images

Feature
Extactors

Interface Feature
Vectors

1 1 0

0 1 1

1 1 0

1 0 0

4 5 0

Uninterpretable 

f1

f2

f3

f4

h4 vector
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h2vector
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Interpretable

Semantic
Inference

Predicted Labels

Figure 1: Te schematic of the semi-white-box strategy model.

Table 1: Comparison of characteristics between semi-white-box and related methods.

Method Data demand Training efciency Runtime efciency Interpretability
Network pruning Reduced No efect Improved No
Split learning No efect Improved No efect No
Manually simplifying Not guaranteed Not guaranteed Not guaranteed Not guaranteed
Semi-white-box Reduced Improved Improved Partial
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To illustrate, consider the common knowledge shared by
human data labelers regarding the signifcant similarities
between handwritten “9” and “6.” While this knowledge
readily informs human labeling, it becomes concealed within
a fully black-box neural network model. In such cases, the
trainers of the model must adopt an artifcial stance of ig-
norance concerning prior knowledge related to the simi-
larities of handwritten digits.

Te semi-white-box strategy reuses these concealed prior
knowledge by representing them as logical judgment con-
ditions. As elaborated in Section 3.4, the strategy de-
composes the classifcation of handwritten digits into stroke
characteristics rooted in prior knowledge.

Tis transformative approach reframes the overarching
task of recognizing handwritten digits as a collection of
subtasks focused on identifying fundamental stroke features.
For each of these converted features denoted as hi ∈H,
dedicated statistical models are subsequently constructed for
feature extraction. From a perspective that considers the
number of potential states and entropy, this approach yields
a composite feature extractor system for each hi in H that is
notably less complex than the all-in-one model used prior to
the transformation, as expounded upon in Section 3.2.

3.2. Entropy and Sample Complexity Analysis. To analyze the
process from images to semantic labels, it is frst assumed
that mapping can be established from semantic labels to
images. Notably, graphic rendering is actually part of the
inverse mapping. Let Hs represent the set of semantic fea-
tures to be conveyed by an image, consisting of natural
language-based semantic features. Tese features may
comprise connotative nouns (e.g., “cat”) or abstract concepts
(e.g., “chasing”). Concurrently, there exists another set of
features denoted as H, with a known or relatively
straightforward mapping relationship toHs. Furthermore,H
and Hs may be interlinked through semantic inferences.
Consequently, the mapping from Hs to an image can be

viewed as a composition of the mapping from Hs to H and
the mapping from H to an image.

In this system, all possible mappings from Hs to images
constitute a space, with its entropy, denoted as Et, calculated
based on the number of system’s possible states. Te
mappings from Hs to H and from H to images create their
respective spaces, each with entropies represented as Es1
and Es2.

Considering that all possible states are equally likely,
according to the entropy calculation (1), entropy is solely
determined by the number of basic events, as shown in (2).

E � − 􏽘
i�n

i�1
pilog2pi, (1)

E � − 􏽘
i�n

i�1

1
n
log2

1
n

. (2)

According to the power set theorem, the number of all
possible mappings from set A to set B in a fnite context
depends solely on the number of elements in sets A and B.
Tis relationship can be expressed using the following
equation:

Card fA⟶B( 􏼁 � Card(B)
Card(A)

, (3)

where Card denotes the calculation of the number of set
elements, while fA⟶B signifes the set comprising all
mappings from A to B.

Assuming that the total number of images in the
problem domain is nImage, the overall number of potential
mappings from Hs to H is determined by (4), and the total
number of possible mappings from H to images is de-
termined by (5). Te combined total number of all possible
mappings in the two stages is defned by (6). Tis represents
the possible state space of the entire semi-white-box strategy
model, with the model’s training process involving the
search for an optimal solution within this space.

Label: 8

1. Determine label

Label: 8

1. Determine label

2. Build a complex network

3. Build multiple simple networks

3. Train the network

4. Train the networks

Symmetry

Cross

Circles

Label: 8

2. Decompose semantic label

Label: 8
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Circles

logic
operation 
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Cross

All-in-one
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Figure 2: Comparison of all-in-one model and semi-white-box model construction process.
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Card fHs→H􏼐 􏼑 � Card(H)
Card Hs( ), (4)

Card fH→Image􏼐 􏼑 � Card nImage􏼐 􏼑
Card(H)

, (5)

ns1s2 � Card(H)
Card Hs( )

× Card nImage􏼐 􏼑
Card(H)

.
(6)

For the all-in-one model, given that Card (H) is itself an
adjustable parameter, the model’s state space is described by
the following equation:

nt � 􏽘
i�M

i�1
i
Card Hs( ) × Card nImage􏼐 􏼑

i
, (7)

where M is the model hyperparameter, which is generally set
to be much larger than Card (H) to ensure successful model
training. Usually, M is not set explicitly but is afected by
modifying the width and depth of the model. Te entropy of
the possible state space for the all-in-onemodel is expressed by
(8), while for the semi-white-box strategy, it is denoted as (9).

Et � − 􏽘

i�nt

i�1

1
nt

log2
1
nt

, (8)

Es1 + Es2 � − 􏽘

i�ns1s2

i�1

1
ns1s2

log2
1

ns1s2
. (9)

Given that nt ≥ ns1s2, the relationship between these three
entropies is expressed by (10). Tese signify that the semi-
white-box strategy has a lower entropy than the all-in-one
neural network. Te inequality takes an equal sign when the
semantic relations between Hs and H do not constrain the
space formed by mappings between Hs and the image, and
the hyperparameter settings of the all-in-one model are
exceptionally reasonable. Tis extreme case suggests that
high-level semantic features in the image-processing
problem cannot be dissected into lower-level semantic
features, making texture analysis and pattern recognition
unfeasible.Tis contradicts the general consensus in the feld
of image-processing research, resulting in the greater-than
sign in the following equation:

Et ≥Es1 + Es2. (10)

If a knowledge base can be established detailing the
semantic relations between Hs and H, the mapping from Hs

to H becomes entirely certain rendering Es2 � 0. In this
scenario, the semi-white-box strategy aims to train the in-
verse mapping from H to images, whereas the all-in-one
neural network targets the inverse of the mapping from Hs

to images. As a result, the entropy of the problem addressed
by the semi-white-box strategy is lower than that of an all-
in-one neural network, implying a smaller parameter search
space and facilitating the acquisition of numerical solutions.

Te above analysis represents an entropy-based exam-
ination of the problem domain. Drawing on PAC theory, the
sample complexity of the two strategies can be compared.
Sample complexity refers to the minimum amount of data
required for model training, and when a hypothesis class is
PAC-learnable, its sample complexity is depicted in the
following equation [21]:

S �
log(2|H|/δ)

2ϵ2
, (11)

where |H| denotes the VC dimension of the hypothesis class,
ϵ signifes accuracy, and δ represents confdence.

Te VC dimension of a neural network is typically
expressed as S (Nlog (N)) [21], with N representing the
number of connections within the network, leading to the
following equation:

S �
log(2O(N log(N))/δ)

2ϵ2
, (12)

where ϵ and δ are constants when the accuracy and confdence
requirements are determined. When assuming that the con-
structed neural network’s complexity matches that of the
problem, the number of connections in the all-in-one strategy
model is Nt. In contrast, the semi-white-box strategy con-
structs k networks for extracting k features, with the number of
connections in these k networks being represented as
Ns1,...,Nsk. Since the k features are orthogonal and in-
dependent, there is no need to develop separate datasets for
each subnetwork. Instead, the same fully labeled data can be
reused for training diferent subnetworks, as detailed in Sec-
tions 3.3 and 3.4. If Nsmax �max (Ns1,...,Nsk), the sample
complexity of the semi-white-box strategy is solely related to
Nsmax.

Given that each feature in the semi-white-box strategy
constitutes only a portion of the fnal output semantics, the
complexity of each subnetwork is lower than that of the all-
in-one neural network. Tis leads to the following equation:

Nt ≥Nsmax. (13)

Te equality sign holds when the fnal output semantic
label is equivalent to a feature in H, rendering the other
feature extractors redundant. As the dependency distribu-
tion of the fnal output semantic label on each feature ex-
tractor becomes more uniform, the gap between Nt and
Nsmax increases. Let St represent the sample complexity of
the all-in-one strategy and Ss denote the sample complexity
of the semi-white-box strategy. Substituting (13) into (12)
results in the following equation:

St ≥ Ss. (14)

Hence, under specifc accuracy and confdence re-
quirements, the sample complexity of the semi-white-box
strategy is no greater than that of the all-in-one strategy.
When feature setH aligns with the assumption of orthogonal
independence, and the fnal output semantic labels exhibit
uniform dependence on the features in H, the sample
complexity of the semi-white-box strategy is less than that of
the all-in-one model.
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3.3. Monte Carlo Test Design. To verify the feasibility of the
semi-white-box strategy and test its specifc performance,
a Monte Carlo test experiment was designed in this study. In
this experiment design, to ensure that the image data ad-
hered to the premise, all the image data were randomly
generated. Additionally, to mitigate any subjective bias
stemming from the manual specifcation of image charac-
teristics, all image generators were randomly generated.
Consequently, the experimental data in this study can be
characterized as a type of “second-order” random data.

Te image generation process, as depicted in Figure 3,
was bifurcated into two distinct processes, in accordance
with the assumptions detailed in Section 3.1.

In the frst process, feature maps were generated using
a set of feature generators corresponding to the semantic
feature interface H.

Te second process involved the fusion of the feature
maps from the previous stage into a single composite image.
To mitigate the inclusion of a multitude of random pixel
maps signifcantly deviating from the natural image distri-
bution in the generated results, both the feature generator
and the fusion device were designed with a CNN structure.
Because the consensus in the feld is that convolution aligns
more closely with human visual processing. Moreover,
CNN-based image generation algorithms have witnessed
notable advancements in recent years.

In this study, all feature and fused images were stan-
dardized as squares with dimensions of 32 pixels in length
and width. Each feature map generation network consisted
of a two-layer fully connected network and a two-layer
convolutional network, producing a feature map based on
a random foating-point number.

Given that a completely randomly initialized feature
generator cannot guarantee reversibility as expressed in (15),
certain restrictions were imposed on the random selection of
generator parameters. Specifcally, a feature decoder was
constructed with a structural complexity akin to that of the
feature generator, forming an autoencoding structure paired
with the feature generator for training. Tis ensured that all
random feature generators had at least one numerical so-
lution for the inverse function.

∃h-1 h
− 1

(h(x)) � x􏼐 􏼑. (15)

Te input and output of the fusion network were both
images; therefore, they were composed entirely of con-
volutional layers. After undergoing autoencoding via two
downsampling layers and two upsampling layers, the fusion
network amalgamated multiple feature maps into a single
image. Similarly, to guarantee the reversibility of the fusion
network, a decoding network was constructed corre-
sponding to the fusion network for training.

During the generation of experimental data, a set of
feature maps was initially created by the feature generation
network. Tese feature maps were subsequently fused by the
fusion network. Importantly, the semantic label corre-
sponding to each image could be directly derived based on the
random foating-point number input to the network. While
these generated data may lack clear semantics from a human

perspective, their distribution closely mirrors that of natural
images. At the same time, the numbers of feature generators
and fusion networks were saved as prior knowledge for se-
mantic label decomposing during semi-white-box model
building. Tis is a simulation of the situation in which a part
of the prior knowledge is known in the real-world scene, but
the entire image-processing process cannot be completely
processed by the analytical method. In contrast to the
challenge of obtaining labeled natural images, such synthetic
datasets can be generated in substantial quantities and serve as
excellent materials for experimental verifcation.

After generating the images, each image was assigned
a classifcation label based on the random values used to
generate it.Tese random values were foating-point numbers
ranging from 0 to 1. Tey were divided into two categories
based on whether they were greater than or equal to 0.5.
Terefore, an image generated by a random feature generator
could have one of two labels. Te diferences between images
assigned to the same label, which resulted from slight vari-
ations in the randomly generated values used to create them,
were considered random noise. When multiple features were
combined, the number of label categories exponentially in-
creased. If an image was generated by fusing feature maps
from k feature generators, it could have 2 kpossible labels.Tis
label generation process ensured that the ultimate semantic
label matching the image was derived from a set of features,
denoted as H, through logical operations. However, at the
image level, the fnal generated image data were not obtained
through simple arithmetic and logical operations on a few
feature maps but rather through a randomly generated
function with complexity equivalent to several layers of a fully
convolutional neural network. Tis dataset efectively simu-
lated real-world scenarios where the semantics of images
could be subjected to relatively clear logical operations, but
the corresponding images themselves could not be processed
through simple arithmetic and logical operations.

In ftting the dataset described above, the all-in-one
model is directly trained on the generated images as inputs
and the generated labels as outputs. Te entire process of
extracting features from image features, performing oper-
ations between semantic features, and obtaining the fnal
label was completed within a relatively complex network.
While this led to heightened network complexity, as elab-
orated in Section 3.2, it also hindered the efective utilization
of semantic prior knowledge within the network due to the
uninterpretability of neural network parameters.

In contrast, the semi-white-box model initially decom-
posed the classifcation labels based on semantic prior
knowledge, breaking down a single numeric identifer into
a logical combination of several feature values. Ten, rela-
tively simple and independent networks were constructed for
each feature.Tese networks could have similar structures but
did not share parameters because they had diferent feature
extraction tasks. Troughout model training, these sub-
networks were not trained directly on the fnal label. Instead,
the fnal labels were transformed into feature labels for each
subnetwork through logical operations based on semantic
inference relationships. When using the model for inference,
image features were frst extracted separately using the
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subnetworks, and then the fnal output label was obtained
through logical operations on the feature values based on
semantic inference relationships.

Since the training processes of the subnetworks in the
semi-white-boxmodel were independent, the semi-white-box
model had some additional advantages during tuning. In
practice, to obtain well-performing models, multiple training
runs were often performed, and the best results were applied.
For an all-in-one model, due to the high coupling of its
internal parameters, if the overall performance was poor, the
entire model had to be discarded. However, the subnetworks
in the semi-white-box model were not interdependent.
Terefore, several semi-white-box models with poor overall
performance could be disassembled and recombined to create
a new model with better overall performance. Te imple-
mentation was straightforward—replacing a poorly per-
forming subnetwork in one semi-white-box model with
a better-performing subnetwork from another model as long
as their corresponding features were the same.

To assess the performance of these strategies, we com-
pared the training efects of these model sets using varying
amounts of data. Detailed results and analysis are presented
in Section 4.

3.4. Real Image Data Test. To investigate the impact of the
semi-white-box strategy on real-world image-processing
datasets, validation experiments were conducted using the
MNIST [33], Fashion MNIST [34], and CIFAR-10 [35].
Tese datasets are commonly employed in the feld of
image processing to assess the practical efcacy of novel
strategies.

In scenarios with ample training data, traditional all-
in-one models can achieve an accuracy exceeding 0.9 on
these datasets. However, when the quantity of training data
is limited, the performance of all-in-one models signifcantly
deteriorates. In real-world applications, many problem
domains often have access to only a small amount of high-
quality labeled data, making it challenging to construct
datasets on the scale of MNIST. Terefore, in the experi-
ments conducted in this study, a small random subset of the
aforementioned datasets was selected for model training to
compare the performance of all-in-one models and semi-
white-box models under conditions of relatively scarce
training data.

Te main diference between establishing semi-white--
box models for real-world datasets and for generated data
lies in the semantic decomposition of labels. Each specifc
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real-world application comes with its unique prior knowl-
edge, necessitating research to determine the label de-
composition tailored to each application scenario.

Taking theMNISTdataset as an example, it contains data
with 10 distinct labels. Since 23 < 10< 24, a minimum of four
orthogonal and independent features must be selected to
cover all classifcation labels.

In this study, previous research on handwritten char-
acter recognition was referred to. Crosses, approximate
center symmetry, sharp corners, and vertical lines were
utilized as interface features. Examples of these four features
are depicted in Figure 4. Crosses, sharp corners, and vertical
lines can be extracted through pixel convolution and
neighborhood analysis, making them readily accessible via
convolutional networks (in the CIFAR-10 dataset, the
original ten classifcations have been decomposed into ar-
tifcial, presence on land, relative size, and fur texture).
Although approximate center symmetry exhibits a degree of
globality, it can be obtained using a combination of con-
volutional and fully connected networks. Four neural net-
works were constructed, each dedicated to extracting one of
these four features. During the training phase, these net-
works were trained using images and transformed labels. For
example, knowing that a picture represents the handwritten
number 0 implies that the picture exhibits features such as
approximate center symmetry, the absence of a cross, sharp
corners, and vertical lines. Trough this process, the nec-
essary label data for training the feature extractors can be
inversely deduced using existing high-level semantic labels.
During the inference phase, the fnal label is obtained by
performing logical operations on the outputs of the four
networks. Similar semi-white-box experiments on other
datasets were conducted using analogous methods. As
shown in the experimental results in Section 4, the semantic
decomposition of labels for real datasets in this study is
a feasible solution, but it is not the only one and may not be
the optimal one. Exploring more suitable methods for se-
mantic decomposition is a broader topic that goes beyond
the scope of this paper.

It is important to note that feature extractors for features
within the H do not necessarily always need to be con-
structed and trained from scratch. If a feature already has
a clear white-box extraction method or an established
model, it can be directly used to replace the corresponding
subnetwork in the semi-white-box model.

 . Experiments and Results

4.1. Experiment Introduction. In this study, VGG [36],
ResNet [37], EfcientNet [38], EfcientNet V2 [39], ViT
[40], and Swin [41] were chosen as representatives of the all-
in-one models. Tey have been thoroughly tested in the feld
of image processing and are considered highly representa-
tive. Additionally, to compare the efect of pruning methods
on the performance of the all-in-one model, the latest Torch
Pruning [26] was used to prune the best-performing ResNet
model from the aforementioned models. Te pruned ResNet
model was included as a comparative item in the experi-
mental results.

In contrast, the semi-white-box models consisted of four
subnetworks for feature extraction, with each subnetwork
being a simple neural network composed of three con-
volutional layers and two fully connected layers. Te key
diference lies in the semantic inference relationships be-
tween features and the fnal labels in diferent experimental
scenarios. Additionally, to demonstrate the disassembly and
reassembly capabilities of the semi-white-box model as
introduced in Section 3.3, some experimental results will
present two sets of semi-white-box models: one showcasing
performance without recombination and the other high-
lighting the performance of the optimally recombined
models. Since the all-in-one model lacks recombination
capabilities, there are no corresponding recombined
model data.

Te experimental framework for this study was imple-
mented using Python and PyTorch. Hardware acceleration
was achieved using an NVIDIA GTX 1060 graphics card.
Consequently, the algorithms employed in this study did not
require extensive memory space.

Te experimental code demo for this paper is available at
https://github.com/ZhiZe-ZG/IDT-Open-Source.

Te fundamental characteristics of the experimental
models are presented in Figures 5 and 6. Here, model size
refers to the size of the model parameter fle, measured in
kibibytes (KiB), while training speed indicates the number of
batches trained per second in the experimental environment
with a batch size of 10. As observed from the data in the
table, the semi-white-box models employed in the experi-
ments are relatively smaller in size and exhibit faster training
speeds.

4.2. Data Generation. Data generation played a pivotal role
in the Monte Carlo testing conducted in this study. Un-
derpinning this investigation was the premise that if the

Cross

Approximate Center Symmetry

Sharp Corner

Vertical Line

Figure 4: Features used in MNIST dataset test. Red markers
represent key points of features. In the approximate center sym-
metry row, the marks indicate the centers of symmetry.
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assumptions in the image-processing feld concerning the
relationship between human vision and convolutional
neural networks (CNNs) hold true, then the space com-
prising images generated by reversible convolutional net-
work generators encompasses the information most likely to
be recognized by human vision. Within the realm of natural
images, it can be inferred that the space encompassing all
visually recognizable image patterns with well-defned se-
mantics should be a subset of this larger space. In theory, this

approach holds the potential to produce images akin to those
captured in real-world scenarios. Nevertheless, due to the
vast expanse of this space, the likelihood of randomly
training the reversible feature generator to produce image
patterns with explicit semantics remains considerably low.

Figure 7 showcases a collection of randomly generated
feature maps derived from a reversible random feature map
generator. Tese images exhibit various distinctions, yet
they can be broadly categorized into two or three groups

1

10

100

1000

10000

100000

1000000

VGG ResNet EfficientNet EfficientNet V2 ViT Swin Semi-white-box

Figure 5: Comparison of model parameter sizes. Model sizes refer to the sizes of themodel parameter fles, measured in kibibytes (KiB). Due
to the vast diferences in magnitudes, logarithmic scales are used for the vertical axis here.
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Figure 6: Comparison of model training speeds.Te training speed indicates the number of batches trained per second in the experimental
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corresponding to diferent values of the same feature.
Minor divergences among the samples signify random
perturbations. As illustrated in Figure 8, notable stylistic
variations are evident among the feature maps generated by
diferent feature generators.

Figure 8 presents the infuence of the reversible feature
fusion. Tis process seamlessly melds multiple feature maps
into a single image, and the information contained within
each feature map is preserved to an extraordinary degree in
the resulting composite image. Conceptually, this simulated
the process of light propagation by mixing various object
information into a fat image of a natural scene. Te fusion
mechanism intrinsic to the actual process of generating
natural images theoretically resides within the expansive
space shaped by these reversible fusions. Tis fgure illus-
trates a four-feature fusion scenario.Te frst through fourth
rows depict the feature maps generated by four distinct
feature generators. Te ffth row showcases the composite
image resulting from the fusion process. Finally, the last four
rows present the four feature channels, each of which has
been decomposed using the inverse function of fusion.

4.3. Monte Carlo Test Result. In this study, 25 sets of four-
feature fusion and corresponding feature generators were
generated. Tis essentially amounts to conducting experi-
ments on 25 diferent distributions of datasets. Due to the
stochastic nature of parameter initialization, neural net-
works may converge to local optima or fail to converge
during training. Consequently, it is practical to repeat the
training process multiple times to obtain an optimal model.
Terefore, considering the extreme values of accuracy rates
across multiple training cycles can provide a more accurate
refection of the model’s performance in practical applica-
tions. Te average results from these 25 experiments are
depicted in Figure 9, while the best results are illustrated in
Figure 10.

In the line charts in this paper, the horizontal axis
represents the number of samples used for training a model
from scratch, while the vertical axis denotes the accuracy
achieved by the model. To emphasize the performance of
models when data are scarce, we focus on curves involving
sample sizes less than 1000. In general, as the number of
samples used increases, the accuracy of all models tends to
rise. However, when the dataset contains fewer than 1000
samples, most all-in-one models achieve relatively low ac-
curacy. In contrast, ResNet outperforms other all-in-one
models in these scenarios. Te recombined semi-white-box
models excel when data are extremely limited, surpassing
other models. As the dataset size gradually increases, their
accuracy approaches or even surpasses that of ResNet.
However, in terms of model size and training speed, the
semiwhite-box model signifcantly outperforms the com-
pared all-in-one model.

4.4. Real Image Data Test Result. Testing on a real-world
dataset can be considered a unique case within the expansive
space created by all feature generators and fusions, re-
sembling a Monte Carlo test scenario. Te key distinction

lies in the explicit semantics of real-world datasets. Since
each dataset is used independently, it is not possible to
compute averages and extremes across multiple diferent
datasets, as is done in theMonte Carlo test.Te performance
of the compared models on MNIST, Fashion MNIST, and
CIFAR-10 datasets is illustrated in Figures 11–13,
respectively.

Te overall trends in the experimental results align with
the data observed in the Monte Carlo test. Te recombined
semi-white-box models, while maintaining a signifcantly
smaller model size, still achieved performance that was
approximately on par with or even superior to ResNet,
especially when the available data were less than 200
samples.

Figure 14 presents the visualization of partial feature
channels in the semi-white-box model trained on the
MNIST dataset. Since the training objective was primarily
focused on classifcation, the expressed features in the fea-
ture maps are relatively abstract. Nevertheless, it is still
noticeable that the feature extractors exhibit signifcantly
diferent feature maps for positive and negative samples.
Tis evidence supports the ability of each feature extractor

Figure 7: One of generated features. Each image in every grid is
generated from a random number. Depending on whether this
number is greater than 0.5, the generated images distinctly exhibit
two diferent styles.

Figure 8: One of generated fusion. Rows 1 through 4 display
features generated by four feature generators. Row 5 showcases the
image obtained by fusing the four features. Rows 6 to 9 display
diferent features separated from the fused image.
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within the semi-white-box framework to extract its corre-
sponding features.

By comparing the performance of the same models on
diferent datasets, it becomes evident that the complexity of
dataset semantics can afect the upper limit of model

accuracy. On the semantically more complex CIFAR-10
dataset, all models struggled to attain high accuracy.
However, the relative ranking of model accuracies remained
largely consistent. Tus, the improvement brought by semi-
white-box models in image classifcation tasks has been
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Figure 9: Monte Carlo test mean accuracy. Te horizontal axis represents the maximum number of data samples used for training the
model, while the vertical axis indicates the accuracy achieved by the model.
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Figure 11: MNISTtest accuracy.Te horizontal axis represents themaximumnumber of data samples used for training themodel, while the
vertical axis indicates the accuracy achieved by the model.
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validated across various heterogeneous source datasets.
Terefore, on the adopted real-world dataset, recombined
semi-white-box demonstrates performance comparable to
ResNet when available training data are limited, while
maintaining a smaller network size and faster training speed.

5. Conclusion and Discussion

In this study, the data-hunger issue of machine learning
algorithms was investigated, particularly in the context of
image processing. Te analysis revealed that the data-
hunger problem primarily arises from the rapid growth
in model parameters. As a solution, this paper introduces
a semi-white-box CNN construction strategy. Tis ap-
proach leverages the semantic clarity of interface features,
enabling the incorporation of prior knowledge and
modular reuse. Consequently, models developed using the
semi-white-box strategy achieve the same accuracy as
their all-in-one counterparts while maintaining a smaller
model size, particularly when trained with limited data.
Using information entropy theory and PAC theory, this
paper delves into the principles behind the semi-
white-box strategy for reducing model parameters and the
minimum number of samples required for training.

5.1. Limitations. Te semi-white-box strategy brings some
improvements in reducing data requirements, but it may
still have limitations in certain practical scenarios. Te
core idea behind the semi-white-box strategy is the in-
corporation of prior information to reduce the data re-
quirements for model training. Consequently, this
strategy has two primary limitations.

First, when data are abundant and computational re-
sources are ample, the semi-white-box approach may not
always be the optimal choice. However, for problem do-
mains with a scarcity of high-quality labeled data, the semi-
white-box strategy is a promising avenue to explore.

Second, the efectiveness of the semi-white-box ap-
proach heavily relies on the decomposition of semantic
labels based on prior knowledge. If there is no suitable
prior knowledge available for splitting semantic labels in
the applied problem domain, or if the desired semantic
labels are inherently challenging to separate, the efec-
tiveness of the semi-white-box approach can be di-
minished. Terefore, domains like medical imaging,
which possess ample prior information and require the
ftting of visual models, are best suited to experiment with
the semi-white-box strategy.

5.2. Conclusion. Tis research subjected the semi-white-box
approach to extensive testing, conducting experiments on
various datasets, including MNIST, Fashion MNIST,
CIFAR-10, and randomly generated data. Te results
demonstrate that the recombined semi-white-box models
can achieve accuracy comparable to or even surpassing that
of ResNet while maintaining a signifcantly smaller model
size and fast training speed, especially when data availability
is scarce, with fewer than 200 samples.

Te efective application of the semi-white-box strategy
hinges on the careful selection of interface features. Tis
paper introduces principles for interface feature selection
that are not specifc to any particular application domain.

In felds dealing with natural images, an interpretable
image knowledge base from prior studies serves as a valuable
reference for interface feature selection. In specialized
image-processing domains such as medical imaging,
domain-specifc knowledge, such as medical expertise and
medical imaging knowledge, can guide the selection of
suitable interface features.

It is important to note that this research is not a critique
of large models. Instead, it ofers an alternative approach, the
semi-white-box strategy, for scenarios where clear prior
knowledge is available. In cases where substantial prior
information can be leveraged, training large models from
scratch with a wealth of labeled data may not be the most
economical choice. Hence, the semi-white-box strategy is
presented as a complementary approach to all-in-one
models rather than a direct alternative.
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