
Research Article
Feed-Forward Deep Neural Network (FFDNN)-Based Deep
Features for Static Malware Detection

Priyanka Singh,1 SamirKumarBorgohain,1 AchintyaKumar Sarkar,2 JayendraKumar ,3

and Lakhan Dev Sharma3

1Department of Computer Science Engineering, National Institute of Technology Silchar, Silchar, Assam 788010, India
2Department of Electronics and Communication Engineering (ECE Group), Indian Institute of Information Technology Sri City,
Sri City, Andhra Pradesh 517646, India
3School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522 237, India

Correspondence should be addressed to Jayendra Kumar; jayendra854330@gmail.com

Received 18 October 2022; Revised 28 December 2022; Accepted 17 January 2023; Published 20 February 2023

Academic Editor: Said El Kafhali

Copyright © 2023 Priyanka Singh et al.Tis is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te portable executable header (PEH) information is commonly used as a feature for malware detection systems to train and
validate machine learning (ML) or deep learning (DL) classifers. We propose to extract the deep features from the PEH in-
formation through hidden layers of a feed-forward deep neural network (FFDNN). Te extraction of deep features of hidden
layers represents the dataset with a better generalization for malware detection.While feeding the deep feature of one hidden layer
to the succeeding layer, the Gaussian error linear unit (GeLU) activation function is applied.Te FFDNN is trained with the GeLU
activation function using the deep features of individual layers as well as concatenated deep features of all hidden layers. Similarly,
the ML classifers are also trained and validated in with individual layer deep features and concatenated features. Tree highly
efective ML classifers, random forest (RF), support vector machine (SVM), and k-nearest neighbour (k-NN) have been in-
vestigated.Te performance of the proposedmodel is demonstrated using a statically signifcant large dataset.Te obtained results
are interesting and encouraging in terms of classifcation accuracy. Te classifcation accuracy reaches 99.15% with the internal
discriminative deep feature for the proposed FFDNN-ML classifer with the GeLU activation function.

1. Introduction

Te statistical data till April 2022 show that the Windows
operating system is being used by around 75% of computer
users globally [1]. Being the widely used operating system for
desktops and laptops in organizations and for personal
computing, these systems are more prone to malware in-
fections. Healthcare organizations were highly afected
during the peak of the COVID-19 pandemic [2]. Te
computers of employees working from home (WFH) and
educational institutions were attacked severely [3]. Cyber
infection is disseminated through PE in various forms stored
or installed in the system to perform a variety of malicious
actions such as gaining access to its resources, stealing
confdential data, and redirecting to malware host websites.
Malware attacks have spread terror among the users of the

computer and society. With the increase in the use of
computer systems, malware has been replicating and pro-
liferating exponentially since the beginning of the computer
era. Despite the security concerns raised by the industry to
safeguard computers and networks from cyber-attack, pri-
vacy and security are still of high concern. To halt this
nuisance created by the malware creators, continuous ob-
servation and prevention are needed. Also, the systems need
to be updated in real time. Nevertheless, as malware has
evolved into the form of viruses, worms, Trojans, and its
variants, diferent malware detection techniques have been
developed by researchers.

Traditional malware detection such as the signature-
based approach has become outdated as it can only detect
malware if the pattern or the signature is matched against the
signature stored in the repositories [4]. Tese signatures are

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 9544481, 20 pages
https://doi.org/10.1155/2023/9544481

https://orcid.org/0000-0002-3381-2764
mailto:jayendra854330@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9544481

the unique patterns generated during the static execution of
the malware executables [5]. Also, code obfuscation and
shufing of the code snippet are no more backbreaking jobs
for the creator of the malware that results in the signature
change of the same malware variant [6]. Te behaviour-
based approach evaluates malware dynamically executing
the thief and analyzing it in an isolated environment. Te
behavioural log such as the execution sequence of the
malware is recorded for further prosecution [7]. However,
the direct execution of malware on a system for monitoring
is always dangerous as it corrupts system fles. On the other
hand, the newly evolved malware had become smart enough
to bypass the isolated environments [5]. Te heuristic-based
approach performed better than the signature and
behaviour-based ones for detecting unknown malware and
zero-day attack [8]. Tis approach has sufcient rules and
patterns for the investigation of malware behaviour and
controls the fow of the code. However, a higher false-
positive rate is identifed as a major limitation of the
heuristic-based malware detection systems [9]. With the
increasing number of computer users and the availability of
advanced malware creation tools, malware detection became
trivial. Tis led to the proliferation and speedy propagation
of malware all over the globe leading to a massive amount of
malware data. Researchers and industry have now adopted
the data mining and machine learning (ML) approach to
detect and classify malware [10, 11]. Rapid research con-
tribution has been recognized in the last few decades in the
feld of malware detection using the ML approach.

In ML techniques, data in terms of features are fed to
train a model to learn and estimate a possible pattern of the
data. Terefore, feature extraction is an important step in
ML while preparing a dataset [12]. Defnitely, a better
representation of features makes the training and detection
highly efcient. Nowadays, a drastic increase in malware has
made the training phase time-consuming and tedious and
ML classifers inefcient [13]. Te efectiveness of an ML
classifer highly depends on the feature representation and
the nature of the dataset used for training. TeML approach
depends on feature extraction which requires profcient
knowledge of the realm. It makes the false-positive rate
(FPR) low which is an important consideration during the
implementation of ML algorithms [14].

Research in the realm of malware detection has em-
braced the diverse computational approach. In recent years,
the nature-inspired computational approach has been
geared up for malware detection, feature optimization, and
classifcation [15–17]. Tat nature has been always very
successful in solving complex objectives which inspired
researchers to adopt bioinspired algorithms.Te bioinspired
algorithms have been successfully implemented for various
applications such as image processing, robotics, fraud de-
tection, and intrusion detection. Neurocomputing or arti-
fcial neural network is a subfeld of nature or bioinspired
computation that has been applied for malware detection
and classifcation on windows, android systems, and IoT
devices [18, 19]. However, the study and discussion about
malware detection for android and IoTdevices are out of the
scope of this work. As with the availability of a massive

amount of malware data to experiment with, deep neural
networks or deep learning mimicking the human brain
solves the problem of processing information from a huge
volume of data. Tis deep bioinspired computation provides
more and more generalization as an efect of the processing
of neurons. As bioinspired evolutionary computing has
gained momentum in the feld of optimization, the deep
learning techniques inspired by human brain functioning
are the best learners in the context of generalization [20, 21].
Deep learning has been used in the feld of cybersecurity in
recent times for the prediction of cyberattacks. As the hu-
man brain learns to perceive, represent, and process the data,
a deep neural network learns data representations to gen-
erate the model with the representations and utilizes this
learning efciently when new data come. Tis improves the
generalization capability of the model as compared to other
bioinspired methods. Also, scalability is no more an issue to
performance as the huge volume of data can be handled
without being more careful about feature engineering steps.

Diferent malware detection models based on DNN or
ML classifers such as random forest (RF) [22], support
vector machine (SVM) [23], and k-nearest neighbour (k-
NN) [24] classifers use PEH, signature, behavioural log such
as the execution sequence as features for malware detection.
Credit card fraud detection with DNN [25] and optimization
of model hyperparameters using genetics and swarm al-
gorithms can be found in [26–28]. In recent years, deep
feature extraction of DNN has gained attention in many
domains of pattern recognition [29–32]. In deep feature
extraction, the DNN is trained using input data such as PEH
with an activation function to minimize the classifcation
error. Now, the output of the subsequent layer without the
activation functions is considered deep features. Now the
deep features of a hidden layer are used to train ML clas-
sifers. As per our survey, the deep features have not been
exploited much for malware detection. Terefore, we pro-
pose to extract deep features of an FFDNN with a multitask
objective function that simultaneously classifes benign and
malware. Tereafter, the deep features of hidden layers have
been used to train the ML classifers, RF, SVM, and k-NN.
Besides, we also consider the concatenation of diferent deep
features for malware detection. Te network parameters are
optimized using error backpropagation, and the output of
DNN neurons and gradient contribution is controlled by the
activation function. Te nonlinear modelling capability of
deep neural networks possesses the signifcant discrimina-
tive capability and is a potent back-end classifer.

In this work, we propose a deep feature-based malware
detection system where an FFDNN [33] is trained with
multitask objective functions. During the network back-
propagation for parameter optimization, the GeLU activa-
tion function is used to control the DNN neuron’s output
and gradient contribution.Te sigmoid [34, 35] and rectifed
linear unit (ReLU) [36] activation functions are commonly
used for diferent applications such as speech recognition
[37, 38] and image processing [39, 40] in the literature. Te
sigmoid function squashes the input space from 0 to 1. Tis
results in a small derivative and gradient vanishing. Te
gradient vanishing poorly updates the initial layers yielding

2 International Journal of Intelligent Systems

inefective training; thus, the model lack generalization
[41, 42]. Te ReLU has a dynamic range of input and can be
used for efective training, but it needs stochastic regulari-
zation as it lacks probabilistic interpretation [43]. Te GeLU
is introduced in [43] as a deterministic activation function
that combines stochastic regularization. It is shown in [43]
that the GeLU performs better than the rectifed linear unit
(ReLU) and exponential linear unit (eLU) for speech and
language processing and computer vision applications. We
have investigated the performance of diferent activation
functions and found GeLU best performing for the proposed
malware detection system too.

2. Contributions

Te contributions of this work are in many folds as follows:

(i) We propose a DNN-based deep feature for a mal-
ware detection system, where PEH information are
fed as input to the FFDNN with multitask objective
functions at the output layer. It simultaneously
classifes the malware and nonmalware sample and
minimizes the prediction for the input at the output.
Afterward, the output from a particular hidden layer
is used as deep features. Tis deep feature repre-
sentation is used to train the FFDNN and ML
classifers, RF, SVM, and KNN.

(ii) Te deep features of one hidden layer are extensively
analyzed and also concatenated with deep features
of other hidden layers.

(iii) To the best of our knowledge, the GeLU activation
function has been used for the frst time in com-
bination with DNN and ML classifers for static
malware detection. Te performance is evaluated
against the commonly used ReLU, scaled expo-
nential linear units (SeLU), and eLU on a large
dataset for statistical signifcance.

(iv) Te proposed deep feature-based FFDNN-ML
malware detection system shows better perfor-
mance over the state of the art

3. Related Work

A 2-hidden layer DNN-based malware detection system is
reported in [44], and results are presented against a binary
dataset of 431,926 instances. Entropy histogram, PE Import,
2D strings, and PE metadata features have been used as
extracted features. A better convergence was achieved with
the parametric ReLU (PReLU) activation function and
Adam optimizer. Tis system achieves a 95% detection rate
(DR) with a 0.1% false-positive rate (FPR) with 1024 neurons
in the input layer. An interesting time split validation
performed over a traditional cross-validation approach is
appreciable. However, the performance of time split vali-
dation has been depicted as degrading on test data. In [45],
a staked autoencoder (SAE)-based DNN system for malware
detection is reported. Te system performance is demon-
strated using the Windows API calls for a dataset consisting
of 50,000 malware and benign executables. Tey achieved an

accuracy of 96.85% with 3 hidden layers of 100 neurons per
layer. However, the implication of the activation function
may further improve the performance of this system. Yuxin
and Siyi detected malware using a malware detection system
based on the deep belief network (DBN) model with 2
hidden layers and a maximum of 200 neurons [46]. Per-
formance evaluation is carried out by partitioning an
OpCode-n-gram dataset into 4 sets of 850 malware and 850
benign samples. An accuracy of 96.5% is achieved using 200
distinct features. DBN is stacked up with restricted
Boltzmann machine (RBM) layers that are related to
global weight and tuning of the weights. However, DBN
sufers a vanishing gradient problem [47]. Tus, the
nonlinear activation function in DBN is critical in
reducing the network complexity and improving the
performance of pattern recognition.

DeepMalNet architecture for malware detection has
been reported in the literature [48]. Tis malware detection
system is evaluated on the static representation extracted
from portable executables. Te Ember dataset [49] used in
this work is a labelled benchmark dataset. Te proposed
work is trained using 10 hidden layers, an input layer with
2350 neurons and 1 output neuron. Experiments were
performed on activation functions such as sigmoid, tanh,
ReLU, eLU, and SeLU.Te learning rate between 0.01 and 05
has been applied to the experimentation during 1000 iter-
ations. An accuracy of 98.9% is achieved with the ReLU
activation function with 10 hidden layers of DNN. However,
the elaborated experimentation results with various pa-
rameter tuning are not mentioned in the work. Ye et al.
proposed a heterogeneous deep learning framework for
intelligent malware detection known as DeepAM [50]. Tis
framework is composed of SAE multilayer restricted
Boltzmann machines and a layer of associative memory. To
train the model, a balanced dataset consists of 4500 benign
fles and 4500 malware fles that have been used and tested
using 1000 samples. WindowAPI call sequence was
extracted for feature representation. For fne-tuning, a wake-
sleep algorithm and a gradient descent algorithm are applied
to modify the downward generation of weights between the
layers. An accuracy of 98.82% is achieved with 3 hidden
layers of 100 neurons in each layer. However, weight
updating is not as smooth as backpropagation in FFDNN
[51]. Rathore et al. proposed a malware detection system
with an ML classifer and deep learning that used autoen-
coders for dimensionality reduction [52]. Te dataset con-
sists of 14,507 samples (2819 benign and 11308 malware
executables). OpCode frequency was used as a discrimina-
tory feature for evaluation. Te mean square error (MSE) is
used as a loss function, and the network is trained for 120
epochs. An accuracy of 98.9% is achieved using a 7 hidden
layer DNN model.

Te malware visualization approach using a convolution
neural network (CNN) for malware detection and classif-
cation has been trending in malware research as state of the
art. Zhong and Gu proposed a multilevel deep learning
system (MLDLS) where multiple deep learning models are
organized in a tree structure [53]. Both static and dynamic
features are extracted from malware and binary executables

International Journal of Intelligent Systems 3

to develop a dataset with 2242,234 malware samples and
3425,176 benign samples. Te major contribution is parallel
computation by data distribution for each group of malware.
MLDLS outperforms the other single deep learning models.
A leaky ReLU activation function is used in the overall
experiment.Temodel construction time is signifcantly less
due to the parallel distribution of data and organization of
the tree structure. As the number of samples is increased, the
true positive rate (TPR) is signifcantly increased above 96%
and the false positive rate (FPR) is decreased below 0.1%.
However, the computational time is considerably high. Also,
the conversion of tabular data to images using CNN has
certain limitations [54].

In [55], a DNN malware detection system based on
visualization is presented. Te malware detection system
developed using deep learning architectures has been
implemented on static, dynamic analysis, and image pro-
cessing in the work. Te authors have implemented a hybrid
deep learning architecture incorporating CNN, recurrent
neural network (RNN), and fully connected DNN for
malware detection. In this work, various models both tra-
ditional and advanced ML models are trained for perfor-
mance evaluation. Te FCNN (DNN) for static analysis
outperforms other models with an accuracy of 98.9%.
However, the robustness of the proposed system framework
is not discussed in this work. Authors in [56] proposed
a malware detection system using convolution neural
network-based VGG16 network functions for visualization
of static and dynamic features of executables.

Te performance evaluation of the system is carried out
for two models based on static and hybrid visualization. Te
hybrid model outperforms the static model with an accuracy
of 94.70% on the test dataset. However, the experimentation
is performed on a small dataset that is statistically in-
signifcant. In [57], a similar visualization approach has been
used. Te PE executable is converted into a grayscale image,
and then the image patterns are learned for classifcation.
Te authors proposed a deep forest method applying sliding
windows and cascading layers wherein the sliding window
approach is adapted from CNN. Te highest accuracy ob-
tained is 98.65% on the Malimg dataset. Te malware vi-
sualization technology provides a vivid image of diferent
malware types that aids in visualizing the diference between
variants of malware. Although, the visualization method can
tackle the code obfuscation problem but requires more time
for the extraction of complex image patterns. Also, the
transformation of tabular data to images sufers certain
limitations.

4. Bioinspired Neural Network

Human brains possess superiority in executing tasks such as
pattern recognition, fexible inference, control, perception,
intuition, prediction, and decision-making. An artifcial
neural network is loosely inspired by the human nervous
system and focuses on the learning and problem-solving
skills of the system at hand.Te neurons are the fundamental
computation unit of the human brain connected to each
other with a minute junction called the synapse. Tese

junctions are responsible for cognitive abilities, such as
perception, inference, and thought processing. Neuro-
computation is brain-like computing and also referenced
with artifcial neural network (ANN) which is a subfeld of
bioinspired computation [20].

Deep artifcial neural networks or deep learning archi-
tectures imitate the pursuit in layers of neurons in the
neocortex. It intelligently learns the stratifed layers, rep-
resentation levels, and abstractions. It comprehends the
patterned data that it perceives from various sources such as
numerical data, images, sound, signals, and text. Abstraction
at a higher layer is the combination of abstractions of lower
layers. Tese deep abstractions are generated from more
than a single layer of nonlinear feature transformation. Deep
learning automatically learns the feature representation at
multiple layers of abstraction that aids in the automated
mapping of the functions from the input to the output layer.
Tis automated mapping does not require expert knowledge
of feature engineering.

4.1. Neural Perspective. Te study of the human nervous
system is a vast domain. In this work, the organization and
processing of the human nervous system are discussed in the
context of a computational artifcial neural network. Dif-
ferent levels of the nervous system can be organized as
molecules, synapses, neurons, layers, maps, and systems.
Out of the complex organization, the neurons are more
evident and potential units for signal generation and capable
of transmitting information to connected cells. Each neu-
ronal unit performs its own specifc function. One of such
eminent units for comprehension of signal processing is
synapses in the nervous system [58].

Neurons consist of special extensions called neurites that
can be divided into dendrites and axons. Te function of the
dendrites is to receive signals from other neurons. Te axon
performs propagation of the output signals to the connected
neurons. Te neurons are specialized in sending and re-
ceiving signals to and from other neurons. Te neurons that
send the signal are known as presynaptic neurons, and the
neurons that receive the signal are known to be postsynaptic.
Tus, synapses are the junctions between the presynaptic and
postsynaptic neurons. An equivalent nervous system rep-
resentation and its components with directional signal
processing are depicted in Figures 1(a) and 1(b), re-
spectively. Te propagation of the signals up to the cell body
from presynaptic neurons is integrated after signal gener-
ation. Te potential membrane is then responsible for
making a decision whether the neurons are fring or sending
the output signal to postsynaptic neurons depending on the
neuron threshold. Te connection between the neurons can
be either forward or backward in the nervous system. Tese
interconnected neurons are called neural networks. In
a network of neurons, these neurons are organized into
input, hidden, and output layers.

ANN maps the architecture, features, and performance
criteria similar to the human nervous system. Te funda-
mental information processing occurs in neurons or nodes
wherein neurons can exchange signals among other

4 International Journal of Intelligent Systems

neurons. Te neurons are connected to each other forming
a neural network. Te strength of the synapses corresponds
to the weight value in the neurons. Te learning process
from the given data for adaptive knowledge is similar to the
learning of the nervous system from the environment.
However, the computational neural network does not fully
resemble the complete structure and working of the nervous
system.

4.2. Representation Perspective. Te interconnected neurons
demonstrate complex behaviours and information pro-
cessing capabilities even in a small cluster. Single neurons
cannot store and process complete or whole knowledge. Te
representation of information is distributed in a hierarchical
manner, and the parallel processing of this information over
various neurons is an important feature of the neural net-
work [59]. In order to perform the more specifc complex
tasks with respect to information processing, specialized
architectures are incorporated into the larger structure of
networks. For most bioinspired artifcial intelligence (AI)
and ML algorithms, the performance heavily depends on the
representation of data. So, feature representation plays
a crucial role in the performance of the system designed
[60, 61]. Traditionally, the handcrafted predefned feature as
sectional header information shown in Figure 2 is fed to
DNN/ML algorithms for classifcation.

Recently, DNN has gained the attention of researchers in
diferent applications including speech and image pro-
cessing. It is demonstrated by researchers that a system
based on the deep representation feature yields better or
provides complementary information. In other words, deep
learning is found very useful for data learning, i.e., the
mapping between the input and the output. In this concept,
traditional (say, handcrafted) features are fed to train a DNN
with an objective function to classify the target at the output
layer (need label information, i.e., supervised) and predict
the input at the output (unsupervised, i.e., no need label
information) or combination of them. It is believed that

diferent layers of the DNN capture diferent attributes for
a particular task in high dimensional space. So, the output
from the particular hidden layer of the DNN for a given
input is extracted as a deep feature. Te deep features are
then used for classifcation using ML techniques. Another
advantage of DNN is that it can handle a large amount of
data by manipulating its model parameters. However,
human-crafted data lacks fexibility and cannot be applied to
diverse scenarios. Also, systems using such data cannot
adapt to new data leading to poor generalization ability. Tis
has been a powerful motivation for crafting fexible and
automated feature representation methods.

Te evolution of deep learning can be considered as
representation learning, wherein the process of feature ex-
traction is automated when the deep architecture processes
the data, learns, and understands the mapping between the
input and the output. Deep learning is a data-driven process,
as the model learns from the data presented. Tis aids in
a signifcant boost in performance as human-developed
feature extraction is defcient in accurate detection and
generalization. Besides automation in feature extraction and
feature learning, the learned feature representations occur in
a distributed and hierarchical manner. Te feature learning
task is distributed over the layers each one computing its
allotted task. In a distributed dense feature representation,
multiple neurons concurrently represent a learned
parameter.

5. Methodology

In this section and the subsequent subsections, we elabo-
rately describe the proposed system for malware detection. It
consists of FFDNN, deep feature extraction, classifcation
using DNN, and diferent ML techniques.Te overall system
is illustrated in Figure 3. Te components of the proposed
DNN architecture are briefy discussed as follows. Te ex-
perimentation of the proposed work starts with a traditional
approach of training the ML classifers and performing

Dendrites
Synaptic

clefs

Axon

Cell body
(soma)

Mielin
Sheath

Axon
hillock

(a)

c
c

c

c

Human brain

Neuron
network

Single
neuron

Synapse

(b)

Figure 1: Illustration of neurons and neural network equivalent representation in the nervous system. (a) Structural representation and
signal fow. (b) Level-wise structural components in the nervous system.

International Journal of Intelligent Systems 5

classifcation with the k-fold method. As our objective is to
deal with a large volume of current and future generations of
data, these ML classifers alone are not sufcient. Tus, the
DNN and ML classifers are efectively integrated and dis-
cussed in the following sections.

Initially, exclusive RF, SVM, and k-NN ML classifers
have been trained and tested for classifcation accuracy. Te
performance of these classifers has been found to be poor
due to a large number of instances, and this motivated
authors to investigate the bioinspired DNN for efcient
classifcation.Te deep features of each layer are exploited in
independent capabilities and concatenation. Te proposed
FFDNN-ML malware prediction and classifcation model is
implemented in two-phase with the concept of feature
concatenation and deep feature extraction. In both phases,
feature concatenation is applied in the context of feature
representation learning for classifcation. In the frst phase,
the features generated from each hidden deep layer are f-
nally concatenated to train the FFDNN for prediction and
classifcation. In the second phase, deep features of hidden
layers are applied separately or in concatenation to the ML
classifer, RF, SVM, and k-NN ML with parametric tuning
for classifcation. Tis extracted deep feature provides better
generalization for unrelated and untrained data. Feature
concatenation efectively sums up the features with diferent
criteria that aid in an efcient classifcation process.

5.1. FFDNN. Te FFNNs have been used for training the
model for multitasking objectives [62–64]. In a fully
connected layer also called a dense layer, all the neurons in
a layer are connected or mapped to each and every neuron
in the previous layer. Te input vector, x � [x1, x2, · · · xm],
is multiplied with a m × n matrix of weights, and the
output result from the layer is submitted to a nonlinear
activation function. Te weight matrix W is given by
matrix 1.

W �

w11 w12 . . . w1n

w21 w22 . . . w2n

⋮ ⋮ . . . ⋮

wm1 wm2 . . . wmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Te neuron functions as a combinatory circuit perform
the scalar product of the input vector x and the weight vector
w � [w1, w2, · · · wm]. Te result generated is applied with the
activation function f. Te whole neural network generates
the output vector y� [y1, y2, · · · yn]. Te activation function
remains constant for each neuron. Tus, each NN is char-
acterized by the weight matrix.

In this method, handcrafted PEH information is fed to
train an FFDNN with GeLU activation using multitask
objective functions: we simultaneously (i) discriminate the
malware and nonmalware classes and (ii) predict the input at
the output layer of the DNN using the cross-entropy (Lce)

and L1 loss functions, respectively. At the last hidden layer of
the DNN, the output from the previous diferent hidden
layers is frst concatenated and then projected to the output
layer. Te overall loss (L) function of the proposed FFDNN
can be expressed as follows:

L � cLce +(1 − c)L1

� −c
1
N

􏽘

N

i�1
zilogp Xi(􏼁

+(1 − c)
1
N

􏽘

N

i�1
Xi − 􏽢Xi

����
����,

(2)

where zi and 􏽢Xi indicate the label and predicted value of Xi

sample, respectively. c decides the weight between the loss
function. In our experiment, we provide equal weight to
both loss functions. For analysis, we perform the experiment
for diferent numbers of hidden layers (varies from 3 to 20),
activation functions (ReLU, eLU, and SeLU), and the
number of neurons per layer (varies from 32 to 256) in the
proposed method.

5.1.1. Perceptron. Perceptron is the simplest and basic ANN
architecture. Rosenblatt [65] proposed the perceptron
training algorithm that was inspired by Hebb’s rule [66].
According to Donald Hebb, when a human neuron activates
another neuron, bonding between the neurons becomes
more and more strong. Tis ANN accepts one data point at
once to make a prediction and uses the perceptron learning
rule (PLR) to minimize error for any incorrect prediction
during training. Te PLR is presented in equation (3). One
training instance is fed at a time to perceptrons to make
predictions. For a wrong prediction of an output neuron, the
perceptron learning rule strengthens the connections for the
reduction of the error generated. Tis reinforcement rule
contributes toward the correct prediction. Te PLR is pre-
sented in the following equation:

w
(next)
i,j � wi,j + η yj − 􏽢yj􏼐 􏼑xi, (3)

where wi,j is weight connecting the ith neuron and jth neuron,
xi is the ith instance for training, yj is the output of the jth

neuron, 􏽢yj is the predicted output value of the jth neuron to
generate output, and η is the learning rate used during PLR.

Name Virtual Size Virtual Address Raw Size Raw Address Reloc Address Linenumbers Relocations N... Linenumbers… Characteristics

Byte [8] Dword Dword Dword Dword Dword Dword Word Word Dword
0000122C 00001000 00001400 00000400 00000000 00000000 0000 0000 60000020
0000034C 00003000 00000200 00001800 00000000 00000000 0000 0000 C0000040
00000664 00004000 00000800 00001A00 00000000 00000000 0000 0000 40000040
00000420 00005000 00000600 00002200 00000000 00000000 0000 0000 40000040

.text

.data

.idata

.rsrc

.reloc 00000148 00006000 00000200 00002800 00000000 00000000 0000 0000 42000040

Figure 2: Illustration of some header/attribute information of the fles in the dataset.

6 International Journal of Intelligent Systems

Tis basic ANN model is unable to learn complex or non-
linear patterns for decision-making as the plane separating
each class is linear. Te limitation of the perceptron can be
covered by using multilayer perceptron (MLP) ANN archi-
tecture. Te MLP with various modifcations is being used in
deep learning research. Fundamentally, it is organised with an
input layer, an output layer, and one or more hidden layers
existing between the input and output layers. An MLP with
all-to-one mapping between the neurons of subsequent layers
is known as a fully connected neural network (FCNN) in deep
learning as shown in Figure 4. An MLP with a deeper stack
than one hidden layer is a deep neural network. Te decision
boundary for each output neuron or class is linear, so this
basic perceptron model is unable to learn complex or non-
linear patterns for decision-making. Te limitation of per-
ceptrons can be covered by using multilayer perceptron
(MLP) ANN architecture. Te MLP with various modifca-
tions is being used in deep learning research. An MLP is
organized with one input layer, one or more layers of hidden
layers, and one fnal layer called the output layer. Te MLP
with all-to-one mapping between the neurons of subsequent
layers is known as a fully connected FFNN in deep learning

and is depicted in Figure 4. All layers excluding the output
layer consisting of a bias neuron are fully connected to the
next layer. AnMLP with a deeper stack than one hidden layer
is a deep neural network.

5.1.2. Backpropagation. During the network training, the
output either for a single or multiobjective task is generated in
the forward pass. Tis generated output value may be diferent
from the original value. So, the backpropagation of an error
signal is evaluated to minimize the cost function. For this
proposed work, cross-entropy function (Lce) and L1 loss
function are used to evaluate the classifcation probability and
minimize the reconstruction error, respectively. Te reason
behind applying L1 loss for this work is that the data have been
used without preprocessing which reduces feature pre-
processing overhead in deep learning. So, the data may contain
outliers, and the L1 loss function is not afected by the outliers
present in the dataset. For multitask objectives, both the cost
function for classifcation and prediction needs to be back-
propagated to strengthen the connection. Cross-entropy
function (Lce) and L1 loss function are expressed in the fol-
lowing equations:

Deep features
for ML classifiers

Dataset
(PE Header
Metadata)

Benign/
Malware

files

In
pu

t L
ay

er

H
id

de
n

La
ye

r-
1

n=
2k

H
id

de
n

La
ye

r-
2

n=
2kA

H
id

de
n

La
ye

r-
3

n=
2kA

H
id

de
n

La
ye

r-
4

n=
2kA A

H
id

de
n

La
ye

r-
20

n=
2k

hOA2 hOA3 hOA19 hOA20hOA1

O
ut

pu
t L

ay
er

hO1 hO2 hO3 hO4 hO20

ML Classifiers

Random
Forest SVM-1 SVM-2 k-NN

Concatenated

C
on

ca
te

na
te

d

Deep feature extraction fd (x)

Output

Prediction

Classification

Figure 3: Depiction of the proposed bioinspired deep neural network static malware detection system.

International Journal of Intelligent Systems 7

Lce � −c
1
N

􏽘

N

i�1
zilogp Xi(􏼁, (4)

L1 � (1 − c)
1
N

􏽘

N

i�1
Xi − 􏽢Xi

����
����. (5)

A schematic diagram of the backpropagation technique
is depicted in Figure 5. Te working of the backpropagation
algorithm is discussed henceforth. Te full training is
completed in batches in multiple iterations wherein each
iteration is known as an epoch.Te training instances are fed
to the input layer that integrates the required parameters
with each instance and fres it to the initial hidden layer as
per activation. Tis forward passing of the feature vectors
with required bias, weight, and activation function from one
input layer to the next or a series of hidden layers and
eventually to the output layer to generate the target output
value is forward propagation. Tis phenomenon is also
known as forwarding pass. Te loss function is used to
calculate the error between the predicted output value and
the labelled output. For optimizing the value for better
performance and generalization of the model, backward
propagation or backward pass is applied during the training.
Te algorithm analyses and computes how much each
connection weight and each bias parameter can be altered
for error reduction by applying the chain rule which helps
the backpropagation step fasten accurately. Backpropagation
minimizes the cost function by fne-tuning the network’s
weights and biases. For adjusting this parameter, the gra-
dients of the cost function with respect to weights and bias
need to be computed using the chain rule given in the
following equation [61], where ni is the ith node in the
network.

zf

zx
�

zf

zni

+
zni

zx
. (6)

5.1.3. GeLU Activation Function. Te initial perceptron used
binary threshold units [67]. Te binary decision was further
fattened using sigmoid activation functions and trained
with backpropagation [68]. As the network grew deeper and
deeper, the sigmoid function became less efective due to
nonlinearity [61]. ReLU succeeded over the sigmoid which is
preferred mostly due to its fast and better convergence
property. Ten, the eLU activation function which is
a modifcation of ReLU was developed which improved the
training speed on negative values [69]. Te prediction of the
deterministic decision during the evaluation of the network
leads to new nonlinearity. Te stochastic regularizer yields
nonlinearity for an input x that randomly applies the
identity or zeromaps to a neuron’s input.TeGaussian error
linear unit (GeLU) is a high-performing neural network
activation function [70]. Unlike signs in ReLU, the inputs are
weighted in magnitude by the GeLU nonlinearity.Te GeLU
activation function is xΦ(x), where Φ(x) is the standard
Gaussian cumulative distribution function. Te GeLU
function expressed using equation (7) is estimated using
equation (8).

GeLU(X) � xP(X≤ x) � xΦ(x), (7)

GeLU(X) � 0.5x 1 + tanh
����������������

2
π x + 0.044715x

3
􏼐 􏼑

􏽳

⎛⎝ ⎞⎠. (8)

5.1.4. Deep Feature. In this step, the handcrafted feature
vector for a given input X � x1, x2, . . . , xT􏼈 􏼉 is fed to the
DNN obtained in Section 5.1. Ten, the output from the
particular hidden layer (without applying the activation
function) is extracted as a deep feature (for the particular
input). It can be expressed as

XDF−h � fFF−DNN(X), (9)

Input
Layer

First Hidden
Layer

Second Hidden
Layer

Twentieth Hidden
Layer

Output
Layer

…

…

…

…

… … … … …

x1

x2

x3

xm

y1

y2

yo

‥‥
‥

Figure 4: Illustration of an FFDNN network architecture with input, hidden layer, neurons, and output.

8 International Journal of Intelligent Systems

where XDF−h denotes the deep feature from the hth hidden
layer of the DNN for input X. Tis basically represents the
mapping of the input data from one space to another. In this
manner, deep features are extracted for all input data in the
experiments. In the case of 512 neurons, per hidden layer in
DNN yields the 512 dimension deep feature vector. Besides,
we also consider the study of the concatenation of deep
features extracted from the diferent hidden layers as
a presentation. For example, DF(1 − 5) indicates the con-
catenated deep feature of the hidden layers 1 to 5. If each
hidden layer has 512 neurons, then DF(1 − 5) gives 5 × 512
dimensional vector.

Te deep feature extracted from each hidden layer of the
FFDNN has better representation and generalization. In the
fnal step, deep features extracted from each hidden layer are
then used layer-wise and in concatenation for the classif-
cation of malware using RF, SVM, and KNN classifers. Te
deep feature extracted from each hidden layer of the FFDNN
constitutes a malware classifcation system.

6. Experimental Setup

Experiments are conducted on the dataset [71], and details
are presented in Section 6.1. Te datasets are randomly split
into n � 10 folds. At a time, one set is considered for
evaluation, and the rest are used for evaluation, i.e., one split
is leave out at a time. Te process is continued until all the
data split evaluation is completed. For the FFDNN, the
number of hidden layers (3, 10, 15, and 20), the number of
neurons (32, 64, 128, 256, and 512) per layer, and diferent
activation functions (GeLU, ReLU, eLU, and SeLU) are
varied to study for the analysis of the system performance.
Te value of the drop-out rate, regularization parameter,
number of epochs, learning rate, and batch size are con-
sidered, respectively, 0.01, 0.0001, 30, 0.001, and 1024. Te
framework of the proposed DNN and ML classifer-
integrated static malware detection model is shown in
Figure 3. In phase-I, the multitask objective is implemented
using a feed-forward neural network (FFNN) with back-
propagation.Te objectives to be obtained are the prediction
and classifcation of malware and benign sample. Te dif-
ferent training network is designed with 3 to 20 hidden
layers excluding input and output layers for evaluation. Te
number of neurons or units in each hidden layer is set from

n= 25 to 29 to verify the performance enhancement and
robustness of the training network. During the imple-
mentation of each network training session, the number of
neurons is increased to evaluate the classifcation error and
reconstruction error. Te output of the network is generated
by the softmax layer implementing the softmax function.
Feature dimension vectors generated from each hidden layer
are concatenated after the last hidden layer output gener-
ation and used to train the DNN and ML classifers. Tese
feature vectors after being generated from the respective
hidden layer are passed on for activation by applying the
activation function. Popular DNN activation functions such
as ReLU, SeLU, eLU, and GeLU have been investigated in
combination with the traditional DNN approach with
neurons n= 25 to 29 to choose the best performing one.
GeLU is identifed as a suitable and high-performance ac-
tivation function for static malware detection. Te concat-
enated features are then fed as input to the softmax layer for
evaluation. Te loss function, L1, is applied for the calcu-
lation of prediction loss and the diference between the
predicted output value and the actual output value or label
value. Te reason for applying the L1 loss function is that no
previous data preprocessing is required for the data. For
classifcation, the cross-entropy function is applied. After
obtaining the error, the network is trained using the
backpropagation algorithm for optimizing the weight and
bias to improve the reconstruction loss.Te Adam optimizer
is used as an optimizer for faster convergence.

6.1. Dataset. Te dataset used in this work consists of the
metadata from the portable executable header. Te sources
of the dataset are discussed in [71]. Each feature value has its
own function regarding the type of fle. Te malware dataset
consisting of 138048 instances and 54 features can be rep-
resented in a 138048 × 54 matrix, as X ∈ R138048×54 pre-
sented in matrix 11.

X �

x
1
1 x

1
2 . . . x

1
54

x
2
1 x

2
2 . . . x

2
54

⋮ ⋮ . . . ⋮

x
138048
1 x

138048
2 . . . x

138048
54

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Forward signal

Backward error

DNN-ML
Model

Loss
Function

Features

Label

Prediction
Optimizer inputs

Back propagation Optimization

Figure 5: Illustration of backpropagation and optimization processes in a neural network.

International Journal of Intelligent Systems 9

Te dataset used in this work consists of 138048 data
points and 54 dimensions. Tese features are extracted from
the header of the PEH of malware and benign software for
the Windows operating system. 41324 benign executables
have been extracted from .exe and .dll fles of the Windows
operating system. 96,724 malware executables have been
extracted from data available on Virus Share. Te malware
and benign samples are labelled as “0” and “1,” respectively,
after extraction. Te features can be extracted statically from
the PEH using the pefle module in python.Te values in the
header can be viewed using tools such as CFF-Explorer.

6.2. DNN Classifcation Task. Diferent classifcation com-
ponents such as the softmax function, regression classifer,
and cost function have been expressed in [61]. For a given
instance x, the softmax classifcation model initially com-
putes the score sk(x) for each class k given in equation (11).
Ten, softmax function is applied to the initial scores to
estimate the probability for each class, where θ(k) is the
parameter vector of each class.

sk(x) � X
Tθ(k)

. (11)

Teprobability of class k and 􏽢pk is computed by applying
the scores to the softmax function given in equation (12).Te
exponential of each score is computed, and then normali-
zation is applied to the function. Te calculated scores are
termed as logits.

􏽢pk � σ(s(x))k,

�
exp sk(x)(􏼁

􏽐
K
j�1 exp sj(x)􏼐 􏼑

,
(12)

where k is the total number of classes, s(x) is a vector with
the scores of each class for the instance x, and σ s((x)k is the
estimated probability that x belongs to class k. Te class with
the high estimated probability that is the class with the
highest score is predicted using the softmax regression
classifer expressed in the following equation:

􏽢y � argmax σ(s(x))k(􏼁. (13)

To generate a deep learning model that can calculate both
high and low probability for each class, minimized cost
function is required. Cross-entropy as a cost function given in
equation (14) can be used to match the estimated class
probabilities to the target class. Here, the objective is to
generate a deep model that estimates a high and low prob-
ability for each target class, respectively. In order to achieve
this objective, minimizing the cost function is required. Cross-
entropy as a cost function given in equation (14) can be used to
match the estimated class probabilities to the target class.

J(Θ) � −
1
m

􏽘

m

i�1
􏽘

K

k�1
y

(i)
k log 􏽢p

(i)
k􏼐 􏼑, (14)

where yk
i is the target probability and ith instance belongs to

class k. Te gradient vector of the cross-entropy cost function
with respect to θ(k) is expressed in the following equation:

∇θ(k) J(Θ) �
1
m

􏽘

m

i�1

􏽢p
(i)
k − 􏽢y

(i)
k􏼐 􏼑x

(i)
. (15)

Once the gradient vector is computed for each class, the
Adam optimizer is used to fnd the parameterΘ to minimize
the required cost function.

6.3. Performance Enhancement. Te training of the DNN
with a large number of hidden layers can be an exhaustive
task. To speed up the training process that aids in perfor-
mance enhancement, certain techniques have been used
during the implementation of the proposed training
method.

6.3.1. Adam Optimizer. Optimization is a crucial part of
deep network training and learning. Optimization in deep
learning is basically applied for minimization of the cost
function by modifying the model parameters such as weight
and bias for better convergence. Initially, the model pa-
rameters are initialized randomly. To boost the speed of
training the network, a faster optimizer such as Adam [72]
which stands for adaptive moment estimation has been
applied for the optimization in the proposed work. Adam is
a stochastic, robust optimizer and adaptive learning rate
algorithm with less memory requirement. It requires less
tuning of the learning rate hyperparameter. Adam is often
performing well in adaptive learning and outperforms other
adaptive techniques such as the stochastic gradient descent
(SGD) optimizer.

6.3.2. Learning Rate (η). Te learning rate (η) is an im-
portant hyperparameter of optimization used for fast con-
vergence. Te learning rate determines how much each
epoch model parameter should be updated according to the
gradient of the loss function.Te decision to choose a proper
learning rate can be tedious. An important parameter in
optimization is the step size, determined by the learning rate
hyperparameter. If the learning rate is too small, then the
algorithm requires many epochs for converging, thus taking
a long time. For a higher learning rate, the steps will be
bouncing across the curve with larger values making the
algorithm diverge, thus failing to fnd an optimal solution, as
presented in Figure 6.

6.4. Preventing Overftting. Overftting is a common prob-
lem, where a model performs perfectly on training data but
does not generalize well to untrained data or test data. To
prevent overftting during evaluation, methods such as batch
normalization, l2 regularization, and dropout have been
applied during DNN training.

6.4.1. Batch Normalization. When the deep model is
trained, the distribution of hidden layers gets altered as there
is an update in the parameters of the previous layers.Tere is
a regular adjustment in the distribution in the respective
layers. Tis adjustment in distribution is known as an

10 International Journal of Intelligent Systems

internal covariate shift. Tis problem is solved by a tech-
nique called batch normalization. In this technique, the
input is normalized for every mini-batch and then the
normalized weights are trained. Te advantage of this
technique is that even higher learning rates can be applied
and weight initialization becomes less signifcant. During the
training of DNN, the distribution of each input layer gets
modifed as the parameters of the previous layers change.
Tis results in slowing down the training that demands
lower learning rates and careful parameter initialization.
Batch normalization solves this problem by normalizing the
input for every mini-batch. Batch normalization is a popular
method to prevent overftting that normalizes the layers and
trains the normalized weights. Tis allows us to use much
higher learning rates and be less careful about initialization.
It can be applied to any layer in the network.

6.4.2. Regularization. A model that sufers from overftting
has a high variance, due to having many parameters, which
results in the generation of a complex model. Similarly, the
model can also sufer from underftting or high bias, which
results in generating a highly simple model that is incapable
of learning the patterns well in the training data and per-
forms poorly on unseen data. Regularization can be a better
approach to tune to the model complexity for a good bias
and variance [61]. Regularization is a very useful method
that tackles high correlation among features, flters out noise
from data, and fnally prevents overftting. Te network is
regularized by adding constraints to the parameters such as
imposing a squared penalty on the weights such that the
higher the weight so is the penalty called l2 regularization. It
is discussed in [73] and expressed in the following equation,
where λ is the regularization parameter.

λ
2
‖w‖

2
�
λ
2

􏽘

m

j�1
w

2
j . (16)

6.5. Deep Feature Classifcation. Te features extracted from
the training of hidden layers of the deep model are called
deep features. Tese deep features are then projected for
classifcation to the classifers such as random forest, support
vector machine, and K-nearest neighbour with various
parameters for performance evaluation.Te features derived

from each hidden layer or in the concatenation of features
extracted from hidden layers can be fed to the classifers.Tis
feature can be more robust as it is generated during potent
DNN training [74]. Also, it can generalize to large and
untrained data.

7. Experimentation and Result Analysis

In this work, we have used the publicly available database for
the system evaluation. Te link to the dataset is as follows
[71]. For unbiased experimentation, we consider the N-fold
leave-one-out criterion for the system evaluation. It is well
known that leave-one-out is an unbiased approach for
system evaluation. In addition, it consists of ≈ 139 k trials
which are statistically signifcant. Terefore, the study of the
technique on the other databases is kept for the future di-
rection. Te primary investigation of classifcation starts
with the training of three popular ML classifers, RF, SVM,
and k-NN. Also, diferent packages of SVM and k-NN
named in this paper as SVM-1, SVM-2, and SVM-3 and
k-NN1 with diferent numbers of nearest neighbours have
been trained and validated.

SVM-1 uses the linear kernel, along with regularization
parameter (RP) 1, a maximum number of iterations as
10000, and automatic selection of gamma. SVM-2 is similar
to SVM-1 but has higher tolerance. SVM-3 uses radial basis
function (RBF), with a similar RP and a maximum number
of iterations of 10000 but with gamma fxed to 0.7. Te
accuracy of these classifers extracted exclusively is depicted
in Figure 7. It is clear in Figure 7 that the ML classifers alone
are not sufcient to deal with a large volume of data. Te
highest accuracy of 91.16% is exhibited by the RF classifer.
Te performance of SVM-1 and SVM-2 is very poor as they
use a linear kernel. Te dataset is large and defnitely
nonlinear in nature. SVM-3, which uses the RBF kernel, has
a better accuracy of 85.88%. Te k-NN has better perfor-
mance for a lower number of nearest neighbours, but it is
still not up to the mark. Also, a lower number of nearest
neighbours make the classifer biased and may have poor
variance.

In the later stage, a 20-layer FFDNN with diferent ac-
tivation functions is trained and its deep features are
extracted to train the FFDNN as well as ML classifers. Te
investigation is performed using diferent activation func-
tions, SeLU, eLU, ReLU, and GeLU, of the DNN. Te ob-
jective of this investigation is to identify the best performing
activation function for the malware detection application.
Te obtained accuracy of the DNN with diferent activation
functions is presented in Table 1. Here, the DNN is used in
a traditional way and functions as a black box. Te hidden
layer features are unexplored and have no direct in-
tervention in the fnal results. As discussed in the earlier
sections, GeLU is a more high-performance activation
function than the other one, thus achieving the best accuracy
of 98.17% among all. It is understood that GeLU performs
well with a small number of neurons. Te performance of
other activation functions is reasonably good for a larger
number of neurons. ReLU exhibits its best accuracy for 128
neurons and eLU and SeLU for 64 neurons. In the next step,

Epoch

Lo
ss

Extremely high: diverges

Too low:slow
High: Suboptimal
Optimal

Figure 6: Illustration of the efect of the learning rate on the loss
and number of epochs [64].

International Journal of Intelligent Systems 11

the efectiveness of GeLU is examined against the increasing
number of the DNN hidden layers and the number of
neurons, as presented in Table 2.

It is observed that GeLU exhibits better accuracy with
a less number of neurons but a larger number of hidden
layers or a small number of hidden layers but a large number
of neurons in an FFDNN. In both cases, the obtained ac-
curacy has a marginal diference. For the 32 neurons and 20
hidden layers, the accuracy is 98.20%, whereas for 256
neurons and 10 hidden layers, the accuracy is 98.21%. So,
either case may be used for a high-performance classifca-
tion. From the previous observations, the GeLU activation
function has been used and investigated for either case of the
proposed model.

Te training and validation loss of the DNN for 256
neurons, 10 deep hidden layers, and 11 splits is shown in
Figure 8. Te training loss and validation loss in the graph
represent how perfectly the model fts into the trained and

untrained data, respectively. As the dataset is larger, the data
are separated into the train, validate, and test sets. From the
graph, it can be observed that there is a minimal gap between
training loss and validation loss in each split. Also, the loss is
getting smaller with the number of epochs and
converging fast.

Proceeding to the experimentation, the proposed model
with a diferent number of hidden layers, a number of
neurons, and a number of splits has been created and in-
vestigated. At one time, each hidden layer in the network is
trained using neurons n� 25 to 29 and increasing the number
of deep layers from 3 to 20 subsequently. In the frst deep
model training, 3 hidden layers with 11 splits and 32 neurons
in each layer have been examined. Due to the huge volume of
data and with an objective to improve performance, the
training data are randomly distributed and split into batches
of 1024 data points. Each batch is executed in 30 epochs
during the training to generate scores later used for the
calculation of the reconstruction error and classifcation

91
.1

6

88
.2

61
.2

8

64
.2

8

85
.8

8

89
.4

1

89
.0

5

87
.2

3

82
.1

1

83
.1

8

84
.2

6

RF (1 k) RF (No.) SVM1 SVM2 SVM3 k-NN1 k-NN2 k-NN3 k-NN4 k-NN5 k-NN6
60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

ML Classifiers

Figure 7: Comparison of the performance of malware detection in terms of accuracy with RF, SVM, and k-NN ML classifers for diferent
parameters.

Table 1: Accuracy of DNN with 3 hidden layers HL for diferent
numbers of neurons and activation functions.

No. of neurons GeLU ReLU eLU SeLU
32 98. 7 97.85 97.83 97.2
64 98.15 97.81 97.88 97.22
128 98.13 97.89 97.78 97.03
256 97.95 97.72 97.65 96.78
512 97.42 97.51 97.37 97.26
Bold values indicate the peak accuracy achieved using the corresponding
activation function.

Table 2: Accuracy of DNN with GeLU activation function for
diferent numbers of HL and neurons.

HL N � 32 N � 64 N � 128 N � 256 N � 512
3 98.17 98.15 98.13 97.95 97.42
10 98.15 98.156 98.17 98.23 98.2
15 98.19 98.16 98. 8 98.21 98.14
20 98.20 98.22 98.15 98.20 98.14
Bold values indicate the peak accuracy achieved for the corresponding
numbers of neurons.

12 International Journal of Intelligent Systems

probability. 10-fold cross-validation is applied to the data
points to validate the training. L1 loss and cross-entropy loss
functions are used to calculate reconstruction loss and clas-
sifcation loss. Te Adam optimizer is used for weight opti-
mization during backpropagation for faster convergence with
a learning rate η� 0.001. To prevent overftting, the encoding
parameters such as the L2 regularizer and he-initializer have
been used for the network training. However, a few conclusive
results are presented in Tables 3–6. In Table 3, the results are
presented for the 3-layer 256 neurons with 11 splits. Te
accuracy of this model is reasonable with the highest accuracy

of 98.78% for the k-NN with 3 nearest neighbours. As dis-
cussed earlier, k-NN with a lower neighbour count may be
biased, and a further investigation is carried out. Although, it
is observed that the RF and SVM classifers performed well
with a higher number of deep hidden layer features or
concatenated features of all layers. Te k-NN exhibits better
performance for a lower number of hidden layer features.Te
maximum achieved accuracy of all models is appreciable and
above 98%. Te results of the second model presented in
Table 4 have the same number of neurons and splits but 10
hidden layers. Among all models, the best accuracy of 99.15%

Split-2
Train. loss
Valid. loss

Split-1
Train. loss
Valid. loss

0.1

0.2

0.3

0.4

0.5
Lo

ss

8 12 16 20 24 284
No. of epoch

(a)

Split-5
Train. loss
Valid. loss

Split-4
Train. loss
Valid. loss

0.1

0.2

0.3

0.4

0.5

Lo
ss

8 12 16 20 24 284
No. of epoch

(b)

Split-8
Train. loss
Valid. loss

Split-7
Train. loss
Valid. loss

0.1

0.2

0.3

0.4

0.5

Lo
ss

8 12 16 20 24 284
No. of epoch

(c)

Split-10
Train. loss
Valid. loss

Split-9
Train. loss
Valid. loss

0.1

0.2

0.3

0.4

0.5

Lo
ss

8 12 16 20 24 284
No. of epoch

(d)

Figure 8: Illustration of the training and validation losses over a number of epochs on diferent folds of data for an FFDNN consisting of 10
hidden layers and 256 neurons/layers: (a) splits 1 and 2; (b) splits 4 and 5; (c) splits 7 and 8; (d) splits 9 and 10.

International Journal of Intelligent Systems 13

is achieved by SVM-3 in concatenation form with 256
neurons and 11 splits. Te obtained result is defnitely re-
markable for such a large dataset.Te performance of k-NN is
also considerable for a lower number of deep layers. Te k-
NN achieves the highest accuracy of 98.98% for the in-
dependent third hidden layer. Similarly, the results of the
proposed model with 15 and 20 layers have similar obser-
vations. Te performance of some models is inconclusive
which is natural for artifcial inelegance algorithms. For ex-
ample, SVM-1 exhibits an accuracy of 98.16% using the

independent 14th layer feature of the 20-layer model. From
the previously mentioned observations, it is sure that the RF
and SVM ML classifers with bioinspired DNN GeLU acti-
vation functions are a potential solution to the current regime
for malware detection and prevention.

Te proposed work is compared with some existing work
and presented in Table 7. While designing the systemmodel,
the core network, the type of feature used, activation
functions, and most importantly, the feature representation
have been considered, as presented in Table 7. In the

Table 3: Accuracy of ML classifers against individual and concatenated 3-HLs deep features for 256 neurons and 11 splits.

Features RF
SVM k-NN

SVM1 SVM2 SVM3 K-NN1 K-NN2 K-NN3 K-NN4 K-NN5 K-NN6
DF1 96.38 56.34 96.77 98.34 98.77 98.54 98.78 98.72 98.75 98.68
DF2 96.35 96.99 97.3 98.3 98.74 98.52 98.76 98.71 98.76 98.69
DF3 97.35 98.09 98.02 98.22 98.61 98.41 98.68 98.61 98.67 98.62
DF (1–3) 98. 6 96.72 98.09 98.39 98.73 98.52 98.77 98.71 98.75 98.67
Te bold values indicate the peak accuracy achieved using the corresponding Machine Learning classifer.

Table 4: Accuracy of ML classifers against individual and concatenated 10-HLs deep features for 256 neurons and 11 splits.

Features RF
SVM k-NN

SVM1 SVM2 SVM3 K-NN1 K-NN2 K-NN3 K-NN4 K-NN5 K-NN6
DF1 96.32 56.29 96.77 98.33 98.78 98.64 98.24 98.61 98.61 98.53
DF2 96.36 97.03 97.31 98.19 98.29 98.83 98.82 98.66 98.67 98.47
DF3 97.63 97.17 97.02 98.1 98.38 98.50 98.74 98.72 98.8 98.98
DF4 97.06 97.55 97.09 98.38 98.17 98.13 98.69 98.51 98.87 98.24
DF5 97.60 97.67 97.23 98.15 98.41 98.17 98.44 98.87 98.55 98.65
DF6 97.71 97.69 97.30 98.92 97.94 98.26 98.28 98.18 98.15 98.24
DF7 97.61 97.81 97.42 98.15 97.62 98.07 98.52 98.21 98.25 98.16
DF8 97.50 98.87 98.31 98.77 97.34 97.36 98.03 98.35 98.03 98.11
DF9 97.72 98.18 97.83 98.94 97.25 97.48 98.43 98.09 98.14 98.06
DF10 97.64 98.32 97.25 98.88 97.51 97.06 98.41 98.19 97.91 98.23
DF (1–10) 97.95 98.56 98.37 99. 5 97.83 97.50 98.10 98.05 98.08 98.20
Te bold values indicate the peak accuracy achieved using the corresponding machine learning classifer.

Table 5: Accuracy of ML classifers against individual and concatenated 15-HLs deep features for 256 neurons and 11 splits.

Features RF
SVM k-NN

SVM1 SVM2 SVM3 K-NN1 K-NN2 K-NN3 K-NN4 K-NN5 K-NN6
DF1 97.63 48.62 96.11 96.14 98.12 97.96 98.16 98.17 98.01 97.95
DF2 96.26 96.17 95.46 96.49 98.45 97.21 98.03 98.10 98.37 98.34
DF3 96.12 96.26 96.33 96.76 98.62 97.90 98.21 98.57 98.47 98.71
DF4 96.21 96.15 97.43 96.73 98.55 98.08 98.21 98.02 98.45 98.37
DF5 97.08 97.01 96.35 96.29 98.04 98.4 98.33 98.33 98.57 98.18
DF6 97.45 96.53 96.54 97.01 97.50 97.03 97.96 98.25 98.02 98.25
DF7 95.24 96.39 96.97 96.13 97.49 97.44 98.17 98.24 98.53 97.67
DF8 97.26 96.94 96.67 97.38 97.93 97.09 98.08 98.19 98.15 98.80
DF9 96.98 96.80 96.35 96.88 97.59 97.19 97.50 97.57 97.57 97.38
DF10 96.95 97.17 96.97 97.18 97.65 97.38 97.35 97.99 97.54 98.46
DF11 97.86 97.82 96.40 96.68 97.90 97.16 96.44 97.38 97.50 98.36
DF12 96.80 97.99 96.34 97.33 97.20 97.14 97.91 97.51 98.38 98.34
DF13 96.29 96.70 96.92 97.36 97.53 97.97 96.70 98.13 97.72 97.38
DF14 97.68 97.20 97.52 97.60 96.94 97.77 97.01 98.58 96.29 97.68
DF15 97.73 97.67 97.83 98.18 96.88 97.04 96.94 97.68 96.48 97.99
DF (1–15) 97.41 97.55 98. 3 98.40 96.57 96.24 96.87 96.21 97.65 96.95
Te bold values indicate the peak accuracy achieved using the corresponding machine learning classifer.

14 International Journal of Intelligent Systems

literature, numerous works have been reported for malware
detection using neural networks. However, diferent works
use diferent types of core networks such as FFDNN [44],
SAE-DBN [45, 50], DBN [46], and CNN [55–57]. Similarly,
diferent works used diferent types of features, activation
functions, and feature representations. In most of the work,
the core learning model is being trained by a traditional
feature representation such as PEH, API call, and image.
Diferent evaluation parameters such as accuracy (Ac),
detection rate (Dr), and true positive rate (TPR) have been
presented. In [46], a DBN is trained using the deep feature
extracted using an unsupervised dataset and a limited in-
vestigation is performed using deep features. It is clear in
Table 7 that an extensive investigation is carried out in this
work, and the performance achieved using deep feature
representation is superior.

7.1. NetworkModel Construction Time. Tis proposed work
is implemented on Linux on dual boot with Windows

operating System confgured with Intel(R) Core(TM) i5-
8250U CPU 1.60GHz and 8.00GB of RAM. Training of
deep learning models is computationally expensive. Te
construction time or the training time of the FFDNN
network for diferent layers (in hours) is depicted in Fig-
ure 9. Te time consumed in each scenario is observed and
noted in approximation. Te DNN training for classif-
cation and prediction was conducted in comparatively
lesser time than the training of ML-integrated DNN
classifers. Te SVM model for the deep features was
trained for more than 32 hours for 3 hidden layers with
neuron size 32. It can be observed that the time of model
construction increases as the number of hidden layers is
increased with the increasing size of neurons. However, the
training of the proposed model is a one-time process and
the training time can be signifcantly reduced due to the
availability of online cloud-based graphical processing
units (GPUs). A consumer may get access to these GPUs for
a short period of time to train the proposed model at
a minimal cost.

Table 6: Accuracy of ML classifers against individual and concatenated 20-HLs deep features for 256 neurons and 11 splits.

Features RF
SVM k-NN

SVM1 SVM2 SVM3 K-NN1 K-NN2 K-NN3 K-NN4 K-NN5 K-NN6
DF1 96.14 48.63 96.11 96.14 98.12 97.92 98.14 98.16 98.00 97.96
DF2 96.27 96.15 95.48 96.52 98.45 98.21 98.43 98.13 98.35 98.32
DF3 96.12 96.24 96.31 96.76 98.54 97.93 98.19 97.97 98.47 98.73
DF4 96.23 96.17 97.46 96.69 98.75 98.08 98.24 97.97 98.45 98.37
DF5 97.04 97.01 96.32 96.25 98.03 98.39 98.32 98.29 98.58 98.18
DF6 97.49 96.51 96.57 97.03 97.52 97.01 97.95 98.23 98.03 98.22
DF7 95.21 96.43 96.96 96.16 97.49 97.47 98.17 98.20 98.54 97.65
DF8 97.28 96.98 96.62 97.40 97.92 97.11 98.07 98.16 98.16 98.83
DF9 97.00 96.79 96.35 96.89 97.63 97.19 97.50 97.59 97.61 97.35
DF10 96.93 97.19 96.99 97.17 97.61 97.37 97.34 98.03 97.56 98.44
DF11 97.86 97.81 96.42 96.67 97.86 97.16 96.43 98.11 97.53 98.38
DF12 96.80 96.99 96.37 97.31 97.23 98.11 97.92 97.52 98.39 98.32
DF13 96.31 96.71 96.94 97.34 97.51 97.98 96.72 98.11 97.71 97.40
DF14 97.67 98. 6 97.51 97.58 96.94 97.77 97.01 98.57 96.30 97.67
DF15 97.72 97.68 97.53 98.15 96.91 97.01 96.90 97.66 96.46 98.03
DF16 97.44 97.55 97.14 98.41 96.57 96.24 96.86 96.23 97.66 96.96
DF17 97.24 97.83 97.08 98.83 97.41 96.60 96.83 96.22 97.35 97.51
DF18 96.83 97.62 97.31 98.02 97.11 96.68 97.02 96.83 97.40 97.79
DF19 97.65 97.98 97.83 98.23 96.38 97.02 96.86 97.01 97.06 97.17
DF20 97.60 97.77 97.88 98.61 97.07 96.15 96.63 97.21 97.38 97.36
DF (1–20) 97.43 97.64 97.95 98.47 97.20 97.69 96.52 97.68 97.18 97.57
Te bold values indicate the peak accuracy achieved using the corresponding machine learning classifer.

International Journal of Intelligent Systems 15

Ta
bl

e
7:

C
om

pa
ri
so
n
of

th
e
pr
op

os
ed

w
or
k
w
ith

so
m
e
ex
ist
in
g
lit
er
at
ur
e.

Re
f.
no

.
C
or
e
ne
tw
or
k

Fe
at
ur
e
ty
pe

A
ct
iv
at
io
n
fu
nc
tio

n
Fe
at
ur
e

re
pr
es
en
ta
tio

n
Pe
rf
or
m
an
ce

(%
)

[4
4]

FF
D
N
N

PE
im

po
rt
,2

D
st
ri
ng

,a
nd

en
tr
op

y
hi
st
og
ra
m

Re
LU

an
d
PR

eL
U

Tr
ad
iti
on

al
95

D
r

[4
5]

SA
E-
D
N
N

W
in
do

w
s
A
PI

ca
lls

N
A

Tr
ad
iti
on

al
96
.8
5
A
c

[4
6]

D
BN

O
pC

od
e

N
A

D
ee
p
fe
at
ur
es

A
pp

ro
x
98

A
c

[4
8]

D
N
N

PE
H

Re
LU

Tr
ad
iti
on

al
98
.9

A
c

[5
0]

SA
E-
D
BN

Sy
st
em

ca
ll

N
A

Tr
ad
iti
on

al
98
.8

A
c

[5
3]

M
ul
til
ev
el
-D

N
N

A
PI

sy
st
em

ca
ll

Le
ak
y
Re

LU
Tr
ad
iti
on

al
96

TP
R

[5
5]

C
N
N
,R

N
N
,L

ST
M

Im
ag
e
an
d
A
PI

ca
ll

Re
LU

Tr
ad
iti
on

al
96
.3

A
c

[5
6]

C
N
N
-V

G
G
16

Im
ag
e

N
A

Tr
ad
iti
on

al
94
.7

A
c

[5
7]

C
N
N
,R

F
Im

ag
e

N
A

98
.6
5
D
r

T
is
w
or
k

FF
D
N
N
-M

L
PE

H
eL
U
,R

eL
U
,S

eL
U
,a
nd

G
eL
U

C
on

ca
te
na
te
d
de
ep

fe
at
ur
es

99
.1
5
A
c

16 International Journal of Intelligent Systems

4

6

7

8 7.
5

5.
5

8 7.
5

9 9

7

10 9.
5

12 12

10

12 12

14

15

13 13

14

16

17

D
N

N
-3

H
L

D
N

N
-7

H
L

D
N

N
-1

0H
L

D
N

N
-1

5H
L

D
N

N
-2

0H
L

0

3

6

9

12

15

18

21
Ti

m
e (

hr
s)

DNN Models

No. of neurons

32

64

128

256

512

(a)

DNN-ML Models

No. of neurons

32

64

128

256

512
4

8

22

6

8

24

5.
5

9

24

8

10

26

7

11

25

10 10

28

10

14

27

12

15

31

13

17

29

13

17

33

D
N

N
-3

H
L

(R
F)

D
N

N
-3

H
L

(k
-N

N
)

D
N

N
-3

H
L

(S
V

M
)

D
N

N
-7

H
L

(R
F)

D
N

N
-7

H
L

(k
-N

N
)

D
N

N
-7

H
L

(S
V

M
)

0

5

10

15

20

25

30

35

Ti
m

e (
hr

s)

(b)

DNN-ML Models

No. of neurons

32

64

128

256

512

8

13

25

7.
5

14

27

9

13

27

9

15

30

12

14

31

12

17

31

14 15

34

15

19

35

16

18

36

17

20

40

D
N

N
-1

5H
L

(R
F)

D
N

N
-1

5H
L

(k
-N

N
)

D
N

N
-1

5H
L

(S
V

M
)

D
N

N
-2

0H
L

(R
F)

D
N

N
-2

0H
L

(k
-N

N
)

D
N

N
-2

0H
L

(S
V

M
)

0

5

10

15

20

25

30

35

40

Ti
m

e (
hr

s)

(c)

Figure 9: Comparison of the computation (in terms of times) required for the construction of the proposed model for diferent system
confgurations (neurons and no. of hidden layers). (a) Exclusive DNN. (b) DNN-ML with 3 and 7 layers. (c) DNN-ML with 15 and 20 layers.

International Journal of Intelligent Systems 17

8. Conclusion

We propose deep feature extraction of PEH for an
FFDNN-ML malware detection system. Te examinations
have been carried out from scratch including training and
validation of exclusive ML classifers and FFNN. Te ob-
servations of the primary investigations are highly in-
formative, and they helped in developing the proposed
bioinspired DNN-based malware detection system. Te
conclusive observations of the proposed work are as follows:

(i) Te classifcation accuracy obtained using an in-
dividual hidden layer indicates that the extracted
deep features of hidden layers have better repre-
sentation than a raw dataset. Also, the deep features
of diferent layers have diferent presentations, and
by making the network deeper, a dataset can be
represented in n-dimensions with better
generalization.

(ii) Te RF, SVM, and k-NN ML classifers are in-
dividually insufcient to efciently detect malware
when trained using a large dataset. Te RF, k-NN,
and SVM-RBF have some degree of accuracy, but
SVM-linear is not at all recommended.

(iii) Te GeLU activation function is highly recom-
mended even when using the DNN in a traditional
way.Tat is, the DNNwill just act as a black box and
it will produce a classifed value from the
output layer.

(iv) Te FFDNN with the GeLU activation function
performs well for a large number of deep hidden
layers with a less number of neurons per layer or
a small number of hidden layers with a large
number of neurons per layer. Either of these two
cases may be used for efective classifcation.

(v) Te proposed bioinspired DNN-based malware de-
tection system exploits the deep hidden features and
makes use of it for efective classifcation when
trained using the dataset used in this work. In ad-
dition, the concatenation of these deep features in the
proposed way has shown highly interesting results in
combination with RF and SVM ML classifers.

(vi) Deep feature extraction with complex DNN/ar-
chitecture such as transformer and ResNet could be
interesting to capture more attributes on the data.

Data Availability

Te dataset that supports the fndings of this study is openly
available on web.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

All authors have contributed equally to this work.

References

[1] http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-
control-software/.

[2] http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-
control-software/.

[3] B. Pranggono and A. Arabo, “COVID-19 pandemic cyber-
security issues,” in Internet Technology Lettersvol. 2, p. 247,
2021.

[4] J. Scott, “Signature based malware detection is dead,” in
Cybersecurity Tink TankInstitute for Critical Infrastructure
Technology, Washington, D.C, USA, 2017.

[5] M. Sikorski and A. Honig, Practical Malware Analysis: Te
Hands-On Guide to Dissecting Malicious SoftwareNo starch
press, San Francisco, CA, USA, 2012.

[6] D. Lin and M. Stamp, “Hunting for undetectable meta-
morphic viruses,” Journal in Computer Virology, vol. 7, no. 3,
pp. 201–214, 2011.

[7] M. Alaeiyan, S. Parsa, and M. Conti, “Analysis and classif-
cation of context-based malware behavior,” Computer
Communications, vol. 136, pp. 76–90, 2019.

[8] A. V. Kozachok and V. I. Kozachok, “Construction and
evaluation of the new heuristic malware detection mechanism
based on executable fles static analysis,” Journal of Computer
Virology and Hacking Techniques, vol. 14, no. 3, pp. 225–231,
2018.

[9] Ö. A. Aslan and R. Samet, “A comprehensive review on
malware detection approaches,” IEEE Access, vol. 8,
pp. 6249–6271, 2020.

[10] D. Gibert, C. Mateu, and J. Planes, “Te rise of machine
learning for detection and classifcation of malware: research
developments, trends and challenges,” Journal of Network and
Computer Applications, vol. 153, Article ID 102526, 2020.

[11] A. K. Ma and J. Cd, “Automated multi-level malware de-
tection system based on reconstructed semantic view of ex-
ecutables using machine learning techniques at VMM,”
Future Generation Computer Systems, vol. 79, no. 1,
pp. 431–446, 2018.

[12] P. Singh, S. K. Borgohain, L. D. Sharma, and J. Kumar,
“Minimized feature overhead malware detection machine
learning model employing MRMR-based ranking,” Concur-
rency and Computation: Practice and Experience, vol. 34,
Article ID e6992, 2022.

[13] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Malware detection based
on deep learning of behavior graphs,”Mathematical Problems
in Engineering, vol. 2019, Article ID 8195395, 10 pages, 2019.

[14] Kaspersky Research, “Machine learning methods for malware
detection,” Symmetry, vol. 14, no. 11, p. 2304, 2022.

[15] A. Firdaus, N. B. Anuar, M. FA. Razak, and A. K. Sangaiah,
“Bio-inspired computational paradigm for feature in-
vestigation and malware detection: interactive analytics,”
Multimedia Tools and Applications, vol. 77, no. 14,
pp. 17519–17555, 2018.

[16] B. Ji, X. Lu, G. Sun, W. Zhang, J. Li, and Y. Xiao, “Bio-inspired
feature selection: an improved binary particle swarm opti-
mization approach,” IEEE Access, vol. 8, pp. 85989–86002,
2020.

[17] J. Jiang and F. Zhang, “Detecting portable executable malware
by binary code using an artifcial evolutionary fuzzy LSTM
immune system,” Security and Communication Networks,
vol. 2021, Article ID 3578695, 12 pages, 2021.

[18] F. Mercaldo and A. Santone, “Deep learning for image-based
mobile malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 16, no. 2, pp. 157–171, 2020.

18 International Journal of Intelligent Systems

http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

[19] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
performance-sensitive malware detection system using deep
learning on mobile devices,” IEEE Transactions on In-
formation Forensics and Security, vol. 16, pp. 1563–1578, 2021.

[20] L. N. de Castro, Fundamentals of natural computingCRC
Press, Boca Raton, FL, USA, 2006.

[21] X. Fan, W. Sayers, S. Zhang, Z. Han, L. Ren, and H. Chizari,
“Review and classifcation of bio-inspired algorithms and
their applications,” Journal of Bionics Engineering, vol. 17,
no. 3, pp. 611–631, 2020.

[22] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[23] J. Han, M. Kamber, and P. Jian, Data Mining: Concepts and
Techniques, Elsevier, Morgan Koufmann Publisher, Amster-
dam, Netherlands, 3rd edition, 2011.

[24] N. J. Nilsson, “Introduction to machine learning,” 2020,
https://ai.stanford.edu/%20nilsson/MLBOOK.pdf.

[25] M. Tayebi and S. E. Kafhali, “Deep neural networks hyper-
parameter optimization using particle swarm optimization for
detecting frauds transactions,” in Advances on Smart and Soft
Computing, pp. 507–516, Springer, Singapore, 2022.

[26] M. Tayebi and S. E. Kafhali, Hyperparameter Optimization
Using Genetic Algorithms to Detect Frauds Transactions,
AICV, in Proceedings of the International Conference on
Artifcial Intelligence and Computer Vision, April, 2021.

[27] M. Tayebi and S. E. Kafhali, “Performance analysis of met-
aheuristics based hyperparameters optimization for fraud
transactions detection,” Evolutionary Intelligence, 2022.

[28] M. Tayebi and S. E. Kafhali, “Credit card fraud detection based
on hyperparameters optimization using the diferential evo-
lution,” International Journal of Information Security and
Privacy, vol. 16, no. 1, 2022.

[29] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image Matching
from Handcrafted to Deep Features: A Survey,” International
Journal of Computer Vision, vol. 129, no. 1, pp. 23–79, 2021.

[30] M. Rashid, M. A. Khan, M. Alhaisoni et al., “A sustainable
deep learning framework for object recognition using multi-
layers deep features fusion and selection,” Sustainability,
vol. 12, no. 12, p. 5037, 2020.

[31] W. Saad, W. A. Shalaby, M. Shokair, F. A. El-Samie, and
E. Abdellatef, “COVID-19 classifcation using deep feature
concatenation technique,” Journal of Ambient Intelligence and
Humanized Computing, vol. 13, no. 4, pp. 2025–2043, 2022.

[32] N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, M. Imran,
and M. Shoaib, “A deep learning model based on concate-
nation approach for the diagnosis of brain tumor,” IEEE
Access, vol. 8, pp. 55135–55144, 2020.

[33] G. Hinton, “Deep neural networks for acoustic modeling in
speech recognition,” IEEE Signal Processing Magazine,
pp. 82–97, 2012.

[34] J. Han and C. Moraga, “Te infuence of the sigmoid function
parameters on the speed of backpropagation learning,,” in
natural to artifcial neural,” in Computation. IWANN 1995,
pp. 195–201, Springer, Berlin, Germany, 1995.

[35] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall,
“Activation Functions: Comparison of Trends in Practice and
Research for Deep Learning,” 2018, http://arxiv.org/abs/1811.
03378.

[36] V. Nair and G. E. Hinton, “Rectifed linear units improve
restricted Boltzmann machines,” in Proceedings of the In-
ternational Conference on International Conference on Ma-
chine Learning, pp. 807–814, Pittsburgh Pennsylvania USA,
June, 2010.

[37] Z. Yue, H. Christensen, and J. Barker, “Autoencoder bot-
tleneck features with multi-task optimisation for improved
continuous dysarthric speech recognition,” in Proceedings of
the Interspeech, pp. 4581–4585, Shanghai, China, July, 2020.

[38] D. B. Ramsay, K. Kilgour, D. Roblek, and M. Sharif, “Low-
dimensional bottleneck features for on-device continuous
speech recognition,” in Proceedings of the Interspeech,
pp. 3456–3459, Incheon, Korea, April, 2019.

[39] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: additive
angular margin loss for deep face recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4685–4694, Nashville, TN, USA,
June, 2019.

[40] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,”
in Proceedings of the International Conference on Machine
Learning, pp. 1597–1607, Atlanta GA USA, July, 2020.

[41] M. Zeiler, M. Ranzato, R. Monga et al., “On rectifed linear
units for speech processing,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 3517–3521, Rhodes Island, June, 2013.

[42] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural net-works for lvcsr using rectifed linear units and
dropout,” in Proceedings of the Of IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8609–8613, Greece, June, 2013.

[43] D. Hendrycks and K. Gimpel, “Bridging Nonlinearities and
Stochastic Regularizers with Gaussian Error Linear Units,”
2018, https://arxiv.org/abs/1606.08415.

[44] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in
Proceedings of the 2015 10th International Conference on
Malicious and Unwanted Software (MALWARE), pp. 11–20,
Puerto Rico, October, 2015.

[45] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: a deep
learning framework for intelligent malware detection,” in
Proceedings of the International Conference on Data Mining
(DMIN’16), pp. 61–67, Las Vegas, NV, USA, July, 2016.

[46] D. Yuxin and Z. Siyi, “Malware detection based on deep
learning algorithm,” Neural Computing & Applications,
vol. 31, no. 2, pp. 461–472, 2017.

[47] M. M. Lau and K. H. Lim, “Investigation of activation
functions in deep belief network,” in Proceedings of the
2017 2nd International Conference on Control and Robotics
Engineering (ICCRE), pp. 201–206, Bangkok, Tailand, April,
2017.

[48] R. Vinayakumar and K. P. Soman, “DeepMalNet: evaluating
shallow and deep networks for static PE malware detection,”
ICT Express, vol. 4, no. 4, pp. 255–258, 2018.

[49] H. S. Anderson and P. Rot, “EMBER: An Open Dataset for
Training Static PE Malware Machine Learning Models,” 2018,
https://arxiv.org/abs/1804.04637.

[50] Y. Ye, L. Chen, S. Hou, W. Hardy, and X. Li, “DeepAM:
a heterogeneous deep learning framework for intelligent
malware detection,” Knowledge and Information Systems,
vol. 54, no. 2, pp. 265–285, 2018.

[51] G. Ciaburro, V. K. Ayyadevara, and A. Perrier, “Get Hands-
On Machine Learning on Google Cloud Platform now with
the O’Reilly learning platform,” 2021, https://www.oreilly.
com/library/view/hands-on-machine-learning/
9781788393485/f73852fe-4f59-44e5-b154-1bc7b2de1375.
xhtml.

[52] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, “Malware
detection using machine learning and deep learning,” Lecture

International Journal of Intelligent Systems 19

https://ai.stanford.edu/%20nilsson/MLBOOK.pdf
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1804.04637
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788393485/f73852fe-4f59-44e5-b154-1bc7b2de1375.xhtml
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788393485/f73852fe-4f59-44e5-b154-1bc7b2de1375.xhtml
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788393485/f73852fe-4f59-44e5-b154-1bc7b2de1375.xhtml
https://www.oreilly.com/library/view/hands-on-machine-learning/9781788393485/f73852fe-4f59-44e5-b154-1bc7b2de1375.xhtml

Notes in Computer Science (including subseries Lecture Notes
in Artifcial Intelligence and Lecture Notes in Bioinformatics,
vol. 11297, pp. 402–411, 2018.

[53] W. Zhong and F. Gu, “A multi-level deep learning system for
malware detection,” Expert Systems with Applications,
vol. 133, pp. 151–162, 2019.

[54] Y. Zhu, T. Brettin, and F. Xia, “Converting tabular data into
images for deep learning with convolutional neural net-
works,” Scientifc Reports, vol. 11,11325 pages, 2021.

[55] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
and S. Venkatraman, “Robust intelligent malware detection
using deep learning,” IEEE Access, vol. 7, pp. 46717–46738,
2019.

[56] X. Huang, L. Ma, W. Yang, and Y. Zhong, “A method for
windows malware detection based on deep learning,” Journal
of Signal Processing Systems, vol. 93, no. 2-3, pp. 265–273,
2021.

[57] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, “Intelligent
vision-based malware detection and classifcation using deep
random forest paradigm,” IEEE Access, vol. 8, pp. 206303–
206324, 2020.

[58] P. Ulinski, “Fundamentals of Computational Neuroscience,”
vol. 40, no. 5, Oxford, UK, OUP Oxford, 2003.

[59] R. Hecht-Nielsen, “Neurocomputing: picking the human
brain,” IEEE Spectrum, vol. 25, no. 3, pp. 36–41, March 1988.

[60] N. B. Paperback and N. Locascio, Fundamentals of Deep
Learning: Designing Next-Generation Machine Intelligence
Algorithms, O’Reilly Media, Massachusetts, MA, USA, 1st
edition, 2017.

[61] A. Géron, Hands-on Machine Learning with Scikit-Learn,
Keras and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems, O’Reilly Media, Massachusetts, MA,
USA, 1st edition, 2019.

[62] D. Svozil, V. Kvasnička, and J. Pospı́chal, “Introduction to
multi-layerfeed-forward neural network,” Chemometrics and
Intelligent Laboratory Systems, vol. 39, no. 1, pp. 43–62, 1997.

[63] J. Yang and J. Ma, “Feed-forward neural network training
using sparse representation,” Expert Systems with Applica-
tions, vol. 116, pp. 255–264, 2019.

[64] A. Bhardwaj, W. Di, and J. Wei, Deep Learning Essentials:
Your Hands-On Guide to the Fundamentals of Deep Learning
and Neural Network Modeling, Packt Publishing Ltd, Bir-
mingham, UK, 1st edition, 2018.

[65] F. Rosenblatt, “Te perceptron: a probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol. 65, no. 6, pp. 386–408, 1958.

[66] D. O. Hebb, “Te organization of behavior: a neuro-
psychological theory,” Science Education, vol. 34, no. 5, 1950.

[67] J. J. Hopfeld, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 79, no. 8, pp. 2554–2558, 1982.

[68] S. Narayan, “Te generalized sigmoid activation function:
competitive supervised learning,” Information Sciences,
vol. 99, no. 1-2, pp. 69–82, 1997.

[69] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
accurate deep network learning by exponential linear units
(eLUs),” in Proceedings of the 4th International Conference on
Learning Representations, Puerto Rico, May, 2016.

[70] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units,”
2016, https://arxiv.org/abs/1606.08415.

[71] Tinyurl.com, “Mastering-Machine-Learning-for-Penetration-
Testing,” 2009, https://tinyurl.com/wcbuchdt.

[72] D. P. Kingma and J. Baar, “Adam: a method for stochastic
optimization,” in Proceedings of the 3rd International Con-
ference for Learning Representations (ICLR), San Diego, CA,
USA, May, 2015.

[73] Y. Qian, N. Chen, and K. Yu, “Deep features for automatic
spoofng detectio,” Speech Communication, vol. 85, pp. 43–52,
2016.

[74] S. Raschka and V. Mirjalili, Python Machine Learning: Macine
Learning and Deep Learning with Python, Scikit-Learn, and
TensorFlow 2, Packt Publishing Ltd, Brmingham, UK, 3rd
edition, 2018.

20 International Journal of Intelligent Systems

https://arxiv.org/abs/1606.08415
https://tinyurl.com/wcbuchdt

