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Intuitionistic cubic fuzzy sets (ICFSs), as a hybrid fuzzy set consisting of interval-valued fuzzy sets and intuitionistic fuzzy sets, can
deal with the uncertainty of information in decision problems more comprehensively. Muirhead mean (MM) operators can deal
with the correlation between attributes in decision problems more realistically. However, there has been no research on MM
operators under intuitionistic cubic fuzzy sets so far. In this study, some new operators are proposed under the intuitionistic cubic
fuzzy set. It contains the intuitionistic cubic fuzzy MM (ICFMM) operator, intuitionistic cubic fuzzy weighted MM (ICFWMM)
operator, intuitionistic cubic fuzzy dual MM (ICFDMM) operator, and intuitionistic cubic fuzzy dual weighted MM
(ICFDWMM) operator. Teir proof procedure, properties, and proof of properties are given. TwoMCDM decision models based
on ICFWMM and ICFDWMM operators are proposed, and the proposed decision models are applied to supplier selection, and
the better reliability and accuracy of the proposed decision methods in this study are verifed through comparative analysis with
existing methods.

1. Introduction

Multicriteria decision making (MCDM) plays an important
role in everyday activities such as economics, engineering,
education, and healthcare [1–3]. In MCDM, a variety of
diferent information sources are collected, a variance index
is inferred for the degree of variation between criteria using
language assessment, and the optimal result is selected
through a process of comparison and aggregation based on
the attribute values of diferent alternatives [4]. Due to the
complexity of the decision problem, it is crucial to be able to
provide the decision maker with the most reasonable de-
cision information. Even if the decision maker has an ex-
tensive knowledge and experience with the decision
problem, there will still be some uncertainty in the decision
information. Zadeh [5] proposed the concept of fuzzy set
(FS), which is commonly used on MCDM methods by
assigning afliation to the set elements on the interval [0,1],
in order to be able to quantify the uncertainty present in the
decision information. After using fuzzy theory in a variety of

applications, Atanassov discovered that it has some faws,
one of which is the possibility of some degree of uncertainty
in the process of providing decision information. Tis un-
certainty is a major cause for concern. Atanassov [6] ex-
tended fuzzy set theory to Atanassov intuitionistic fuzzy sets
(AIFSs). An ordered pair of numbers that includes an af-
fliation function and an unafliated function and whose
sum is less than or equal to one constitutes an element of an
AIFS. When compared to fuzzy sets, AIFS can more ac-
curately depict the uncertainty of decision-making in-
formation. Researchers have expanded and successfully
applied AIFS theory to a number of felds. In order to
provide a method with adaptive search and adjustment for
group decision making, Shen [7] proposed a super-ranking
ranking method based on intuitionistic fuzzy sets. By
transforming between AIFS and Pythagorean fuzzy sets, Tao
[8] proposed an ORESTE method based on Pythagorean
fuzzy sets for multiattribute decision making with Pythag-
orean fuzzy information. In order to solve the issue of
moving object detection in complex situations, Giveki [9]
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applied AIFS to background detection and proposed a reli-
able moving object detection method incorporating Ata-
nasof’s comprehensible 3D fuzzy Histon roughness index
and texture features. In order to segment leukocytes in color
images, Bouchet [10] proposed a new algorithm based on
AIFS and fuzzy mathematical morphology. Zeng [11] pro-
posed a hybrid averaging operator and geometric operator
under intuitionistic fuzzy sets to solve the information fu-
sion problem of digital reform. Deb PP [12] has applied
intuitionistic fuzzy sets to enterprise resource planning
decisions with some results. Chen CP [13] further proposed
the quantitative method of Atanassov-type intuitive mem-
bership hierarchy.

IFSs can quantify to some extent the uncertainty in the
MCDM process, which is the uncertainty in the decision
information provided by decision makers based on their
own experience and knowledge because of the complex
conditions that make the decision information provided.
Te aggregation of decision information as a key step to
solve the MCDM problem has been extensively studied by
scholars. Based on IFSs, scholars have introduced many
operators to aggregate intuitionistic fuzzy numbers. Gou
et al. [14] proposed an information aggregation method for
intuitionistic fuzzy numbers. Liu and Chen [15] proposed
the intuitionistic fuzzy Archimedean Helen aggregation
(IFAHA) operator and the intuitionistic fuzzy weighted
Archimedean Helen aggregation (IFWAHA) operator.
Herrera et al. [16] conducted a study on the application of
ordered weighted ensemble operators in MCDM. Xu and
Chen [17] proposed interval-valued intuitionistic fuzzy
geometry operators, such as interval-valued intuitionistic
fuzzy ordered weighted geometry (IVFOWG) operator and
intuitionistic interval-valued fuzzy hybrid geometry
(IVFHG) operator. Yuan et al. [18] proposed several lin-
guistic intuitionistic fuzzy aggregation operators, including
the linguistic intuitionistic fuzzy hybrid weighted arith-
metical averaging operator and the linguistic intuitionistic
fuzzy hybrid weighted geometric mean operator. Liu et al.
[19] proposed the upward intuitionistic fuzzy preference
weighted average (UIFPWA) operator, the upward intui-
tionistic fuzzy preference ordered weighted average (UIF-
POWA) operator, and the upward intuitionistic fuzzy
preference hybrid average (UIFPHA) operator, among
others. Jia and Wang [20] proposed the Choquet integral-
based intuitionistic fuzzy hybrid arithmetic aggregation
operator (CIIFHAA) and gives the MCDM method with
intuitionistic fuzzy evaluation.

However, intuitionistic fuzzy sets still have considerable
limitations in dealing with the uncertainty of decision in-
formation. To better solve this problem, cubic sets are in-
troduced to extend intuitionistic fuzzy. Cube sets are widely
used as an efective means to extend fuzzy languages, such as
neutrosophic set [21]. Extended intuitionistic cubic fuzzy set
(ICFS) [22] can explain satisfactory, unsatisfactory, and
unpredictable information, which is not explained by fuzzy
sets and intuitionistic fuzzy sets. ICFS is a generalized form
of AIFS, and such as AIFS, each element of ICFS is rep-
resented as a structure of ordered pairs, characterized by an
afliation function and an unafliated function. While the

afliation function is in interval form, the unafliated
function resembles an ordinary fuzzy set. ICF is widely used
in MCDM to express more reasonable information about
uncertainty, which helps decision makers to make more
reasonable decision schemes [23–25]. Among them, the
aggregation operator is widely used in ICF environment.
Muneeza and Abdullah [26] and Kaur and Garg [22]
established a series of weighted aggregation operators under
ICFS theory, containing intuitionistic cubic fuzzy weighted
average (ICFWA) operator, intuitionistic cubic fuzzy or-
dered weighted average (ICFOWA) operator, intuitionistic
cubic fuzzy weighted geometry (ICFWG) operator, intui-
tionistic cubic fuzzy order weighted geometry (ICFOWG)
operator, intuitionistic cubic fuzzy mixed average (ICFMA)
operator, and intuitionistic cubic fuzzy mixed geometry
(ICFMG) operator. Qiyas [27, 28] and Liu et al. [29] further
established a series of weighted clustering operators on
linguistic intuitionistic cubic fuzzy sets (LICFS), including
linguistic intuitionistic cubic fuzzy weighted average
(LICFWA) operator, linguistic intuitionistic cubic fuzzy
order weighted average (LICFOWA) operator, linguistic
intuitionistic cubic fuzzy weighted geometry (LICFWG)
operator, linguistic intuitionistic cubic fuzzy geometry
(LICFOWG) operator, linguistic intuitionistic cubic fuzzy
weighted geometry (LICFOWG) operator, linguistic intui-
tionistic cubic fuzzy hybrid average (LICFHA) operator, and
linguistic intuitionistic cubic fuzzy hybrid geometry
(LICFHG) operator. However, these aggregation operators
do not consider the relationship between aggregated attri-
butes, and to address this problem, Ates and Akay [30]
conducted a study on the application of Bonferroni mean
(BM) operators inMCDM. Kaur and Garg [31] proposed the
Bonferroni mean (BM) operator and the weighted Bon-
ferroni mean average operator under ICFS. Deli [32] studied
the BM operator under the generalized hesitant fuzzy set and
proposed the generalized trapezoidal hesitant fuzzy Bon-
ferroni arithmetic mean operator and generalized trape-
zoidal hesitant fuzzy Bonferroni geometric mean operator.
Kumar and Chen [33] proposed the intuitionistic fuzzy
Hamacher weighted average (IFHWA) operator. Te
ICFBM operator and IFHWA operator cannot handle the
relationship between three or more attributes although they
consider the infuence between the two aggregated
attributes.

From the above literature, it can be seen that the existing
literature focuses on intuitionistic fuzzy sets, interval
intuitionistic fuzzy sets, and other single use of exact values
or interval values to represent the fuzziness and uncertainty
of decision information. However, in the real world, it is
usually difcult to represent the fuzziness and uncertainty of
decision information by a single exact value or interval value.
Terefore, using a mixture of interval and exact values may
be a very useful way to express the certainty and uncertainty
of a person’s indecision in a complex decision problem.
Rationality and validity. Terefore, in order to maximize the
response to the uncertainty of decision information and give
the most reasonable decision alternatives, this study pro-
poses a further study on decision making under ICFS. Te
processing of decision information in fuzzy environments
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often requires aggregation using aggregation operators for
further applications; however, most of the current research
work has focused on weighted average operators, geometric
operators, and so on. Although these aggregation operators
are able to aggregate fuzzy information, the information they
aggregate cannot be correlated. However, in the real world,
the decision making process often has certain correlation
between the attributes of the decision objects, and the
decision information given by ignoring the correlation
between them is bound to be defective, which will seri-
ously afect the decision results. In order to consider the
correlation between the aggregated attributes as much as
possible, this study proposes to use Muirhead mean op-
erator for the aggregation of fuzzy information. Te
Muirhead mean (MM) [34] operator is an aggregation
operator that can be used to deal with information ag-
gregation problems that require considering the in-
terrelationships between multiple attribute values by
specifying any number of parameters through a vector of
variables. It is a good approach to consider the in-
terrelationships between the attributes of the evaluated
objects in MCDM problems. After the MM operator was
proposed, researchers further extended its application in
diferent MCDMs [35–37]. In order to further consider
the uncertainty of decision information and the in-
terrelationship between the values of the attributes of the
evaluation alternatives in the MCDM problem and to
propose a more comprehensive and realistic decision
method, this study proposes a series of aggregation op-
erators that can consider the above information in
combination with the MM operator under ICFS.

In this study, the fuzziness and uncertainty of decision
information and the correlation among the attributes of
decision objects are considered more comprehensively in
order to be more relevant to the real world. We investigate
MM operators on intuitionistic cubic fuzzy sets and propose
some new aggregation operators, including intuitionistic
cubic fuzzy MM (ICFMM) operator, intuitionistic cubic
fuzzy weighted MM (ICFWMM) operator, intuitionistic
cubic fuzzy dual MM (ICFSDMM) operator, and intui-
tionistic cubic fuzzy dual weighted MM (ICFDWMM)
operator. Te proof procedures of these operators are given
in detail, the rational properties of these operators are
studied, and the proof procedures of the corresponding
properties are given. Compared with other existing existing
operators, it is clear that our proposed operators have a great
advantage in the treatment of uncertainty of information
and the treatment of correlation between aggregated attri-
butes. Finally, we propose the two comprehensive MCDM
decision methods based on the proposed intuitionistic cubic
fuzzy weighted MM (ICFWMM) operator and intuitionistic
cubic fuzzy dual weighted MM (ICFDWMM) operator and
apply them to supplier selection.

As far as we know, there is no research on MuirHead
mean aggregation operators based on intuitionistic cubic
fuzzy numbers in the existing literature. In order to fll this
gap, the research content of this study is as follows: in the
second section, we review some basic concepts and algo-
rithms of fuzzy sets, intuitionistic fuzzy sets, intuitionistic

cubic fuzzy sets, andMMoperators. In Section 3, we propose
the four kinds of aggregation operators, namely, intui-
tionistic cubic fuzzy MM operator (ICFMM), intuitionistic
cubic fuzzy weighted MM operator (ICFWMM), intui-
tionistic cubic dual MM operator (ICFDMM), and intui-
tionistic cubic dual weighted MM operator (ICFDWMM).
In addition, we give their derivation process and property
proof. In Section 4, we propose the two new MCDM
methods using intuitionistic cubic fuzzy weighted MM
operator (ICFWMM) and intuitionistic cubic dual weighted
MM operator (ICFDWMM). In Section 5, we describe the
numerical application of the proposed new MCDM method
in the intuitionistic cubic fuzzy environment through
suppliers purchasing parts for a company and compare it
with existing methods to analyze the proposed method.
Section 6 concludes the whole study and puts forward some
suggestions for future research.

2. Preliminaries

In the following, we introduce some basic concepts of fuzzy
sets, intuitionistic fuzzy sets, intuitionistic cubic fuzzy sets,
and MM operators and DMM operators.

2.1. Intuitionistic Cubic Fuzzy Set (ICFS)

Defnition 1 (see [26]). Te intuitionistic cubic fuzzy set
(ICFS) I in the nonempty set X is defned as follows:

I � x, 〈 e
−

, e
+

􏼂 􏼃, λ〉, 〈 r
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, r
+
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where cI � 〈[e− , e+], λ〉 is the membership afliation of x
and c

′
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([r− k, r+k], δk)}
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Defnition 2 (see [26]). Let I � (x, 〈[e− , e+], λ〉,{

〈[r− , r+], δ〉) | x ∈ X} be the ICFS under nonempty sets X.
Ten,

(1) Score of I is denoted by S(I) and is defned as follows:
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3
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Here S(I) ∈ [0, 1], the function S(I) can be used to
calculate the score value of the cubic fuzzy set. Te
larger the value of S(I), the larger the corresponding
cubic fuzzy value I.

(2) Te accuracy function of I is denoted by H(I) and is
defned as follows:

H(I) �
e

−
+ e

+
+ λ + r

−
+ r

+
+ δ( 􏼁

3
􏼢 􏼣, (3)

where H(I) ∈ [0, 1] and the larger the value of H(I), the
higher the accuracy of the ICF-members.

Defnition 3 (see [26]). Let I1 � (〈[e−
1 , e+

1 ], λ1〉,

〈[r−
1 , r+

1 ], δ1〉) and I2 � (〈[e−
2 , e+

2 ], λ2〉, 〈[r−
2 , r+

2 ], δ2〉) be the
two ICF-numbers, and the score functions of I1 and I2 are
represented as S(I1) and S(I2) and the accuracy functions be
given as H(I1) and H(I2), respectively. Ten,

(i) S(I2)< S(I1)⟹I2 < I1

(ii) S(I2) � S(I1)

(a) H(I2)<H(I1)⟹I2 < I1
(b) H(I2) � H(I1)⟹I2 � I1

2.2. Muirhead Mean (MM) Operator. Te MM (Muirhead
mean) operator was originally proposed by Muirhead [38],
which provides an aggregation mechanism positioned be-
tween various types of mean aggregation operators such as
arithmetic average and geometric average, and are mainly
used to solve the problem of aggregating ambiguous in-
formation about the existence of correlation of attributes.
Te defnition is as follows.

Defnition 4 (see [38]). Let αj(j � 1, 2, . . . , n) be a collection
of nonnegative real numbers and p � (p1, p2, . . . , pn) ∈ Rn

be a parameter vector. Te MM operator is defned as
follows:

MMp α1, α2, . . . , αn( 􏼁 �
1
n!

􏽘
θ∈Sn

􏽙

n

j�1
αpj

θ(j)
⎞⎠

1/􏽐
n

j�1pj

,⎛⎜⎜⎜⎜⎝ (4)

where θ(j)(j� 1, 2, . . ., n) is an permutations of {1, 2, ..., n}
and Sn is the collection of all permutations of {1, 2, ..., n}.

From the Defnition 6 and the special case of the MM
operator mentioned above, it is known that the advantage of
the MM operator is that it captures the interrelationships
between multiple aggregation parameters, and it is based on
a generalization of most of the existing aggregation operators.

2.3. Dual Muirhead Mean (MM) Operator. Te DMM (dual
Muirhead mean) operator was proposed by Liu and Li [34]
and is defned as follows.

Defnition 5 (see [34]) Let αj(j � 1, 2, . . . , n) be a collection
of nonnegative real numbers and p � (p1, p2, . . . , pn) ∈ Rn

be a parameter vector. Te DMM operator is defned as
follows:

DMMp α1, α2, · · · , αn( 􏼁 �
1

􏽐
n
j�1pj

􏽙

n

θ ∈ Sn

􏽘
j�1

pjαθ(j)
⎞⎠

1/n!

,⎛⎜⎝

(5)

where θ(j)(j� 1, 2, . . ., n) is an permutations of {1, 2, ..., n}
and Sn is the collection of all permutations of {1, 2, ..., n}.

3. Proposed Operators

In this section, we propose the four aggregation operators
using Muirhead mean (MM) operators in the intuitionistic
cubic fuzzy set (ICFS) environment, namely, intuitionistic
cubic fuzzy Muirhead mean (ICFMM) operator, intuitionistic
cubic fuzzy weighted MM (ICFWMM) operator, intuitionistic
cubic fuzzy dual MM (ICFDMM) operator, and intuitionistic
cubic fuzzy dual weightedMM (ICFDWMM) operator. Let I �

(x, 〈[e− , e+], λ〉, 〈[r− , r+], δ〉) |{ x ∈ X} be the ICFS under
nonempty sets X. Because cI � 〈[e− , e+], λ〉 and c

′
I �

〈[r− , r+], δ〉. Here, cI represents the afliation of the ICFS,
consisting of interval afliation [e− , e+] and afliation λ,
which have the same algorithm. Similarly, c

′
I represents the

unafliated relations of ICFS, consisting of interval unaf-
liatedness [r− , r+] and unafliatedness δ, and they have the
same algorithm. Terefore, when the proof procedure and
properties of the proposed operator in abbreviated form are
correct, its complete form must also be correct. To facilitate
the understanding of the proof procedure and properties of
the proposed operator, we use the short form of ICFS for
its proof.

3.1.Te Intuitionistic Cubic FuzzyMuirheadMean (ICFMM)
Operator

Defnition 6. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λi〉,

〈[r−
i , r+

i ], δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers
and p � (p1, p2, · · · , pn) ∈ Rn be a vector of parameters.
Ten, intuitionistic cubic fuzzy Muirhead mean (ICFMM)
operator is denoted by ICFMMp and is defned as follows:

ICFMMp
I1, I2, . . . , In( 􏼁 �

1
n!

􏽘
θ∈Sn

􏽙

n
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I

pj

θ(j)
⎞⎠

1/􏽐
n

j�1pj

,⎛⎜⎜⎜⎜⎝

(6)

where θ(j)(j� 1, 2, . . ., n) is any a permutation of (1, 2, . . ., n)
and Sn is the collection of all permutations of (1, 2, . . ., n).

Theorem 1. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λi〉,

〈[r−
i , r+

i ], δi〉)(i � 1, 2, . . . , n) be a collection of the ICF-
numbers, then the aggregation result from Defnition 6 is
still an ICF-number, and it can be obtained as follows:
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⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − δθ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Proof. We need to prove the following: (1) equation (7) is
kept and (2) equation (7) is an ICF-number. To facilitate the
understanding of the proof procedure and properties of the
proposed operator, we use the abbreviated form of ICFS for
its proof.

(1) First, we prove (7) is kept. According to the oper-
ational laws of ICFS, we get the following equation:

I
pj

θ(j) � c
pj

Iθ(j)
, 1 − 1 − c

′
Iθ(j)

􏼒 􏼓
pj

􏼒 􏼓,

􏽙

n

j�1
I

pj

θ(j) � 􏽙
n

j�1
c

pj

Iθ(j)
, 1 − 􏽙

n

j�1
1 − c
′
Iθ(j)

􏼒 􏼓
pj

⎞⎠,⎛⎝
(8)

Ten,

􏽘
θ∈Sn

􏽙

n

j�1
I

pj

θ(j) � 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠, 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎞⎠,⎛⎝ (9)

Furthermore,

1
n!

􏽘
θ∈Sn

􏽙

n

j�1
I

pj

θ(j)
�

1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

,

􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

So, we have

1
n!

􏽘
θ∈Sn

􏽙

n

j�1
I

pj

θ(j)
⎛⎝ ⎞⎠

1/􏽐
n

j�1pj

�

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

I
′
θ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

i.e., (7) is kept. (2) Ten, we will prove that (7) is an ICF-number.
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Let

cI � 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

,

c
′
I � 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − c
′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎞⎠

1/n!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(12)

Ten, we need to prove the following two conditions:

(a) 0≤ cI ≤ 1, 0≤ c
′
I ≤ 1

(b) 0≤ cI + c
′
I ≤ 1

(i) Since cIθ(j)
∈ [0, 1], we can get c

pj

Iθ(j)
∈ [0, 1] and

􏽑
n
j�1c

pj

Iθ(j)
∈ [0, 1]

Ten,

1 − 􏽙
n

j�1
c

pj

Iθ(j)
∈ [0, 1],

􏽙
θ∈Sn

1 − 􏽙
n

j�1

cIθ(j)
⎛⎝ ⎞⎠ ∈ [0, 1],

􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

∈ [0, 1],

(13)

Furthermore,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

∈ [0, 1],

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

∈ [0, 1]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

(14)

i.e., ≤cI≤1. Similarly, we can get 0≤ c
′
I ≤ 1.So, con-

dition (i) is met.
(ii) Since cIθ(j)

+ c
′
Iθ(j)
≤ 1, then cIθ(j)

≤ 1 − c
′
Iθ(j)

we can get
the following inequality:

cIθ(j)
+ c
′
Iθ(j)

� 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

+1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎞⎟⎠

1/􏽐
n

j�1pj

≤ 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − c
′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

+ 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − c
′
Iθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

� 1,

(15)

i.e., cIθ(j)
+ c
′
Iθ(j)
≤ 1.

According to (i) and (ii), we can know the aggregation
result from equation (32) is still an ICF-number. □

Property 1. Te ICFMMp operator has some properties as
follows:

(1) (Idempotency). Let Ii � I � (cIi
, c
′
Ii

), if all Ii (i� 1, 2,
. . ., n) are equal, then

ICFMMp
I1, I2, . . . , In( 􏼁 � I, (16)

(2) (Monotonicity). Let Ii � (cIi
, c
′
Ii

) and
Li � (cLi

, c
′
Li

)(i � 1, 2, . . . , n) be the two sets of ICF-
numbers. If cIi

≥ cLi
and c

′
Ii
≤ c
′
Li
, then

ICFMMp
I1, I2, . . . , In( 􏼁≥ ICFMMP

L1, L2, . . . , Ln( 􏼁,

(17)

(3) (Boundedness). Let Ii � (cIi
, c
′
Ii

)(i � 1, . . . , n) be
a collection of ICF-numbers and I− �

(min(cIi
), max(c

′
Ii

)) and I+ � (max(cIi
),

min(c
′
Ii

)), then
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I
− ≤ ICFMMp

I1, I2, . . . , In( 􏼁≤ I
+
. (18)

Proof. Since the proposed operator has the same properties
in the abbreviated form and the full form of ICFS, we use the
abbreviated form of ICFS to derive the properties for the
sake of understanding.

(1) Since Ii � I � (cIi
, c
′
Ii

), based on Teorem 1, we get
the following equation:

ICFMMp
I1, I2, . . . , In( 􏼁

�

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

I
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

′
I􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − 􏽙
θ∈Sn

1 − c

􏽘
n

j�1

pj

I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 􏽙
θ∈Sn

1 − 1 − c
′
I􏼐 􏼑

􏽘
n

j�1

pj⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − 1 − cI 􏽘

n

j�1
pj

⎛⎝ ⎞⎠

n!

⎛⎜⎝ ⎞⎟⎠

1/n!

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 1 − 1 − c
′
I􏼐 􏼑

􏽘

n

j�1
pj

⎛⎜⎝ ⎞⎟⎠

n!

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/n!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − 1 − cI 􏽘

n

j�1
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/􏽘n

j�1pj

,

1 − 1 − 1 − 1 − c
′
I􏼐 􏼑

􏽘
n

j�1
pj

􏼠 􏼡􏼠 􏼡

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

c

􏽘

n

j�1
pj

I
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − c
′
I􏼐 􏼑

􏽘

n

j�1
pj

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� cI, 1 − 1 − c
′
I􏼐 􏼑􏼐 􏼑 � cI, c

′
I􏼐 􏼑,

(19)

(2) Let Mp(I1, I2, . . . , In) � (cI, c
′
I) and

ICFMMp(L1, L2, . . . , Ln) � (cLi
, c
′
Li

),
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cI � 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

,

cL � 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
c

pj

Lθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

c
′
I � 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − c
′
Iθ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

c
′
L � 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − c
′
Lθ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

(20)

Since cIi
≥ c
′
Li
, we can get the following equation:

c
pj

Iθ(j)
≥ c

pj

Lθ(j)
,

􏽙

n

j�1
c

pj

Iθ(j)
≥􏽙

n

j�1
c

pj

Lθ(j)
,

1 − 􏽙

n

j�1
c

pj

Iθ(j)
≤ 1 − 􏽙

n

j�1
c

pj

Lθ(j)
,

􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠≤􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Lθ(j)

⎛⎝ ⎞⎠,

􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

≤ 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Lθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

,

(21)

Futhermore,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

≥ 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Lθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

≥ 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c

pj

Lθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

(22)

i.e., cI ≥ cL. Similarly, we also have c
′
I ≤ c
′
L. So,

Property 2 is kept.
(3) According to Idempotency and Monotonicity, we

have the following equation:

ICFMMp
I1, I2, . . . , In( 􏼁≥ ICFMMp

I
−
, I

−
, . . . , I

−
( ) � I

−
,

ICFMMp
I1, I2, . . . , In( 􏼁≤ ICFMMp

I
+
, I

+
, . . . , I

+
( 􏼁 � I

+
.

(23)

So, we have I− ≤ ICFMMp(I1, I2, . . . , In)≤ I+.Terefore,
Property 3 holds.

Moreover, regarding the infuence of the parameter
vector p on the monotonicity of the ICFMM operator, the
higher the control rate of the parameter vector, the larger the
value of the aggregation operator result [34], for the proof
procedure refer to reference [39, 40]. □

3.2.Te Intuitionistic Cubic FuzzyWeightedMM(ICFWMM)
Operator. In practical decision making, the size of attribute
weights will directly afect the decision result. However, the
ICFWMM operator cannot consider attribute weights, so it
is very important to consider the attribute weights of in-
formation. In this subsection, the following weighted
ICFWMM operator will be proposed.
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Defnition 7. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λi〉,

〈[r−
i , r+

i ], δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers
and w � (w1, w2, . . . , wn)T be the weight vector of

Ii(i � 1, 2, . . . , n), which satisfes wi ∈ [0, 1] and 􏽐
n
i�1wi � 1,

and let p � (p1, p2, · · · , pn) ∈ Rn be a vector of parameters. If

ICFWMMp
I1, I2, . . . , In( 􏼁 �

1
n!

􏽘
θ∈Sn

􏽙

n

j�1
nwθ(j)Iθ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠

1/􏽐
n

j�1pj

. (24)

Ten, we call ICFWMMp the intuitionistic cubic fuzzy
weighted MM (ICFWMM), where θ(j)(j� 1, 2, . . ., n) is any
a permutation of (1, 2, . . ., n), and Sn is the collection of all
permutations of (1, 2, . . ., n).In addition, when
w � (1/n, 1/n, . . . , 1/n), the ICFWMM operator changes to
the ICFMM operator.

Theorem  . Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λi〉, 〈[r−
i , r+

i ],

δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers, then the
result from Defnition 7 is an ICF-number, and it can be
obtained as follows:

ICFWMMp
I1, I2, . . . , In( 􏼁 �

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − cIθ(j)

􏼒 􏼓
nwθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − c

′nwθ(j)

Iθ(j)
􏼒 􏼓

pj
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

〈

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − e

−
θ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − 1 − e

+
θ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − λθ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

〉,

〈

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − r

− nwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − r

+nwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − δnwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

To facilitate the understanding of the proof procedure
and properties of the proposed operator, we use the ab-
breviated form of ICFS for its proof.

Proof. Because nwθ(j)Iθ(j) � (1 − (1 − Iθ(j))
nwθ(j) , c

′nwθ(j)

Iθ(j)
),

we can replace Iθ(j) in equation (7) with nwθ(j)Iθ(j), and then
we can get equation (25).
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Because Iθ(j) is an ICF-number, nwθ(j)Iθ(j) is also an
ICF-number. By (7), we know ICFWMMp(I1,I2,...,In) is an
ICF-number. □

Property 2. Te ICFWMMp operator has some properties as
follows.

(1) (Monotonicity). Let Ii � (cIi
, c
′
Ii

) and Li � (cLi
, c
′
Li

)

(i � 1, 2, . . . , n) be two sets of ICF-numbers. If
cIi
≥ cLi

and c
′
Ii
≤ c
′
Li
for all i, then

ICFWMMp
I1, I2, . . . , In( 􏼁

≥ ICFSWMMMP
I
′
1, I
′
2, . . . , I

′
n􏼐 􏼑,

(26)

(2) (Boundedness). Let Ii � (cIi
, c
′
Ii

)(i � 1, . . . , n) be
a collection of ICF-numbers and
w � (w1, w2, . . . , wn)T be the weight vector of
Ii(i � 1, 2, . . . , n), which satisfes wi ∈ [0, 1] and
􏽐

n
i�1wi � 1. I− � (min(cIi

), max(c
′
Ii

)) and
I+ � (max(cIi

), min(c
′
Ii

)), then

cII−
, c
′
II−

􏼐 􏼑≤ ICFWMMp
I1, I2, . . . , In( 􏼁≤ cII+

, c
′
II+

􏼐 􏼑,

(27)

where

cII−
� 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − min cIi

􏼐 􏼑􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

,

c
′
II−

� 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − max c

′
Ii

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

cII+
� 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − max cIi

􏼐 􏼑􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

c
′
II+

� 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − min c

′
Ii

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

.

(28)

Proof. Since the proposed operator has the same properties
in the short form and the full form of ICFS, we use the
abbreviated form of ICFS to derive the properties for the
sake of understanding.

(1) Te Proof is similar to that of ICFMM operator, it is
omitted here.

(2) According to Monotonicity, we have the following
equation:

ICFWMMp
I

−
, I

−
, . . . , I

−
( )≤ ICFWMMp

I1, I2, . . . , In( 􏼁

≤ ICFWMMp
I

+
, I

+
, . . . , I

+
( 􏼁.

(29)

According to (25), we have the following equation:

ICFWMMP
I

−
, I

−
, . . . , I

−
( ) �

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − min cIi

􏼐 􏼑􏼐 􏼑
nwθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − max c

′
Ii

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ICFWMMP
I

+
, I

+
, . . . , I

+
( 􏼁 �

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − max cIi

􏼐 􏼑􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,
⎛⎜⎜⎜⎜⎜⎜⎝

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − min c

′
Ii

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)
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So,

cII−
, c
′
II−

􏼐 􏼑≤ ICFWMMp
I1, I2, . . . , In( 􏼁≤ cII+

, c
′
II+

􏼐 􏼑. (31)
□

3.3. Te Intuitionistic Cubic Fuzzy Dual MM (ICFDMM)
Operator. Based on the DMM operator, this study proposes
the pairwise MM operator for intuitionistic cubic fuzzy sets,
as follows.

Defnition 8. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λ〉i, 〈[r−
i , r+

i ],

δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers, and let
p � (p1, p2, · · · , pn) ∈ Rn be a vector of parameters. If

ICFDMMp
I1, I2, . . . , In( 􏼁 �

1
􏽐

n
j�1 pj

􏽙
n∈Sn

􏽘

n

j�1
pjIθ(j)􏼐 􏼑⎛⎝ ⎞⎠

1/n!

.

(32)

Ten, we call ICFDMMp the intuitionistic cubic fuzzy
dual MM (IFDMM), where θ(j)(j� 1, 2, . . ., n) is any
a permutation of (1, 2, . . ., n), and Sn is the collection of all
permutations of (1, 2, . . ., n).

Theorem 3. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λ〉i, 〈[r−
i , r+

i ],

δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers, then the
result from Defnition 8 is also an ICF-number, and it can be
obtained as follows:

ICFDMMp
I1, I2, . . . , In( 􏼁 �

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c
′pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�

〈 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − e

−
θ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

, 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − e

+
θ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − λθ(j)􏼐 􏼑

pj⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

〉,
〈 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
r

−   pj

θ(j)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

, 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
r

+  pj

θ(j)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
δ

pj

θ(j)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘
n

j�1
pj

〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)

To facilitate the understanding of the proof procedure
and properties of the proposed operator, we use the ab-
breviated form of ICFS for its proof.

Proof. We need to prove (1) equation (33) is kept and (2)
equation (33) is an ICF-number.

(1) First, we prove that equation (33) is kept. According
to the operational laws of ICF-numbers, we get the
following equation:

pjIθ(j) � 1 − 1 − cIθ(j)
􏼒 􏼓

pj

, c
′pj

Iθ(j)
􏼒 􏼓,

􏽘

n

j�1
pjcIθ(j)

􏼒 􏼓 � 1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

, 􏽙
n

j�1
c
′pj

Iθ(j)

⎞⎠,⎛⎝

(34)

Ten,

􏽙
θ∈Sn

􏽘

n

j�1
pjcIθ(j)

􏼒 􏼓 � 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠, 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c
′pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (35)
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Furthermore,

􏽙
θ∈Sn

􏽘

n

j�1
pjcIθ(j)

􏼒 􏼓⎛⎝ ⎞⎠

1/n!

� 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

, 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c
′pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠, (36)

So,

1
􏽐

n
j�1 pj

􏽙
θ∈Sn

􏽘

n

j�1
pjcIθ(j)

􏼒 􏼓⎛⎝ ⎞⎠

1/n!

� 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

, 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
c
′
Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(37)

i.e., equation (33) is kept
(2) Ten, we will prove that equation (33) is an ICF-

number
Let

cI � 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

,

c
′
I � 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
c
′pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

(38)

Ten, we need prove the following two conditions:

(a) 0≤ cI ≤ 1, 0≤ c
′
I ≤ 1

(b) 0≤ cI + c
′
I ≤ 1

(i) Since cIθ(j)
∈ [0, 1], we can get the following

equation:

1 − cIθ(j)
􏼒 􏼓 ∈ [0, 1],

1 − cIθ(j)
􏼒 􏼓

pj

∈ [0, 1],

􏽙

n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

∈ [0, 1],

(39)

Ten,

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠ ∈ [0, 1],

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

∈ [0, 1],

􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

∈ [0, 1],

(40)

Furthermore,

1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠ ∈ [0, 1],

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

∈ [0, 1],

(41)

i.e., 0≤ cI ≤ 1. Similarly, we can get 0≤ c
′
I ≤ 1. So,

condition (i) is met.
(ii) Since cIθ(j)

+ c
′
Iθ(j)
≤ 1, then cIθ(j)

≤ 1 − c
′
Iθ(j)

, we can get
the following inequality:

cI + c
′
I � 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

+ 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
c
′pj

Iθ(j)

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

≤ 1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

+ 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − cIθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

� 1,

(42)
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i.e., 0≤ cI + c
′
I ≤ 1, we can know the aggregation result from

(33) is still an ICF-number □

Property 3. Similar to the properties of ICFMM operator,
the ICFDMMp operator has some properties as follows.

(1) (Idempotency). If all Ii(i � 1, 2, . . . , n) are equal, i.e.,
Ii � (cIi

, c
′
Ii

)(i � 1, . . . , n), then

ICFDMMp
I1, I2, . . . , In( 􏼁 � I, (43)

(2) (Monotonicity). Let Ii � (cIi
, c
′
Ii

) and
Li � (cLi

, c
′
Li

)(i � 1, 2, . . . , n) be the two sets of
ICF-numbers. If cIi

≥ cLi
and c

′
Ii
≤ c
′
Li
for all i, then

ICFDMMp
I1, I2, . . . , In( 􏼁≥ ICFDMMp

I1
′
, I2
′
, . . . , In

′􏼒 􏼓,

(44)

(3) (Boundedness). Let Ii � (cIi
, cIi
′)(i � 1, . . . , n) be

a collection of ICF-numbers, and I− � (min
(cIi

), max(c
′
Ii

)) and I+ � (max(cIi
), min(c

′
Ii

)), then

I
− ≤ ICFDMMp

I1, I2, . . . , In( 􏼁≤ I
+
. (45)

Same as ICFMM operator, regarding the infuence of the
parameter vector p on the monotonicity of the ICFMM
operator, the higher the control rate of the parameter vector
the larger the value of the aggregation operator result [34],
for the proof procedure refer to reference [39, 40].

3.4. Te Intuitionistic Cubic Fuzzy Dual Weighted MM
(ICFDWMM) Operator. Similar to ICFWMM operator, we
will propose intuitionistic cubic fuzzy dual weighted MM
(ICFDWMM) operator so as to consider the weight vector of
the attribute values, which is defned as follows.

Defnition 9. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λ〉i, 〈[r−
i , r+

i ],

δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers and w �

(w1, w2, . . . , wn)T be the weight vector of Ii(i � 1, 2, . . . , n),
which satisfes wi ∈ [0, 1] and 􏽐

n
i�1wi � 1, and let

p � (p1, p2, · · · , pn) ∈ Rn be a vector of parameters. If

ICFDWMM I1, I2, . . . , In( 􏼁 �
1

􏽐
n
j�1 pj

􏽙
θ∈Sn

􏽘

n

j�1
pjc

nwθ(j)

Iθ(j)
􏼒 􏼓⎛⎝ ⎞⎠

1/n!

.

(46)

Ten, we call ICFDWMMp the intuitionistic cubic fuzzy
dual weighted MM (ICFDMM), where θ(j)(j� 1, 2, . . ., n) is
any a permutation of (1, 2, ..., n) and Sn is the collection of all
permutations of (1, 2, ..., n).

When w � (1/n, 1/n, ..., 1/n), the ICFDWMM operator
changes to the ICFDMM operator.

Theorem 4. Let Ii � 〈cIi
, c
′
Ii

〉 � (〈[e−
i , e+

i ], λ〉i, 〈[r−
i , r+

i ],

δi〉)(i � 1, 2, . . . , n) be a collection of ICF-numbers, then the
result from Defnition 9 is also an ICF-number, and it can be
obtained as follows:

ICFDWMMp
I1, I2, . . . , In( 􏼁 �

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − c

nwθ(j)

Iθ(j)
􏼒 􏼓

pj
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − c

′
Iθ(j)

􏼒 􏼓
nwθ(j)

􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

〈

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − e

− nwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − e

+nwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − 1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − λ

nwθ(j)

θ(j)􏼒 􏼓
pj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

〉

〈

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − r

−
θ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

1 − 􏽙
θ∈Sn

1 − 􏽙

n

j�1
1 − 1 − r

+
θ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − δθ(j)􏼐 􏼑

nwθ(j)
􏼐 􏼑

pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)
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To facilitate the understanding of the proof procedure
and properties of the proposed operator, we use the ab-
breviated form of ICFS for its proof.

Proof. Because I
nwθ(j)

θ(j) � (c
nwθ(j)

Iθ(j)
, 1 − (1 − c

′
Iθ(j)

)nwθ(j) ), we can
replace Iθ(j) in equation (33) with nwθ(j)Iθ(j), and then we
get equation (47). Because Iθ(j) is an ICF-number,
nwθ(j)zθ(j) is also an ICF-number. By equation (33), we
know ICFDWMMp(I1,I2,. . .,In) is an ICF-number. □

Property 4. Te ICFDWMMp operator has some properties
as follows:

(1) (Monotonicity). Let Ii � (cIi
, c
′
Ii

) and
Li � (cLi ′

c
′
Li

)(i � 1, 2, . . . , n) be the two sets of ICF-
numbers and w � (w1, w2, . . . , wn)T be the weight
vector of Ii(i � 1, 2, . . . , n), which satisfes wi ∈ [0, 1]

and 􏽐
n
i�1wi � 1. If cIi

≥ cLi
and c

′
Ii
≤ c
′
Li
, then

ICFDWMMp
I1, I2, . . . , In( 􏼁≥ ICFDWMMp

I
′
1, I
′
2, . . . , I

′
n􏼐 􏼑,

(48)

(2) (Boundedness). Let Ii � (cIi
, c
′
Ii

)(i � 1, . . . , n) be
a collections of ICF-numbers and
w � (w1, w2, . . . , wn)T be the weight vector of
Ii(i � 1, 2, . . . , n), which satisfes wi ∈ [0, 1] and
􏽐

n
i�1wi � 1. Let I− � (min(cIi

), max(c
′
Ii

)) and
I+ � (max(cIi

), min(c
′
Ii

)), then

cII−
, c
′
II−

􏼐 􏼑≤ ICFDWMMp
I1, I2, . . . , In( 􏼁≤ cII−

, c
′
II−

􏼐 􏼑

(49)

where

cII−
� 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − max cIi

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽐
n

j�1pj

,

c
′
II−

� 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − min c

′
Ii

􏼐 􏼑􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

cII+
� 1 − 1 − 􏽙

θ∈Sn

1 − 􏽙
n

j�1
1 − min cIi

􏼐 􏼑
nwθ(j)

􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

,

c
′
II+

� 1 − 􏽙
θ∈Sn

1 − 􏽙
n

j�1
1 − 1 − max c

′
Ii

􏼐 􏼑􏼐 􏼑
nwθ

(1)􏼐 􏼑
pj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/􏽘n

j�1pj

.

(50)

Proof. Te proof process is the same as that of ICFWMM,
which is omitted here. □

4. Application of the Proposed Operator

4.1. Two MCDMMethods Based on ICFWMM Operator and
ICFDWMM. In this section, the two new MCDM methods
are developed based on the proposed ICFWMM or
ICFDWMM operator, which are described as follows.

Suppose there are q decision makers X1, X2, · · · , Xq􏽮 􏽯 to
evaluate m alternatives S1, S2, · · · , Sm􏼈 􏼉 with respect to n
attributes A1, A2, · · · , An􏼈 􏼉 in a MCDM problem, where the
weight vector of the attributes is ω � (ω1,ω2, · · · ,ωn) sat-
isfying wk ≥ 0, k � 1, 2, · · · , q, 􏽐

q

k�1wk � 1, and the weight
vector of decision makers is w � (w1, w2, · · · , wq)T and
satisfying wk ≥ 0, k � 1, 2, · · · , q, 􏽐

q

k�1wk � 1. Rk � [rk
ij]m × n

is the given decision matrix of this decision problem, and Rk

is the ICFN given by the decision maker Xk for the alter-
native Si of attribute Aj, where rk

ij � (ck
Iij

, c
′
Iij

), cIij

k �

〈[e−
ijk, e+

ijk], λk
ij〉, c

′
Iij

k � 〈[r−
ijk, r+

ijk], δk
ij〉, [r−

ijk, r+
ijk] ⊂

[0, 1], [e−
ijk, e+

ijk] ⊂ [0, 1], δk
ij ⊂ [0, 1], λij

k ⊂ [0, 1], and
r+

ijk + e+
ijk≤ 1, λij

k + δij
k ≤ 1. Ten, the goal is to rank the

alternatives.

In the following section, the two MCDM methods are
proposed using the ICFWMM and ICFDWMM aggregation
operators proposed in this study, and the detailed decision
steps are shown in Figure 1:

Step 1. Normalize the intuitionistic cubic fuzzy decision
matrix Rk � [rk

ij]m × n

Step 2. Aggregate all individual decision matrices
Rk(k � 1, 2, · · · , q) into an aggregate matrix R by the
ICFWMM or ICFDWMM operator, as in equations
(51) and (52) as follows:

rij � ICFWMM r
1
ij, r

2
ij, · · · , r

q
ij􏼐 􏼑, (51)

or
rij � ICFWMM r

1
ij, r

2
ij, · · · , r

q

ij􏼐 􏼑, (52)

Step 3. By ICFWMM or ICFDWMM operators, all
attribute values rij(j � 1, 2, · · · , n) are aggregated into
the composite value zi as in equations (53) and (54) as
follows:

zi � ICFWMM ri1, ri2, · · · , rin( 􏼁, (53)
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or

zi � ICFDWMM ri1, ri2, · · · , rin( 􏼁, (54)

Step 4. Ranking according to the score function and the
accuracy function of Defnition 2
Step 5. Rank all alternatives. Te larger the zi, the better
the alternative Si

5. Case Study

To illustrate the application of the method in this study, an
example from the literature [34] on investment selection
decisions is cited. An investment frmwants to choose one of
fve candidates (S1, S2, S3, S4, and S5) to invest in. In order to
make a scientifc decision and avoid investment loss, three
experts (X1, X2, and X3) are invited to evaluate fve candidate
companies from four attributes (A1, A2, A3, and A4,), where
A1 means risk assessment, A2 means growth assessment, A3
means socio-political impact assessment, and A4 means
environmental impact assessment. Based on the existing
experience and knowledge, the investment company set the
attribute weight vector ω � (0, 2, 0.1, 0.3, 0.4)T and the ex-
pert weight vector w � (0.35, 0.40, 0.25)T.Te three decision
makers (X1, X2, and X3) assessed information on all attri-
butes according to the ICFS concept, and the evaluation
matrices obtained are shown in Tables 1–3, respectively. Te
ICFS concept referenced for information evaluation in
practical decision making is as follows: evaluate information
results as rk

ij � (ck
Iij

, c
′
Iij

k), where cIij

k � 〈[e−
ijk, e+

ijk], λk
ij〉

represents the degree of afliation, [e−
ijk, e+

ijk] is the interval
intuitionistic fuzzy value of the degree of afliation given by
the decisionmaker, and λk

ij represents the intuitionistic fuzzy
value of the afliation given by the decision maker. c

′
Iij

k �

〈[r−
ijk, r+

ijk], δk
ij〉 represents the unafliated degree,

[r−
ijk, r+

ijk] is the interval value intuitionistic fuzzy value of
the unafliated degree given by the decision maker, and δk

ij

represents the intuitionistic fuzzy value of the unafliated
degree given by the decision maker. Tey need to meet the
following conditions: [r−

ijk, r+
ijk] ⊂ [0, 1], [e−

ijk, e+
ijk] ⊂ [0, 1],

δk
ij ⊂ [0, 1], λij

k ⊂ [0, 1], and r+
ijk + e+

ijk≤ 1, λij
k + δij

k ≤ 1.
For example, for the information evaluation of attribute A1
of alternative S1, according to the concept of ICFS, the
decision maker gives the evaluation information as

rk
ij �

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.4)
􏼠 􏼡, where ([0.1, 0.5], 0.5) represents

the afliation degree, [0.1, 0.5] is the interval value intui-
tionistic fuzzy value of the afliation degree given by the
decisionmaker, and 0.5 is the intuitionistic fuzzy value of the
afliation degree given by the decision maker.([0.2, 0.4],0.4)
represents the unafliated degree, [0.2, 0.4] is the interval
value of the unafliated degree intuitionistic fuzzy value
given by the decision maker, and 0.4 is the intuitionistic
fuzzy value of the unafliated degree given by the decision
maker. Also, meet the conditions [0.1, 0.5] ⊂ [0, 1],
[0.2, 0.4] ⊂ [0, 1], 0.5 ⊂ [0, 1], 0.4 ⊂ [0, 1], and
0.5 + 0.4≤ 1, 0.5 + 0.4≤ 1.

5.1.TeDecisionMaking Steps. To get the best alternative(s),
the steps are shown in the following:

Step 1. Normalizing the attribute values.
Since all property values in this case are of the same type,

no normalization is required.

Step 2. All individual decision matrices Rk (k� 1, 2, 3) are
aggregated into an ensemble matrix R by the ICFWMM and
ICFDWMM operators as shown in Tables 4 and 5.

Step 3. Te ICFWMM operator and the ICFDWMM op-
erator are used to aggregate all the attribute values
rij(j � 1, 2, · · ·n) into a composite value zi as shown in
Table 6.

Step 4. Calculating the score function S(zi)(i � 1, 2, · · · n) of
the collective overall values zi (i� 1, 2, . . ., 5) produced by
ICFWMM or ICFDWMM operators shown in Table 7.

Step 5. Ranking all the alternatives.
According to the score function S(zi)(i � 1, 2, · · · n), we

can rank the alternatives {S1, S2, S3, S4, and S5} shown in
Table 8. From Table 8, we can see the best alternative is S2

5.2. Te Infuence of the Parameter Vector p on the Decision
Result ofTis Example. In order to illustrate the infuence of
the parameter vector p on the decision of this example,
diferent parameter vectors p are set to discuss the ranking
results in this study, and the results are shown in Tables 9
and 10.

Constructing
multi-criteria

decision
problems 

Constructing a
decision matrix 

Normalized
Decision
Matrix 

Aggregate
individual

Decision Matrix 

Ranking
according to
score value 

Ranking the
alternatives 

Preparatory Phase

Step.1 Step.2 Step.4 Step.5

Decision maker

ICFWMM or
ICFDWMM

operators 

Score function
and accuracy

function 

Decision analysis phase

Aggregate
Decision Matrix 

Step.3

Comparison
ICFWMM or
ICFDWMM

operators 

Figure 1: Decision-making process of the proposed MCDM method.
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As can be seen from Tables 9 and 10, the values of the
score functions using diferent parameter vectors p are
diferent, and the ranking results are slightly diferent ac-
cordingly, where the ICFWMM operator will become the
intuitionistic cubic fuzzy weighted average (ICFWA) op-
erator and the ICFDWMM operator will become the

intuitionistic cubic fuzzy weighted geometry (ICFWG)
operator when p� (1, 0, 0, 0). When p� (1, 1, 0, 0), the
ICFWMM operator will become the intuitionistic cubic
fuzzy weighted Bonferroni (ICFWBM) operator. For the
ICFWMM aggregation operator, it can be found that the
more interrelationships among the attributes considered in

Table 1: Decision matrix R1 for decision maker X1.

A1 A2 A3 A4

S1
([0.1, 0.5], 0.5)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.6], 0.6)

([0.1, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.4)

([0.2, 0.5], 0.4)
􏼠 􏼡

S2
([0.4, 0.7], 0.7),

([0.2, 0.3], 0.3)
􏼠 􏼡

([0.3, 0.7], 0.7),

([0.1, 0.3], 0.3)
􏼠 􏼡

([0.2, 0.7], 0.6),

([0.1, 0.3], 0.2)
􏼠 􏼡

([0.1, 0.6], 0.6),

([0.2, 0.4], 0.2)
􏼠 􏼡

S3
([0.1, 0.5], 0.5)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.6], 0.6)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.6], 0.6)

([0.1, 0.3], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.4], 0.3)
􏼠 􏼡

S4
([0.1, 0.8], 0.8),

([0.1, 0.2], 0.2)
􏼠 􏼡

([0.1, 0.8], 0.7),

([0.1, 0.2], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.4),

([0.1, 0.2], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.2)
􏼠 􏼡

S5 ([0.1, 0.5], 0.4)

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.5], 0.4),

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.4], 0.4),

([0.2, 0.5], 0.5)
􏼠 􏼡

([0.1, 0.4], 0.4)

([0.2, 0.6], 0.6)
􏼠 􏼡

Table 3: Decision matrix R3 for decision maker X3.

A1 A2 A3 A4

S1
([0.1, 0.5], 0.4)

([0.2.0.4], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.4], 0.2)
􏼠 􏼡

S2
([0.1, 0.5], 0.5),

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.6], 0.6),

([0.2, 0.3], 0.2)
􏼠 􏼡

([0.1, 0.7], 0.7)

([0.2, 0.3], 0.2)
􏼠 􏼡

S3
([0.1, 0.5], 0.4)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.3)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.4),

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.5], 0.3)

([0.2, 0.4], 0.3)
􏼠 􏼡

S4
([0.1, 0.5], 0.5))

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.4], 0.3)

([0.2, 0.6], 0.5)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.3], 0.2)
􏼠 􏼡

S5
([0.1, 0.6], 0.6)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.6], 0.6),

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.4)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.6)

([0.2, 0.4], 0.4)
􏼠 􏼡

Table 2: Decision matrix R2 for decision maker X2.

A1 A2 A3 A4

S1
([0.1, 0.4], 0.4),

([0.2, 0.5], 0.5)
􏼠 􏼡

([0.1, 0.6], 0.6)

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.5),

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.5], 0.5)

([0.2, 0.4], 0.3)
􏼠 􏼡

S2
([0.1, 0.5], 0.5)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.6], 0.6),

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.6], 0.6)

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.7], 0.7)

([0.2, 0.3], 0.3)
􏼠 􏼡

S3
([0.1, 0.4], 0.4),

([0.2, 0.5], 0.5)
􏼠 􏼡

([0.1, 0.4], 0.3),

([0.2, 0.5], 0.5)
􏼠 􏼡

([0.1, 0.5], 0.4)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.3], 0.2)

([0.2, 0.6], 0.6)
􏼠 􏼡

S4
([0.1, 0.5], 0.5),

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.7], 0.7)

([0.2, 0.3], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.4)

([0.2, 0.4], 0.4)
􏼠 􏼡

([0.1, 0.7], 0.6),

([0.2, 0.4], 0.2)
􏼠 􏼡

S5 ([0.1, 0.6], 0.6),

([0.2, 0.4], 0.3)
􏼠 􏼡

([0.1, 0.7], 0.7)

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.5], 0.4)

([0.2, 0.4], 0.2)
􏼠 􏼡

([0.1, 0.7], 0.7)

([0.2, 0.3], 0.2)
􏼠 􏼡
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this study, the larger the value of the score function will be.
Te stronger the control ability of the parameter vector p, the
larger the value of the score function. However, for the
ICFDWMM aggregation operator, the result is the opposite,

the more interrelationships between attributes are consid-
ered, the smaller the value of the score function, the greater
the control ability of the parameter vector p, and the value of
the score function will become larger. In addition, as more
relationships between attributes are considered, the values of
the ranking results of ICFWMM operator and ICFDWMM
operator tend to be uniform, and the more relationships
between attributes are considered, the less the resulting
ranking results difer from the results of considering all
attributes.

Table 4: Collective matrix R by ICFWMM operator.

A1 A2 A3 A4

S1
([0.10, 0.46], 0.42)

([0.21, 0.44], 0.37)
􏼠 􏼡

([0.10, 0.52], 0.52),

([0.21, 0.41], 0.25)
􏼠 􏼡

([0.10, 0.52], 0.52),

([0.18, 0.41], 0.31)
􏼠 􏼡

([0.10, 0.49], 0.46),

([0.21, 0.44], 0.31)
􏼠 􏼡

S2
([0.16, 0.55], 0.55)

([0.21, 0.38], 0.34)
􏼠 􏼡

([0.14, 0.58], 0.58)

([0.18, 0.38], 0.29)
􏼠 􏼡

([0.12, 0.62], 0.59)

([0.18, 0.34], 0.24)
􏼠 􏼡

([0.10, 0.65], 0.65),

([0.21, 0.34], 0.24)
􏼠 􏼡

S3
([0.10, 0.46], 0.42)

([0.21, 0.44], 0.44)
􏼠 􏼡

([0.10, 0.49], 0.37)

([0.21, 0.44], 0.44)
􏼠 􏼡

([0.10, 0.52], 0.45)

([0.18, 0.38], 0.31)
􏼠 􏼡

([0.10, 0.42], 0.30)

([0.21, 0.48], 0.42)
􏼠 􏼡

S4
([0.10, 0.57], 0.57)

([0.18, 0.35], 0.31)
􏼠 􏼡

([0.10, 0.63], 0.61),

([0.18, 0.32], 0.25)
􏼠 􏼡

([0.10, 0.45], 0.35)

([0.18, 0.44], 0.40)
􏼠 􏼡

([0.10, 0.54], 0.52)

([0.21, 0.37], 0.21)
􏼠 􏼡

S5
([0.10, 0.56], 0.52)

([0.21, 0.41], 0.35)
􏼠 􏼡

([0.10, 0.58], 0.54)

([0.21, 0.41], 0.30)
􏼠 􏼡

([0.10, 0.46], 0.40)

([0.21, 0.44], 0.40)
􏼠 􏼡

([0.10, 0.54], 0.54)

([0.21, 0.46], 0.44)
􏼠 􏼡

Table 5: Collective matrix R by ICFDWMM operator.

A1 A2 A3 A4

S1
([0.11, 0.48], 0.44)

([0.20, 0.42], 0.33)
􏼠 􏼡

([0.11, 0.54], 0.54)

([0.20, 0.39], 0.22)
􏼠 􏼡

([0.11, 0.54], 0.54)

([0.16, 0.39], 0.28)
􏼠 􏼡

([0.11, 0.51], 0.48)

([0.20, 0.42], 0.28)
􏼠 􏼡

S2
([0.22, 0.58], 0.58),

([0.20, 0.36], 0.32)
􏼠 􏼡

([0.18, 0.61], 0.61)

([0.16, 0.36], 0.26)
􏼠 􏼡

([0.14, 0.64], 0.60)

([0.16, 0.32], 0.22)
􏼠 􏼡

([0.11, 0.68], 0.68)

([0.20, 0.32], 0.22)
􏼠 􏼡

S3
([0.11, 0.48], 0.44)

([0.20, 0.42], 0.42)
􏼠 􏼡

([0.11, 0.52], 0.42)

([0.20, 0.42], 0.42)
􏼠 􏼡

([0.11, 0.54], 0.48)

([0.16, 0.36], 0.28)
􏼠 􏼡

([0.11, 0.46], 0.36)

([0.20, 0.45], 0.37)
􏼠 􏼡

S4
([0.11, 0.64], 0.63)

([0.16, 0.31], 0.28)
􏼠 􏼡

([0.11, 0.69], 0.65)

([0.16, 0.29], 0.23)
􏼠 􏼡

([0.11, 0.47], 0.37)

([0.16, 0.36], 0.34)
􏼠 􏼡

([0.11, 0.58], 0.54)

([0.20, 0.35], 0.20)
􏼠 􏼡

S5
([0.11, 0.58], 0.55)

([0.20, 0.39], 0.33)
􏼠 􏼡

([0.11, 0.61], 0.59)

([0.20, 0.39], 0.25)
􏼠 􏼡

([0.11, 0.48], 0.41)

([0.20, 0.42], 0.34)
􏼠 􏼡

([0.11, 0.59], 0.59)

([0.20, 0.40], 0.36)
􏼠 􏼡

Table 6: Te comprehensive value zi by ICFWMM and ICFDWMM operators.

Operator S1 S2 S3 S4 S5

ICFWMM ([0.06, 0.31], 0.43)

([0.48, 0.64], 0.55)
􏼠 􏼡

([0.08, 0.38], 0.52)

([0.47, 0.60], 0.54)
􏼠 􏼡

([0.06, 0.30], 0.34),

([0.48, 0.64], 0.63)
􏼠 􏼡

([0.06, 0.35], 0.46)

([0.46, 0.60], 0.55)
􏼠 􏼡

([0.06, 0.34], 0.44)

([0.48, 0.64], 0.59)
􏼠 􏼡

ICFDWMM ([0.40, 0.70], 0.69)

([0.12, 0.26], 0.17)
􏼠 􏼡

([0.46, 0.77], 0.76),

([0.11, 0.21], 0.16)
􏼠 􏼡

([0.40, 0.69], 0.64)

([0.12, 0.26], 0.23)
􏼠 􏼡

([0.40, 0.76], 0.73)

([0.10, 0.20], 0.16)
􏼠 􏼡

([0.40, 0.73], 0.71),

([0.12, 0.25], 0.20)
􏼠 􏼡

Table 7: Te score function S(zi) of the comprehensive value zi by two operators.

Operator S1 S2 S3 S4 S5
ICFWMM − 0.2897 − 0.2101 − 0.3503 − 2.465 − 2.907
ICFDWMM 0.4125 0.5000 0.3723 0.4718 0.4225

Table 8: Te ranking results of fve alternatives by two operators.

Operator Ranking results
ICFWMM S2> S4> S1> S5> S3
ICFDWMM S2> S4> S5> S1> S3
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5.3. Comparing with the Other Methods. To further demon-
strate the efectiveness and outstanding advantages of the
method developed in this study, three existing MCDM
methods were used to solve the same example, including the
intuitionistic fuzzy weighted average (IFWA) operator pro-
posed by Xu [41], the intuitionistic cubic weighted average
operator (ICFWA) proposed by Muneeza [26], and the
intuitionistic cubic weighted fuzzy Bonferroni mean
(ICFWBM) operator proposed by Kaur [31], ranking Te
results are shown in Table 11. Te three methods are also
compared with the proposed method in this study in terms of
some characteristics, and the results are shown in Table 12.

Further analysis for Tables 11 and 12 leads to the fol-
lowing conclusions:

(1) Compared with the IFWA operator, the proposed
method in this study has the following advantages:
(1) it can more efectively communicate the in-
formation that is predictable, unpredictably, and
satisfactorily present in the input data as well as more
efectively address the input data’s uncertainty and
(2) the proposed operator in this study can not only
consider the interrelationship between attributes of
aggregated information but can also control the
interrelationship between attributes more fexibly
through the MM aggregation, in contrast to the
IFWA operator, which does not take into account the
interrelationship between attributes when aggre-
gating information.

(2) Compared with ICFWA, the proposed aggregation
operator in this study has high fexibility and gen-
erality. One the one hand, it can take into account
how aggregation attributes are related to one an-
other. On the other hand, the ICFWMM operator
proposed in this study can be seen as a special case of
the ICFWA operator when p� (1, 0, ..., 0, 0). It is
clear that the new method is more fexible and
general than the ICFWA operator, particularly when
the decision-maker needs to take into account on
how the input attribute parameters interact with one
another.

(3) Compared with ICFWBM, which can capture the
interrelationship between two attribute parameters
but often has to consider the interrelationship be-
tween two and more attributes in a practical
decision-making environment, the proposedmethod
in this study addresses this drawback of
ICFWBM well.

Trough comparative analysis, it can be seen that the
proposed ICFWMM operator and ICFDWMM operator
have the following advantages: (1) they can more compre-
hensively solve the problem of uncertainty brought by de-
cision makers in making judgments and (2) they can not
only consider the interrelationship between any multiple
attributes but also deal with the interrelationship between
attributes more conveniently and fexibly through the pa-
rameter vector p.

Table 9: Ranking results by utilizing the diferent parameter vector p in the ICFWMM operator.

Parameter vector p Te score function S(zi) Ranking results
p� (1, 0, 0, 0) S(z1)� − 0.8016, S(z2)� − 0.7882, S(z3)� − 0.8108, S(z4)� − 0.7723, S(z5)� − 0.7939 S4> S2> S5> S1> S3
p� (1, 1, 0, 0) S(z1)� − 0.7478, S(z2)� − 0.7384, S(z3)� − 0.7724, S(z4)� − 0.7230, S(z5)� − 0.7490 S4> S2> S1> S5> S3
p� (1, 1, 1, 0) S(z1)� − 0.6388, S(z2)� − 0.6227, S(z3)� − 0.6614, S(z4)� − 0.6228, S(z5)� − 0.6479 S2> S4> S1> S5> S3
p� (1, 1, 1, 1) S(z1)� − 0.2879, S(z2)� − 0.2101, S(z3)� − 0.3503, S(z4)� − 2.465, S(z5)� − 2.907 S2> S4> S1> S5> S3
p� (0.25, 0.25, 0.25, 0.25) S(z1)� − 0.7835, S(z2)� − 0.7695, S(z3)� − 0.8004, S(z4)� − 0.7698, S(z5)� − 0.7930 S2> S4> S1> S5> S3
p� (2, 0, 0, 0) S(z1)� − 0.6858, S(z2)� − 0.6675, S(z3)� − 0.6986, S(z4)� − 0.6476, S(z5)� − 0.6753 S4> S2> S5> S1> S3
p� (3, 0, 0, 0) S(z1)� − 0.6238, S(z2)� − 0.6031, S(z3)� − 0.6385, S(z4)� − 0.5814, S(z5)� − 0.6119 S4> S2> S5> S1> S3

Table 10: Ranking results by utilizing the diferent parameter vector p in the ICFDWMM operator.

Parameter vector p Te score function S(zi) Ranking results
p� (1, 0, 0, 0) S(z1)� 0.7118, S(z2)� 0.7775, S(z3)� 0.7030, S(z4)� 0.7675, S(z5)� 0.7383 S2> S4> S5> S1> S3
p� (1, 1, 0, 0) S(z1)� 0.6731, S(z2)� 0.7264,S(z3)� 0.6434, S(z4)� 0.7280, S(z5)� 0.6931 S4> S2> S5> S1> S3
p� (1, 1, 1, 0) S(z1)� 0.5337, S(z2)� 0.6012, S(z3)� 0.5040, S(z4)� 0.5805, S(z5)� 0.5385 S2> S4> S1> S5> S3
p� (1, 1, 1, 1) S(z1)� 0.4125, S(z2)� 0.5000, S(z3)� 0.3723, S(z4)� 0.4718, S(z5)� 0.4225 S2> S4> S5> S1> S3
p� (0.25, 0.25, 0.25, 0.25) S(z1)� 0.7265, S(z2)� 0.7763, S(z3)� 0.7053, S(z4)� 0.7543, S(z5)� 0.7316 S2> S4> S5> S1> S3
p� (2, 0, 0, 0) S(z1)� 0.5391, S(z2)� 0.6263, S(z3)� 0.5251, S(z4)� 0.6263, S(z5)� 0.5789 S4> S2> S5> S1> S3
P� (3, 0, 0, 0) S(z1)� 0.4469, S(z2)� 0.5445, S(z3)� 0.4299, S(z4)� 0.5512, S(z5)� 0.4937 S4> S2> S5> S1> S3

Table 11: Ranking results by diferent methods.

Aggregation operator Parameter value Ranking
Xu [41] No S2> S4> S5> S1> S3
Muneeza and Abdullah [26] No S4> S2> S5> S1> S3
Kaur and Garg [31] p� q� 1 S4> S2> S5> S1> S3
ICFWMM p� (0.25, 0.25 0.25, and 0.25) S2> S4> S5> S1> S3
ICFDWMM p� (0.25, 0.25, 0.25, and 0.25) S2> S4> S5> S1> S3
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6. Conclusions

In recent years, the study of aggregation operators under
fuzzy sets has become a hot issue and an important tool in
the feld of decision making. More and more aggregation
operators based on fuzzy sets are applied to solve MCDM
problems because of their advantages in dealing with
decision information. However, the decision information
in real situations is often vague and uncertain, and most of
the existing fuzzy sets use a single afliation or interval
value to express uncertainty, which is often poor in
expressing the uncertainty of information. Similarly, there
is often a certain correlation between the attribute values
of the alternatives in realistic situations, which is not
taken into account by most of the existing aggregation
operators and seriously afects the accuracy of the decision
scheme. So far, no researcher has given anMCDMmethod
that can precisely consider the uncertainty of decision
information and take into account the correlation be-
tween the standard attribute values. To address the above
problems, in this study, we propose a series of aggregation
operators on intuitionistic stereo-fuzzy sets using MM
operators that consider the interrelationships between
attributes, namely, the intuitionistic cubic fuzzy MM
(ICFMM) operator, the intuitionistic cubic fuzzy
weighted MM (ICFWMM) operator, the intuitionistic
cubic fuzzy dual MM (ICFDMM) operator, and the
intuitionistic cubic fuzzy dual weighted MM
(ICFDWMM) operator. In addition, we give the proof
procedure of the proposed operators and some ideal
properties as well as the proof procedure of these prop-
erties. Finally, based on the proposed ICFWMM operator
and ICFDWMM operator, we propose the two new
MCDM methods, and a comparative study with the
existing methods shows that the proposed new operator-
based methods can represent the decision information
more accurately. At the same time, the interrelationship
between decision attributes can be considered more
fexibly through the parameter vector p, which can pro-
vide a more stable and accurate choice for decision
makers. Terefore, we can conclude that the proposed
operator-based MCDM method is a comprehensive and
efective method for solving decision problems.

In future studies, we should further explore the exten-
sion and application of the method proposed in this study.
First, we should further explore the application of some new

popular fuzzy information in MCDM, and we should
propose a more realistic solution to the decision problem.
For example, this study combines Q-rung Orthopair fuzzy
preference information with cubic fuzzy set concept to
further solve the uncertainty ofMCDMproblem. Second, we
should further consider the incomplete probability linguistic
preference information, and we should apply the Muirhead
mean operator to theMCDM problem under the incomplete
probability linguistic preference information. Tird, further
explore the infuence of weight on the results of the proposed
decision-making method, and consider using the current
popular weight calculation methods such as analytic hier-
archy process and best-worst method, for weight calculation,
further give more accurate decision results.

Nomenclature

Acronyms
ICFS: Intuitionistic cubic fuzzy sets
MM: MuirHead mean
ICFMM: Intuitionistic cubic fuzzy MuirHead mean
ICFWMM: Intuitionistic cubic fuzzy weighted

MuirHead mean
ICFDMM: Intuitionistic cubic fuzzy dual

MuirHead mean
ICFDWMM: Intuitionistic cubic fuzzy dual weighted

MuirHead mean
AIFS: Atanassov intuitionistic fuzzy sets
BM: Bonferroni mean

Notation
X: Nonempty set
I: Te intuitionistic cubic

fuzzy set
cI � 〈[e− , e+], λ〉: Te membership afliation

of x
c
′
I � 〈[r− , r+], δ〉: Te unafliatedness of x

[e− , e+]: Interval membership
[r− , r+]: Interval nonmembership

degree
λ: Membership value
δ: Nonmembership value
d(I1, I2): Te distance between I1 and I2
S(I): Score of I
H(I): Te accuracy function of I
αj(j � 1, 2, . . . , n): A collection of nonnegative

real numbers

Table 12: Te comparisons of diferent methods.

Methods Whether captures interrelationship
of two attributes

Whether captures interrelationship
of multiple attributes

Whether makes the method
fexible by the parameter vector

Xu ZS [41] No No No
Muneeza [26] No No No
Kaur G [31] Yes No No
ICFWMM Yes Yes Yes
ICFDWMM Yes Yes Yes
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p: A parameter vector of MM
θ(j)(j � 1, 2, . . . , n): An permutations of {1, 2,

..., n}
Sn: Te collection of all

permutations of {1, 2, ..., n}.
Ii: A collection of the ICF-

numbers
I

pj

θ(j): An intuitionistic fuzzy set
with angular permutation
θ(j) and vector pj

MMp(α1, α2, . . . , αn): MM aggregation operator
with nonempty set αj and
parameter vector p

ICFMMp(I1, I2, . . . , In): ICFMM aggregation operator
with a collection of ICF-
numbers (I1, I2, . . . , In) and
parameter vector p

ICFWMMp(I1, I2, . . . , In): ICFWMM aggregation
operator with a collection of
ICF-numbers (I1, I2, . . . , In)

and parameter vector p
w � (w1, w2, . . . , wn)T: Te weight vector of

Ii(i � 1, 2, . . . , n)

ICFDMMp(I1, I2, . . . , In): ICFDMM aggregation
operator with a collection of
ICF-numbers (I1, I2, . . . , In)

and parameter vector p
ICFDWMMp(I1, I2, . . . , In): ICFDWMM aggregation

operator with a collection of
ICF-numbers (I1, I2, . . . , In)

and parameter vector p.
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