
Research Article
A New Hybrid Forecasting Model Based on Dual Series
Decomposition with Long-Term Short-Term Memory

Hao Tang,1,2 Uzair Aslam Bhatti ,1,2 Jingbing Li ,1,2 Shah Marjan ,3

Mehmood Baryalai,4 Muhammad Assam ,5 Yazeed Yasin Ghadi ,6

and Heba G. Mohamed 7

1School of Information and Communication Engineering, Hainan University, Haikou 570100, China
2State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570100, China
3Department of Software Engineering,
Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Pakistan
4Department of Information Technology,
Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Pakistan
5Department of Software Engineering, University of Science and Technology Bannu, Bannu, Khyber Pakhtunkhwa, Pakistan
6Department of Computer Science, Al Ain University, Al Ain, UAE
7Department of Electrical Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia

Correspondence should be addressed to Uzair Aslam Bhatti; uzairaslambhatti@hotmail.com, Jingbing Li;
jingbingli2008@hotmail.com, and Heba G. Mohamed; hegmohamed@pnu.edu.sa

Received 29 October 2022; Revised 14 March 2023; Accepted 29 May 2023; Published 22 June 2023

Academic Editor: Paolo Gastaldo

Copyright © 2023 Hao Tang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, ozone (O3) has gradually become the primary pollutant plaguing urban air quality. Accurate and efcient ozone
prediction is of great signifcance to the prevention and control of ozone pollution. Te air quality monitoring network provides
multisource pollutant concentration monitoring data for ozone prediction, but ozone prediction based on multisource monitoring data
still faces the challenges of each station’s series of data. Aiming at the problems of low prediction accuracy and low computational
efciency in traditional atmospheric ozone concentration prediction, ozone concentration prediction using dual series decomposition
was proposed by variational mode decomposition (VMD), ensemble empirical mode decomposition (EEMD), and long short-term
memory (LSTM). First, the historical data series of Nanjing air quality monitoring stations is decomposed by VMD, and then the EEMD
algorithm is applied to the residual of VMD to obtain several characteristic intrinsic mode function (IMF) components; each char-
acteristic IMF component is trained by LSTM to obtain the prediction result of each component, and then the fnal result can be obtained
by linear superposition. Te proposed method achieved the best results with R2� 99%, MSE� 5.38, MAE� 4.54, and MAPE� 3.12.
Because LSTM has strong adaptive learning ability and good memory function, it has the learning advantage of long-term memory for
long-term data, and the prediction results are more accurate. According to the data, the proposed method is superior to the baseline
models in terms of statistical metrics. As a result, the proposed hybrid method can serve as a reliable model for ozone forecasting.

1. Introduction

Ozone (O3) is one of the six major pollutants in the air, and
when the ozone concentration in the atmosphere is too high,
the ecological environment deteriorates and adversely afects
human health [1, 2]. Ozone is a trace gas in the earth’s

atmosphere. It is formed when oxygen molecules in the at-
mosphere are decomposed into oxygen atoms by solar radi-
ation, and the oxygen atoms combine with the surrounding
oxygen molecules. It contains 3 oxygen atoms, and its
chemical formula is O3. Ozone pollution has special condi-
tions for its formation. Under the conditions of high
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temperatures, sufcient sunshine, and dry air, VOCs and NOx
in the air “meet” and produce photochemical reactions, which
are easy to generate ozone pollution [3, 4]. In recent years, the
concentration of ozone and other air pollutants has been
changing continuously [5–7]. Tere are two main reasons for
the analysis of the changes in ozone in this study. One is the
increase in pollutant emissions caused by frequent human
activities, and the other is the weather [8]. Te stronger the
sunlight, the more the ozone will be produced [9]. As people
pay more and more attention to the degree of ozone pollution,
it is very important for researchers to forecast the ozone
concentration in a timely and efective manner [10].

In recent years, China’s ozone pollution problems have
become increasingly apparent. Beijing–Tianjin–Hebei and
surrounding areas, the Yangtze River Delta region [11], and
other regions with ozone concentrations show an upward
trend. Especially in the summer and autumn, ozone has
become the primary pollutant in some cities. Ozone, ni-
trogen oxides (NOx), volatile organic compounds (VOCs),
and other pollutants in the atmosphere can have a photo-
chemical reaction with secondary pollutants [12], resulting
in a strong stimulating efect on the human cardiovascular
and respiratory systems, leading to the occurrence of a va-
riety of diseases. In addition, ozone can also cause serious
harm to the environment [13, 14]. Advance predictions of
ozone pollution notify governments about implementing
environmental management decisions.

At present, there are many studies on ozone, and many
scholars are also committed to the forecasting of ozone
concentrations. Te research on ozone at this stage is mainly
divided into two aspects:

Te frst aspect is to study the connection between
changes in ozone concentrations and human health, the
ecological environment, crops, etc. For example, Jiang et al.
[15] studied the efect of ozone concentrations in Fuzhou on
the risk of death from circulatory diseases, and the results
showed that short-term exposure to ozone increased the risk
of death from these diseases. Zhao et al. discussed how
excessive ozone concentrations on the ground damage the
ecological environment, damage human health, reduce crop
yields, and cause certain economic losses [16]. Chen et al.
[17] explored the link between short-term exposure to ozone
and lung function and airway infammation. Zhang et al.
[18] studied the association between ozone concentrations in
Yangzhou and the daily deaths of residents. Tese studies
have shown that ozone concentration exceeding the stan-
dard negatively impacts human health, the ecological en-
vironment, crops, and so on [18].

Te second aspect is the forecast and early warning
analysis of ozone, mainly the establishment of statistical
prediction models. Te frst is to establish a regression pre-
diction model by analyzing indicators related to ozone
concentration. For example, Shams et al. [19] selected NO2,
SO2, air temperature, water pressure, and other indicators as
forecasting factors to establish a regression model that could
better refect the average daily change in ozone concentration.
Gong et al. [20] selected meteorological factors, such as
humidity and wind speed, to establish regression models,
predict ozone concentration in Xiamen, and establish an

evaluation system. Zhang and Ma [21] used meteorological
factors, such as wind direction, temperature, humidity, and
other meteorological factors as input variables to predict
ozone concentration through a back propagation neural
network, and the results showed that the model based on
meteorological factors helped to improve the prediction
performance of the model. Te artifcial intelligence (AI)
method uses machine learning technology to train historical
data, has higher prediction accuracy in nonlinear time series
data [22], and has been successfully applied to solve nonlinear
regression estimation problems. Typical models include ar-
tifcial neural networks (Masood and Ahmad [23]; Masood
and Ahmad [24]), genetic algorithms, support vector ma-
chines, random forests, and the AdaBoost model [25, 26].

However, traditional AI technology cannot describe the
interdependence between time series data, and its prediction
accuracy of time series data is limited [27]. Te deep re-
current neural network (RNN) can handle the in-
terdependence between time series data due to its embedded
feedback and cyclic structure [28] [29]. Tsai et al. [30]
achieved good results in predicting diferent air pollutants,
such as PM2.5, PM10, SO2, and NO2 based on the RNN
model. However, RNN cannot solve the long-term de-
pendency problem. As a variant of the RNN network, long
short-term memory (LSTM) can efectively describe time
series data by introducing memory units into the network
structure [31, 32]. LSTM not only focuses on event-related
semantic information but also considers the temporal efects
of important events in the past. Xayasouk et al. [33] applied
LSTM for the prediction of air quality concentration using
the autoencoder. To anticipate PM2.5 concentrations, taking
into account the impact of wind direction and speed on the
variations in spatial-temporal PM2.5, Liu et al. [34] presented
a novel wind-sensitive attention mechanism with an LSTM
neural network model. Compared with other forecasting
methods, Liu et al. [25] used LSTM for stock price fore-
casting of the CSI 300 Index, and the results showed that the
LSTMmodel had a better forecasting efect than the support
vector regression and AdaBoost models. Bathla [35] used the
LSTM network to predict a data series, and the results
showed that the LSTM network performed better than the
traditional GARCH model and SVR model in longer range
volatility prediction. Te above literature shows that the
LSTM model has certain advantages in predicting complex
time series data. Terefore, this paper selects LSTM as the
main component of the model.

In order to overcome the limitations of traditional AI
models, another type of forecasting method, which has
achieved good development, is to develop hybrid models. In
most hybrid models, signal processing methods are used to
decompose the time series, and AI methods are used to
predict the decomposed components. Typical sequence
preprocessing methods include wavelet decomposition and
empirical mode decomposition (EMD) [36]. Te EMD al-
gorithm does not depend on any basis function and is es-
sentially diferent from wavelet decomposition. It has
signifcant advantages in dealing with nonstationary and
nonlinear complex signals. For example, Jin et al. [37] used
the EMD algorithm to decompose a trend and analyze the
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periodic fuctuations of the air quality parameters. To
a certain extent, it refects the various cyclical variations in
time series data. However, since EMD is prone to mode
aliasing, Amanollahi and Ausati [38] used an ensemble
empirical mode decomposition (EEMD) algorithm for air
quality prediction. EEMD has been widely used in air quality
forecasting. Du et al. [39] used the EEMD method to study
the tourist impact on air pollution in Zhangjiajie, China.
Due to the lack of a mathematical foundation, the inability to
separate components with similar frequencies, and the over-
envelope and under-envelope problems of the EEMD
method, its decomposition efect is limited [40]. As an
improved decomposition technology, variational mode
decomposition (VMD) can adaptively decompose the ef-
fective components corresponding to each center frequency
in the frequency domain, and its decomposition accuracy is
higher. Te VMD decomposition method is more efective
for feature selection in prediction models and has been
successfully applied to air quality by decomposition of series
[41].Terefore, this paper also adopts the VMD technique as
the main decomposition technique for modeling.

Looking at the previous studies, it can be seen that in the
prediction of a single AI model, the LSTM model has
achieved excellent prediction results; at the same time, the
prediction efect of all the combined models is better than
that of the single AI method. In some studies using VMD for
combined model prediction, the important component in-
formation contained in the residual term after the original
sequence is decomposed by VMD is ignored. Terefore, this
paper considers secondary decomposition of the complex
signal contained in the residual term after VMD classif-
cation to improve the prediction accuracy of the residual
term and proposes a new fusion VMD–EEMD dual de-
composition method, combining it as an input to LSTM to
develop a VMD–EEMD–LSTM-based ozone prediction
model. Te objective of this study is to develop a new time
series-based machine learning model which is good for
prediction than other methods.

Te major work in this paper includes the following:

(i) Ozone (O3) data series have high complexity and
much variation with respect to changes in the en-
vironment and require secondary decomposition of
the highly complex components. VMD decomposes
the original complex ozone time series data into
multiple subsignal components according to the
frequency domain.

(ii) After VMD, original sequence and diferent varia-
tional mode functions (VMF) components and
residual items are obtained; the residual series is
decomposed by EEMD and combined with the
LSTM model for combined prediction analysis.

(iii) Te proposed VMD–EEMD–LSTM model is
compared with other machine learning models.
Beside that results among diferent stations of the
Nanjing city are also compared to verify the ef-
fectiveness of the model at diferent locations. Te

proposed model performs better than other
methods as validated by diferent indicators, such as
mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE).

Te structure of the rest of this paper is as follows:
Section 2 briefy introduces the hybrid model’s construction.
Section 3 shares the results and analysis of Nanjing city.
Section 4 is a discussion. Section 5 shares conclusions.

2. Method (Proposed Algorithm)

Before constructing the VMD–EEMD–LSTM portfolio
model to predict the ozone change, it is necessary to briefy
describe the components of the model portfolio: EEMD,
VMD technology, and the LSTM neural network.

2.1. EEMD. Wu and Huang [42] added a very small-
amplitude white noise sequence to the original time series
and extended the EEMD technique. Te decomposition
algorithm made full use of the frequency-balanced distri-
bution characteristics of the white noise. Te obtained in-
trinsic mode function (IMF) is averaged to cancel the added
white noise, thereby improving the mode aliasing problem.
Te decomposition steps are as follows:

Step 1: Tis will satisfy the normal distribution of white
noise. An equal-length sequence of columns ni(t) is
added to the original time series x(t) multiple times, i.e.,

xi(t) � x(t) + ni(t). (1)

In the formula, xi(t) is the time series after adding white
noise for the ith time.
Step 2: Perform EMD on the time series after adding
white noise to obtain the IMF component Ci,j(t) and
ri(t) residual term, where Ci,j(t) is the jth obtained by
EMD after adding white noise for the ith time, an IMF
component.

xi(t) � 􏽘

J

j�1
Ci,j(t) + ri(t). (2)

Step 3: Take the average value of each component Ci,j(t)
by taking advantage of the characteristic of zero mean
value between uncorrelated random sequences to
cancel the infuence of the white noise added multiple
times on the real IMF component, and fnally, obtain
the IMF component decomposition.

Cj(t) �
1
N

􏽘

N

i�1
Ci,j(t). (3)

In the formula, Cj(t) is the jth IMF component obtained
after EEMD, and N is the number of white noise
sequences.
Step 4, further obtain the fnal decomposition result of
EEMD, namely,
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x(t) � 􏽘

J

j�1
Cj(t) + r(t). (4)

Te IMF component Cj(t) is the information trend of
diferent frequency segments from high to low in the
time series, and r(t) is the overall residual term.

2.2. VMD. Te core principle of VMD technology is to use
an adaptive and quasi-orthogonal decomposition method to
decompose the original input signal into k modal compo-
nents uk, obey the center frequency and limited bandwidth,
and minimize the sum of the bandwidth estimates of all
modes [43]. Te VMD signal decomposition process is also
the solution process for the variational constraint problem.
Te model expression for the variational constraint problem
is shown in the following equation:

min
〈uk〉,〈wk〉

􏽘
k

‖ zt δ(t) +
J

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jwkt
‖
2
2

⎧⎨

⎩

⎫⎬

⎭,

s.t.􏽘
k

uk � f.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(5)

In the formula, uk � {u1, . . ., uk} is the modal component
VMF obtained after decomposition and wk � w1, . . . , wk􏼈 􏼉

are the center frequencies corresponding to the VMF, re-
spectively; ∗ is the convolution symbol; zt is the partial
derivative of t, δ(t) is the shock function; f is the original
input signal. Te analytic signal of uk(t) related to it is
obtained by Hilbert transform, and then its unilateral
spectrum is obtained; the estimated value of the center
frequency of each mode is adjusted by multiplying the ex-
ponential term e− jwkt, and the spectrum of the mode is
adjusted to the fundamental frequency band. In order to
obtain the optimal solution to the above constrained vari-
ational problem, it needs to be transformed into an un-
constrained problem to solve. By introducing the Lagrangian
multiplication operator λ(t) and the quadratic penalty factor
α, the constrained variational problem is transformed into
an unconstrained variational problem of the following form:

L uk􏼈 􏼉, wk􏼈 􏼉, λ( 􏼁 ≔ α􏽘
k

‖ zt δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕,

e
− jwkt

‖ e
2
2+ ‖ f(t) − 􏽘

k

uk(t),

‖ 􏽘
2

2
+ λ(t), f(t) − 􏽘

k

uk(t)⎛⎝ ⎞⎠.

(6)

In the formula, the quadratic penalty factor α can ensure
the accuracy of signal reconstruction in the presence of
Gaussian noise; the Lagrangian operator can be used to
maintain strict constraints. Further, the alternate direction
method of multipliers iterative search is used to obtain the
saddle point of the above Lagrangian function, that is, to

obtain the optimal solution of the constrained variational
problem of formula (6), its VMFuk and center frequency.Te
expressions of wk are as follows:

􏽢u
n+1
k (w) �

􏽢f(w) − 􏽐i≠k􏽢ui(w) +(􏽢λ(w)/)
1 + 2α w − wwk( 􏼁

2 ,

􏽢w
n+1
k �

􏽒
∞
0 w 􏽢uk(w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dw

􏽒
∞
0 􏽢uk|w|

2dw
.

(7)

Te specifc implementation steps of the VMD method
are as follows:

Step 1: Set the initialization values of parameters such
as modal components and center frequency
u1

k􏼈 􏼉 w1
k􏼈 􏼉, λ1, n � 0 and select the appropriate number K

of modal components.
Step 2: Update the values of uk and wk, respectively,
according to formulas (7) and (8).
Step 3: Update the value of λ

􏽢λ
n+1

� 􏽢λ
n

+ τ 􏽢f(w) − 􏽘
k

􏽢u
n+1
k (w)⎡⎣ ⎤⎦. (8)

Step 4: Given the judgment accuracy, ε> 0 if the fol-
lowing conditions are met:

􏽘
k

􏽢u
n+1
k − 􏽢u

n
k

����
����
2
2/ 􏽢u

n
k

����
����
2
2 < ε. (9)

Ten, stop the iteration; otherwise, go back to step 2.
In the above formula, 􏽢un

k(w), 􏽢f(w) and 􏽢λ
n
(w) are

Fourier transforms corresponding to n k, 􏽢un
k, f(t), and

λn, respectively.

2.3. LSTM Neural Network. Te traditional RNN has
achieved good results in processing time series because it
considers the self-correlation characteristics of time series,
but the back propagation algorithm used by RNN results in
gradient explosion or gradient disappearance, which cannot
describe the long-term dependency problem [22, 44]. A
descriptive implementation of the LSTM model is shown in
Annexure A.

LSTMmodels have been successfully applied in sequence
generation, machine translation, speech, video analysis,
language modeling, handwriting recognition, and other
felds. LSTM models more realistically represent or imitate
human behavior, logical development, and neural organi-
zation with cognitive processes.

2.4. Proposed VMD-EEMD-LSTMModel. Ozone has typical
nonstationary, nonlinear, and other complex characteristics,
and the accuracy of using a single prediction method is
limited. Since VMD technology can decompose a complex
signal into several regular modal components with lower
complexity, the prediction accuracy will be greatly improved
when the common prediction methods are used to predict
and model each modal component after VMD. However,
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previous studies only modeled the estimated modal com-
ponents after VMD and directly discarded the complex
information contained in the residual terms after modal
decomposition. Diferent from the regular residuals in the
EEMD technology, the residuals after VMD are highly
complex. If this part of the information is directly discarded,
the overall prediction accuracy of the model will be reduced.
Terefore, in this paper, a decomposition technique for the
residual term of VMD is proposed; that is, the residual term
is decomposed by the EEMD technique so as to improve the
prediction accuracy of the residual term and then improve
the prediction accuracy of the model as a whole. Combined
with the excellent performance of the LSTM neural network
in characterizing time series’ autocorrelation and long
memory, the detailed modeling steps are as follows.

Step 1: Use VMD technology to decompose the original
sequence to obtain each modal component of VMF and
subtract the sum of each VMF data from the original
time series data to obtain the remaining residual term
of VMD.
Step 2: Normalize the decomposed VMF and select
training samples and test samples appropriately. LSTM
is used to train each VMF, and the prediction result of
each VMF component subsequence is obtained.
Step 3: Use EEMD technology to decompose the
remaining residual items after VMD twice, use LSTM
to separately predict each IMF subsequence after
EEMD, and further superimpose the prediction results
of the subsequences to obtain the fnal prediction result
of the residual item.
Step 4: Superimpose the prediction results of each VMF
component and residual item after VMD to obtain the
fnal prediction result of the original sequence. Te
complete fow of the implementation is shown in
Figure 1.

3. Study Area

Tis section explains the study area for data collection and
implementation results of the proposed method.

3.1.Monitoring Stations. Nanjing is a subprovincial city and
the capital of Jiangsu Province. As of 2019, Nanjing has
jurisdiction over 11 municipal districts, including Gulou
District, Xuanwu District, Jianye District, Qinhuai District,
Qixia District, Yuhuatai District, Pukou District, Liuhe
District, Jiangning District, Lishui District, and Gaochun
District, with a total of 95 streets. Tere are six towns with
a total area of 6,587 square kilometers. According to the
results of the seventh national census, the resident pop-
ulation at the end of 2020 was 9,314,685. Nanjing has
a subtropical monsoon climate and abundant rainfall, with
an annual precipitation of 1,200mm and four distinct
seasons. Nanjing is sunny in the spring, rainy in the rainy
season, hot in the summer, dry and cool in the autumn, and
cold and dry in the winter [45].

Nanjing has a short spring and autumn, a long winter
and summer, and a signifcant temperature diference be-
tween winter and summer. Te four seasons have their own
characteristics and are suitable for tourism. Tere are nine
air quality monitoring stations in Nanjing; the details of each
station including their coordinates and names, are shown in
Table 1. Figure 2 shows the locations of all Nanjing mon-
itoring stations, with the covered areas marked with
black dots.

3.2.OzoneData. Tis paper primarily takes the daily average
data sets of nine stations’ ozone. Data has been taken from
January 2018 until December 2021 for each station in
Nanjing. Concentrations of ozone at all stations were nor-
mally distributed; the minimum/maximum average values
of each station and the mean, median, and standard de-
viation were used to describe the concentration of air pol-
lutants. Furthermore, to show regional variation in air
pollution levels, graphic maps were developed with a geo-
graphic information system using ArcGIS (version 10.5).
Statistical description of the data is shown in Figure 3 for
each station in each year (i.e., from 2018 to 2021). Data from
2018 to 2020 are used for training, and the remaining data
are used for testing and validation. Correlation results
among stations are shown in Annexure B.

3.3. Validation Methods and Comparative Algorithms.
Te evaluation indicators of prediction results are selected as
RMSE, MAE, and the mean absolute percentage error
(MAPE). Tree evaluation indicators are used to test the
prediction efect of the model. Te calculation formula is as
follows:

eMSE �
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

n
, (10)

eMAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (11)

eMAPE �
1/n􏽐

n
i�1 yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yi

, (12)

R
2

�
􏽐

k
i�1 􏽢yi − y( 􏼁

2

􏽐
k
i�1 yi − y( 􏼁

2 . (13)

In the formula, yi and 􏽢yi are the actual value and
predicted value of the station ozone, respectively; n is the test
sample size and i is the serial number of the test sample
point. R2 is measured in percentage while MSE, MAE, and
MAPE use the same units as measured values.

To verify the advantages of the proposed model, four
direct prediction models of LSTM comparisons are used,
such as LSTM, gated recurrent units (GRU), BILSTM, and
BIGRU, as well as three time series models—ARIMA,
SARIMA, and Prophet models—and one prediction model,
which is the ablation study of the proposed approach,
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Figure 1: Proposed hybrid forecasting model based on VMD–EEMD–LSTM.

Table 1: Nanjing air quality monitoring station details and geographical locations.

Station codes Station names Longitudes Latitudes
1151A Maigao bridge 118.8086 32.1065
1152A Meadow gate 118.7538 32.0551
1153A Shanxi road 118.7794 32.0745
1154A Zhonghua gate 118.7752 32.0023
1155A Ruijin road 118.8109 32.0309
1156A Xuanwu lake 118.7997 32.0754
1157A Pukou 118.6414 32.0931
1158A Olympic sports center 118.7356 31.9996
1159A Xianlin University town 118.9125 32.1028
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Figure 2: Study area of Nanjing with monitoring stations.
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Figure 3: Ozone measurement (in μg m−3) station wise for Nanjing from 2018 to 2021.
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Figure 4: Comparison of diferent algorithms with a proposed model of Nanjing. (a) MAE. (b) MSE. (c) MAPE. (d) R2.
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Figure 6: Time series comparison of prediction results from 150 days of observation of all the algorithms. (a) Nanjing. (b) Station 1151A.
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EEMD–LSTM, developed after excluding VMD. Parameter
settings for LSTM models are shown in Annexure A.

4. Results and Discussion

First, the data is decomposed. Te results of the EEMD on
the ozone time series data are shown in Annexure C. Te
VMD method is used to decompose the data’s original yield
sequence in advance, and diferent VMF components and
residual items u are obtained. Ten, the residual item u with
a series is decomposed by EEMD and combined with the
LSTM model for combined prediction analysis. Te
EEMD–LSTM model is a combined prediction model
constructed using EEMD technology as sequence pre-
processing to combine with the LSTMmethod and compare
with the proposed method. Next, the prediction efects of
diferent combination models are compared and analyzed.

As shown in Figure 4, the average results of all Nanjing
stations are shown and compared with diferent models.
MAE for ARIMA is 45.06, SARIMA is 50.31, BIGRU is 20.21,
GRU is 25.4, BILSTM is 25.83, LSTM is 30.51, Prophet is
31.33, EEMD–LSTM is 8.36, and the lowest recorded is for
VMD–EEMD–LSTM, 4.54, which shows the accuracy of
prediction with low error exists after two series de-
compositions. Te results of each station for all the vali-
dation criteria are shown in Annexure D.

Similarly, MSE for ARIMA is 55.07, SARIMA is 60.96,
BIGRU is 10, GRU is 14.92, BILSTM is 14.48, LSTM is 16.27,
Prophet is 40.71, EEMD–LSTM is 10.74, and the lowest is
VMD–EEMD–LSTM, i.e., 5.38. MAPE for ARIMA is 61.3,
SARIMA is 68.44, BIGRU is 30.56, GRU is 30.99, BILSTM is
29.86, LSTM is 29.83, Prophet is 28.07, EEMD–LSTM is
3.24, and the lowest is VMD–EEMD–LSTM, 3.1. Te result
of R2 for ARIMA is 1%, SARIMA is 34%, BIGRU is 42%,
GRU is 44%, BILSTM is 45%, LSTM is 47%, Prophet is 51%,
EEMD–LSTM is 95%, and VMD–EEMD–LSTM is 98%.
From the comparison of EEMD–LSTM and the proposed
method, the change in MAE is a 46% decrease, MSE is
decreased by 50%, MAPE is decreased by 4%, and R2 is
increased by 4%.

Te value of R2 is a reliability coefcient between zero
and one hundred (or 0 and 1.0). A higher R2 indicates a more
reliable model. Due to the signifcance of both models,
stability and fexibility, optimizing R2 is not the goal. For the
best results when comparing the adjusted R2 to the original
R2 value, it is ideal for the two numbers to be quite similar.
When comparing the R2 values of all prediction models, it is
clear that the VMD–EEMD–LSTM method produced the
highest value (R2 = 0.98) (Figure 5).

A visual comparison of the results from 150 days of
observation are shown in Figure 6 and highlighted in two
diferent spots where the results of our prediction overlap
the actual values. It is also important to observe that, since
the data is not linear and is changing constantly, our pre-
diction is approaching. In other aspects, the outcomes
showed that LSTM could memorize over long periods of
time and had a high degree of accuracy when making
predictions. When dealing with complex ozone data,
however, a single LSTM model rarely provides optimal

results. By breaking complex time series data into time series
with diferent frequencies, EEMD enhanced the prediction
accuracy, as seen by an increase in the prediction accuracy
across all stations. Similarly, the station comparison ex-
periment revealed that LSTM performed worse than the
GRU when incorrect settings were used. To further enhance
the model’s prediction accuracy, VMD was employed to
locate the denoising pattern of the data for LSTM. Specif-
ically, when compared with other models predicting short-
term ozone levels, the VMD–EEMD–LSTM model per-
formed better and was useful in other contexts.

Some researchers predict ozone series after one de-
composition, and the prediction accuracy is enhanced
compared with direct prediction models due to the high
complexity of ozone series. EMD, EEMD, and VMD are all
decomposition techniques, yet they all sufer from modal
aliasing and inefciency. As a result of this development,
VMD is now well-suited for the decomposition of ozone
series, a class of problems that had previously plagued the
original decomposition method. Te ozone series com-
plexity is further reduced by further decomposing the IMF
components that have signifcant complexity after the initial
decomposition.Te complexity of the IMFs can be efciently
reduced through secondary decomposition; however, it is
still unclear how to choose high-complexity IMF
components.

After doing a simplex decomposition of the IMF, Wang
et al. [46] concluded that the initial component has the most
complexity. In this study, we use VMD to quantify the
difculty of each IMF component, and we provide quan-
titative criteria for selecting complex parts. Modal aliasing
and inefcient performance are two issues that VMD can
successfully address. However, the decomposition efect will
be diferent if the VMD’s decomposition level and penalty
factor are not appropriately specifed in advance.

It has been shown that the predictive performance of the
models given by Wu and Lin [47] which use several series
decomposition-integrated frameworks is greatly enhanced.
Using pollution data from the city of Anyang as an example,
EEMD–LSTM shows improvements of 50.8%, 51.81%, and
52.96% over LSTM in terms of MAE, RMSE, and MAPE.
Good prediction performance, early warning accuracy, and
prediction stability were also observed using the
VMD–SE–LSTM and the EEMD–LSTM across many data
sets. Tese results were similar to our study, which shows
that EEMD–LSTM is better than LSTM after series
decomposition.

In another approach, noise was removed from air quality
data using an EMD model developed by Huang et al. [48]
and the resulting data allowed them to extract the IMF
components. Each component of the IMF was then modeled
using an EMD–IPSO–LSTM air quality prediction model,
and values for each were then retrieved. Te theoretical and
technological support for air pollution prediction and
management was supplied by the validation analyses of the
algorithm, which revealed that the revised model had higher
prediction accuracy and enhanced the model ftting efect
compared with LSTM and EMD–LSTM. Compared with
this study, a similar approach is proposed in our study by
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using EEMD, and our method also produced better results
than LSTM and EEMD–LSTM.

Te experimental data provided was insufcient because
of the experimental settings; however, this strategy was
successful in predicting ozone. More work has to be done to
refne this study’s fndings. We did not have information
about meteorological factors close to the monitoring stations
because of the limits of the air quality monitoring station
data. It is conceivable that including information about these
aspects in future studies would signifcantly improve the
performance of our model. Te spread of air contaminants,
for instance, could be infuenced by factors such as tem-
perature and wind speed. Better air quality forecasts could be
achieved with additional study of climatic conditions, au-
tomobile emissions, and interactions between citywide
monitoring stations. Furthermore, cubic spline interpolation
in EEMD could be swapped out for more modern data-
interpolation technology to increase the quality of signal
decomposition byminimizing the error introduced by ftting
the envelope of each extreme point of the signal.

5. Conclusion

In order to improve the prediction accuracy, various pre-
diction models based on soft computing have been pro-
posed. However, some existing models only emphasize the
classifer of the model and pay little attention to data pre-
processing. Due to the presence of noise and redundant
information in high-dimensional raw data, data pre-
processing is a crucial step in predictive models. In this
study, a decomposition algorithm is introduced as a pre-
processing tool to reduce the dimensionality and extract the
intrinsic features of the input raw data. Decomposition
algorithms and deep learning latest approaches based on
graph as well as transformer based methods [49–51] have
many achievements in natural language processing, com-
puter vision, and other felds. In the environment, however,
and especially in air quality time series forecasting, there has
been little progress recently.

Te aim of this paper was to present a new type of
prediction model that combines the strengths of EEMD,
VMD, and LSTM. Te following fndings are based on
a study of ozone data from nine stations in Nanjing:

(i) Te accuracy of ozone prediction was signifcantly
boosted by decomposing the data using VMD with
EEMD into many components of diferent fre-
quencies and then putting these components into
the LSTM model.

(ii) In many cases, LSTM’s hidden layer neural units
were chosen automatically based on past data.
LSTM helps to predict more results for short-term
and long-term data.

(iii) Te VMD–EEMD–LSTM hybrid model described
here was found to have the best prediction per-
formance based on experimental comparisons, with
a high degree of ftting between the true and pre-
dicted values. Tese results demonstrated the ef-
cacy of the hybrid prediction strategy suggested here

for making accurate forecasts in the future. Since
this is an approach with real-world implications,

Te fuctuations of ozone data are irregular and complex,
and the sequence of time series data is afected by multi-
dimensional and complex factors. For example, the level of
humidity and weather factors impact air pollutants. It is very
difcult to predict the future trend of ozone values based on
several factors. Terefore, in future research, the model
proposed in this paper can be combined with multidi-
mensional complex infuencing factors to further improve
the overall forecasting efect.

In the future, optimal ensemble models for the
decomposed modes can be explored rather than a simple
addition approach, and an intelligent forecasting system and
smart decision system for ozone monitoring can be de-
veloped so that appropriate policies for management can be
formulated in light of forecasting results. Future work will be
focused on exploring the relationship among pollutants and
ozone and using some data fusion approaches. In addition,
the suggested method can be applied to other areas of energy
forecasting, such as crude oil price forecasting and wind
speed forecasting.
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