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High-performance tracking control is essential for permanent magnet synchronous motors in the perturbed environment. Given
this, a new hybrid controller is proposed in this study for a permanent magnet synchronous motor with load disturbances as well
as time delays. First, a new prescribed performance method is proposed to achieve the full-state performance constraints with load
disturbances. Second, a time-varying flter is proposed for the frst time to avoid the “complexity explosion” problem of the
backstepping method while guaranteeing the convergence of the fltering error. Tird, by combining Lyapunov–Krasovskii
functionals with adaptive neural networks, the time-delay disturbance and unknown nonlinear dynamics of the control system
have been solved. Te stability analysis proves that all signals in the closed-loop system are bounded. To show the efectiveness of
the intelligent controller, the comparison simulations are given to confrm the advantages of the proposed adaptive neural control
scheme.

1. Introduction

Owing to the advantages of small volume, high efciency,
and reliability, permanent magnet synchronous motors
(PMSMs) are broadly adopted in various industrial appli-
cations [1–4]. However, PMSMs are nonlinear coupling
systems making the controller design more challenging
[5, 6]. Recently, increasing control methods have been
constructed for PMSMs, such as sliding mode control
[7–10], adaptive fuzzy control [11–13], adaptive neural
network control [14, 15], and backstepping control
[4, 16, 17]. Even so, the preceding methods rarely focus on
the tracking issue of the PMSMs with uncertain non-
linearities, full-state constraints, and time delays.

Te system with uncertain dynamics is very difcult to
control by traditional methods [18, 19]. Recently, neural
networks (NNs) are popularly adopted to learn uncertainties

in the control system [20]. Furthermore, the backstepping
methods are systematic and powerful tools to integrate fuzzy
logical systems or neural networks [21–24]. For these rea-
sons, this study employs the backstepping framework in-
corporating neural networks to design the controller.
Nevertheless, backstepping-based strategies are susceptible
to the “explosion of complexity” produced by the iterative
derivations of virtual control laws [11]. To solve this issue,
the dynamic surface control (DSC) is constructed by
employing the frst-order flters in the works of Yu et al. [25]
and Gao et al. [21]. To eliminate the efect of the fltering
error on the system, compensation signals are introduced in
the work of Yu et al. [26]. Te conventional DSC methods
require eliminating the efect of the fltering error, which
makes the controller more or less complex. Tus, a neuro-
learning-based dynamic surface control is considered in this
study using a time-varying flter and radial basis neural
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networks (RBFNNs) to solve the “complexity explosion”
problem and ever-presenting uncertainties.

Additionally, full-state constraints are often taken into
account for practical PMSMs to ensure safe operation and
control performance. Regarding state constraints, signifcant
achievements have been implemented, such as barrier
Lyapunov functions (BLFs) [27, 28] and prescribed per-
formance control (PPC) [29–32]. Among these methods,
PPC is regarded as a promising method to enhance the
tracking performance of the system. For example, in the
works of Dai et al. [9], Jia et al. [33], and Hua et al. [32], the
traditional exponential performance function has been
adopted to ensure the prescribed performance of the sys-
tems. Te work of Wang and Hu [34] considers the high-
frequency changing of the reference signal by presenting
a hyperbolic-cosecant-type performance function. Back-
stepping control decomposes complex nonlinear systems
into multiple simpler and lower-order systems by in-
troducing virtual control.Te states in the subsystem need to
track the virtual control law, which means that the pre-
scribed performances of the subsystems are important.
Furthermore, external load perturbations may degrade the
tracking ability of the PMSM system so that tracking errors
may exceed the constraint bounds. However, the full-state
prescribed performance and the efect of load oscillations
have rarely been considered in previous works. Terefore, it
is another motivation for this study to study the full-state
prescribed performance tracking control with external load
efects.

Apart from the challenges mentioned previously, an-
other noteworthy concern is the impact of time delays in the
regular controller design, which may cause instability or
damage to the system [35]. To compensate for the time
delays of control systems, the common tools are Lyapu-
nov–Krasovskii functionals (LKFs). For instance, in the
study of Wang et al. [31], LKFs are established to eliminate
the delayed states for nonlinear systems.Te unknown time-
delay terms of pure-feedback switched systems are com-
pensated by LKFs in the work of Niu et al. [36]. Although the
preceding studies can efectively deal with time delays and
enhance control performance, they are not currently con-
sidered in the prescribed performance control of the
PMSMs. Terefore, this study prefers to deal with time
delays for the PMSM by constructing appropriate LKFs.

Motivated by the former discussions, a neuro-learning-
based adaptive prescribed performance control (NPPC) is
proposed for the PMSM with full-state constraints and time
delays by the DSC method. Compared with the existing
results on controlling the PMSM, the major contributions in
this study are concluded as follows:

(1) Compared with references [9, 32], this study pro-
poses a novel performance control scheme, which
can ensure the full-state performances of the system
with external load disturbances

(2) Unlike the conventional backstepping methods
[21, 26] employing the frst-order flter, this study
proposes a time-varying flter for the frst time, to
solve the issue of “complexity explosion” while

guaranteeing convergence of the fltering error and
faster fltering speed

(3) An adaptive-neuro-learning tracking controller for
the PMSMwith time delays is proposed, in which the
unknown nonlinear dynamics of the system are
approximated by constructing the RBFNNs, and the
weights of RBFNNs are adjusted online by the
designed adaptive laws

Te remainder of this article is organized as follows.
Section 2 delivers the statements of problem formulation
and preliminaries. Section 3 provides the detailed controller
design process. Section 4 presents the stability analysis.
Simulation results are provided in Section 5. Finally, the
conclusions are presented in Section 6.

2. Problem Formulation and Preliminaries

Te dynamic mathematical model of the PMSM [14] in d − q

rotating coordinates can be expressed as

dθ
dt

� ω,

J
dω
dt

�
3
2
np Ld − Lq􏼐 􏼑idiq + φfiq􏼐 􏼑 − Bω − xTL,

Lq

diq

dt
� − Rsiq − Ldnpωφf + uq,

Ld

did
dt

� − Rsid − Lqnpωiq + ud,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the parameters are listed in Table 1.
For simplifying the dynamic mathematical model of the

PMSM, we defne variables x1 � θ, x2 � ω, x3 � iq, x4 � id.
Ten, taking time delays into account, (1) can be rewritten as

_x1 � x2 + χ1 x1 t − σ1( 􏼁( 􏼁,

_x2 � a1x2 + a2x3 + a3x3x4 −
xTL

J
+ χ2 x2 t − σ2( 􏼁( 􏼁,

. _x3 � b1x3 + b2x2x4 + b3x2 + b4uq + χ3 x3 t − σ3( 􏼁( 􏼁,

. _x4 � c1x4 + c2x2x3 + c3ud + χ4 x4 t − σ4( 􏼁( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where xi(t) � (x1(t), · · · , xi(t))T ∈ Ri, i � 1, · · · , 4, χi(xi

(t − σi)) represent the time-delay terms, σi are positive
constants, and a1 � − B/J, a2 � 1.5npφf/J, a3 � 1.5nP (Ld −

Lq)/J, b1 � − Rs/Lq, b2 � − Ldnp/Lq, b3 � − npφf/Lq, b4 � 1/
Lq, c1 � − Rs/Ld, c2 � Lqnp/Ld, c3 � 1/Ld.

Tis study aims to devise a neuro-learning-based
adaptive prescribed performance controller for PMSM
system (2) to guarantee the following:

(a) Te output signal x1 follows the reference signal xd

asymptotically
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(b) Te tracking errors of all states are limited to the
given boundaries

(c) Te stability of the system is minimally afected by
time delays, and the boundedness of all signals in the
closed-loop system is guaranteed

To efectively implement our controller design, the
following assumptions and lemmas are presented in
advance.

Lemma 1 (see [37]). For arbitrary continuous function
h(ζ1, . . . , ζn): Rm1 × · · · × Rmn⟶ R fulflling h(0, . . . , 0)

� 0, in which ζj ∈ Rmj , j � 1, . . . , n, there exist smooth-
positive functions ϖj(ζj): R

mj⟶ R such that
|h(ζ1, . . . , ζn)|≤􏽐

n
j�1ϖj(ζj).

Assumption 2 (see [38, 39]). Te uncertain nonlinear time-
delay functions χi(·): Ri⟶ R(i � 1, · · · , n) satisfy the fol-
lowing inequalities:

χi xi t − σi( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϑi 􏽘

i

j�1
hij xj t − σj􏼐 􏼑􏼐 􏼑, (3)

where hij(·)(i � 1, · · · , n, j � 1, · · · , n) are unknown positive-
continuous functions and ϑi > 0.

Remark 3. According to Lemma 1, we know that if
h(ζ1, . . . , ζn) � χi(xi(t − σi)), then |χi(xi(t − σi))|≤􏽐

i
j�1

ϖj(xj(t − σj)). Because ϑihij(xj(t − σj)) are positive-
continuous functions, we can choose the function ϖj(xi(t −

σi)) as ϖj(xi(t − σi)) � ϑihij(xj(t − σj)). Terefore, com-
bining with Lemma 1, we can conclude that the assumption
of inequality (3) is reasonable. Te same assumption can be
seen in the work [38].

Assumption 4 (see [40]). Te reference signal xd and its n-
order derivative xd

(n) are continuous and bounded.

Lemma 5 (see [41]). Given a nonlinear system _x � f(x), if
there exist a smooth-positive defnite function V(x) and some
scalars a> 0, b> 0 fulflling

_V(x)≤ − aV(x) + b, t≥ 0, (4)

one can get that x(t) is uniformly bounded.

Lemma 6 (see [42]). For ∀(℘, ς) ∈ R2, the relationship holds

℘ς≤
1
p

|℘|p +
1
q

|ς|q, (5)

in which ℘, ς, p, q are real quantities and 1/p + 1/q � 1.

Lemma 7 (see [43]). If Φ(Z): Rq⟶ R is an unknown
continuous function on a compact set ΩZ, there exists
RBFNNs (seen in Figure 1) thatΦ(Z) can be approximated by

Φ(Z) � θTψ(Z), (6)

where Z � [z1, z2, · · · , zq] ∈ Rq is the input vector,
θ � [θ1, θ2, . . . , θl]

T ∈ Rl is the ideal weight vector with the
node l> 0, and ψ(Z) � [ψ1(Z),ψ2(Z), · · · ,ψl(Z)]T is the
basic function vector, and the Gaussian functions are adopted
as the basic function

ψ(Z) � exp −
Z − μi( 􏼁

T
Z − μi( 􏼁

bi
2􏼢 􏼣, i � 1, 2, · · · , l, (7)

where μi � [μi1, · · · , μiq]T is the center of the receptive feld
and bi is the width of the Gaussian function. By installing lots
of hidden neurons as Φ(Z) � θ∗TΦ(Z) + δ, Φ(Z) can be
approximated online with any precision via RBFNNs, in
which the error δ can be tuned very small by adopting the
ideal weight vector θ∗ � [θ1

∗, θ2
∗, . . . , θl

∗]T as

θ∗ ≔ arg min
W∈Rl

sup
X∈ΩX

Φ(Z) − θ∗Tψ(Z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭. (8)

Remark 8. Noting that there are unknown-nonlinear func-
tions within (2), which hinder the controller design, the authors
in [44] show that neural networks can evaluate nonlinear
functions with arbitrary precision. Due to the advantages of
simple structure and good approximation ability, this study
introduces RBFNNs to deal with nonlinear functions.

Table 1: Te denotations of parameters for the PMSM.

Parameters Denotations Units
θ Rotor angular rad
ω Rotor angular velocity rad/s
iq q − axis current A
id d − axis current A
uq q − axis voltages V
ud d − axis voltages V
np Pole pairs
J Rotormoment of inertia kg · m2

B Friction coefficient N/(rad/s)
φf Magnet flux linkage of inertia Wb
RS Armature resistance W
xTL Load torque N · m
Ld d − axis stator inductance H
Lq q − axis stator inductance H
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Ten, defne

Θi � θ∗i
����

����
2
, (9)

where ‖θ∗i ‖ is the norm of θi.
LetΘ
∧

i be the estimate of theΘi. Ten, the corresponding
estimation error is 􏽥Θi � Θi − Θ

∧
i and

_􏽥Θi � −
_
Θ
∧

i.

Remark 9. In order to save computational resources and
obtain a relatively simple controller, we estimate the squared
value of the weight norm of RBFNNs.

3. The Control Design

3.1. Te Full-State Prescribed Performance. Te error sur-
faces are defned as

e1 � x1 − xd,

ei � xi − αi− 1, i � 2, 3,

e4 � x4,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where the variables αi− 1 are given later.
To achieve full-state prescribed performance control, the

errors in (10) are constrained strictly in the predefned
domains as

− δ
�
](t)≤ ei ≤ δ](t), i � 1, · · · , 4, (11)

where δ, δ
�
are positive constants that can adjust the upper

and lower bounds.
Unlike the traditional PPC in references [35, 36, 38],

a new prescribed performance function is constructed as

]i(t) � ]i0 − ]i∞( 􏼁 κit + e( 􏼁
− ρt

+ ]i∞ + l2 tan h l3
_xTL

2
􏼒 􏼓,

(12)

in which xTL is a continuous function about external varying
loads and ρ, κi, ]i0, ]i∞,l2,l3 are positive constants. When
there is no external load disturbance, i.e., _xTL � 0, the
maximum overshoots of ei(t) are limited in the sets
(δ]i0, δ

�
]i0), and the maximum permissible ranges of ei(t) at

the stable state are the interval (− δ]i∞, δ
�
]i∞).

Remark 10. We have improved the traditional PPC in
[35, 36, 38], in which the performance function is chosen as

](t) � ]0 − ]∞( 􏼁e
− ρt

+ ]∞. (13)

First, the terms (κit + e)− ρt are designed to enhance the
convergence rate greatly by tuning the positive parameters
κi. Ten, the infuences of external load perturbations on the
prescribed performance of PMSM are considered, and an
adaptive compensated term l2 tan h(l3

_xTL
2
) is constructed

to resist the load oscillations by adjusting the predefned
boundaries automatically. Terefore, the designed perfor-
mance function has a wider application value.

Subsequently, let us defne the coordinate trans-
formations as

Ii �
1
2
ln

δ + ei/]i

δ
�

− ei/]i

⎛⎝ ⎞⎠, i � 1, · · · , 4, (14)

where the error convert functions Ii depend entirely on the
variables ei/]i.

Te derivatives of Ii are

_Ii � ƛi _ei −
ei

]i

_]i􏼠 􏼡, (15)

where

ƛi �
1
2

1
]iδ + ei

−
1

]i δ
�

− ei

⎛⎝ ⎞⎠. (16)

Remark 11. From (11), we know that the inequalities
− δ

�
< ei/]i < δ hold. Based on (14), the value domains of

variables Ii are (− ∞, +∞). Tus, the constrained problems
are transformed into equivalent nonconstrained ones. In the
controller design, if we ensure that Ii ∈ R are bounded, the
error constraints (11) will always hold.

3.2. Te Time-Varying Filters. Defne the time-varying
flters and the flter errors as

ϖie
− βt _αi + αi � αi, αi(0) � αi(0), i � 1, 2, (17)

Υi � αi − αi, i � 1, 2, (18)

where αi are the inputs of the flters which are the virtual
control laws given later, the variables αi are outputs, and
ϖi, β are the positive design constants.

Lemma 12. Te flters (17) are low-pass, and the fltering
errors (18) converge asymptotically to zero.

Proof. First, we analyze the fltering characteristics of the
proposed flter from the s-domain. Applying the Laplace
transform to the equation (17), one gets

ϖi(s + β)αi(s) + αi(s) � αi(s), (19)

where s � jω + σ.

Tus,

αi(s)

αi(s)
�

1
ϖi(s + β) + 1

. (20)

x1

x2

xn

θ1

θ2

θl

Ψ1

Ψ2

Ψl

Φ

… … … …
Figure 1: Te structure of RBFNN.

4 International Journal of Intelligent Systems



From (20), we know that the flters work when s⟶ 0.
When s⟶∞, the flters are disabled.

Ten, by combining (17) with (18), we have

Υi � − ϖie
− βt _αi. (21)

As a result, we get limt⟶∞Υi � 0.
According to the above analysis, we have completed the

proof of Lemma 6. □

Remark 13. Compared with the conventional frst-order
flter [3], the proposed time-varying flters enable faster
fltering, and the tracking error is asymptotically converged
to zero.

3.3. Te Backstepping Controller Design. In this section, by
integrating the dynamic surface method and RBFNNs into
the backstepping framework, we have constructed the full-
state prescribed performance control scheme for the PMSM
with time delays. Te framework of the controller is shown
in Figure 2.

Step 14. Select the candidate Lyapunov function as

V1 �
1
2
I1

2
+

1
2η1

􏽥Θ1
2

+ Z1, (22)

where η1 > 0 and Z1 � ϑ1
2 􏽒

t

t− σ1
h11

2(x1(σ))dσ.
Calculating the time derivative of V1 leads to

_V1 � I1
_I1 −

1
η1

􏽥Θ1
_
Θ
∧
1 + ϑ1

2
h11
2

x1(t)( 􏼁 − ϑ1
2

h11
2

x1 t − σ1( 􏼁( 􏼁.

(23)

Based on (10) and (18), one has

_e1 � e2 + Υ1 + α1 + χ1 x1 t − σ1( 􏼁( 􏼁 − _xd. (24)

Combining (15) with (24), we obtain

_I1 � ƛ1 e2 + Υ1 + α1 + χ1 x1 t − σ1( 􏼁( 􏼁 − _xd −
e1

]1
_]1􏼠 􏼡.

(25)

Substituting (25) into (23) generates

_V1 � ƛ1I1 e2 + Υ1 + α1 + χ1 x1 t − σ1( 􏼁( 􏼁 − _xd −
e1

]1
_]1􏼠 􏼡 −

1
η1

􏽥Θ1
_
Θ
∧
1 + ϑ1

2
h11
2

x1(t)( 􏼁 − ϑ1
2

h11
2

x1 t − σ1( 􏼁( 􏼁. (26)

According to (3) and Young’s inequality, we obtain

I1ƛ1χ1 x1 t − σ1( 􏼁( 􏼁≤
1
4
I1ƛ1( 􏼁

2
+ ϑ1

2
h11
2

x1 t − σ1( 􏼁( 􏼁,

ƛ1I1e2 ≤
1
2
ƛ1I1( 􏼁

2
+
1
2
e
2
2,

ƛ1I1Υ1 ≤
1
2
ƛ1I1( 􏼁

2
+
1
2
Υ21.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Substituting (27) into (26) yields

_V1 ≤ ƛ1I1 α1 − _xd −
e1

]1
_]1􏼠 􏼡 +

5
4
ƛ1I1( 􏼁

2
+
1
2
Υ21 +

1
2
e2

2
−

1
η1

􏽥Θ1
_
Θ
∧
1 + ϑ21h

2
11 x1(t)( 􏼁. (28)

Defne the nonlinear function Φ1(Z1) as

Φ1 Z1( 􏼁 �
1

I1ƛ1
H1 +

1
I1ƛ1

G1, (29)

where Z1 � [x1,I1, ƛ1]T, H1 � ϑ21h
2
11(x1(t)), G1 � ϑ21

􏽒
t

t− τ h2
11(x1(σ))dσ, and σ1 ≤ τ.

Ten, (28) becomes

_V1 ≤I1ƛ1Φ1 Z1( 􏼁 + I1ƛ1 α1 − _xd −
e1

]1
_]1􏼠 􏼡 +

5
4
I1ƛ1( 􏼁

2

+
1
2
Υ21 +

1
2
e2

2
− G1 −

1
η1

􏽥Θ1
_
Θ
∧
1.

(30)
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From (29), we know that Φ1(Z1) is an unknown con-
tinuous function on the compact setΩZ1

. Based on Lemma 7,
it can be approximated as

Φ1 Z1( 􏼁 � θ1
∗Tψ1 Z1( 􏼁 + δ1 Z1( 􏼁, δ1 Z1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ1. (31)

Via Young’s inequality, we get

I1ƛ1 θ1
∗Tψ1 Z1( 􏼁 + δ1 Z1( 􏼁􏼐 􏼑≤ I1ƛ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 θ1
∗����
���� ψ1 Z1( 􏼁
����

���� + δ1􏼐 􏼑

≤
1
2p1

I1ƛ1( 􏼁
2Θ1ψ1

T
Z1( 􏼁ψ1 Z1( 􏼁 +

p1

2
+
1
2
I1ƛ1( 􏼁

2
+
1
2
δ
2
1,

(32)

where p1 is a positive constant. Taking (31) and (32) into (30) generates

Figure 2: Overview of the control framework for the PMSM.
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_V1 ≤I1ƛ1 α1 − _xd −
e1
]1

_]1􏼠 􏼡 +
1
2p1

I1ƛ1( 􏼁
2Θ1ψ1

T
Z1( 􏼁ψ1 Z1( 􏼁

+
7
4
I1ƛ1( 􏼁

2
−

1
η1

􏽥Θ1
_
Θ
∧
1 +

1
2
e2

2
+
1
2
Υ1

2
+ p1 + δ1

2
􏼒 􏼓 − G1.

(33)

Construct the adaptive law
_
Θ
∧
1 and the virtual control law

α1 as

_
Θ
∧
1 �

η1
2p1

I1ƛ1( 􏼁
2ψ1

T
Z1( 􏼁ψ1 Z1( 􏼁 − η1ξ1 􏽢Θ1, (34)

α1 � −
k1I1

ƛ1
−
7
4
I1ƛ1 −

1
2p1

I1ƛ1 􏽢Θ1ψ1
T

Z1( 􏼁ψ1 Z1( 􏼁 +
e1 _]1
]1

+ _xd, (35)

where k1, ξ1 are positive constants.
Substituting (34) and (35) into (33) produces

_V1 ≤ − k1I1
2

+
1
2
Υ21 + ξ1 􏽥Θ1Θ

∧
1 +

1
2

e
2
2 +

1
2
δ
2
1 +

1
2
p1 − G1.

(36)

Combining the defnition of Θ
∧
1 with Young’s inequality,

one obtains

􏽥Θ1Θ
∧
1 � 􏽥Θ1 Θ1 − 􏽥Θ1􏼐 􏼑≤ −

1
2

􏽥Θ21 +
1
2
Θ21. (37)

Inserting (37) into (36) yields

_V1 ≤ − k1I1
2

−
1
2
ξ1 􏽥Θ211 − G1 +

1
2
Υ21 +

1
2
ξ1Θ

2
1 +

1
2

e2
2

+
1
2
δ
2
1 +

1
2
p1. (38)

Step 2. Te candidate Lyapunov function is designed as

V2 � V1 +
1
2
I

2
2 +

1
2η2

􏽥Θ22 + Z2, (39)

where Z2 � ϑ2
2􏽐

2
j�1 􏽒

t

t− σj
h2j

2(xj(σ))dσ and η2 > 0.
Te time derivative of V2 is

_V2 � _V1 + I2
_I2 −

1
η2

􏽥Θ2
_
Θ
∧
2 + ϑ22 􏽘

2

j�1
h2j

2
x2(t)( 􏼁 − ϑ22 􏽘

2

j�1
h2j

2
xj t − σj􏼐 􏼑􏼐 􏼑. (40)

Integrating (10) and (18) and the second equation of (2),
we have

_e2 � a1x2 + a2 − 1( 􏼁x3 + a3x3x4 −
xTL

J
+ χ2 x2 t − σ2( 􏼁( 􏼁 + e3 + Υ2 + α2 − _α1. (41)

Fusing (15) and (41) into (40) yields
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_V2 � _V1 −
1
η2

􏽥Θ2
_
Θ
∧
2 + ϑ22 􏽘

2

j�1
h2j

2
x2(t)( 􏼁 − ϑ22 􏽘

2

j�1
h2j

2
xj t − σj􏼐 􏼑􏼐 􏼑

+ I2ƛ2 a1x2 + a2 − 1( 􏼁x3 + a3x3x4 −
xTL

J
+ χ2 x2 t − σ2( 􏼁( 􏼁 + e3 + Υ2 + α2 − _α1 −

e2 _]2
]2

2􏼠 􏼡.

(42)

Based on (3) and Young’s inequality,

I2ƛ2χ2 x2 t − σ2( 􏼁( 􏼁≤
1
2
I2ƛ2( 􏼁

2
+ ϑ22 􏽘

2

j�1
h2j

2
xj t − σj􏼐 􏼑􏼐 􏼑,

I2ƛ2e3 ≤
1
2
I2ƛ2( 􏼁

2
+
1
2
e
2
3,

I2ƛ2Υ2 ≤
1
2
I2ƛ2( 􏼁

2
+
1
2
Υ22.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Inserting (43) into (42) results in

_V2 ≤ _V1 + I2ƛ2 a1x2 + a2 − 1( 􏼁x3 + a3x3x4 −
xTL

J
+ α2 − _α1 −

e2 _]2
]2

􏼠 􏼡

+
e3

2

2
+
Υ2

2

2
−

1
η2

􏽥Θ2
_
Θ
∧
2 +

3
2
I2ƛ2( 􏼁

2
+ ϑ22 􏽘

2

j�1
h2j

2
x2(t)( 􏼁.

(44)

Construct the function Φ2(Z2) as

Φ2 Z2( 􏼁 � a1x2 −
1

2I2ƛ2
e
2
2 +

H2

I2ƛ2
+

1
I2ƛ2

G2, (45)

where Z2 � [x2,I2, ƛ2, e2]
T, G2 � ϑ2

2
􏽐

2
j�1 􏽒

t

t− τ h2j
2(xj

(σ))dσ, and H2 � ϑ2
2
􏽐

2
j�1h2j

2(x2(t)).
Tus, (44) can be rewritten as

_V2 ≤ _V1 + I2ƛ2Φ Z2( 􏼁 −
1
η2

􏽥Θ2
_
Θ
∧
2 + I2ƛ2 α2 − _α1 −

e2 _]2
]2

−
xTL

J
􏼠 􏼡 + I2ƛ2

a1

J
− 1􏼠 􏼡x3

+I2ƛ2
a2x3x4

J
+
3
2
I2ƛ2( 􏼁

2
−
1
2
e
2
2 +

1
2
e
3
2 +

1
2
Υ22 − G2. (46)

From (45), we know that Φ2(Z2) is a continuous
nonlinear function on the compact set ΩZ2

. Similarly, based
on Lemma 7, we can approximate it as

Φ2 Z2( 􏼁 � θ2
∗Tψ2 Z2( 􏼁 + δ2 Z2( 􏼁, δ2 Z2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ2. (47)

Like (32), we have

I2ƛ2 θ2
∗Tψ2 Z2( 􏼁 + δ2 Z2( 􏼁􏼐 􏼑≤

1
2p2

I2ƛ2( 􏼁
2Θ2ψ2

T
Z2( 􏼁ψ2 Z2( 􏼁 +

p2

2
+
1
2
I2ƛ2( 􏼁

2
+
1
2
δ22, (48)

where p2 is a positive design constant. Substituting (47) and (48) into (46) leads to
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_V2 ≤ _V1 +
1
2p2

I2ƛ2( 􏼁
2Θ2ψ2

T
Z2( 􏼁ψ2 Z2( 􏼁 + I2ƛ2 α2 − _α1 −

e2 _]2
]2

−
xTL

J
􏼠 􏼡

− G2 + 2 I2ƛ2( 􏼁
2

−
1
η2

􏽥Θ2
_
Θ
∧
2 +

1
2
δ2

2
−
1
2
e2

2
+
1
2
e3

2

+
1
2
Υ2

2
+ I2ƛ2

a1

J
− 1􏼠 􏼡x3 +

a2x3x4

J
􏼠 􏼡 +

1
2
p2. (49)

Ten, construct the adaptive law
_
Θ
∧
2 and the virtual

control law α2 as

_
Θ
∧
2 �

η2
2p2

I2ƛ2( 􏼁
2ψ2

T
Z2( 􏼁ψ2 Z2( 􏼁 − η2ξ2Θ

∧
2, (50)

α2 � −
k2I2

ƛ2
− 2I2ƛ2 −

1
2p2

I2ƛ2( 􏼁Θ
∧
2ψ2

T
Z2( 􏼁ψ2 Z2( 􏼁 + _α1 +

e2 _]2
]2

+
xTL

J
, (51)

where ξ2, k2 are positive constants.
Integrating (50) and (51) into (49) gets

_V2 ≤ _V1 −
k2I2

ƛ2
−

e
2
2

2I2ƛ2
− G2 + ξ2 􏽥Θ2Θ

∧
2 +

1
2
δ2

2
+
1
2
p2

−
1
2
e2

2
+
1
2
e3

2
+
1
2
Υ2

2
+ I2ƛ2

a1

J
− 1􏼠 􏼡x3 +

a2x3x4

J
􏼠 􏼡.

(52)

Similar to (37), we can obtain

􏽥Θ2Θ
∧
2 ≤ −

1
2

􏽥Θ2
2

+
1
2
Θ2

2
. (53)

Fusing (38) and (53) into (52) generates

_V2 ≤ − 􏽘
2

i�1
kiIi

2
−
1
2

􏽘

2

i�1

􏽥Θ2
2

− 􏽘
2

i�1
Gi +

1
2

􏽘

2

i�1
Υi

2
+
1
2

􏽘

2

i�1
ξiΘ2

2

+
1
2

􏽘

2

i�1
pi +

1
2

􏽘

2

i�1
δi

2
+
1
2
e3

2
+ sI2ƛ2

a1

J
− 1􏼠 􏼡x3 +

a2x3x4

J
􏼠 􏼡 .

(54)

Step 15. Adopt the candidate Lyapunov function as

V3 � V2 +
1
2
I3

2
+

1
2η3

􏽥Θ3
2

+ Z3, (55)

where Z3 � ϑ3
2
􏽐

3
j�1 􏽒

t

t− σj
h3j

2(xj(σ))dσ and η3 is a positive
constant to be designed.

Ten,

_V3 � _V2 + I3
_I3 −

1
η3

􏽥Θ3
_
Θ
∧
3 + ϑ3

2
􏽘

3

j�1
h3j

2
xj(t)􏼐 􏼑 − ϑ23 􏽘

3

j�1
h3j

2
xj t − σj􏼐 􏼑􏼐 􏼑. (56)

Based on (10) and (18) and the third equation of (2), one
gets

_e3 � b1x3 + b2x2x4 + b3x2 + b4uq + χ3 x3 t − σ3( 􏼁( 􏼁 − _α2.

(57)
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Substituting (15) and (57) into (56) yields

_V3 � _V2 + I3ƛ3 b1x3 + b2x2x4 + b3x2 + b4uq + χ3 x3 t − σ3( 􏼁( 􏼁 − _α2 −
e3 _]3
]3

􏼠 􏼡

−
1
η3

􏽥Θ3
_
Θ
∧
3 + ϑ3

2
􏽘

3

j�1
h3j

2
xj(t)􏼐 􏼑 − ϑ3

2
􏽘

3

j�1
h3j

2
xj t − σj􏼐 􏼑􏼐 􏼑.

(58)

Combining (3) with Young’s inequality, we have

I3ƛ3χ3 x3 t − σ3( 􏼁( 􏼁≤
3
4
I3ƛ3( 􏼁

2
+ ϑ3

2
􏽘

3

j�1
h3j

2
xj t − σ3( 􏼁􏼐 􏼑. (59)

Inserting (59) into (58) leads to

_V3 ≤ _V2 + I3ƛ3 b1x3 + b2x2x4 + b3x2 + b4uq − _α2 −
e3 _]3
]3

􏼠 􏼡

−
1
η3

􏽥Θ3
_
Θ
∧
3 +

3
4
I3ƛ3( 􏼁

2
+ ϑ3

2
􏽘

3

j�1
h3j

2
xj(t)􏼐 􏼑.

(60)

Defne the function Φ3(Z3) as

Φ3 Z3( 􏼁 � b1x3 + b3x2 +
e3

2

2I3ƛ3
+

H3

I3ƛ3
+

G3

I3ƛ3
, (61)

where Z3 � [x2, x3, e3,I3, ƛ3]T, G3 � ϑ3
2􏽐

3
j�1 􏽒

t

t− τ h3j
2

(xj(σ))dσ, and H3 � ϑ3
2􏽐

3
j�1h3j

2(xj(t)).
Terefore, (60) becomes

_V3 ≤ _V2 + I3ƛ3Φ3 Z3( 􏼁 + b2I3ƛ3x2x4 +
3
4
I3ƛ3( 􏼁

2

+ I3ƛ3b4uq −
1
η3

􏽥Θ3
_
Θ
∧
3 − G3.

(62)

From (61), Φ3(Z3) is a continuous function on the
compact setΩZ3

.Tereby, based on Lemma 7,Φ3(Z3) can be
approximated as

Φ3 Z3( 􏼁 � θ3
∗Tψ3 Z3( 􏼁 + δ3 Z3( 􏼁, δ3 Z3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ3. (63)

By Young’s inequality, we obtain

I3ƛ3 θ3
∗Tψ3 Z3( 􏼁 + δ3 Z3( 􏼁􏼐 􏼑≤

1
2p3

I3ƛ3( 􏼁
2Θ3ψ3

T
Z3( 􏼁ψ3 Z3( 􏼁 +

p3

2
+
1
2
I3ƛ3( 􏼁

2
+
1
2
δ3, (64)

where p3 is a positive constant to be designed. Bringing (63) and (64) into (62) yields

_V3 ≤ _V2 +
5
4
I3ƛ3( 􏼁

2
+

1
2p3

I3ƛ3( 􏼁
2Θ3ψ3

T
Z3( 􏼁ψ3 Z3( 􏼁 +

9
4
I3ƛ3( 􏼁

2

+ I3ƛ3b4uq −
1
η3

􏽥Θ3
_
Θ
∧
3 +

1
2
δ3

2
− G3 −

e3
2

2
.

(65)

Next, design the adaptive law
_
Θ
∧
3 and the actual control

uq as

10 International Journal of Intelligent Systems



_
Θ
∧
3 �

η3
2p3

I3ƛ3( 􏼁
2ψ3

T
Z3( 􏼁ψ3 Z3( 􏼁 − η3ξ3Θ

∧
3,

(66)

uq �
1
b4

−
k3I3

ƛ3
− θ
∧

3

T

ψ3 Z3( 􏼁 −
5
4
I3ƛ3 +

e3 _]3
]3

+ _α2􏼠 􏼡,

(67)

where ξ3, k3 are positive constants.
Taking (66) and (67) into (65) generates

_V3 ≤ _V2 + ξ3 􏽥Θ3Θ
∧
3 +

δ3
2

2
+
1
2
p3 −

e3
2

2
− G3 + b2I3ƛ3x2x4.

(68)

Similar to (37), we have

􏽥Θ3Θ
∧
3 ≤ −

1
2

􏽥Θ3
2

+
1
2
Θ3

2
. (69)

Substituting (54) and (69) into (68) obtains

_V3 ≤ − 􏽘
3
i�1kiIi

2
− 􏽘

3

i�1

1
2

􏽥Θ3
2

+
1
2

􏽘

3

i�1
ξiΘ3

2
− 􏽘

3

i�1
Gi + 􏽘

2

i�1

1
2
Υi

2

+
1
2

􏽘

3

i�1
δi

2
+
1
2

􏽘

3

i�1
pi + b2I3ƛ3x2x4 + I2ƛ2

a1

J
− 1􏼠 􏼡x3 +

a2x3x4

J
􏼠 􏼡 .

(70)

Step 16. Te candidate Lyapunov function is constructed as

V4 � V3 +
1
2
I4

2
+

1
2η4

􏽥Θ4
2

+ Z4, (71)

where Z4 � ϑ4
2􏽐

4
J�1 􏽒

t

t− σj
h4j

2(xj(σ))dσ and η4 is a positive
constant.

Te time derivative of V4 can be indicated as

_V4 � _V3 + I4
_I4 −

1
η4

􏽥Θ4
_
Θ
∧
4 + ϑ4

2
􏽘

4

j�1
h4j

2
xj(t)􏼐 􏼑 − ϑ4

2
􏽘

4

j�1
h4j

2
xj t − σj􏼐 􏼑􏼐 􏼑. (72)

Integrating (10) and (15) and the fourth equation of (2),

_I4 � ƛ4 c1x4 + c2x2x3 + c3ud + χ4 x4 t − σ4( 􏼁( 􏼁 −
x4 _]4
]4

􏼠 􏼡.

(73)

Substituting (73) into (72) leads to

_V4 � _V3 + I4ƛ4 c1x4 + c2x2x3 + c3ud + χ4 x4 t − σ4( 􏼁( 􏼁 −
x4 _]4
]4

􏼠 􏼡

−
1
η4

􏽥Θ4
_
Θ
∧
4 + ϑ4

2
􏽘

4

j�1
h4j

2
xj(t)􏼐 􏼑 − ϑ4

2
􏽘

4

j�1
h4j

2
xj t − σj􏼐 􏼑􏼐 􏼑.

(74)

Combining (3) with Young’s inequality, we get

I4ƛ4χ4 x4 t − σ4( 􏼁( 􏼁≤ I4ƛ4( 􏼁
2

+ ϑ4
2

􏽘

4

j�1
h4j

2
xj t − σj􏼐 􏼑􏼐 􏼑.

(75)

Inserting (75) into (74) yields

_V4 ≤ _V3 + I4ƛ4 c1x4 + c2x2x3 + c3ud −
x4 _]4
]4

􏼠 􏼡

+ I4ƛ4( 􏼁
2

−
1
η4

􏽥Θ4
_
Θ
∧
4 + ϑ4

2
􏽘

4

j�1
h4j

2
xj(t)􏼐 􏼑.

(76)

Introduce function Φ4(Z4) as
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Φ4 Z4( 􏼁 � c1x4 + c2x2x3 +
I2ƛ2
I4ƛ4

a1

J
− 1􏼠 􏼡x3 +

a2x3x4

J
􏼠 􏼡

+
b2I3ƛ3
I4ƛ4

x2x4 +
G4

I4ƛ4
+

H4

I4ƛ4
,

(77)

where Z4 � [x2, x3, x4, v4, _v4, α2, α1]
T, H4 � ϑ4

2􏽐
4
j�1h4j

2(xj

(t)), and G4 � ϑ4
2
􏽐

4
j�1 􏽒

t

t− τ h4j
2(xj(σ))dσ.

Hence, (76) can be rewritten as

_V4 ≤ _V3 + I4ƛ4 Φ4 Z4( 􏼁 + c3ud( 􏼁 +
1
2
I4ƛ4( 􏼁

2
−

1
η4

􏽥Θ4
_
Θ
∧
4 − G4,

(78)

where Φ4(Z4) is a continuous nonlinear function on the
compact set ΩZ4

. Based on Lemma 7, Φ4(Z4) can be ap-
proximated as

Φ4 Z4( 􏼁 � θ4
∗Tψ4 Z4( 􏼁 + δ4 Z4( 􏼁, δ4 Z4( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ4. (79)

By Young’s inequality, we have

I4ƛ4 θ4
∗Tψ4 Z4( 􏼁 + δ4 Z4( 􏼁􏼐 􏼑≤

1
2p4

I4ƛ4( 􏼁
2Θ4ψ4

T
Z4( 􏼁ψ4 Z4( 􏼁 +

p4

2
+
1
2
I4ƛ4( 􏼁

2
+
1
2
δ4

2
, (80)

where p4 is a positive constant.
Substituting (79) and (80) into (78) leads to

_V4 ≤ _V3 +
3
2
I4ƛ4( 􏼁

2
+ Θ4ψ4

T
Z4( 􏼁ψ4 Z4( 􏼁 +

1
2
δ4

2

+ I4ƛ4c3ud +
1
2
p4 −

1
η4

􏽥Θ4
_
Θ
∧
4 − G4.

(81)

Construct the adaptive law
_
Θ
∧
4 and the actual control ud

as

_
Θ
∧
4 �

η4
2p4

I4ƛ4( 􏼁
2ψ4

T
Z4( 􏼁ψ4 Z4( 􏼁 − η4ξ4Θ

∧
4, (82)

ud �
1
c3

−
k4I4

ƛ4
−
3
2
I4ƛ4 −

1
2p4

I4ƛ4Θ
∧
4ψ4

T
Z4( 􏼁ψ4 Z4( 􏼁 +

e4 _]4
]4

􏼠 􏼡, (83)

where ξ4, k4 are positive constants.
Inserting (82) and (83) into (81) yields

_V4 ≤ _V3 +
1
2
p4 +

1
2
δ4

2
−

1
η4

􏽥Θ4
_
Θ
∧
4 − G4. (84)

Similar to (37),

􏽥Θ4Θ
∧
4 ≤ −

1
2

􏽥Θ4
2

+
1
2
Θ4

2
. (85)

Fusing (70) and (85) into (84) generates

_V4 ≤ − 􏽘
4

i�1
kiIi

2
−
1
2

􏽘

4

i�1

􏽥Θ2i − 􏽘
4

i�1
Gi +

1
2

􏽘

4

i�1
δi

2

+
1
2

􏽘

4

i�1
pi +

1
2

􏽘

2

i�1
ξiΘi

2
+ 􏽘

2

i�1

1
2
Υi

2
.

(86)

Remark 17. By constructing suitable Lyapunov–Krasovskii
functionals with RBFNNs, the time delays and the unknown
nonlinearities in the system are fnally eliminated efectively.

12 International Journal of Intelligent Systems



4. Stability Analysis

For ∀Ψ> 0, defne the compact sets as

Ω1 � I1,
􏽥θ1,Z1􏼐 􏼑: I

2
1 +

􏽥θ
2
1
η1

+ 2Z1 ≤ 2Ψ
⎧⎨

⎩

⎫⎬

⎭,

Ω2 � I1,I2,
􏽥θ1, 􏽥θ2,Z1,Z2􏼐 􏼑: 􏽘

2

i�1
I

2
i + 􏽘

2

i�1

􏽥θ
2
i

ηi

+ 2􏽘
2

i�1
Zi ≤ 2Ψ

⎧⎨

⎩

⎫⎬

⎭,

Ω3 � Ii,
􏽥θi,Zi, i � 1, · · · , 3􏼐 􏼑: 􏽘

3

i�1
I

2
i + 􏽘

3

i�1

􏽥θ
2
i

ηi

+ 2􏽘
3

i�1
Zi ≤ 2Ψ

⎧⎨

⎩

⎫⎬

⎭,

Ω4 � Ii,
􏽥θi,Zi, i � 1, · · · , 4􏼐 􏼑: 􏽘

4

i�1
I

2
i + 􏽘

4

i�1

􏽥θ
2
i

ηi

+ 2􏽘
4

i�1
Zi ≤ 2Ψ

⎧⎨

⎩

⎫⎬

⎭.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(87)

Theorem 1 . In this study, we have constructed the adaptive
laws (34), (50), (66), and (82) and the control laws (35), (51),
(67), and (83) for the PMSM (2) subject to conditions (11). If
the initial conditions fulfll Ωi, i � 1, . . . , 4 and − δ

�
]i(0)< ei

(0)< δ]i(0), then all control aims will be achieved.

Proof. Construct the whole Lyapunov function as

V �
1
2

􏽘

4

i�1
I

2
i + 􏽘

4

i�1

1
2ηi

􏽥Θ2i + 􏽘

4

i�1
􏽘

4

j�1
􏽚

t

t− σj

Ii
2
(σ)hji

2
Ii(σ)􏼐 􏼑dσ.

(88)

From (86), we have

_V≤ − 􏽘
4

i�1
kiIi

2
−
1
2

􏽘

4

i�1

􏽥Θ2i +
1
2

􏽘

4

i�1
ξiΘi

2
+
1
2

􏽘

4

i�1
δi

2

+
1
2

􏽘

2

i�1
Υi

2
− 􏽘

4

i�1
tan h

2 Ii

ℏi
􏼠 􏼡Gi + 􏽘

4

i�1
1 − 2 tanh2

Ii

ℏi
􏼠 􏼡􏼠 􏼡Hi.

(89)

Because ∀σj ≤ τ, j � 1, · · · , 4, it is evident that
[t − σj, t] ⊂ [t − τ, t]. Tus, we get

− Gi ≤ − Zi. (90)

Inserting (90) into (89) gets

_V≤ − 􏽘
4

i�1
kiIi

2
−
1
2

􏽘

4

i�1

􏽥Θ2i +
1
2

􏽘

4

i�1
ξiΘi

2
+ 􏽘

4

i�1

1
2
Υi

2
− 􏽘

4

i�1
Zi +

1
2

􏽘

4

i�1
δi

2
. (91)

Ten, _V can be described as

_V≤ − a1V + Γ1, (92)

where Γ1 � (􏽐
4
i�1δi

2
+ 􏽐

4
i�1ξiΘi

2 + 􏽐
4
i�1Υi

2)/2 and
a1 � min ki, ξi/2,Ξ/2􏼈 􏼉.

We know that limt⟶∞V � Π/a1, where Π � max
Π1,Π2,Π3􏼈 􏼉. Hence, V is ultimately bounded, which assures
the boundness of Υ1, Υ2, Ii, 􏽥θi, and 􏽐

4
i�1Ii(σ)hji(Ii(σ)),

i � 1, · · · , 4. According to (14), Ii are functions about the

variables ei and ]i. As ]i are bounded-predefned functions,
ei, i � 1, · · · , 4 are bounded. From (16), it is clear that ƛi are

bounded. Te boundedness of Θ
∧

i can be assured based on
the boundedness of 􏽥Θi and Θi. According to (35) and (51),
we can further conclude that α1, α2, _α1, _α2 are bounded,
which means that α1, α2, _α1, and _α2 are also bounded based
on (17) and (18). Combining Assumption 4 with (10), the
boundness of xi, i � 1, · · · , 4 can be obtained. Terefore, we
can conclude that all signals in the closed-loop PMSM
system are uniformly bounded.
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Additionally, based on (14), we know that Ii⟶ ±∞
when ei⟶ ± ]i. Because Ii are bounded and the initial
conditions fulfl δ

�
]i(0)< ei(0)< δ]i(0), we can get that

− δ
�
]i(t)< ei(t)< δ]i(t) for all t> 0. Up to now, the proof of

Teorem 1 has been fnished. □

5. Simulation Examples

In this section, the simulations are presented to prove the validity
of the control scheme proposed in this study. Te parameters of
the PMSM refer to [26] which are listed as J � 0.003798kg ·

m2, B � 0.001158N · m/(rad/s), ϕf � 0.1245Wb, np � 3,

Lq � 0.00315H, Ld � 0.00285H, Rs � 0.68Ω.
Te RBFNNs are introduced to approximate the non-

linear functions during the controller design, in which the
Gaussian functions are chosen as ψi(x) � exp[− (x−

μj)(x − μj)/202], i � 1, · · · , 4, j � 1, · · · , 11, and the center
vector is spaced in the interval [− 20 20]. Te constants δ, δ

�are chosen as δ � δ
�

� 1. According to the defnitions of the
control laws α1, α2, uq, ud and the adaptive laws_
Θ
∧

i, i � 1, 2, 3, 4, respectively, the control design parameters
in the simulations are selected as follows by trial and error:
k1 � 50, k2 � k3 � 100, k3 � 50, p1 � p2 � p4 � 1, p3 � 0.01,

ηi � 10, ξi � 10, i � 1, · · · , 4. Te initial values of the PMSM
system are x1(0) � 0.5, x2(0) � x3(0) � x4(0) � 0. Te
reference signal is chosen as xd � 0.5 sin(2t) + 0.5 sin(0.5t).

5.1.Example1. In order to verify the validity of the proposed
time-varying flter, this example considers the full-state
prescribed performance control for the PMSM system
working under segmented loads, in which the conventional
exponential prescribed performance control (EPPC) scheme
[9] is chosen to defne error bounds as

EPPC:

]x1
� 2e

− 2t
+ 0.1,

]x2
� 2e

− 2t
+ 1,

]x3
� 2e

− 2t
+ 1.1,

]x4
� 2e

− 2t
+ 0.1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(93)

Te segmented loads are chosen as

xTL � 1.2, 0< t< 10,

xTL � 1.4, 10≤ t< 20

xTL � 1.2, t≥ 20,

⎧⎪⎪⎨

⎪⎪⎩
, (94)

and the time-varying flters are selected as

0.2e
− 0.05t _α1 + α1 � α1,

0.02e
− 0.05t _α2 + α2 � α2.

⎧⎨

⎩ (95)

Te simulations are compared with the conventional
fxed-gain flter in [3, 26], where the flters are set as

0.2 _α1 + α1 � α1,

0.02 _α2 + α2 � α2.

⎧⎨

⎩ (96)

Te simulation results are shown in Figures 3 and 4.
According to Figure 3, it can be found that there are os-
cillations in the tracking errors, which are generated from
the external load perturbations of the PMSM system. Te
output tracking error e1 has the smallest oscillation (as
shown in Figure 3(a)), and the error e3 has the most severe
shocks (as shown in Figure 3(c)).

By comparing the performances between the fxed-gain
flter and the time-varying flter under the same external
abrupt loads, we know that both schemes can obtain good
tracking performance with errors constrained in the spec-
ifed bounds. However, the oscillations of the tracking errors
are smaller under the proposed time-varying flters. In
Figure 4, it is clear that the time-varying flters can obtain
smaller flter errors and ensure superior performance. Given
this, we can conclude that the performance of the PMSM
system is strongly infuenced by external load perturbation.
Moreover, our proposed time-varying flter method has
better performance than the conventional fxed-gain flter
method.

5.2. Example 2. Tis example considers the novel adaptive
prescribed performance control (NPPC) for the PMSM
system under time-delaying flters (95) with noncontinuous
abruptly varying loads (94). To make the prescribed per-
formance function continuous, we choose the frst-order
flter F(s) � 1/(1 + 0.05 s) to flter the signal of the external
varying loads to obtain the smooth function xTL. Te
simulations are carried out in the following cases:

Case 1: Te PMSM works on EPPC, which refers to the
literature [9] with the performance functions (93)
Case 2: Te PMSM works on CPPC, which refers to the
literature [34] with the performance functions

CPPC:

]x1
� csch(t + 2) + 0.1,

]x2
� csch(t + 2) + 1,

]x3
� csch(t + 2) + 1.1,

]x4
� csch(t + 2) + 0.1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(97)

Case 3: Te PMSM works on NPPC, where the per-
formance functions are chosen as
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Figure 3: Te trajectories of tracking errors ei, i � 1,2,3,4 in example 1. (a) Te performance of tracking errors e1. (b) Te performance of
tracking errors e2. (c) Te performance of tracking errors e3. (d) Te performance of tracking errors e4.
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NPPC:

]x1
� 2(t + e)

− 2t
+ 0.1 + 0.15 tan h _xTL

2
􏼒 􏼓,

]x2
� 2(t + e)

− 2t
+ 1 + 0.15 tan h _xTL

2
􏼒 􏼓,

]x3
� 2(t + e)

− 2t
+ 1.1 + 0.15 tan h _xTL

2
􏼒 􏼓,

]x4
� 2(t + e)

− 2t
+ 0.1 + 0.15 tan h _xTL

2
􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(98)

Case 4: Te PMSM works on NPPC with time delays as

Time delays:

χ1 x t − σ1( 􏼁( 􏼁 � 0.1x
2
1(t − 0.5),

χ2 x2 t − σ2( 􏼁( 􏼁 � 0.3x1
2
(t − 0.6)x2(t − 0.6),

χ3 x3 t − σ3( 􏼁( 􏼁 � 0.2x2(t − 0.7)x1
2
(t − 0.7)x3

2
(t − 0.7),

χ4 x4 t − σ4( 􏼁( 􏼁 � 5x4
3
(t − 0.8)x1(t − 0.8)

2
x2(t − 0.8)x3(t − 0.8).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(99)

Functions hij can be set as

h11 � x1
2
,

h21 + h22 � x1
2

x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

h31 + h32 + h33 � x1
2
x3

2
x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

h41 + h42 + h43 + h44 � 10 x4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3
x1

2
x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(100)

Remark 19. Te EPPC, CPPC, and NPPC have the same
initial and fnal values of the performance function for each
state, and the same log-type transformation (14) is adopted
to convert constrained problems to unconstrained problems.
Based on this, the fairness of the comparison experiment is
guaranteed.

Remark 20. Te performance of tracking errors
ei, i � 1, · · · , 4 is visual measures of controlling abilities.
From (14), it can be concluded that ei � (1 − 2/(1 + e2Ii ))]i.
Combining limt⟶∞V � Π/a1 with (88), we can get
|Ii|≤

�����
2Π/a1

􏽰
. It is evident that 1 − 2/(1 + e2Ii ) are

monotonically increasing functions of variablesIi. Ten, we
can further get (1 − 2/(1 + e− 2

����
2Π/a1

√
))]i ≤ ei ≤

(1 − 2/(1 + e2
����
2Π/a1

√
))]i. According to (12), the values of ]i

are small enough by increasing parameters κi, ρ and reducing
parameters ]i∞,l2,l3. As a result, the tracking errors ei can
be tuned arbitrarily small to obtain a better performance
theoretically. However, it will also increase the burden of the
controller or even cause unresolvable situations. Terefore,
a balance between system performance and control efort
should be maintained.

Te simulation results are shown in Figures 5–9. From
Figure 5, we can see that the output x1 of EPPC, CPPC,
NPPC, and NPPC with time delays can track the reference
signal xd efectively.

Figure 6 reveals the full-state prescribed performance of
the PMSM system. By analyzing EPPC, CPPC, and NPPC, it
is clear that the performance boundaries of NPPC can be
adaptively adjusted to ofset the oscillations generated by

external load changes, and the fastest convergence errors can
be obtained. In contrast, Figure 6(c) shows that the tracking
error trajectory of CPPC has already exceeded the error
bounds of NPPC in the transient state. By comparing the
tracking performance of NPPC and NPPC with time delays,
it is evident that the proposed controller can achieve the
control objective even when time delay disturbances are
present.

Te trajectories of the control laws are given in Figure 7, and
it can be found that although the disturbance of the external
loads leads to the chattering of the control laws, where theNPPC
with time delays has the largest vibrations, all control laws of the
system are being within the reasonable range. As can be seen in
Figure 8, Θ

∧
i, i � 1,2,3,4 are bounded, which means that the

weights of RBFNNs in this study are bounded. From Figure 9,
we know that the fltering error of the system can converge to
zero within a certain time by the proposed time-varying flters.

5.3. Example 3. Tis example considers the novel adaptive
prescribed performance control (NPPC) for the PMSM
system under time-delay flters (95) with continuously
varying loads and time delays, where the loads are

xTL � 1.5 sin(2t). (101)

Similarly, comparative experiments are conducted for
the following four scenarios: EPPC with performance
functions (93), CPPC with performance functions (97),
NPPC with performance functions (98), and NPPC with
time delays (99).

Te simulation results are presented in Figures 10–14.
From Figure 10, it can be seen that NPPC, EPPC, and CPPC
can track the reference signal efectively. From Figure 11, it is
clear that the tracking errors of NPPC can converge in
a shorter time and obtain better performance than EPPC and
CPPC, where Figure 11(c) shows that the trajectory of the
tracking error in the CPPC almost exceeds the error bounds
of the NPPC during the transient state. What’s more, the
performance bounds of the NPPC can adaptively adjust to
counteract the oscillations generated by the external load.
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Figure 12 shows that all control laws in NPPC, NPPC
with time delays, EPPC, and CPPC under the condition of
continuously varying loads are within the reasonable range.
Among them, the NPPC has a milder shock. As can be seen
in Figure 13,Θ

∧
i, i � 1,2,3,4 are bounded. From Figure 14, it is

clear that the fltering errors of the system can converge to
zero in a certain time by the proposed time-varying fltering.

According to the abovementioned three simulation ex-
amples, we know that the external load perturbations have
a signifcant impact on system performance, and the control
system with time-varying flters can obtain better performance
than the traditional frst-order fltering method. In addition,
the control scheme proposed in this study can efectively solve
the time-delay problem of the system under the disturbance of
segmented load and continuously changing load.

6. Conclusions

In this study, a neuro-learning-based adaptive prescribed
performance control scheme is proposed to solve the
tracking problem for the PMSM with full-state constraints,
external load disturbances, and time delays. First, with the
improved PPC for the PMSM, the tracking errors are well
bounded in the preset boundaries, and the controller can
tune automatically to circumvent the overrun and high
frequently chattering of external loads. Second, via con-
structing proper Lyapunov–Krasovskii functionals with
RBFNNs, time-delay terms and the nonlinearities in the
system have been handled efectively. Meanwhile, the time-
varying flters are introduced into the backstepping control
to bypass the “complexity explosion.” Ten, the stability
analysis demonstrates that all signals in the closed-loop
system are bounded, and the tracking errors are within
the prescribed boundaries. At last, the simulation results
illustrate the efectiveness of the suggested scheme.

Future work will focus on extending such design into
broad applications to realize fnite-time or fxed-time pre-
scribed performance control for systems with full-state
constraints and time delays which are commonly experi-
enced in real scenarios.
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