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In dam engineering, the presence of cracks and crack width are important indicators for diagnosing the health of dams. Te
accurate measurement of cracks facilitates the safe use of dams. Te manual detection of such defects is unsatisfactory in terms of
cost, safety, accuracy, and the reliability of evaluation. Te introduction of deep learning for crack detection can overcome these
issues. However, the current deep learning algorithms possess a large volume of model parameters, high hardware requirements,
and difculty toward embedding inmobile devices such as drones.Terefore, we propose a lightweightMobileNetV2_DeepLabV3
image segmentation network. Furthermore, to prevent interference by noise, light, shadow, and other factors for long-length
targets when segmenting, the atrous spatial pyramid pooling (ASPP) module parameters in the DeepLabV3+ network structure
were modifed, and a multifeature fusion structure was used instead of the parallel structure in ASPP, allowing the network to
obtain richer crack features. We collected the images of dam cracks from diferent environments, established segmentation
datasets, and obtained segmentation models through network training. Experiments show that the improved Mobile-
NetV2_DeepLabV3 algorithm exhibited a higher crack segmentation accuracy than the original MobileNetV2_DeepLabV3
algorithm; the average intersection rate attained 83.23%; and the crack detail segmentation was highly accurate. Compared with
other semantic segmentation networks, its training time was at least doubled, and the total parameters were reduced by more than
2 to 7 times. After extracting cracks through the semantic segmentation, we proposed to use the method of inscribed circle of crack
outline to calculate the maximum width of the detected crack image and to convert it into the actual width of the crack. Te
maximum relative error rate was 11.22%. Te results demonstrated the potential of innovative deep learning methods for dam
crack detection.

1. Introduction

Te degree of structural damage of cracks in concrete struc-
tures is a fundamental indicator for diagnosing the health of
dams. Owing to the long-term exposure to large water pressure
and the efects of water scouring, infltration, and erosion,
cracks inevitably occur, making real-time health inspection of
dam structures necessary to detect such cracks in time [1, 2].

However, the manual crack detection method, which is rela-
tively simple and has a low detection efciency, has resulted in
tragic incidents such as 236 deaths at the Canyon Lake Dam
due to errors in crack detection [3] and the failure of Austin
Dam, which resulted in the death of 76 people, due to in-
adequate management and monitoring of damage and cracks
[4]. Terefore, it is necessary to realize efcient and automated
dam crack detection.
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1.1. Motivation. To overcome the problems of the manual
detection process, various digital techniques have been
studied to achieve crack detection and feature extraction in
civil infrastructure [5], such as edge detection (Canny flter
and Sobel flter), threshold segmentation, and 3D re-
construction [6–8]. Although these traditional image pro-
cessing methods can ideally complete crack detection on the
measurement surface, these traditional image processing
methods are faced with the interference of diferent textures
of the measurement surface, changes in light, and the
presence of stains and debris on the measurement surface.
Tese factors cause problems such as continuous detection,
false detection, or missed detection.

With the advancements in computer science and arti-
fcial intelligence, machine learning has been widely adopted
for image recognition, object detection, and classifcation
[9–11], which provides a new prospect for crack detection.
Tese algorithms contain common processing steps; for
example, frst, the crack image is divided into many small
images; a feature extraction algorithm is then used to
construct feature vectors for the small images; thereafter,
machine learning algorithms are applied to train the feature
vectors; and fnally, the generated model is used to detect
cracks in images [12]. However, the method of constructing
feature vectors using machine learning is highly cumber-
some, and in addition, the detection efect of cracks in
diferent scenarios is considerably diferent.

In recent years, with rapid advancements in deep
learning technology [13, 14], it has become the mainstream
method in the feld of crack detection [15, 16]. Kim and Cho
[17] used a deep learning method based on convolutional
neural network (CNN), which possesses a high detection
speed for concrete surface cracks and can realize the au-
tomatic detection of cracks. Gopalakrishnan et al. [18]
proposed diferent classifers based on the VGG16 neural
network model for detecting cracks in concrete and asphalt
pavement images. Although these deep learning algorithms
can automatically detect cracks, they cannot exactly locate
the cracks; therefore, they possess limitations toward
structural health maintenance and management [19].

Target detection is a deep learning recognition method
in computer vision [20], which can realize automatic de-
tection of cracks, in addition to accurately locating the
cracks. Redmon [21] proposed a YOLO algorithm that can
quickly detect and identify cracks. Teng et al. [22] compared
the crack detection performances of YOLOv2 and 11 feature
extractors to prove the excellent crack detection of YOLOv2.
Subsequently, YOLOv3 and YOLOv4 were proposed. Yang
[23] found that the accuracy of the trained YOLOv3 model
in detecting cracks was satisfactory, confrming that deep
learning can be an efcient and powerful crack detection
technology. Yu et al. [24] improved on the basis of YOLOv4,
accelerated the detection speed, and realized the real-time
detection of bridge cracks for drones or other machinery and
equipment. Yao et al. [25] proposed a new pavement crack
detection method based on YOLOv5 by combining the
attention mechanism. Cha et al. [26] applied a faster R-CNN
for automatic crack detection, which could realize real-time
detection through a camera, with an average accuracy of

94.7%. Maeda et al. [27] compared the accuracy and pro-
cessing speed of several target detection algorithms and,
fnally, decided to use a CNN based on MobileNet and
Inception V2 to detect various types of road damages
through an onboard camera. In the object detection method,
cracks are marked with bounding boxes; however, because
the distribution paths and shapes of cracks are irregular,
object detection cannot provide high-precision detection
information with respect to these aspects.

Pixel segmentation is another deep-learning recognition
method in computer vision. Pixel segmentation, as the name
suggests, facilitates the identifcation of target objects at the
pixel level. Pixel segmentation is divided into instance
segmentation and semantic segmentation. For crack de-
tection, semantic segmentation is a better choice [28–32].
Dung and Anh [33] proposed a deep fully convolutional
network (FCN)-based crack detection method for the se-
mantic segmentation of concrete crack images and found
that cracks could be reasonably detected and the crack
density was accurately assessed. With the emergence of
semantic segmentation networks such as U-Net [34], deep
learning-based image segmentation has gradually attracted
substantial research attention. Zhang et al. [35] proposed
a new method for crack detection on 3D asphalt pavement,
called CrackNet-R (RNN), which achieved a high accuracy
(88.89%) for crack detection. Ju et al. [36] proposed a net-
work structure called CrackU-Net, which achieved pixel-
level crack detection through convolution, pooling, trans-
posed convolution, and cascade operations, and the efect
was better than the traditional FCN and U-Net network. Cui
et al. [37] added an attention mechanism to the U-Net
network, and the efect in crack detection was improved.
Park et al. [38] used semantic segmentation and migration
learning techniques to develop an efective crack detection
method that can accurately detect crack locations and shapes
by performing pixel-level classifcation on concrete structure
images. Khayatazad et al. [39] used an algorithm based on
texture features and morphological operations to identify
and locate cracks and deformations in the structure.

Owing to the small pixel ratio of cracks, compared with
object detection, pixel segmentation can more accurately
identify and locate cracks [40–42] and can provide the
distribution path and shape of cracks, which are important
information for evaluating the structural health of dams. To
obtain quantifed information such as crack length, average
width, maximum width, area, and ratio, the current study
considered the use of semantic segmentation algorithms to
detect cracks.

Recently, the DeepLabV3+ semantic segmentation
method created by Chen et al. [43] has been widely used for
pixel segmentation. DeepLabV3+ adds encoder and decoder
modules on the basis of DeepLabV3, which combines the
advantages of spatial pyramid pooling and can efectively
capture global information. Currently, DeepLabV3+ has
been successfully applied in many felds, such as gear pitting
measurement [44], lychee detection [45], and the classif-
cation of trees, shrubs, and grasses [46]. Te success of
DeepLabV3+ in these areas prompted us to apply it for crack
detection.
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Considering the use of drones and other equipment for
real-time crack detection, we utilized the lightweight and
efcient network MobileNetV2 [47] as the backbone net-
work for DeepLabV3+. MobileNetV2 has demonstrated its
efectiveness in real-time detection of orchard kiwifruit [48],
masks [49], and cracks through wall-climbing robots [50]. It
provides efcient feature extraction, meets real-time re-
quirements, and has excellent migration learning capabil-
ities, making it ideal for crack detection on UAVs and
similar devices.

To incorporate more global information, we adjusted the
dilation rate parameter in the atrous spatial pyramid pooling
(ASPP) module and introduced a 1× 1 convolution module
to increase the convolution density and minimize in-
formation loss, thus improving information search ef-
ciency. In place of the parallel structure in ASPP, we
employed a multifeature layer fusion structure described in
references to capture intricate crack features. Te issue of
imbalanced positive and negative samples was addressed by
utilizing the Dice loss [51–54].

Te improved MobileNetV2_DeepLabV3 network en-
ables the identifcation of cracks, which can be further
utilized tomeasure crack width in images using the inscribed
circle method and imaging principle of the crack profle.
Tis allows for the estimation of the maximum width of real
cracks.

1.2.Contributions. Te contributions of this study are three-
fold:

(1) Utilizing the lightweight and efcient MobileNetV2
network as the backbone of DeepLabV3+, with all
standard convolutions replaced by DSC to minimize
the number of parameters and enable real-time
detection.

(2) Modifying the dilation rate parameter in the ASPP
module, incorporating a 1× 1 convolutionmodule to
enhance convolution density and reduce in-
formation loss, employing amultifeature layer fusion
structure in place of the parallel structure in ASPP,
and using Dice loss to address the crack and back-
ground pixel imbalance problem.

(3) Introducing a method that leverages the inscribed
circle of the crack outline to measure crack width in
the image.

1.3.Organization. In this paper, the implementation process
of the dam crack-based width measurement algorithm in-
cludes three major parts: crack image segmentation, crack
backbone refnement, and crack width measurement, as
shown in Figure 1.

Te remainder of this paper is organized as follows.
Section 2 briefy outlines the structures of DeepLabV3+ and
MobileNetV2 and proposes methods for modifying the
dilation rate of atrous convolution, adjusting the loss
function, and altering the structure of ASPP to enhance
network performance. Section 3 introduces a method to
measure the image crack width using the inscribed circle of

the crack outline and describes the conversion process from
image crack width to real crack width using a depth camera.
Moreover, Section 4 conducts extensive experiments and
analyzes the results. Lastly, Section 5 concludes this study.

2. Method and Principle

Since its introduction, the DeepLabV3+ network has often
been used for high-precision image segmentation due to its
excellent capacity [55]. While the original DeepLabV3+
provides satisfactory image segmentation accuracy, it
struggles to produce continuous crack identifcation in real-
world applications, particularly when dealing with small and
irregular cracks on dams.Terefore, this section outlines the
improvements made to the DeepLabV3+ network to better
capture global information and enhance the accuracy of dam
crack detection.

Tis section frst introduces the DeepLabV3+ network
structure and the MobileNetV2 network structure, followed
by a description of the improved MobileNetV2_Dee-
pLabV3+ structure.

2.1. DeepLabV3+ Network Structure. Te DeepLabV3+ al-
gorithm is currently one of the best semantic segmentation
algorithms [56] for solving image segmentation problems.
Te model improves the backbone network based on the
DeepLabV3+ network and introduces the encoder and
decoder modules. Te overall network structure of Deep-
LabV3+ is shown in Figure 2.

In the encoder, the DeepLabV3 network is used as the
encoder module, which is primarily composed of the
backbone network (DCNN) and the spatial pyramid (ASPP),
for high-level and low-level feature layers. In the encoder, we
used dilated convolutions with diferent dilation rates for
feature extraction in the ASPP module, where the dilation
rates were 3× 3 convolutions of 6, 12, and 18, for improving
the receptive feld of the network. Tis further enables the
network to exhibit diferent feature feelings and used 1× 1
convolution to decrease the number of channels as well as
reduce the parameters and used image pooling to prevent
network overftting. Te feature layer was stacked and fused,
and the 1× 1 convolution was performed to fuse the number
of channels to obtain the green feature layer shown in
Figure 1.

In the decoder, the low-level feature layer generated by
DCNN enters the decoder for 1× 1 convolution, and the
number of channels is adjusted. Te level features’ layer is
subjected to feature fusion through the results obtained from
the 1× 1 convolution, and the fused feature layer is subjected
to 3× 3 convolution for feature extraction. Finally, the input
and output images are maintained at the same dimensions
through quadruple upsampling, and the prediction result is
obtained.

2.2. MobileNetV2 Backbone Network Structure. Numerous
backbone networks can be employed for DeepLabV3+, as
demonstrated in Table 1, which presents the parameters of
some common networks. Lightweight backbone networks
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can efectively enhance detection speed and reduce memory
usage, making the model more suitable for real-time de-
tection. Consequently, in the encoder module, we opted for
the lightweight MobileNetV2 network as the backbone
network (DCNN) for feature extraction.

MobileNetV2 [47] is a lightweight network model in-
troduced by the Google team in 2018. Te overall network
structure of MobileNetV2 is displayed in Table 2. Boasting
a simple, streamlined structure with signifcantly fewer
parameters and low latency, MobileNetV2 can extract crack
feature information more quickly while maintaining a con-
sistent accuracy.

Te standard convolution process is shown in Figure 3.
Te input was passed through four convolution layers of
3× 3 convolution kernels, and four feature maps were
output, where the number of parameters of the convolution
layer was 4× 3× 3× 3�108.

Te DSC is a combination of depthwise convolution
(DW) and pointwise convolution (PW). Te convolution
operation is shown in Figure 4. PW performs a 1× 1 con-
volution cross-channel combination on the input image,
whereas DW is a convolution kernel corresponding to one
input channel and performs spatial convolution on each
input channel independently. Terefore, as shown in Fig-
ure 4, a four-channel image was subjected to DW to generate
four feature maps, and fnally, the same output dimension as
the standard convolution process could be obtained. Te
overall efect was the same as the standard convolution.
However, the number of parameters in the convolution layer
was 1× 1× 3× 4 + 3× 3× 4� 48, which is only about 44% of
the number of parameters compared to the standard con-
volution. Terefore, the number of parameters of the DSC
module was considerably reduced compared with that of the
ordinary convolution module, indicating that the

Crack Image Segmentation

Improved MobilenetV2_Deeplabv3 Identify Cracks

Crack Backbone Refinement

Remove Background

Image Binarization

Extraction of Crack Profiles

Width Calculation

Feasibility Verification

Crack Width Measurement

Crack True Width Measurement

Figure 1: Technology road map.

DCNN ASPP

MobileNetv2

1×1 Conv
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3×3 Conv
rate 6

3×3 Conv
rate 12
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rate 18
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Pooling
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Encoder
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low-level feature

Upsample
by 4

Upsample
by 4

Figure 2: Original MobileNetV2_DeepLabV3+ network structure.
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integration of the MobileNetV2 network and DSC module
can achieve a faster speed and a smaller network volume,
with low computational load extract crack features.

2.3. Improved MobileNetV2_DeepLabV3. To enhance the
network’s performance for crack feature extraction, an
improved DeepLabV3+ method is proposed. Tis method
replaces the feature layer parallel structure in ASPP with
a feature layer fusion structure, adjusts the dilation rate in
the ASPP module, and adds a few parameters to strengthen
the fracture characteristic information while reducing the
interference of environmental factors. Tese improvements
enable a greater accuracy in crack identifcation without
sacrifcing the model detection efciency.

Tree modifcations were incorporated based on the
original DeepLabV3+ network structure (Figure 5).

Te convolution interval of the original hole convolution
in ASPP was small, which resulted in the loss of some global
information. Increasing the dilation rate can reduce the loss
of global information (Figure 6). Te red dots in Figure 6(a)
represent the pixels used. Te green regions represent the
pixel information obtained by the conventional 3× 3 con-
volution. Figure 6(b) uses a dilation rate of 1 hole convo-
lution, which can be observed from the number of red dots.
Te obtained information increases from 9 in Figure 6(a) to
49 in Figure 6(b). Figure 6(c) shows the dilation rate of 2.Te
convolution exhibits more pixel information, up to 121, such
that the hole convolution is increased. Terefore, the in-
crease in the dilation rate can promote the acquisition of
more pixel information from the image and improve the
ability of the network to capture global information. Te
segmentation of targets with long lengths such as cracks will
be disturbed by factors such as noise, light, and shadows.
Furthermore, it is necessary to improve the ability to capture
global information. Te dilation rate of the atrous convo-
lution in the original ASPPmodule was increased from 6, 12,
and 18 to 6, 18, and 24, thereby efectively enhancing the
ability to obtain pixel information and consequently im-
proving the capacity to capture global information. In ad-
dition, a new dilation rate 3 feature layer was added to ensure
that features near the cracks receive focused attention. As
a result, the entire system can utilize more pixel information
to improve recognition performance when faced with
complex backgrounds. Furthermore, a 1× 1 convolution
layer was introduced after the atrous convolution to increase
the convolution density, which helps to reduce information
loss while obtaining more information.

In the original ASPPmodule of DeepLabV3+, the feature
layers operate in parallel, preventing them from sharing any
fracture feature information. By fusing the feature layers,
fracture feature information can be shared among the layers,
and expansion convolutions with diferent expansion rates
can be interdependent, ultimately increasing the range of the
receptive feld [50]. Te structure of the ASPP before and
after the improvement is illustrated in Figure 7.

Te improvement structure can better capture the global
information of the dam crack image by increasing the
perceptual feld. Te following equation shows the receptive
feld:

RF � (Rate − 1) ×(k − 1) + k, (1)

where RF denotes the receptive feld, Rate denotes the di-
lation rate, and k denotes the convolution kernel size.

According to equation (1), the maximum perceptual feld
RFmax for a single feature layer is

RFmax RF33,RF
6
3,RF

18
3 ,RF243 

� RF243
� 49,

(2)

where RF63 indicates the feld of perception of the expanded
convolution for an RF convolution kernel size of 3× 3 and
a dilation rate of 6.

Table 1: Parameters of common models.

Models Parameters (M)
VGG16 138.36
ResNet50 25.56
ResNet101 44.55
Inception V3 27.16
Xception 23.03
MobileNetV2 3.5

Table 2: MobileNetV2 structure.

Inputs Operators Expansions Channels Numbers Strides
2442 × 3 Conv2D — 32 1 2
1122 × 32 Bottleneck 1 16 1 1
1122 ×16 Bottleneck 6 24 2 2
562 × 24 Bottleneck 6 32 3 2
282 × 32 Bottleneck 6 64 4 2
282 × 64 Bottleneck 6 96 3 1
142 × 96 Bottleneck 6 160 3 2
72 ×160 Bottleneck 6 320 1 1

72 × 320 Conv2D
1× 1 — 1280 1 1

72 ×1280 AvgPool
7× 7 — 1 —

1× 1× k Conv2D
1× 1 — k —

3 Channel Input 4 Filters 4 Feature Maps

Figure 3: Ordinary 3× 3 convolution process.

International Journal of Intelligent Systems 5



By fusing feature layers, a larger perceptual feld can be
obtained. For the perceptual feld obtained by fusing two
feature layers,

RF � RF1 + RF2 − 1, (3)

where RF1 and RF2 are two diferent feature layers.
Tus, according to equation (4), the maximum per-

ceptual feld obtained after fusing feature layers in this paper
is 105.

3 Channel Input 4 Filters 4 Feature Maps4 Filters 4 Feature Maps
PW DW

Figure 4: Depthwise separable convolution (DSC) 3× 3 process.

DCNN

MobileNetv2

ASPP Encoder

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

3×3 Conv
rate 3

3×3 Conv
rate 6

3×3 Conv
rate 18

3×3 Conv
rate 24

Image
Pooling

1×1 Conv 3×3 ConvConcat

Decoder

heigh-level feature

low-level feature

Upsample
by 4

Upsample
by 4

Figure 5: Improved MobilenNetV2_DeepLabV3 network structure.

(a) (b) (c)

Figure 6: 3× 3 ordinary convolution and hole convolution structure: (a) 3× 3 convolution, (b) 3× 3 atrous convolution with a dilation
rate� 1, and (c) 3× 3 atrous convolution with a dilation rate� 2.
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RFmax � RF33 + RF63 + RF183 + RF243 − 3

� 105.
(4)

By fusing feature layers in the ASPP module, the model
can obtain a larger receptive feld, which improves the
model’s use of crack information and ultimately the overall
crack detection accuracy.

In crack images, most cracks occupy a pixel area much
smaller than the background area.Tis leads to an imbalance
of positive and negative samples during algorithm training,
resulting in weight bias that afects the segmentation per-
formance of the algorithm. To solve this issue, the Dice loss
(equation (5)) is used instead of the cross-entropy loss
function:

Dice loss � 1 −
2

N
i�1yi yi


N
i�1yi + 

N
i�1yi

, (5)

where yi and yi denote the label value and the predicted
value of pixel i, respectively, and N is the total number of
pixel points, which is equal to the number of pixels in
a single image multiplied by the batch size.

3. Crack Width Calculation

3.1. Extraction of Pixels in Cracks. For cracks with diferent
widths in a dam, the inscribed circle method of the crack
contour was used to calculate the crack width of the image.
First, the crack image identifed by the improved Mobile-
NetV2_DeepLabV3 was removed, and only the crack was
retained. As we only require obtaining the pixel points
within the crack outline, we frst enclosed the crack with the
smallest circumscribed rectangle (Figure 8(d)). Tereafter,
all pixels except those contained in the minimum circum-
scribed rectangle were removed from the image to reduce
the amount of computation. Te ray method in geometry
was used to determine whether the pixels of the circum-
scribed rectangle were within the crack contour, and the
pixels within the crack contour were extracted.

3.2. Identifcation of the Maximum Width of the Crack.
Te minimum side length of the minimum circumscribed
rectangle of the crack outline was set to s. Te pixel points xi
(i� 0, 1, 2, and n) in the crack outline were considered as
dots. Initially, the minimum radius sr of the circle was set to
0. Te maximum radius mr was set as s/2. Te dichotomy
method was subsequently used to fnd the maximum radius.
If the circle drawn with this length as the radius contains no
intersection with the crack outline, then half of the sum of
the maximum radius and the minimum radius is used as the
subsequent minimum radius.When the drawn circle and the
point outside the crack outline were not selected, the radius
calculated by the dichotomy method is selected as the
subsequent maximum radius. Until the circle and the crack
outline have exactly two intersection points, the circle was
based on these parameters. Te pixel point was the center of
the circle, which was relative to the maximum inscribed
circle of the crack outline. Te whole process is shown in
Figure 9.

Finally, the maximum inscribed circle radii of all pixels
in the crack outline were compared (Figure 10) to obtain the
maximum width of the crack outline, and the circle
was drawn.

3.3. Estimating the Actual Maximum Width of the Crack.
Te D435i depth camera utilizes a method of acquiring
depth information for a point on an image by emitting
infrared structured light and capturing the shape change of
the light that is refected back. It achieves this by utilizing
a depth sensor to analyze the shape change of the structured
light. By calculating the distance between the camera and the
point on the surface of the object, it generates a depth image
that provides a quantitative measurement of the distance to
various points on the object’s surface.Terefore, we used the
Intel RealSense D435i depth camera to capture the crack
image and to obtain the distance from the camera to the
measurement surface. Tereafter, the crack width was cal-
culated through the crack image. Te principle of true width
is shown in Figure 11, where points P1 and P2 are the

Input

1×1 Conv

3×3 Conv
rate 6

3×3 Conv
rate 12

3×3 Conv
rate 18

Image
Pooling

Output

(a)

Input

1×1 Conv

3×3 Conv
rate 3

3×3 Conv
rate 6

3×3 Conv
rate 18

3×3 Conv
rate 24

Image
Pooling

Output

(b)

Figure 7: ASPP structure: (a) before improvement and (b) after improvement.
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intersection points of the inscribed circle with the maximum
width as the diameter of the crack on the image and the crack
contour. Tus, P1 and P2 are the largest crack contours on
the world coordinate system obtained by the imaging
principle. In Figure 11, ux is the relative ofset of the origin of
the imaging plane coordinate system from the v-axis along
the u-axis of the pixel plane coordinate system; vy is the
relative ofset of the origin of the imaging plane coordinate
system from the u-axis along the v-axis of the pixel plane
coordinate system; and u is the value along the u-axis on the

pixel plane coordinate system and v is the value along the
v-axis of the pixel point on the pixel plane coordinate system.

Te depth (d) from the measurement surface to the
camera was measured by the principle of depth camera
structured light. When the depth of the depth camera and
the measurement surface is known, the depth camera is
single-targeted to obtain the internal parameter matrix,

fx 0 ux
0 fy vy
0 0 1

⎛⎜⎝ ⎞⎟⎠. Te scale factors fx and fy are extracted,

and the values of the coordinate points (x1 and y1) and (x2
and y2) of the real fracture are calculated using equations (6)

(a) (b)

(c) (d)

Figure 8: Extraction process of the minimum circumscribed rectangle of the crack: (a) original image, (b) identifed cracks, (c) removing
background, and (d) the smallest circumscribed rectangle surrounding the crack.

Xi (i=0,1,2,...n)

Draw a circle with r as radius and the number of
interestion points with the crack outline is num

num>2 num=2 num=0 or 1

mr=r/2 sr=r/2output r, i=i+1
mr=s/2,sr=0

r =
sr ± mr

2

Figure 9: General process of using the bisection method to fnd the
inscribed circle with the pixel as the center in the crack outline.

Figure 10: Extracted inscribed circle with the maximum width as
the diameter.
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and (7), by using the principles of imaging and similar
triangle:

xi �
ui − ux

fx
× d(i � 1, 2), (6)

yi �
vi − vy

fy
× d(i � 1, 2). (7)

Finally, the maximum width of the real crack is calcu-
lated by the following equation:

width �

�������������������

(x1 − x2)
2

+(y1 − y2)
2



. (8)

4. Fracture Segmentation Results and Analysis

To verify the efectiveness of our proposed method, we
conducted experiments on existing semantic segmentation
neural networks, by comparing the improved Mobile-
NetV2_DeepLabV3 with MobileNetV2_DeepLabV3, ENet,
BiSeNetV2, FCN, U-Net, and PSPNet.

4.1. Evaluation Indicators. In this study, four evaluation
criteria were used to assess the performance of the network
for semantic segmentation: mRecall rate (equation (9)),
mPrecision rate (equation (10)), intersection ratio IoU
(equation (11)) for cracks, and average intersection ratio
mIoU (equation (12)). TP represents the positive samples
predicted by the network model as positive classes, TN
represents the negative samples predicted by the network
model as negative classes, FP represents the negative samples
predicted by the network model as positive classes, and FN
represents the positive samples predicted by the network
model as negative classes.

Te mRecall rate indicates the average of the quantity of
data accurately predicted in the positive class data in the test
set (the prediction result is a positive class). Te mPrecision
rate indicates the proportion of truly positive samples in the
predicted outcome among the samples predicted to be
positive. Te average intersection and union ratio MIoU
represents the ratio of the intersection and union of the
prediction results of the model and the true value of each
category.Te IoU represents the ratio of the intersection and
union of the prediction results of the model and the true
value of one category.
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1

n + 1


n

i�0
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, (9)
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IoU �
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, (11)
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1
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. (12)

4.2. Experimental Conditions and Model Environment.
Te experimental environment in this study was confgured
with the Ubuntu 20.0 operating system, Intel Core i5-10400F
CPU processor, NVIDIA GeForce RTX 2060 graphics card,
and open-source PyTorch deep learning framework.Te raw
data for the experiments were images of real dam cracks
collected through digital equipment. Table 3 shows the use of
experimental data, where “size” denotes the image size in
pixels and “number” denotes the number of images used.
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Figure 11: Diagrammatic representation of camera imaging.
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Te Intel RealSense D435i depth camera was used to
measure the distance from the measuring surface to the
camera, and the 0–200mm electronic digital caliper was
used to measure the width of the real crack (Figure 12).

Te LabelMe tool was used to annotate the collected
dataset to obtain the corresponding annotation map. Te
annotation of the crack data is shown in Figure 13.

Te TensorBoard tool attached to the PyTorch was used
to observe the change of the loss value during training
(Figure 14). It can be observed that when the epoch reached
100, the loss value tended to be stable.Terefore, the selected
epoch was 150.

4.3. Ablation Studies. Based on the theoretical analysis in
Section 3, ablation studies were designed to verify the ef-
fectiveness of rate modifcation, 1× 1 convolution, feature
layer fusion, and Dice loss function. Te following networks
were tested: (1) DeepLabV3+ network without any im-
provement, denoted as DL; (2) DeepLabV3+ with only rate
modifcation, denoted as R+Dp; (3) DeepLabV3+ network
with only 1× 1 convolution, denoted as C+DL; (4) Deep-
LabV3+ with a feature layer fusion structure, denoted as
F +DL; and (5) DeepLabV3+ with the Dice loss function,
denoted as D+DL. Te results of the ablation experiments
are shown in Table 4 to verify the efectiveness of the
algorithm.

From Figure 15, it can be seen that the original Deep-
LabV3+ network has a good ability to extract crack feature
pixels but can be further improved. Among them, rate
modifcation, feature layer fusion structure, and the addition
of 1× 1 convolution do not improve the original loss
function because of the extreme imbalance between positive
and negative samples. However, the original DeepLabV3+
network improved signifcantly after adding Dice loss, and
the DeepLabV3+ network with a feature layer fusion
structure and the addition of 1× 1 convolution showed even

more improvement. Tis indicates that these changes make
the network pay more attention to the characteristics of
cracks, solve the problem of imbalance between positive and
negative samples, and improve the network’s ability to
identify cracks.

4.4. Crack Segmentation Experiment Results. To compare the
accuracy and training speed of the algorithm, the seg-
mentation efect of the dam crack image was tested. Te
original MobileNetV2_DeepLabV3, U-Net, PSPNet,
Xception-DeepLabV3+, and improved MobileNetV2_Dee-
pLabV3 networks were tested with the same dataset. MIoU
and crack IoU were used as the evaluation metrics for
network segmentation accuracy. In Table 5, the experimental
results are shown, where the total parameters of each net-
work are represented as total params and the time used by
each network to train under the same conditions is repre-
sented as train time, and FPS stands for frames per second.

Table 5 shows that the total parameters of U-Net,
PSPNet, and FCN, which are common semantic segmen-
tation networks, are 2.3 times, 5.9 times, and 3.2 times higher
than MobileNetV2_DeepLabV3+. Moreover, the training
time of U-Net and FCN is more than twice that of Mobi-
leNetV2_DeepLabV3+. However, the FPS of Mobile-
NetV2_DeepLabV3+ is higher than that of U-Net and FCN.
Terefore, using MobileNetV2 as the backbone of Deep-
LabV3+ achieves a lightweight efect.

Although BiSeNetV2 and ENet are lightweight networks
with a small number of parameters and training time, they
have only 24.34% IoU and 54.17% IoU for dam cracks,
making them unsuitable for crack identifcation. On the
other hand, the improved MobileNetV2_DeepLabV3+
showed the best segmentation results, with an overall MIoU
value increase of 2.11% and a signifcant improvement in the
dam crack region with an IoU value increase of 4.67%. It
only increased the number of parameters by 29.79MB and

Table 3: Te use of images.

Type Size (pixel) Number
Training data 512× 512 1560
Test data 512× 512 760
Validation data 512× 512 1404

(a) (b)

Figure 12: Equipment used for crack identifcation and measurement: (a) depth camera and (b) electronic Vernier caliper.
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Figure 13: Labeling of the crack data with LabelMe.
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Figure 14: Improved MobileNetV2_DeepLabV3 training and validation loss curves.

Table 4: Ablation studies.

Model MIoU (%) IoU (%) mRecall (%) mPrecision (%)
DL 81.12 62.29 86.96 88.76
R +DL 81.14 62.83 87.34 89.63
C+DL 81.04 62.64 87.05 89.80
F +DL 80.59 61.69 87.71 89.35
L +DL 82.19 64.89 87.98 90.57
R +C+DL 81.26 63.07 87.87 89.24
R + L+DL 82.72 65.96 89.96 89.51
C+ L+DL 82.78 66.07 89.13 90.20
R +C+L+DL 82.85 66.21 89.85 89.57
F +C+DL 80.59 61.69 86.25 89.96
F + L +DL 82.72 65.96 90.41 89.48
F +C+L+DL 83.23 66.96 90.47 89.51
Te bold font is to highlight that the optimized algorithm in this paper performs better than any of the other optimizations.
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Figure 15: Comparison of original MobileNetV2_DeepLabV3 and improved MobileNetV2_DeepLabV3 crack segmentation results.
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training time by 60 seconds and decreased the FPS by a mere
0.3. Tus, the improved MobileNetV2_DeepLabV3+ has
a higher recognition efect while ensuring a lighter weight
and is more suitable for real-time detection. Te improved
method is efective.

To better visualize the efect, the segmentation results of
the original MobileNetV2_DeepLabV3 algorithm and the
improved MobileNetV2_DeepLabV3 algorithm were com-
pared. Owing to the limited space, only certain represen-
tative segmentation results are given, as shown in Table 4. To
render the cracks more visible, the background brightness of
the graphs in Table 6 has been increased. As can be observed
from Figure 14, the cracks identifed by the original
MobileNetV2_DeepLabV3 were incoherent and in-
termittent, and the cracks were thinner, indicating that the
recognition was not efective.

4.5. Crack Width Accuracy Assessment. To verify the accu-
racy of the method used in Section 3, fve samples were
considered for comparing the maximum crack width
measured by the method, described in Section 3, with the
actual maximum crack width. Te comparison results are
shown in Table 6.

In two previous studies [5, 57], the relative error rates in
the calculation of the fracture image converted into the
maximum width of the real fracture were 1.20%–9.09% and
13.27%–24.01%, respectively. Considering their data as
a reference, it can be concluded from Table 6 that the relative
error rate of the measurement was 1.58%–11.22%, which
showed the feasibility of the method and the accuracy rate
can be guaranteed.

5. Conclusion

Tis study proposes a dam crack detection method based on
the improved lightweight MobileNetV2_DeepLabV3. It
utilizes a dataset of 1560 dam crack images collected from

smartphones and depth cameras for training, with 1404
images used for validation and 760 images for testing
purposes. Although this dataset is relatively large, it is im-
portant to acknowledge the possibility of under-
representation, which may limit the generalization ability
of the results.

Te “LabelMe” tool was employed as the image anno-
tation tool, while a depth camera was used to identify the
maximum crack width in the crack images. However, it is
important to note that both of these steps involve human
manipulation and are susceptible to subjective factors and
errors. Tese factors can potentially impact the accuracy and
reliability of the results. It is crucial to consider these lim-
itations when interpreting the fndings of the study, as the
presence of subjective factors and errors can afect the ac-
curacy of the results.

To mitigate interference from noise, light, shadows, and
other factors during segmentation, modifcations were made
to the parameters of the atrous spatial pyramid pooling
(ASPP) module in the DeepLabV3+ network structure. In
addition, a multifeature fusion structure was used instead of
the parallel structure in ASPP, enabling the network to
capture richer crack features. Subsequently, segmentation
experiments were performed.

Te experimental results demonstrate that the improved
MobileNetV2_DeepLabV3+ algorithm achieves better seg-
mentation performance compared to the original Mobile-
NetV2_DeepLabV3+ algorithm. It shows an increase of
2.11% in the mean intersection over union (MIoU) and
a 4.67% increase in the intersection over union (IoU) for
crack segmentation. In comparison to U-Net, PSPNet, and
FCN algorithms, the proposed algorithm reduces compu-
tation by 2–7 times and training time by
5,900−25,000 seconds. Tis higher efciency makes it more
suitable for engineering applications and allows for its in-
tegration into drones or other machinery and equipment to
achieve automatic crack detection. However, it is recom-
mended to consider other advanced crack detection

Table 5: Comparison of network results.

Method MIoU (%) IoU for
crack (%)

Total params
(MB)

Train time
(s)

Frames per
second (FPS)

U-Net 79.16 58.87 2905.95 40,560 7.3
PSPNet 68.93 38.41 7575.59 7,980 14.7
FCN 56.5 39.10 4121.82 35,400 9.1
BiSeNetV2 61.35 24.34 240.16 1,496 83.3
ENet 76.53 54.17 292.83 1,583 58.8
MobileNetV2_DeepLabV3+ 81.12 62.29 1247.93 14,880 9.9
Improved MobileNetV2_DeepLabV3+ 83.23 66.96 1277.72 14,94 9.7
Te bold font indicates that the performance of the optimized algorithm in this paper is the best in the table.

Table 6: Physical width measurement results of examples.

Example Calculation (mm) Ground truth (mm) Relative error (%)
1 7.583 7.40 2.47
2 8.327 8.75 4.83
3 6.102 6.20 1.58
4 5.748 5.5 4.51
5 4.64 3.64 11.22
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algorithms for comparison to provide a more comprehen-
sive assessment of the method’s advantages and limitations
in terms of performance. In terms of real crack identifca-
tion, the relative error rate between the actual maximum
crack width calculated by the proposed method and the
measured maximum crack width was found to be in the
range of 1.58%–11.22%. Tis demonstrates the feasibility of
the method.

For future work, it is suggested to expand the dataset by
collecting images with an increased complexity and various
types of background images of dam cracks. In addition,
eforts should be made to improve the accuracy of the
proposed method for direct applicability to UAV equip-
ment, enabling the realization of automatic detection of dam
cracks.
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