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Multivariate time series prediction is a critical problem that is encountered in many felds, and recurrent neural network (RNN)-
based approaches have been widely used to address this problem. However, traditional RNN-based approaches for predicting
multivariate time series are still facing challenges, as time series are often related to each other and historical observations in real-
world applications. To address this limitation, this paper proposes a spatiotemporal self-attention mechanism-based LSTNet,
which is a multivariate time series forecasting model. Te proposed model leverages two self-attention strategies, spatial and
temporal self-attention, to focus on the most relevant information among time series. Te spatial self-attention is used to discover
the dependences between variables, while temporal attention is employed to capture the relationship among historical obser-
vations. Moreover, a standard deviation term is added to the objective function to track multivariate time series efectively. To
evaluate the proposed method’s performance, extensive experiments are conducted on multiple benchmarked datasets. Te
experimental results show that the proposed method outperforms several baseline methods signifcantly. Terefore, the proposed
spatiotemporal self-attention-based LSTNet is a promising approach for predicting multivariate time series.

1. Introduction

Multivariate time series plays a crucial role in daily life and is
a subject of active research. Forecasting multivariate time
series has numerous applications, including predicting stock
prices [1], weather forecasting [2], trafc prediction [3],
complex industrial system analysis [4], and COVID-19
widespread disease prediction [5, 6]. Accurate predictions or
trends play a vital role in helping individuals and businesses
make informed decisions and judgments. For instance, in-
vestors rely on accurate predictions or trends to make in-
vestment decisions that can result in reasonable returns
[1, 7]. Similarly, commuters can choose suitable travel routes
based on predicted trafc conditions to avoid congestion
and save time [8]. In addition, energy factories can adjust
their production strategy based on predicted energy con-
sumption to optimize their operations and reduce costs [9].
In essence, accurate predictions or trends can help in-
dividuals and businesses make proactive and well-informed

decisions that lead to better outcomes. Tis can lead to
increased efciency, productivity, and proftability, as well as
improved quality of life for individuals.

Deep neural networks (DNNs) have advanced signif-
cantly in recent years [10, 11] and have had a signifcant
impact on solving a wide range of time series forecasting
tasks. Tere are three commonly used DNN structures for
time series analysis: convolutional neural network (CNN)-
based approaches, RNN-based approaches, and
transformer-based approaches. RNN-based approaches
such as RNN [12] and its variants, namely, long- and short-
term memory (LSTM) [13] and gated recurrent unit (GRU)
[14], are widely used to analyze time series. Meanwhile,
CNN-based approaches, such as temporal convolutional
networks (TCN) [15], implement time series analysis using
dilation convolution operation. As the volume of data in-
creases, the transformer-based approaches [16] are de-
veloped to discover the relationship among time series by
computing the score matrix. By capturing the temporal
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dependencies, these sequence models have signifcantly
improved the performance in multivariate time series
analysis tasks. Furthermore, integrating an attention
mechanism with the RNN structure can capture the long-
distance dependence [17–21].

However, multivariate time series forecasting is facing
a signifcant research challenge. Te existing methods
mainly focus on temporal relationships to discover the
importance of diferent sampling times [22, 23]. Never-
theless, there are several variables being measured at the
same sampling time in multivariate time series, as shown in
Figure 1. Here, xk

t denotes the value of the k−th variable at
sampling time t, and the diferent color presents diferent
importance to prediction results. Terefore, it is essential to
identify which variables are relevant and which ones are not
in order to make accurate predictions. Some variables maybe
irrelevant or even noisy, having little impact on the outcome,
while others may play a crucial role in determining the
future trend. Terefore, capturing the correlation between
each variable and the target variables is necessary, as it allows
for a more comprehensive understanding of the underlying
patterns and trends. Overall, it is necessary to consider
temporal relationships and variable dependencies in reliable
prediction methods.

To better illustrate the abovementioned issue, the SML2010
datasets as an example are used to explain the temporal re-
lationship and variable dependencies (more details about these
datasets are listed in Section 4.1). Te several variables of the
SML2010 are presented in Figure 2. It appears that there are
two distinct types of dependencies: spatial and temporal. Te
recurring pattern of variable 1 suggests a temporal dependency,
meaning that it varies over time. Moreover, the strong cor-
relation between variable 1 and variables 7, 11, and 17 indicates
a spatial dependency, which means that they are related in
a variable sense. Te key to an efective time series prediction
method is to capture both kinds of dependencies’ patterns
among input. Tis work aims to uncover temporal relation-
ships and capture variable interdependencies among the input
data to ensure optimal prediction performance. Te spatial
relations refect the correlation of diferent variables, and
temporal relations refect the dependencies of historical
measurements. Again, without considering both kinds of
patterns, the prediction accuracy will be noticeably reduced.
Nevertheless, the classical methods fall short in this aspect and
do not focus on these strong correlations that play a vital role in
prediction [24]. Tis work focuses on addressing the men-
tioned problem of multivariate time series forecasting.

Te transformer-based architecture has shown re-
markable performance in time series processing tasks.
However, it is true that training a high-performance
transformer model requires a signifcant amount of data,
which can be challenging to obtain in specifc domains. A
comparative study to compare the performance of the
transformer and LSTM on insufcient samples is listed in
Section 4.5. Owing to the better performance of LSTM, this
paper utilizes the benefts of the LSTM model to propose
a prediction model. Consequently, the proposed spatio-
temporal self-attention is to integrate with long- and short-
term temporal neural networks (LSTNet) [24] that take

advantage of the recent LSTM framework. Tere are three
main contributions to improving the performance of mul-
tivariate time series prediction models.

(1) Te proposed spatiotemporal self-attention-based
LSTNet is an efective method for analyzing com-
plex data structures by extracting dependencies
between historical observations and obtaining cor-
relations among variables. Tis approach uses spatial
self-attention to identify relationships between var-
iables and temporal self-attention to capture re-
lationships among historical observations. Te
proposed approach outperformed nine baseline
models, including transformer, on three bench-
marked datasets, demonstrating its efectiveness in
capturing spatiotemporal relationships in multivar-
iate time series data.

(2) A new objective function has been proposed to
improve multivariate time series forecasting. Te
function considers the standard deviation of the loss
for each variable, ensuring that losses for each
variable are minimized, in addition to the total loss.
Tis approach addresses the issue of imbalanced
errors among variables, resulting in improved ac-
curacy and robustness of the forecasting model.
Overall, the contributions of this new objective
function represent a signifcant advancement in the
feld of multivariate time series forecasting.

(3) Extensive experiments show that due to its light-
weight and efcient structure, LSTM-based methods
remain the most potent tool for tackling prediction
problems, achieving similar performance with the
transformer when trained on insufcient samples.

Te rest of this paper is structured as follows: Section 2
presents the related work, while Section 3 introduces the
details of the proposed method. In Section 4, a comparative
study, ablation study, main results, and additional experi-
mental details are listed. Finally, the conclusion is shown in
Section 5.
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Figure 1: Te complex relationship in multivariate time series. Te
diferent color presents diferent importance to prediction results.
Some variables may have little impact on the outcome, while others
may play a crucial role.
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2. Related Background

Te most commonly used multivariate time series fore-
casting method is ARIMA, one of the autoregressive models.
It is a typical linear model that cannot solve most of the
multiple time series prediction tasks in everyday life [25]. To
satisfy multivariate time series analysis needs, a growing
number of researchers have recently enrolled in the research
of multivariate time series prediction methods based on
DNN instead of machine learning algorithms [26]. RNN is
one of the classical sequence deep learning models. It ex-
tracts informative patterns from sequential data, and one of
the main disadvantages is prone to vanishing or exploding
gradient problems [27]. Te modifed RNN version, namely,
LSTM, is widely used to overcome the vanishing gradient
problem in the feld of sequential series analysis. Sagheer and
Kotb [28] utilized the genetic algorithm to select the best
LSTM structure in the petroleum industry. Liu et al. [29]
used LSTM for greenhouse climate prediction, which

performs better than others. Much relevant researches are
also based on LSTM and its variants [30–34]. Nevertheless,
the performance of the LSTMmodel decreases as the lengths
of the inputs of the model increase. To deal with this
problem, Chung et al. [14] claimed a GRU for predicting
time series by using a gatingmechanism, which has a simpler
architecture than LSTMs, which can make it faster to train
and more efcient in some cases. Tese methods do not
distinguish the long-term and short-term features. Te
LSTNet is presented to address this problem, which com-
bines the strengths of both RNN and CNN to capture the
short-term features and long-term dependencies [24].

To improve the accuracy of time series forecasting, many
researchers have incorporated self-attention mechanisms
into LSTM models [24, 25], which used attention mecha-
nisms (1) for time series forecasting [20]. By incorporating
attention mechanisms, these models can learn which time
steps are the most important for making predictions. Li et al.
[19] proposed an attention-based LSTM for time series
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Figure 2:Te trend curve of the SML2010 datasets (part). It presents the trend curve of ten variables, including 1, 3, 5, 7, 9, 11, 13, 15, 17, and
19. Tere is a repeating pattern in variable 1. In addition, variable 1 appears to have a strong correlation with variables 7, 11, and 17.
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forecasting tasks.Te single-attention approach will magnify
irrelevant information in some cases. Qin et al. [20] pro-
posed the dual-stage attention-based RNN (DA-RNN) to
avoid this problem.

et � v
t
e tanh We ht−1; st−1􏼂 􏼃 + Uext( 􏼁,

αt �
exp et( 􏼁

􏽐
T
i�1exp et( 􏼁

,
(1)

where ht and st denote the hidden states of the LSTM at time
stamp t, respectively, in (1). ve, We, and Ue are parameters to
learn. αt is the attention score indicating the relative im-
portance of the sample at time t. From (1), it is evident that
this attention approach is used to obtain temporal de-
pendencies and it cannot distinguish the diference between
variables.

Meanwhile, lots of CNN-based methods have been
applied to solve the time series prediction problems [35].
One such method is the TCN, which utilizes dilation con-
volution to extract features from the entire input sequence to
forecast target variables [36]. Te dilation convolution op-
eration in TCN can be useful for capturing long-term de-
pendencies and improving the model’s ability to predict
future values accurately without increasing the number of
parameters in the model [15]. By considering the entire
input sequence, TCN can efectively learn complex temporal
patterns and relationships between past and future time
steps. Tis makes it a powerful tool for time series fore-
casting tasks [37, 38]. Assaf et al. reported that the
MTEX-CNN is used for making multivariate time series
predictions, which consist of two stages and utilize particular
kernel sizes [39].

Transformers are a type of deep learning model that has
been shown to be highly efective for processing time series
data [16]. Zhou et al. [40] reported that the informer,
a variant of transformer, improves the inference speed of
long-sequence predictions by using the ProbSparse self-
attention mechanism and self-attention distilling. Shen
and Wang [41] proposed TCCT for forecasting time series
with much lower computation and memory costs, which
applies transformed CNN architectures into a transformer.
Moreover, Lam et al. [42] reported the GraphCast for the
medium-range global weather forecasting task, which em-
ploys a graph neural network (GNN). Due to requiring
a large amount of data for training, it may not be suitable for
most prediction cases.

As mentioned previously, multivariate time series often
entails a complex relationship pattern containing temporal
and spatial relations in the real world. To address this
problem, the DA-RNN is proposed to extract the spatial
features using a CNN structure [17]. Shi et al. [43] employed
convolutional LSTM (convLSTM) to capture spatiotemporal
correlations. Tis method replaces the full connection unit
with a convolutional structure in the LSTM model for the
precipitation nowcasting problem and consistently out-
performs FC-LSTM. Hou et al. [34] proposed a modifed
graph convolutional network (GCN) to discover the cor-
relation between variables for the stock market prediction

task. Tey claimed that the modifed graph convolutional
network achieves superior improvement over baseline
methods.

Although these forecasting methods that use the con-
volutional methods to obtain spatial relations are efective in
capturing spatial dependencies between variables, it ignores
the fact that diferent variables have diferent levels of
correlation. In the context of time series prediction, it is
essential to focus on variables with high correlation and
disregard those with low correlation, similar to standard
attention approaches. However, it is important to note that
there is no inherent physical location relationship between
time series variables. Terefore, most attention approaches
that have been successful in the image domain may not be as
efective in the time series domain.

In general, these standard self-attention approaches
mainly focus on acquiring temporal dependencies. Most of
them do not take spatial correlations into consideration,
although it is as crucial as temporal dependencies.Terefore,
in this work, a novel spatiotemporal self-attention approach
is proposed to increase the application scope of the self-
attention algorithms. Moreover, the objective function is
designed specially to model multivariate time series
prediction.

3. Framework

Te multivariate time series forecasting problem is for-
mulated in this section. What follows are the details of the
proposed spatiotemporal self-attention approach. Finally,
the modifed objective function is introduced.

3.1. Problem Formulation. Given a fully observed multi-
variate time series X � x1, x2, . . . , xn􏼈 􏼉 and assume these
series are available, where xn ∈ Rm and X ∈ Rm∗n. xn de-
notes the value of all variables x at sampling time n, and m is
the number of variables. xi represents the i−th variable and
xi

t to represent the i−th variable at sampling time t.
Moreover, the objective is to predict a series xn+h+1 by sliding
window w, where h is the forecast horizon ahead of the
current sampling time stamp. Namely, this task needs to
predict m variables at sampling time n + h + 1. By the
convention, let yn � xn+h+1 ∈ Rm, and the sliding window
size w is defned as n.Terefore, this forecasting problem can
be formulated as follows:

yn � xn+h+1 � Φ(X), (2)

where Φ: Rm∗n⟶ Rm is the mapping function that is
needed to ft via the proposed approach, and
X � x1, x2, . . . , xn􏼈 􏼉.

3.2. Model Structure

3.2.1. Standard Self-Attention Mechanism. Te self-
attention method is adopted in most sequence models
with excellent performance in terms of dependence re-
duction and parallel training, such as the transformer model
[44]. Terefore, the spatiotemporal self-attention is designed
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based on scaled dot product attention [45]. Tere are three
vectors, Q, K, and V, which are generated by encoding the
original embedding vector input X in standard self-
attention. Ten, self-attention computes the attention
score vector S via the similarity function of Q and K.

S � softmax
Q, K

T
􏼐 􏼑

��
d

√⎛⎝ ⎞⎠, (3)

where d denotes the size of Q, and the self-attention output
vector can be written as follows:

O � S × V � Ω(X), (4)

where Ω(·) indicates the scaled dot product attention
operation.

3.2.2. Temporal Self-Attention Unit. Given multivariate time
series X � x1, x2, . . . , xn􏼈 􏼉 as shown in the following
equation:

X �

x
1
1 x

1
2 · · · x

1
n

x
2
1 x

2
2 · · · x

2
n

· · · · · · · · · · · ·

x
m
1 x

m
2 · · · x

m
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

Xtemporal � x1, x2, · · · , xn􏼈 􏼉, (6)

where xi
t represents the value of i−th variable at sampling

time t. xt denotes the value of all input variables at sampling
time t. Xtemporal is a temporal vector. Te temporal self-
attention (TSA) unit is shown in Figure 3.

Te TSA automatically determines the relative impor-
tance of historical measurements for predicting future
outcomes. Tis is achieved through a process of calculating
correlation scores between each historical measurement and
the predicted values. Te TSA then assigns higher weights to
those measurements that demonstrate stronger correlation,
indicating their greater signifcance in predicting future
outcomes. Tis is achieved through the application of
equation (4), which adjusts the weights accordingly. Te
historical measurements with higher correlation scores will
have a greater impact on the forecast results, as their con-
tribution to the overall predictive model is deemed to be
more signifcant. Tis weighting mechanism helps ensure
that the prediction model is able to make accurate pre-
dictions by prioritizing the most important historical data in
the forecasting process.

Owing to the better performance of the LSTNet in the
aspect of temporal correlation extraction, the identity
function, which is used to encode Xtemporal, is good enough.
Terefore, the temporal dependency vectors Ctemporal are
computed by the following expression:

Ctemporal � Ω I Xtemporal􏼐 􏼑􏼐 􏼑 � Stemporal × Xtemporal, (7)

where I(x) � x is the identity encode function and Stemporal
denotes the score matrix of temporal dependencies.

3.2.3. Spatial Self-Attention Unit. Given X as shown in (5),
the spatial vector Xspatial can be formulated as follows:

Xspatial � x
1
, x

2
, . . . , x

m
􏽮 􏽯

T
, (8)

where xi represents the value of the i−th variable. Figure 4
shows the spatial self-attention (SSA) unit.

Te SSA can automatically calculate the impact of
various variables on prediction results, similar to the TSA.
However, the key diference lies in the fact that SSA takes
into account spatial correlations, allowing it to adjust
weights in a way that more efectively distinguishes between
important and unimportant variables. By leveraging these
spatial correlations, the SSA approach can more accurately
identify which variables are most critical to a given forecast
and thus assign greater weight to those variables while
downplaying the infuence of less signifcant ones. Tis
enables a more targeted and efcient forecasting approach
that can provide highly accurate predictions while mini-
mizing the impact of irrelevant factors.

Te Xspatial is encoded by an LSTM approach to enrich
information and obtain spatial correlations. Tis strategy
will enrich the information on each variable in Xspatial to
efectively obtain the underlying correlations between var-
iables via SSA. Te spatial correlations are computed by the
following expression:

Cspatial � Ω LSTM Xspatial􏼐 􏼑􏼐 􏼑 � Sspatial × hspatial, (9)

where LSTM(·) is the encode function by using the LSTM
approach and hspatial is the output of LSTM when taking
Xspatial. Sspatial and Cspatial denote the score matrix of spatial
correlations and spatial correlation vector computed by
spatial self-attention, respectively.

3.2.4. Proposed Model. Te architecture of the proposed
approach, based on LSTNet, is presented in Figure 5. Ini-
tially, the multivariate time series X is passed through both
TSA and SSA to extract spatiotemporal features, Ctemporal
and Cspatial. Te resulting Ctemporal is then fed into a con-
volutional component to capture short-term temporal
patterns. Te output of the convolutional component is then
sent to both the recurrent and recurrent-skip components of
LSTNet to capture complex temporal dependencies. Te
recurrent component is capable of memorizing historical
information, while the recurrent-skip component captures
long-term patterns. Meanwhile, the Cspatial is sent to an MLP
component in LSTNet to capture spatial correlations.
Consequently, the proposed approach considers both
temporal and spatial features while also focusing on the
strongly correlated variables and sampling times.

Finally, these two aspect features are sent to the last layer
using the concatenate operation to obtain the prediction
result 􏽢yn � 􏽢xn+h+1 of the sampling time step n + h + 1.
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3.3. Objective Function. Te squared error as the default
objective function is in common use for most of the time
series prediction tasks, and the optimization objective
function is formulated as follows:

argmin
Θ

J yn, 􏽢yn( 􏼁 � argmin
Θ

yn − 􏽢yn

����
����
2
F
, (10)

where J(·) denotes the objective function and ‖·‖2F is the
Frobenius norm. J(·) makes sure that the truth yn and
prediction result 􏽢yn are remarkably close overall. However, it
cannot guarantee that each i−th item ei � yi

n − 􏽢yi
n is mini-

mum. Te standard deviation of ei is incorporated into the
objective function to fgure out this problem. Te modifed
objective function is as follows:

J yn, 􏽢yn( 􏼁 � yn − 􏽢yn

����
����
2
F

+ η∗ std(e), (11)

std(e) �

����������

􏽐
m
i�1 e

i
− e􏼐 􏼑

m − 1

􏽳

, (12)

where e represents the mean value of ei and η is a hyper-
parameter. Te frst part of the modifed objective function
ensures that the total loss is minimum, and the second part
ensures that any prediction item is close to its truth.

4. Experiments and Analysis

Tere are extensive experiments with nine baseline methods
and the proposed method on three benchmarked datasets

for multivariate time series forecasting tasks. All of the
datasets and baseline methods are available online.

4.1. Datasets and Evaluation Metrics. Tere are three
benchmarked datasets used, which are available online. Te
corpus statistics are summarized in Table 1 as follows:

(1) SML2010 datasets [46]: a collection of 40 days of
monitoring data from a remote intelligent moni-
toring system in a house (https://archive.ics.uci.edu/
ml/datasets/SML2010).

(2) Gas sensor array temperature modulation datasets
(GSATM) [47]: there are 14 temperature-modulated
metal oxide (MOX) gas sensors obtained from
a chemical detection platform. Tese datasets are
collected for three weeks in a gas chamber (https://
archive.ics.uci.edu/ml/datasets/Gas+sensor+array+
temperature+modulation).

(3) NASDAQ 100 datasets [20]: the datasets consist of
stock prices of 82 corporations on NASDAQ 100
ranging from July 26, 2016, to December 22, 2016.
Te sampling period of this dataset collection
is one-minute (https://cseweb.ucsd.edu/~yaq007/
NASDAQ100_stock_data.html).

Based on the chronological order of the data, two
benchmarked datasets are split into training, validation, and
test sets, as outlined in Table 2. It is important to note that
the NASDAQ 100 datasets do not have a timestamp;
therefore, it is split proportionally.
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Te mean absolute error (MAE), mean absolute percent
error (MAPE), root mean square error (RMSE), and em-
pirical correlation coefcient (CORR) to measure forecast
accuracy are as follows:

MAE �
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j�1
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n
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􏽱 ,

(13)

where y
j
n and 􏽢yj

n denote the j−th true signals and its pre-
diction at sampling time n + h + 1. l is the length of yn. It is
always known that CORR’s higher value is better. On the
contrary, for MAE, MAPE, and RMSE, the lower value is
better. It should be pointed out that all errors are calculated
on the original data rather than the normalized data.

4.2. Baseline Methods. Te nine baseline methods for
comparison are as follows:

(1) MLP is a full connection multilayer perceptron [48].
(2) LSTM is widely suited to predict time series because

the algorithm is simple and efective [6]. It is
available at https://pytorch.org/docs/stable/_
modules/torch/nn/modules/rnn.html#LSTM.

(3) GRU is an LSTM variant algorithm with a forget gate
[49]; nevertheless, it has fewer parameters than
LSTM [50]. It is available at https://pytorch.org/
docs/stable/generated/torch.ao.nn.quantized.
dynamic.GRU.html?highlight=gru#torch.ao.nn.
quantized.dynamic.GRU.

(4) ConvLSTM replaces the dense layer with a con-
volutional structure in the LSTM model [51]. It is
available at https://github.com/rogertrullo/pytorch_
convlstm.

(5) TCN uses a hierarchy of temporal convolutions to
discover long-range temporal relations efciently
[52]. It is available at https://github.com/locuslab/
TCN.

(6) LSTNet contains the recurrent component,
recurrent-skip, and VAR-MLP component [24, 53].
It captures long- and short-term patterns. It is
available at https://github.com/laiguokun/LSTNet.

(7) LSTNet Att is a typical LSTNet with the standard
self-attention.

(8) Transformer is a standard transformer approach
with three encoder layers and two decoder layers
[16]. It is available at https://github.com/zhouhaoyi/
Informer2020.

(9) Informer is reported in the best paper in AAAI 2021,
which used ProbSparse self-attention to replace stan-
dard attention in the transformer [40]. It is available at
https://github.com/zhouhaoyi/Informer2020.

4.3.TrainingProcedure. TeAdam optimizer algorithm [54]
is used to trainmodels.Te procedure of the training process
is shown in Table 3. Te core code is available at https://
github.com/DezhengWang/LSTNetWithSTA.

4.4.ExperimentalDetails. In the experiment, the structure of
MLP is set as m∗ n, m∗ n∗ 10, m∗ n∗ 4, m∗ n∗{

2, 512, 256, m}, and this structure has sufcient width and
depth to predict yn. Te LSTM model combines three dense
layers, and the GRUmodel with one dense layer. Te default
model settings are adopted for the newest multivariate time
series forecasting models ConvLSTM, TCN, LSTNet,
transformer, and informer.

To verify the generalization ability of the algorithms, the
sliding window is set as a fxed value rather than a hyper-
parameter. Terefore, the value twenty-fve is selected as the

Table 1: Dataset statistics. Te size of datasets for some prediction tasks is small, especially for SML2010.

Datasets Length # Variables Sampling rate
SML2010 4046 19 15minutes
GSATM 37700 19 15minutes
NASDAQ 100 40470 82 1 minute

Table 2: Splitting strategy. Te SML2010 and GSATM datasets are split into the training, validation, and test datasets, according to the
chronological order. Te NASDAQ 100 is divided in proportion.

Datasets Training datasets Validation datasets Test datasets

SML2010 From Mar 13. 2012 From Apr 18. 2012 00:00 From Apr 25. 2012 03:45
To Apr 11. 2012 To Apr 25. 2012 03:30 To May 02. 2012 07:30

GSATM From Sep 30. 2016 00:00 From Oct 14. 2016 00:00 From Oct 16. 2016 00:00
To Oct 13. 2016 23:59 To Oct 14. 2016 23:59 To Oct 16. 2016 23:59

NASDAQ 100 35070 2700 2700
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sliding window for those three benchmarked datasets
SML2010, GSATM, and NASDAQ100.

Te number of training iterations for all these nine
baseline models and the proposed model on the SML2010,
GSATM, andNASDAQ100 datasets are 20, 10, and 5 epochs,
respectively. Te learning rate of GRU is 0.0005 and that of
TCN and LSTM is 0.005. Moreover, the learning rate of
transformer and informer is 0.0001.Te others are 0.001. Let
h � 2, which means that the prediction horizon is set with
two sampling time stamps for the forecasting over the
benchmarked datasets.

4.5. Comparative Study: Why Choose LSTM-Based Models.
Te additional experiments on GSATM are conducted with
comparative consideration to compare and analyze two
commonly used methods: RNN-based and transformer-
based methods. As the amount of data increases,
transformer-based models have been shown to exhibit ex-
cellent performance. However, it is important to note that
due to the higher model capacity of the transformer, it is
more prone to overftting when trained on insufcient
samples. Tis is because the transformer architecture has
signifcantly more parameters than RNN-based models and
thus requires a larger dataset to avoid overftting.

In this section, an analysis of the performance of LSTM and
transformer models as benchmarks with insufcient samples is
conducted. Several experiments are conducted to illustrate the
abovementioned phenomenon, as shown in Figure 6. To ensure
that the algorithms converged to an optimal or a closer so-
lution, the learning rates are 0.008 and 0.0001 for LSTM and
transformer, respectively, with a total number of 20 epochs.Te
experimental setup is aligned with the settings mentioned in
Section 4.4. From Figure 6, it can be observed that the RMSE
values of LSTM and transformer are quite similar when trained
on a varying number of insufcient samples, ranging from 250
to 2000. However, the training time of the transformer is
signifcantly greater than that of LSTM. Furthermore, the
number of parameters of the transformer is 10,064,403, which
is approximately 45 times larger than that of LSTM (which has
only 219,347 parameters).

Te experimental results show that LSTM with lower
time and spatial complexity achieves similar performance to
the transformer. It can conclude that LSTM-based methods

are still the most powerful tools for tackling prediction
problems when trained on insufcient samples. According
to the reports [20, 55], there are many prediction tasks that
require working with a small sample size. Terefore, this
paper is dedicated to researching algorithm performance
improvement based on LSTM architecture.

4.6. Ablation Study: How Well Does Our Proposed Method
Work? In this section, extensive experiments are conducted
to explore the role of each component in the proposedmodel
thoroughly. Te maintenance setups are aligned with the
settings mentioned in Section 4.4.

4.6.1. Te Performance of the TSA Self-Attention Mechanism.
Table 4 shows that the RMSE, MAE, and MAPE of the
proposed method without the TSA component have in-
creased compared to the proposed method on GSATM and
NASDAQ100 datasets, except for SML2010. Tis is because

Table 3: Te procedure of the proposed algorithm.

Require: epoch, batch size, # training iterations, learning rate, training datasets, validation datasets, test datasets, and truth
Standardize training datasets, validation datasets, and test datasets separately
for i in epoch:
model.train ()
model.forward (training datasets)
loss� J (training datasets, ground truth)
loss.backward ()
optimizer.step ()
if i % LogInterval�� 0:
model.eval ()
model.forward (validation datasets)
ValidLoss� J (validation datasets, truth)

end
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Figure 6: Te trend of training time and RMSE. Transformer
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International Journal of Intelligent Systems 9



the SML2010 dataset exhibits a stronger cyclical trend of
change than the other datasets, as shown in Figure 2, which
can be captured by models without temporal self-attention.
Nevertheless, without TSA, the proposed method cannot
efciently focus on these complicated relevant trends among
data such as GSATM and NASDAQ100. Due to the SSA and
the modifed objective function, the proposed model still
performs better.

Figure 7 presents the temporal dependencies observed in
three benchmark datasets, highlighting the efectiveness of
the proposed TSA component, which is a part of the spa-
tiotemporal self-attention mechanism. Te results show that
the TSA component can efectively distinguish the de-
pendencies of diferent historical sampling time steps on the
prediction task. Tis enables the forecasting method to focus
more on the historical moments that have signifcant de-
pendencies, as indicated by their high score in the prediction
results. Overall, these fndings suggest that the TSA com-
ponent plays a critical role in improving the forecasting
accuracy of the proposed method by efectively identifying
and leveraging the most relevant temporal dependencies.

4.6.2. Te Performance of the SSA Self-Attention Mechanism.
According to Table 4, there is a notable decline in model
performance when compared to the proposed method
without the SSA. Tis is because time series data are often
interrelated, and there are complex dependencies among
variables in real-world applications. Terefore, prediction
models must take these relationships into account to dis-
cover useful information.

Te experimental results demonstrate that the proposed
SSA can capture spatial correlations among variables, as
shown in Figure 7. Te experiments reveal the correlations
between diferent variables and the prediction results. It is
evident that each variable has a distinct correlation with the
results. As a result, the forecasting model should focus on
high-scoring variables to perform better. Te proposed SSA
approach increases the weights of such robust dependent
measurements and highly correlated variables to achieve
higher prediction accuracy.

4.6.3. Te Performance of the Proposed Objective Function.
In Section 3.3, it is mentioned that the commonly used
objective function ensures that the predicted results are close
to the ground truth values on average; however, it does not
guarantee that for each item error is minimized. To address

this limitation, the standard deviation is incorporated into
the objective function.

Including the standard deviation in the objective func-
tion ensures that the algorithm converges into a solution that
is optimal or closer to optimal. Experimental results have
shown that without this modifcation to the objective
function, there is a slight increase in errors such as RMSE,
MAE, and MAPE, except for MAE on GSATM, as presented
in Table 4. Tus, the proposed objective function, which
incorporates the standard deviation, is essential in
guaranteeing that the algorithms converge to an optimal or
closer solution, resulting in improved performance metrics.

4.7. Main Results. Te heat map presented in Figure 7
displays the spatiotemporal dependencies observed in
three benchmarked datasets. Te proposed TSA efectively
distinguishes the dependencies of diferent historical sam-
pling time steps on the prediction tasks. Consequently, the
TSA enables the forecasting method to focus on the his-
torical moments that have signifcant dependencies (in-
dicated by high scores) in the prediction results. Tis
improved attention to relevant historical information en-
hances the accuracy of the forecasting method.

Te proposed spatiotemporal self-attention method goes
beyond capturing the temporal dependencies by also in-
corporating spatial correlations among variables, as illus-
trated in Figure 7. By examining the results of the
experiments, it can discern the varying degrees of correlation
between diferent variables and the prediction outcomes.
Notably, certain variables have stronger correlations with
the results than others. Consequently, a successful fore-
casting model must prioritize these high-scoring variables to
achieve optimal performance. Te proposed spatiotemporal
self-attention approach achieves this by assigning greater
weight to these strong dependent measurements and highly
correlated variables, ultimately resulting in higher prediction
accuracy.

Te experimental results of all the methods (mentioned
in Section 4.2) on all the test datasets (mentioned in Section
4.1) in all the evaluation metrics (13) are summarized as
shown in Table 5. Clearly, the forecasting model with the
proposed spatiotemporal self-attention signifcantly ach-
ieves superior improvement over the other baseline models
on the datasets. Besides, the proposed model outperforms
the baseline standard LSTNet by 0.037, 0.017, and 0.002 in

Table 4: Ablation study of the proposed method.

Model
SML2010 GSATM NASDAQ100

MAE MAPE RMSE CORR MAE MAPE RMSE CORR MAE MAPE RMSE CORR
LSTNet 0.27034 0.00894 0.90874 0.99149 4.55509 0.33331 1.24315 0.96263 0.07919 0.00117 0.82154 0.98539
OURS without TSA 0.17376 0.00580 0.87278 0.99593 2.60801 0.41757 1.23542 0.96448 0.08085 0.00120 0.82378 0.98449
OURS without SSA 0.26102 0.00861 0.90613 0.99166 3.57170 0.35723 1.24234 0.96227 0.08418 0.00125 0.82708 0.98339
OURS single loss 0.16277 0.00544 0.86847 0.99645 2.61735 0.24150 1.23765 0.96375 0.08082 0.00120 0.82415 0.98453
OURS 0.16808 0.00562 0.87153 0.99612 2.63559 0.33610 1.22660 0.96945 0.07718 0.00114 0.81949 0.98615
OURS without TSA denotes the proposed method without the TSA component. OURS without SSA denotes the proposed method without the SSA
component. OURS single loss denotes that the proposed method is optimized with a standard MSE objective function rather than the proposed objective
function. ∗It should be pointed out that all errors are calculated on the original data rather than the normalized data.
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the RMSE metric on SML2010, GSATM, and NASDAQ100
datasets. With the integration of the spatiotemporal self-
attention and a standard deviation term (12), the LSTNet
with the proposed spatiotemporal self-attention achieves the

best MAE, RMSE, and CORR across three datasets. Tis is
because it not only tries to obtain the temporal dependencies
but also employs a spatial self-attention to capture the
correlations across other variables.
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Figure 7: Te spatiotemporal attention score. Te diferent variables have varying levels of importance at diferent sampling times. Tis
means that the relevance or impact of a particular variable on the prediction may change over time. (a) SML2010. (b) GSATM.
(c) NASDAQ100.

Table 5: Metric results for the model and baseline models on three benchmarked datasets.

Model
SML2010 GSATM NASDAQ100

MAE MAPE RMSE CORR MAE MAPE RMSE CORR MAE MAPE RMSE CORR
MLP 0.63838 0.02164 0.98231 0.95989 20.59712 0.46255 1.37513 0.92804 0.54500 0.00806 0.97785 0.22437
LSTM 0.63722 0.02164 0.98598 0.95516 4.14283 0. 6364 1.24097 0.96301 0.59471 0.00880 0.97173 0.59591
GRU 0.50851 0.01697 0.96513 0.97588 15.77770 0.38983 1.34624 0.94839 0.33149 0.00492 0.93270 0.85718
ConvLSTM 0.46332 0.01567 0.95389 0.97957 5.56830 0.32900 1.25887 0.96892 0.38968 0.00578 0.93844 0.89860
TCN 0.25622 0.00902 0.90435 0.99384 3.86711 0.32546 1.25404 0.94602 0.08242 0.00122 0.82505 0.98434
LSTNet 0.27034 0.00894 0.90874 0.99149 4.55509 0.33331 1.24315 0.96263 0.07919 0.00117 0.82154 0.98539
LSTNet Att 0.26516 0.00875 0.90719 0.99182 4.71850 0.32771 1.25272 0.95450 0.08370 0.00124 0.82684 0.98349
Transformer 0.46210 0.01539 0.95635 0.98094 3.16311 0.47925 1.23539 0.96451 0.38075 0.00564 0.93654 0.79833
Informer 0.37068 0.01228 0.94434 0.98514 3.07807 0.49539 1.23384 0.96591 0.40855 0.00605 0.94117 0.76445
OURS 0.16808 0.0056 0.87153 0.9961  .63559 0.33610 1.  660 0.96945 0.07718 0.00114 0.81949 0.98615
LSTNet ATTdenotes LSTNet with the standard self-attention. Bold face indicates the best result of each column in a particular metric. ∗It should be noted that
all errors are calculated on the original data rather than the normalized data.

International Journal of Intelligent Systems 11



In addition, the RMSE of state-of-the-art ConvLSTM,
TCN, LSTNet, transformer, and informer performs better
than MLP, LSTM, and GRU approaches. Tis result is
obtained because these fve state-of-the-art models have an
efective feature extraction capability. Terefore, these state-
of-the-art models can obtain richer information than others.
Nevertheless, such state-of-the-art models ignore that dif-
ferent variables have diferent spatial correlations on the
forecast results. It should be pointed out that LSTNet with
the standard self-attention (LSTNet Att) has an insignifcant
efect onmodel performance. It is on account of the standard
LSTNet model that considers short-term and long-term
patterns. Namely, it can obtain complex temporal de-
pendencies. Terefore, the common self-attention is hardly
helpful regarding LSTNet model performance.

Moreover, the transformer and informer algorithms
have a higher model capacity compared to the proposed
algorithm, which can make them more prone to overftting
when trained on insufcient samples. As a result, the
transformer and informer algorithms have higher RMSE of

0.95635 and 0.94434 on the SML2010, 1.23539 and 1.23384
on the GSATM, and 0.93654 and 0.94117 on the NAS-
DAQ100, respectively. In contrast, the proposed algorithm
has an RMSE of 0.87153, 1.22660, and 0.81949 on the
SML2010, GSATM, and NASDAQ100, respectively, which is
lower than the RMSE of the transformer and informer
algorithms.

Figures 8 and 9 show that any prediction of variables fts
the truth well. It is due to the standard deviation term in the
objective function described in Section 3.3. Te modifed
objective function ensures the minimum total loss, and any
prediction is close to its truth.

Figure 10 denotes that MLP, LSTM, GRU, and
ConvLSTM approaches cannot handle complex datasets
such as NASDAQ100. Tis result is because those basic
methods cannot distinguish the short-term and long-term
patterns. MLP, LSTM, and GRU network structures do not
even obtain spatial features. Moreover, Figure 11 indicates
that the proposed approach tracks the trend of the original
data well, even with extreme values.
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Above all, the proposed approach accurately obtains the
spatiotemporal patterns between its historical measurement
and the variables. It signifcantly improves the state-of-
the-art results in multivariate time series prediction on three
benchmarked datasets.

5. Conclusion

Tis paper presents a novel approach for multivariate time
series forecasting based on spatiotemporal self-attention.
Te proposed approach utilizes a spatial and temporal self-
attention mechanism, a standard LSTNet, and a modifed
objective function. Te spatial self-attention is able to
capture correlations among variables, while the temporal
self-attention enhances the temporal feature extraction ca-
pabilities of LSTNet. Te modifed objective function in-
corporates the standard deviation of each loss item, ensuring
that predictions for each variable ft the ground truth ac-
curately. Te comparative study indicates that LSTM
methods remain the most potent tool for tackling prediction
problems, achieving similar performance with transformer
when trained on insufcient samples. Meanwhile, the ab-
lation study shows that the proposed method without SSA
has a notable decline in the performance. In addition, the
proposed objective function incorporating the standard
deviation is helpful for converging into an optimal or closer
solution. Te approach yields signifcant improvements in
MAE, MAPE, and RMSE by an average of 2.62, 0.13, and 7%,
respectively, compared to other comparison algorithms.
Moreover, CORR has increased by an average of 10%. Te
abovementioned experiments on the benchmarked datasets
demonstrate that the proposed approach consistently en-
hances state-of-the-art methods for multivariate time series
forecasting tasks.

Data Availability

(1) Te SML2010 datasets supporting this work are from
previously reported studies and datasets, which have been
cited. Te processed data are available at https://archive.ics.
uci.edu/ml/datasets/SML2010. (2) Te Gas Sensor Array
Temperature Modulation datasets supporting this work are
from previously reported studies and datasets, which have
been cited. Te processed data are available at https://
archive.ics.uci.edu/ml/datasets/Gas+sensor+array+tempera
ture+modulation. (3)TeNASDAQ 100 datasets supporting
this work are from previously reported studies and datasets,
which have been cited. Te processed data are available at
https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_
data.html.
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