
Research Article
Fast Prediction for Criminal Suspects through Neighbor Mutual
Information-Based Latent Network

Jong Ho Jhee ,1 Myung Jun Kim ,2 Myeonggeon Park ,3 Jeongheun Yeon ,4

and Hyunjung Shin 4,5

1Center for KIURI Bio-Artifcial Intelligence, Ajou University School of Medicine, Suwon 16499, Republic of Korea
2Soda, INRIA Saclay, Palaiseau 91120, France
3Marketboro Corp., Seongnam 13488, Republic of Korea
4Department of Artifcial Intelligence, Ajou University, Suwon 16499, Republic of Korea
5Department of Industrial Engineering, Ajou University, Suwon 16499, Republic of Korea

Correspondence should be addressed to Hyunjung Shin; shin@ajou.ac.kr

Received 12 April 2023; Revised 28 June 2023; Accepted 20 September 2023; Published 6 October 2023

Academic Editor: Vittorio Memmolo

Copyright © 2023 Jong Ho Jhee et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the interesting characteristics of crime data is that criminal cases are often interrelated. Criminal acts may be similar, and
similar incidents may occur consecutively by the same ofender or by the same criminal group. Among many machine learning
algorithms, network-based approaches are well-suited to refect these associative characteristics. Applying machine learning to
criminal networks composed of cases and their associates can predict potential suspects. Tis narrows the scope of an in-
vestigation, saving time and cost. However, inference from criminal networks is not straightforward as it requires being able to
process complex information entangled with case-to-case, person-to-person, and case-to-person connections. Besides, being
useful at a crime scene requires urgency. However, predictions from network-based machine learning algorithms are generally
slow when the data is large and complex in structure. Tese limitations are an immediate barrier to any practical use of the
criminal network geared by machine learning. In this study, we propose a criminal network-based suspect prediction framework.
Te network we designed has a unique structure, such as a sandwich panel, in which one side is a network of crime cases and the
other side is a network of people such as victims, criminals, and witnesses. Te two networks are connected by relationships
between the case and the persons involved in the case. Te proposed method is then further developed into a fast inference
algorithm for large-scale criminal networks. Experiments on benchmark data showed that the fast inference algorithm sig-
nifcantly reduced execution time while still being competitive in performance comparisons of the original algorithm and other
existing approaches. Based on actual crime data provided by the Korean National Police, several examples of how the proposed
method is applied are shown.

1. Introduction

As the number of criminal cases continues to rise, there has
been a notable increase in the utilization of machine learning
(ML) for criminal investigation support. Various areas,
including crime pattern analysis [1–3], fraud detection,
trafc violation monitoring, sexual assault investigations,
and cybercrime analysis [4–6], have seen the application of
ML techniques. While challenges related to data confden-
tiality still exist, the potential of machine learning in aiding

case investigations is widely recognized. Te valuable in-
sights derived from accumulated criminal cases play a cru-
cial role in providing clues and assisting law enforcement
agencies in their investigative eforts.

In the meantime, one of the characteristics of crime data
is that criminal cases are related. Criminal behaviors may be
similar, and similar incidents may occur consecutively by the
same ofender or by the same criminal group. To study crime
cases, social network approaches have emerged that refect
the associations between people, and these network-based
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(or graph-based) methods are expected to become one of the
standard tools in criminology research [7–9]. Tere are early
works applied to criminal investigations using network-
based ML algorithms. Weber et al. [10] applied a graph
convolutional network algorithm to fnancial data for
antimoney laundering forensic analysis. Te task was to
predict the suspiciousness of a given target, and Das et al.
[11] used graph-based clustering to extract relational in-
formation from crime data of India.Te named entities were
extracted from the text corpus of crimes and converted into
vectors using the word2vec algorithm [9]. Te network was
then constructed by measuring the similarity between these
vectors. Clusters found in the network represent incidents or
ofenders with similar patterns. Meanwhile, social networks
of online auction users are used for fraud detection. By
labeling known scammers and legitimate users, a label
propagation algorithm is used to predict potential scammers
[12]. Also, in [13], an online advertising network was
constructed and analyzed using Laplacian SVM to detect
human trafcking advertisements. Khan et al. [14] proposed
a crime prediction model by comparing three known al-
gorithms, Näıve Bayes, random forest, and gradient boosting
decision tree, and classifed the top ten crimes from the San
Francisco crime data. A combined framework of graph
representation learning and machine learning methods is
introduced to predict the amount of money exchanged
among criminal agents and to recover the missing criminal
partnerships [15]. Meanwhile, one of the important parts in
criminal network analysis is the link prediction problem. In
many cases, there is a possibility of acquiring missing or
incomplete information by the crime investigation, and one
might want to recover missing links or connections among
individuals or resources in the information. In that sense,
Berlusconi et al. [16] proposed a method to identify missing
links in a criminal network by classifying links based on the
topological analysis and applied it to the Italian criminal case
data against a mafa group. Also, to make the link prediction
robust to varying relations in a criminal network, Calderoni
et al. [17] applied various link prediction algorithms and
observed the algorithm that leverages the full graph
topology.

Of the many network-based ML algorithms, the graph-
based semisupervised learning (GSSL) algorithm is one of
the most popular because it is easy to use, can handle sit-
uations where data have few labels, and its inference is
intuitive along the network structure [18–24]. Terefore, the
scope of application is wide where relational information is
important, such as fnding key genes using disease and gene
networks [25], predicting protein functions using multiple
biological networks [26], and classifying historical fgures to
political parties using many relationships such as blood ties,
academic ties, and geographic proximity [27, 28]. In the
domain of social networks, GSSL is used to create relevant
links to the concept referred in Wikipedia for all tweet
mentions [29], and in other applications, it is used to detect
fake users from a large volume of Twitter networks [30]. In
the computer vision domain, GSSL is employed for
hyperspectral image classifcation based on image networks
[31], and in the natural language processing domain, part-

of-speech tagging was performed by applying GSSL on
a random feld network [32].

In this study, we propose a framework for predicting
suspect candidates by applying GSSL to criminal networks.
Te network is designed to be layered, like a sandwich panel,
with a network of crime cases on one side and a network of
people, such as victims, ofenders, and witnesses, on the
other side. Nodes or entities in each network are connected
through similarities. It is also connected to nodes belonging
to the other network refecting the relationships between the
case and the person who is involved in the case. Meanwhile,
applying GSSL to the crime scene requires agility to achieve
immediate results. However, when the data size is large, the
time complexity of network-based algorithms increases
exponentially according to the size of the network, so the
inference speed by GSSL is inevitably slowed down. Given
that crime scenes always demand a sense of urgency, the
slow inference is fatal indeed to solving cases. Terefore, we
propose a fast GSSL algorithm for large-scale criminal
networks to mitigate the limitation. Te idea is to insert
a latent network of cluster centroids and link cases or
persons to the corresponding centroids. Exhaustive searches
are avoided by inserting a network between the network of
cases and the network of persons. Te scope of the search is
reduced to only a small set of nodes (cases or people) be-
longing to the same cluster in the latent network. On the
other hand, high-dimensional data are newly represented as
low-dimensional vectors by using the clusters in the latent
network. Te proposed method is called neighbor mutual
information semisupervised learning (MISSL) because it
uses the mutual information between the clusters and the
neighbors of the nodes. MISSL is robust to nonspherical
clusters of various sizes and shapes. Te number of clusters
does not increase linearly with the number of cases or
people, which is advantageous in terms of memory ef-
ciency, especially for networks that require frequent updates
and are constantly growing.

Te remaining sections of the paper are organized as
follows. Section 2 describes the method of building the
criminal network and explains the prediction procedure
using GSSL. Section 3 describes how to insert the latent
network and details the fast prediction algorithm, MISSL.
Section 4 demonstrates the comparative experiments on
benchmarking datasets, and Section 5 presents a practical
application of criminal network analysis. Finally, conclu-
sions are drawn in Section 6.

2. Criminal Network and Suspect Scoring

2.1. Network Construction. Criminal acts often exhibit
similarities, and it is not uncommon for similar incidents to
occur consecutively, either by the same ofender or by
a particular criminal group. In addition, in some cases, the
patterns of crimes may bear resemblance, even if the of-
fenders involved are diferent, resembling a copycat sce-
nario seen in serial murder cases. Considering these factors,
a network serves as an efective tool for illustrating con-
nections between crimes and people. Te criminal network
we have developed captures associations between cases,
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individuals, and interactions between cases and in-
dividuals. Tis network follows a two-layered structure,
with one layer representing the network of crime cases and
the other layer representing the network of people. Tese
two layers are interconnected through relationships that
link specifc cases with the corresponding individuals
involved.

Let the criminal network be denoted as G � (Gp × Gc)

where Gp stands for the people network and Gc stands for
the case network. Each network is represented as
G � (V, W) where V � xi􏼈 􏼉

n

i�1, xi ∈ Rd is a set of nodes, and
W � wij􏽮 􏽯

n

i,j�1 is a set of weighted edges. Te weight wij is
determined by the similarity between nodes xi and xj.
Generally, the Gaussian kernels are widely used for simi-
larity calculation and are represented as follows:

wij � exp −
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (1)

where σ is a bandwidth parameter. To calculate the
similarity w

p
ij in the people network Gp, the demographic

information, such as age, gender, address, occupation, and
criminal information, such as the history of criminal
records, are considered as input features. For the wc

ij of the
case network Gc, crime reports including the location of
an incident are used to measure the similarity between
crime cases. In particular, to calculate the similarity be-
tween text-type crime reports, each report was converted
into a term vector through term frequency-inverse doc-
ument frequency (TF-IDF) [33] (more details are
explained in Section 3). Te similarity between a person
and a case is denoted as w

pc
ij where xi ∈ Vp and xj ∈ Vc. If

a person is involved in a certain criminal case, then the
person is connected to the case. Unlike other similarity
weights in the network, the edge weight w

pc
ij is set to “1”

(connected) if the person is involved in the case as
a suspect, a victim, or a witness and “0” (disconnected) if
the person is not involved in the case. Te left side of
Figure 1 shows the schematic picture of the criminal
network.

2.2. Crime Data. Te crime data from January 2000 to
December 2019 are collected from the Korea Information
System of Criminal Justice Services (KICS) with the help of
the Police Science Institute, Asan, Korea [34]. Te types of
crimes include a battery, assault, drug, theft, trafc violation,
disorderly conduct, and fnancial crime. Te data can be
categorized into people data and crime case data.Te data of
people contain personal information about the suspects,
victims, and witnesses. In addition, the information of past
criminal history and possession of frearms appears if they
exist. Te crime case data contains the date, location, type of
crime, and the case summary report written by the ofcer in
charge. Usually, a suspect, a victim, and a witness are related
to a single case. Some cases have multiple victims or wit-
nesses and also there are cases where a suspect from one case
appears in another.

Among the crime case data variables, the summary
report is unstructured data in text format. Since most of
the information about the incident is included in this
report, preprocessing of the text is vital. In order to
process text data, nouns and verbs were extracted using
the Korean morphology analyzer KoNLPy [35]. It is
known as one of the best analyzers among open-source
Korean morphology analyzers. Extracted words from the
reports are converted into vectors through TF-IDF [33].
By using TF-IDF, the infuence of unnecessarily repeated
words can be reduced to some extent, and important
information can be highlighted. Figure 1 shows an ex-
ample of a part of the case report, and more details are
described in Table 1.

We built a criminal network with a network of 43,603
people and 20,500 cases. Both networks are sparsely con-
nected, that is, the network densities are 2.49% and 2.90%,
respectively. To overcome spare connections, the afore-
mentioned link prediction algorithms can be used to infer
missing links among suspects, victims, or witnesses to re-
inforce the criminal network [16, 17].

2.3. Suspect Scoring from the Criminal Network. Te primary
objective of a criminal network is to predict potential suspect
candidates when a new crime case emerges, that is, iden-
tifying individuals who are likely to be involved. Suspect
scores are calculated for each node in the network of people,
and those with the highest scores are recommended as
potential candidates. However, in the immediate aftermath
of a criminal case, it is often the case where only a few
individuals, such as the victim or a small number of people
are directly involved, have the knowledge of the incident.
Consequently, the available labeled data for training the
predictive model is extremely limited, resulting in a sparse
dataset. Terefore, GSSL [18] was adopted since it can learn
even with just one label and further developed to ft the
hierarchical structure of the criminal network.

Given a weight matrix W � wij􏽮 􏽯
n

i,j�1 of a plain (not
layered) network G, the Laplacian is defned as L � D − W

where diagonal matrix D � diag(di) and di � 􏽐
n
j�1wij. Ten,

simple GSSL works by optimizing the objective function are
defned as

min
f

(f − y)
T
(f − y) + μf

TLf . (2)

Equation (2) minimizes the loss between predicted labels
f � (f1, . . . , fl, fl+1, . . . , fl+u)T and node labels
y � (y1, . . . , yl, 0, . . . , 0)T, while smoothing the neighbor
nodes’ labels to be similar, i.e., GSSL propagates the node
labels to unlabeled nodes through weighted edges in the
network. Te solution of (2) can be obtained as

f � (I + μL)
−1

y, (3)

where the parameter μ≥ 0 controls the tradeof between loss
and smoothness. Tis learning framework for a plain net-
work is straightforward to extend to a layered network.
Suppose the layered network has a total ofN � np + nc nodes
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and a weight matrix of W consisting of Wp, Wc, and Wpc as
shown on the right side of Figure 1, then by simply
substituting the Laplacian of (2) for the plain network to that
of the layered network, the solution is obtained by (3) for the
layered network. If there are many layers, i.e., more than two
layers are structured hierarchically, then calculating (3) is
computationally highly demanding because the weight
matrix is huge. In this case, approximation methods such as
the Woodbury formula or the Nystrom method can be used
to speed up the algorithm [36]. Te algorithm is applied to
predict the suspect candidates from a small set of criminal
networks [37].

Now if case i is known, we can calculate the suspect
scores. By setting the label of the ith case node as
y � (0, . . . , 0, yi � 1, 0, . . . , 0)T, the label infuence propa-
gates to both the case network and the people network,
eventually computing (3). People with high f scores are
regarded as the suspect candidates. Te process of suspect
scoring is shown in Figure 2. First, when a new case marked
in red in Figure 2(a) comes in, it is connected to the most
similar existing cases. Assigning the label “1” to the new case
(zeros to the remaining nodes) propagates the label to
similar cases in the vicinity, and it spreads to people involved
in these similar cases through the blue edge that bridges the
case with people in the upper layer (Figure 2(b)). Finally,
people are ranked in descending order of score (Figure 2(c)).
Te questionable suspects appear as those with the highest
scores (circled in red).

3. Fast Criminal Network-Based
Suspect Prediction

Scoring suspect candidates using GSSL works well if the
network is reasonably sized. However, it slows down as the
number of crimes and the number of people increases,
making it more likely to be lethal at a crime scene where
urgent predictions are needed to solve the case. Te slow-
down is mainly attributed to memory and time-consuming
computations when retrieving similar cases. When a new
case comes in, an exhaustive search of existing cases is
conducted to fnd the most similar case. To make matters
worse, every case is a high-dimensional text vector extracted
from criminal case reports. For reference, the number of
cases is over 20,000, the number of related people is over
100,000, and the dimensionality of a text vector is over 2,000.
To alleviate the difculty, we propose a new search that
reduces the search scope from global to local, and a new
representation of text vectors that drastically reduces the
dimensionality from hundreds or thousands to a few
dimensions.

3.1. Local Search via the Latent Network. Instead of an ex-
haustive search, the idea is to insert a latent network between
the case network and the people network.Te latent network
is composed of centroids of clusters that are organized in
advance. When a new case comes in, it calculates its
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“On May 11th, 2018, 15:39, OOO heard abusive
language and shouts from the victim about ... he

stabbed the victim's neck once with his multi-purpose
knife, causing the victim to die of hypovolemic shock

caused by damage to the carotid artery.”

“On the beginning of March 2013, at 14:00, TV and
laptop were stolen when the OO construction office of
victim OOO on the 3rd floor in OOOOOO was empty.”
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w
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Figure 1: Te schematic picture of the criminal network. Te upper layer is the people network and the lower layer is the case network. Te
corresponding weight matrices are represented as Wp and Wc in the fgure on the right, respectively. Two networks are connected by
person-to-case edges denoted by Wpc in the weight matrix. A person node has demographic information of an individual while a case node
has information on crime reports (texts are translated from Korean to English. Names or titles in texts are de-identifed. All the meaningless
symbols were removed).

Table 1: Crime data description.

Variables Descriptions

Person
Basic info Nationality, gender (female or male), age, height, weight, address, and occupation
History History of criminal records, possession of a frearm, and sexual assault or not
Class Suspect/victim/witness

Crime case
Basic info Time of incidence, location, type of crime, and arrested or not

Case summary Crime summary report (text)
Type Battery, assault, drug, theft, trafc violation, disorderly conduct, and fnancial crime
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similarities to the centroids and selects the closest cluster.
Ten, the search is narrowed down to only a small set of case
nodes that belong to the same cluster to which the new case
belongs by referencing the latent network. Te process is
depicted in Figure 3(a). Terefore, the role of the latent
network is important. In other words, clustering results
matter. However, real data are not uniformly distributed or
spherically shaped such as a normal distribution, as most
well-known clustering techniques assume. Figure 3(b) il-
lustrates clusters with diferent shapes and varying densities.
As a way to overcome this limitation, we suggest measuring
the relative location of a data point by looking around its
neighbors and their cluster memberships. Tat is, if the
cluster memberships of its neighbors are homogeneous
(belong to the same cluster), then the data point is likely to
be at the core of the cluster. Conversely, if the cluster
memberships of its neighbors are heterogeneous (some
belong to one cluster and others belong to another cluster),
then the data point is likely to be located on the boundaries
of clusters. Figure 3(b) exemplifes the estimation of the
relative location of data points. For x1, the neighbors are
homogeneous in terms of cluster membership, so it is es-
timated to be located close to the core of cluster 1, whereas x2
or x3 is heterogeneous in cluster membership of its
neighbors, so they are estimated to be near the cluster
boundaries. Tis concept allows the cluster regions to be
well-defned even when the data distribution is not spherical
and the densities change.

3.2. Latent Dimension via Neighbor Mutual Information.
Te clusters are reused to reduce a higher dimension to
a lower dimension. Hereafter, the resulting dimension is
denoted as a latent dimension. Te size of the latent di-
mension is determined by the number of clusters, and the
value of each dimension is determined by the degree to
which the data point belongs to each cluster. Terefore,
d-dimensional vectors are reduced to m-dimensional vec-
tors that are much smaller than the original dimension
(d≫m), and the latent values are measured by neighbor
mutual information (NMI), which has been proposed here.

Te NMI of a data point (node) is the amount of mutual
information between the clusters and the neighbors of the
data point. Generally, for a pair of discrete random variables
X and Y, mutual information is defned as
􏽐x∈X􏽐y∈Yp(x, y)logp(x, y)/p(x)p(y), where p(x, y) is the
joint probability [38, 39]. If p(x, y) � p(x)p(y), then the
logarithm becomes zero and thus mutual information be-
comes zero, which means X and Y are independent.
Analogously, the NMI of node xi is defned between the
cluster Cm ∈ C1, . . . , CM􏼈 􏼉 and the set of its neighbors Ne(xi)

as

NMI xi, Cm( 􏼁 �
Ne xi( 􏼁∩Cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/N

Ne xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/N · Cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/N

�
N · Ne xi( 􏼁∩Cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ne xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

(4)

where | · | denotes cardinality and N denotes the total
number of nodes in the network. |Cm| is the number of
nodes in cluster Cm and |Ne(xi)| is the number of neighbor
nodes of xi. Tus, |Ne(xi)∩Cm| is the number of the
neighbor nodes of xi belonging to cluster Cm. Te NMI
increases when more neighbor nodes belong to the cluster
and vice versa. In the extreme case, when all the neighbor
nodes are members of one single cluster (|Cm| � N), then
NMI(xi, Cm) � N · |Ne(xi)|/|Ne(xi)| · |Cm| � 1, whereas
when none of the neighbor nodes belong to the cluster, then,
NMI(xi, Cm) � 0. Finally, zij represents the normalized
version of NMI(xi, Cm), which satisfes the nonnegativity
and sum to one constraint.

zim �
NMI xi, Cm( 􏼁

􏽐mNMI xi, Cm( 􏼁
. (5)

Figures 3(b) and 3(c) show several examples of NMIs
that transform xi to the relative locations between clusters.
For node x1, NMI(x1, C1) � (30 × 3)/(3 × 12) � 2.5 by (4)
since C1 has 12 nodes and all three neighbors are a part of the
cluster, whereas NMI(x1, C2) and NMI(x1, C3) are zeros.
Tus, z1 � [1, 0, 0]. Note that, node x1 is in the core of C1
far from C2 and C3. Conversely, node x3 is located on the
boundary of C2 and has neighbors belonging to C1, C2, and
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Figure 2:Te process of suspect candidate scoring on the criminal network. (a)Te new crime case (red) and its similar cases in the vicinity.
(b) Label propagation from the case nodes to people nodes in the upper layer. (c) Scoring people in descending order and suspect candidates
with the highest scores.
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C3, respectively. Its normalized NMI is z3 � [0.26,0.45,0.29].
Note that, z3 has nonzero values for all three clusters but
weighs C2 the most since it belongs to the cluster. Te right
bottom of Figure 3(c) represents matrix Z ∈ RN×M of latent
vectors obtained by (5). Te dimension values of zi give the
relative location of node xi using M clusters. In Figure 3(a),
zi is depicted as M edges connecting xi to M clusters.

Tere are tradeofs between the number of clusters and
the latent dimension. If the number of clusters increases, the
number of centroids in the latent network increases, and it
leads to a reduction in the scope of local search because the
data are split into more clusters and thus fewer data in each
cluster. However, the latent dimension increases, that is,
increasing the number of clusters afects both increasing and
decreasing computation time and vice versa. Terefore, it is
necessary to adjust the number of clusters according to the
situation at hand, so as to fgure out whether search coverage
or dimensionality reduction is more important.

3.3. Scoring via the Latent Network. Te latent network makes
the computation of node scoring for the case network much
lighter. Given a weight matrix 􏽢W � 􏽢wij􏽮 􏽯

M

i,j�1 between M

centroids, a score vector 􏽢f � (􏽢f1, . . . , 􏽢fM)T can be calculated
similarly to (3). It is now straightforward to derive a score vector
fi � zT

i
􏽢f, which is the sumof the centroid scores 􏽢f weighted by

the latent vector zi. Terefore, the scoring problems (2) and (3)
turn into fnding the optimal centroid scores on the latent
network. Te objective function is represented as follows:

min
􏽢f

(Z􏽢f − y)
T
(Z􏽢f − y) + μ􏽢f

T
􏽢L􏽢f, (6)

where 􏽢L � ZTLZ ∈ RM×M, i.e., the graph Laplacian of the
latent network.Te only diference from (2) is that the loss is
computed using the weighted sum of centroid scores and the

smoothness is optimized on the latent network. It is thus
trivial to derive the solution to (6).

􏽢f � Z
T
Z + μ􏽢L􏼐 􏼑

−1
Z

T
y. (7)

Finally, the score vector f is predicted using the centroid
scores 􏽢f and the latent representation, Z, that is,

f �
Z􏽢f

1T
Z􏽢f

, (8)

where 1TZ􏽢f is the normalization.
From now on, the proposed method is named as MISSL,

that is, the abbreviation of neighborhood information-based
semisupervised learning. Constructing the latent network
takes an extra O(NM2), but since M is small, it is not a huge
burden. However, once the latent network is constructed, it
provides signifcant advantages for computing the inverse
matrix of the solution. For the latent network in (7), it has
O(M3) complexity, whereas the original network in (3) has
O(N3) complexity (N≫M). Also, MISSL was originally
designed to work on undirected networks. However, it can
be extended to directed networks by converting asymmetric
matrices to the symmetric graph Laplacian [40].

3.4. Application to Criminal Network. Applying MISSL to
criminal networks is simple. Conceptually, a latent network
of centroids lies between the people network and the case
network, connecting the two networks. Edges from a cen-
troid node to case nodes are connected via the latent vector,
as explained in the previous section. When a new case comes
in, MISSL fnds the centroid of the nearest cluster Cm, and
converts node xnew into a new latent vector using only the
representation matrix for that cluster. More precisely, we
frst calculate the similarity between centroids and the node
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xnew to fnd the nearest cluster. Within the cluster Cm,
mixing weight ω is optimized to transform xnew to znew and
the latent vector Z is updated. Ten, we applied MISSL for
the new case using the updated latent vector. Conversion
from xnew to znew is performed by fnding a mixing weight
ω ∈ RM×d which is obtained by solving the following
problem:

min
ω

Zmω − Xm( 􏼁
T

Zmω − Xm( 􏼁, (9)

where Xm ∈ RNm×d and Zm ∈ RNm×M are the matrices of the
data points belonging to cluster Cm. From this, the optimal
weight for conversion is calculated as ω � (ZT

mZm)− 1ZT
mXm.

So, the latent vector for the new case is

znew � ωxnew � Z
T
mZm􏼐 􏼑

−1
Z

T
mXm􏼔 􏼕xnew. (10)

Tenew latent vector is connected to the case network by
fnding the closest cases. MISSL then scores suspect can-
didates in the people network according to (7). By using
MISSL, a much faster prediction is possible than the näıve
SSL in Section 2. Tis allows ofcial crime investigators to
quickly weed out suspect candidates at a crime scene.

4. Experiments on Benchmark Data

Experimental results in the following section show that the
proposed algorithm has a fast inference time and compet-
itive performance compared to the existing approaches.

4.1. Data. We evaluated the proposed method, MISSL, on
benchmark datasets. Te datasets are g241c, g241n, MNIST,
and CIFAR-10. g241c and g241n datasets were artifcially
generated to hold the cluster assumption. Te data points of
g241c were drawn from each of the two unit-variance iso-
tropic Gaussians. Te label of a data point represents the
Gaussian it was drawn from. Te data points of g241n were
drawn from each of the two unit-variance isotropic
Gaussians which have a potentially misleading cluster
structure and no manifold structure. Te centers for the
positive class have a distance of six in a random direction
and the centers for the negative class were fxed by moving
from the former centers to a distance of 2.5 in a random
direction. All dimensions were standardized to zero mean
and unit variance. Te number of dimensions and data
points are 241 and 1,500, respectively [41]. MNIST is
a handwritten digit dataset of 28 by 28 grayscale normalized
and centered images. Te labels of the dataset contain the

number from zero to nine and the number of data points is
70,000 [42]. Te CIFAR-10 dataset (Canadian Institute for
Advanced Research) is a subset of the 80 million tiny images.
Te CIFAR-10 dataset contains 60,000 32× 32 color images
in 10 diferent classes. Te 10 diferent classes represent
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. Tere are 6,000 images of each class [43]. Table 2
summarizes the datasets.

4.2. Experimental Setup. We compared the performance and
scalability of MISSL with another scalable method called
anchor graph regularization (AGR) [44]. Here, an anchor of
AGR that employs RBF kernel or local linear embedding
corresponds to a centroid of our method [45]. Te two
network-based methods use anchors or centroids to reduce
the heavy computation of GSSL. Te performance of Näıve
GSSL was used as a reference. Tis indicates that both
methods, MISSL and AGR, cannot overwhelm the baseline
performance. Te dataset was divided into the 20-cross
validation (20-cv) format. However, unlike the supervised
learning setting, SSL assumes a few labeled data, so a single
set is the training set, and the remaining 19 sets are con-
fgured as the validation sets; that is, the labeled data is 5%
(positive: 2.5% and negative: 2.5%) of the entire dataset. Te
experiment was repeated 10 times to optimize the
hyperparameters.

4.3. Results. Table 3 shows the performance results on
benchmark datasets measured with the area under the re-
ceiver operating characteristic curve (AUC), along with the
hyperparameters of AGR, m (the number of centroids) and r

(the number of nearest centroids), and hyperparameters of
MISSL, m (the number of clusters) and k (the number of
nearest neighbors). Te average performances over 20-cv of
AGR and MISSL are 97.65% and 98.98% of the reference
performance, respectively. MISSL showed better perfor-
mance than AGR in all datasets. It shows that the latent
dimension using mutual information of MISSL better rep-
resents data than RBF kernels or LLE of AGR.

Te experimental results on computation time are
shown in Table 4. Te computation time was measured
separately in three parts: the network construction (or
clustering), the latent representation, and the inference
(prediction). For GSSL, no conversion time for new
representation is required, and clustering time is only
required for AGR and MISSL. However, GSSL takes a lot
of time for both network construction and inference,

Table 2: Benchmark datasets.

Dataset Classes Dimension Nodes Remark
g241c 2 241 1,500 Artifcial
g241n 2 241 1,500 Artifcial
MNIST 10 784 70,000 Large-scale
CIFAR-10 10 3,072 60,000 Large-scale
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whereas AGR or MISSL signifcantly reduces computa-
tion time by using clustering. Compared to AGR, MISSL
is inherently superior to AGR in terms of speed as it does
not require an optimization process. A comparison of the
overall time empirically proves that MISSL is more

efcient. For the small datasets, such as g241c and g241n,
MISSL and AGR are 100 times and 90 times faster than
the reference time, respectively, and for the large data-
sets, MNISTand CIFAR-10 are 1,000 times and 900 times
faster.

Table 3: AUC comparison on benchmark datasets.

Method g241c g241n MNIST CIFAR-10
AGR 0.6438 ± 0.0288 0.6448 ± 0.0468 0.9876 ± 0.0002 0.7305 ± 0.0014
(m, r) (150, 5) (150, 5) (300, 10) (300, 10)
MISSL 0.7652 ± 0.0266 0.6744 ± 0.0257 0.9885 ± 0.0006 0.7324 ± 0.0022
(m, k) (150, 10) (150, 10) (300, 20) (300, 20)
GSSL 0.7808 ± 0.01890 0.7504 ± 0.0682 0.9896 ± 0.0003 0.7340 ± 0.0025
Te bold values refer to the values of the proposed method (MISSL).

Table 4: Computation time (sec.) on benchmark datasets.

Data Method Network construction
(or clustering) Latent representation Z Inference Total

g241c
AGR 0.20 1.19 0.01 1.40
MISSL 0.20 0.08 0.01 0.29
GSSL 0.25 — 0.06 0.31

g241n
AGR 0.21 1.19 0.01 1.41
MISSL 0.21 0.08 0.01 0.30
GSSL 0.25 — 0.06 0.31

MNIST
AGR 25.00 67.29 0.08 92.37
MISSL 25.00 0.09 0.07 25.16
GSSL 482.48 — 175.71 658.19

CIFAR-10
AGR 85.12 77.70 0.02 162.84
MISSL 85.12 0.06 0.01 85.19
GSSL 1,221.03 — 111.54 1,332.57

Te bold values refer to the values of the proposed method (MISSL).

Assault
Financial Crime
Tef

Traffic
etc.

Battery

Case #2862

Case #2865

Case #2864

Case #2867

Case #2868

Figure 4: Te crime case network of 20,500 cases. Te node color represents the type of crime. Less than 1% of types are grouped by “etc.”
Te size of a node indicates the node degree. Te subnetwork of “assault” is depicted on the right insert. Te number in the case node
represents the case report number.Te cases extracted show a similar criminal pattern in which the suspects either beat or detain the victims.
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5. Applications for Suspect Candidate Scoring
Using the Criminal Network

We appliedMISSL to real crime data provided by the Korean
National Police. Te experimental setup and results are as
follows.

5.1. Criminal Network and Experimental Setting. Figure 4
visualizes clusters in the case network using OpenOrd [46].
Te node color represents the type of crime.Te same type of

crime is grouped closely in the network and batteries and
assaults are grouped together since they are both violent
crimes. For validation on suspect scoring, a case node is
randomly selected as a test node, and the edges connected to
the node are removed from the network (including the edge
to the actual suspect). Te top 20 people with the highest
scores were reported as suspect candidates.Te performance
is measured by calculating the AUC of the predicted suspects
for each crime case. Te leave-one-out (LOO) method is
applied to 20,500 cases.
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suspect is in the top 1% of suspect candidates. Case #12 was similar to case #8.
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5.2. Results of Suspect Candidate Scoring. In Figure 5, the
AUCs for 100 cases are shown. Te overall average AUC for
20,500 cases is 0.82± 0.01. More specifcally, Figure 6
presents a typical scoring curve. Suspect candidates for case
#8 are sorted along the curve. Te blue nodes represent
predicted suspect candidates and the red represents the
actual suspect. As shown in fgure, the real suspect is ranked
relatively high, within the top 1%. Case #12 was similar to
case #8. Both cases are similar in that the suspect steals
money or jewelry. Te summary reports of cases #8 and #12
are described on the right side with the personal information
of the suspect. Indeed, the suspect of case #12 was highly
scored (red circle) and was the actual ofender of case #8.

Figure 7 shows the computation time and perfor-
mance of MISSL while varying the number of clusters or
centroids, respectively. GSSL are indicated by red and
blue dotted lines in the fgure. By comparing the com-
putation time, it was found that the MISSL was
0.06 seconds when the number of clusters was 100, which
is about 1.76e + 04 times faster than that of GSSL
(1,058.65 seconds). Te computation time increases as
the number of clusters increases but is still very trivial
compared to GSSL. Te performance of MISSL increases
as the number of clusters increases. Te highest AUC of
0.8 was reached when the number of clusters was 100.
From the perspectives of both computational time and
performance, MISSL provides a high accuracy within
a reasonable amount of time. Tis is critical in real-world
applications. In an urgent case, the police do not have to
wait all day to get a list of suspect candidates.

6. Conclusion and Discussion

In this study, we proposed a framework for predicting
suspect candidates based on the criminal network. Te al-
gorithm we employed is graph-based SSL, which may be
inappropriate when networks are large and complicatedly
structured. So, to put the GSSL to practical use in the

criminal network, we developed an algorithm based on
latent representation and mutual information.Te proposed
method, MISSL, shows almost similar performance to the
graph-based SSL but has a much faster inference time. As an
application, a criminal network is constructed from real-
world crime data, and suspect candidate scoring is per-
formed by MISSL. Te predicted results show the validity
and efcacy of MISSL. Te framework of suspect candidate
scoring introduces a novel way of analyzing crime data, and
the results shed a new light on network-based machine
learning approaches for social network analysis. Future
eforts may identify a more efcient mechanism to optimize
the hyperparameter of MISSL and the number of clusters
(i.e., the number of latent dimensions) that afect perfor-
mance. Empirically, a higher AUC was obtained from the
increased number of clusters. From another perspective,
clustering can be expensive for large-scale datasets. Tere-
fore, further research on faster clustering methods or
modeling the algorithms robust to clustering will enrich the
results of our study.
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