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Because of the presence of clouds, the available information in optical remote sensing images is greatly reduced. Tese temporal-
based methods are widely used for cloud removal. However, the temporal diferences in multitemporal images have consistently
been a challenge for these types of methods. Towards this end, a bishift network (BSN) model is proposed to remove thick clouds
from optical remote sensing images. As its name implies, BSN is combined of two dependent shifts. Moment matching (MM) and
deep style transfer (DST) are the frst shift to preliminarily eliminate temporal diferences in multitemporal images. In the second
shift, an improved shift net is proposed to reconstruct missing information under cloud covers. It introduces multiscale feature
connectivity with shift connections and depthwise separable convolution (DSC), which can capture local details and global
semantics efectively. Trough experiments with Sentinel-2 images, it has been demonstrated that the proposed BSN has great
advantages over traditional methods and state-of-the-art methods in cloud removal.

1. Introduction

Optical remote sensing image is an important data source for
large-area research and application. However, clouds and
shadows make it difcult to obtain high-quality optical
images. Mostly, clouds are detrimental to the practical ap-
plications of remote sensing images. When the ground is
covered by thin clouds, the sensor captures a mixture of thin
clouds and ground objects. When the ground is covered by
thick clouds, thick clouds and shadows completely obstruct
the ground, and the optical sensor usually cannot capture
ground information. Clouds (especially thick clouds) and
their shadows have long been considered a difcult problem
in remote sensing image processing and applications.

In the past decades, great eforts have been made to
remove clouds from remote sensing images. Depending on
the type of data source, a wide variety of cloud removal
methods are classifed into four categories: spatial-based,
spectral-based, temporal-based, and hybrid methods [1].
Spatial-based methods are not suitable for large-size and

complex cloud-covered images. Spectral-based methods
work well with thin clouds, but not with thick clouds.
Terefore, the most signifcant and widely used methods are
temporal-based methods and hybrid methods.

Remote sensing platforms usually have a fxed visit
period and can acquire images of the same area at diferent
time intervals. Tus, they provide a reliable reference data
source for cloud removal withmultitemporal remote sensing
images. Temporal-based methods introduce additional ob-
servations from multitemporal images to reconstruct cloud-
covered regions rather than using only the cloudy image
itself. Tey can alleviate temporal diferences caused by
observational conditions and regular changes in geographic
features (e.g., phenological changes). Te representative
methods include temporal replacement methods [2], tem-
poral flter methods [3, 4], and temporal learning methods
[5–8]. Hybrid methods attempt to make better use of cor-
relations among spatial, spectral, and temporal domains
using the same or diferent sensor data. Tey can take full
consideration of the advantages of the above three methods
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to achieve better cloud removal results. Te hybrid methods
include joint spatiotemporal methods [9] and joint spatio-
spectral methods [10]. Additionally, multisource data (SAR
and optical images) [11, 12] are also used as auxiliary images
to improve the efects of cloud removal. Generally, hybrid
methods have difculty in multisource data acquisition.
Relatively speaking, temporal-based methods are more
popular and available for cloud removal from optical images.

1.1.RelatedWork. During the past decades, researchers have
developed a number of temporal-based methods. Chen et al.
proposed a Savitzky–Golay flter to remove noise from
images [3] but failed to remove thick clouds. Based on the
idea of replacement, Lin et al. proposed a multitemporal
information cloning method for removing thick clouds [2].
An automatic cloud removal method based on Poisson
blending using temporal similarity of multitemporal images
is applied [13]. Li et al. reconstructed cloud-covered regions
from remote sensing images within a framework of sparse
representation (PM-MTGSR) [14]. It can efectively exploit
nonlocal correlations to reconstruct missing information in
optical remote sensing images [5]. An improved Bayesian
dictionary-learning algorithm based on compressed sensing
was proposed to restore remote sensing images [15]. Ten,
multitemporal dictionary learning is expanded into the
recovery of quantitative data contaminated by thick clouds
and shadows [7]. To recover the original information cov-
ered by clouds and accompanying shadows, a non-negative
matrix factorization error correction method was proposed
[8]. Although researchers have made signifcant develop-
ments inmultitemporal-basedmethods, traditional methods
have some limitations. For example, they cannot take ad-
vantage of the deep correlation of the image to remove
clouds, which is especially important for remote sensing
images. Traditional methods often underperform when
dealing with clouds and feature boundaries, and recon-
structed features are not sufciently accurate. Furthermore,
temporal-based methods are extremely dependent on the
quality of multitemporal reference images, and if reference
temporal images are contaminated by clouds, the results of
cloud removal are signifcantly infuenced.

Recently, owing to its powerful nonlinear representation
capability [16, 17], deep learning has attracted more and
more attention in missing information reconstruction in
remote sensing images. Deep learning-based methods can
exploit deep correlations between multitemporal images
compared to traditional methods. Sandhan and Choi suc-
cessfully used a generative model to specifcally remove
extremely thin high-altitude clouds [18]. However, it cannot
efectively process more heavily obscured images. Tus,
researchers moved to thick cloud removal based on con-
volutional neural networks (CNNs). For example, Zhang
et al. proposed a CNN-based spatial-temporal-spectrum
(STS) framework [19] to generate accurate reconstruction
results. Tey also improved the STS framework to combine
the global-local spatiotemporal information for cloud re-
moval [20]. Considering the specifcity of diferent types of
information, a traditional CNN-based joint content, texture,

and spectrum generation network was proposed for cloud
removal [21]. Based on the idea of integration, Ji et al.
proposed an integrated cloud detection and removal method
with cascaded CNNs [22]. Moreover, a novel gated con-
volutional network (GCN) has stronger diferentiation
ability than general convolutional networks for cloud re-
moval [23]. Generative adversarial networks (GANs) [24]
are also used for cloud removal. Yu et al. [25] proposed a
GAN with a contextual attention method (GAN-CA) for
reconstructing information from cloud-obscured images. It
can explicitly focus on relevant feature blocks at distant
spatial locations, but the ability to process high-resolution
tasks is insufcient. A trainable Spatio-Temporal Generator
Adversarial Network (STGAN) [26] casts cloud removal as a
conditional image synthesis. Gao et al. proposed the SAR-
opt-GAN method, which joins SAR and optical data to
facilitate cloud removal [27]. Te image translation ap-
proach has been adopted by researchers as a recent idea for
SAR-assisted cloud removal [28]. Deep learning-based
methods are robust and stable and therefore less susceptible
to the infuence of the dataset quality than traditional
methods. Deep learning-based methods have a large number
of model parameters and therefore have a relatively high
accuracy due to pretraining requirements. Te current cloud
removal methods based on deep learning have made great
advancements, but there are still some problems. For ex-
ample, due to the large size of remote sensing datasets, deep
learning methods cannot process them directly and re-
searchers have to crop them to smaller images. Moreover, if
the ancillary images in the datasets have large temporal
diferences, the results of cloud removal will be unsatis-
factory. Terefore, the datasets need a high correlation of
spatial, spectral, and temporal aspects with target images.
However, deep learning-based methods have rarely focused
on temporal diferences among multitemporal images. Tis
is a great obstacle to utilizing the temporal correlation of
multitemporal images.

1.2. Contributions. In order to restrain the temporal dif-
ferences in multitemporal images and cooperate with the
advantages of deep learning, a novel bishift network (BSN)
model with double shifts is proposed in this paper. BSN can
improve the correlation between the target image and
datasets somewhat, facilitating the model to learn more
efective information required for cloud removal.

Te frst shift includes moment matching (MM) and
deep style transfer (DST). Multitemporal images (reference
images) are statistically normalized to cloud-covered images
by traditional MM and then processed by DST to further
eliminate temporal diferences. MM utilizes the mean and
variance in optical remote sensing images to match features
from datasets to target images. In the stage of DST, the
transferred images are constrained to be represented by
locally afne color transformations to prevent distortions.

Te second shift takes full advantage of a proposed
reconstruction network to reduce the temporal diferences of
images once again for better cloud removal. It is an im-
proved version of Shift-Net [29] with shift connections and
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depthwise separable convolution (DSC). Shift connections
reduce information loss during reconstruction and efec-
tively improve the accuracy of cloud removal. DSC can
partially reduce the number of parameters of the model and
improve training efciency. Te proposed reconstruction
network can better capture the local details and global se-
mantics of images. By two successive shift operations, the
temporal diferences in the multitemporal images can be
suppressed efectively. Eventually, high-quality cloud-re-
moved images can be obtained.

Te rest of this paper is organized as follows: Te
proposed BSN is introduced in Section 2.Te efectiveness of
BSN is tested by simulated experiments and real experiments
in Section 3. Finally, Section 4 summarizes the article.

2. Proposed Method

BSN is a further improvement on our previous research [30].
It consists of two shifts, as shown in Figure 1.Te frst shift is
to preprocess multitemporal images (reference images) with
MM and DST to obtain reliable preliminary results. In the
second shift, the reconstruction network from improved
Shift-Net will reconstruct the target image covered by clouds
and shadows to generate accurate cloud-free images. BSN
requires at least one temporal reference image to ensure the
capability of the network. It is also capable of dealing with
many multitemporal reference images. Tis section will
introduce BSN in detail.

2.1. First Shift. It is a challenge that multitemporal remote
sensing images have diferent temporal characteristics. To
this end, the frst shift of the proposed BSN is used to
normalize multitemporal reference images to cloudy images
(target images). Te frst shift contains statistical MM and
DST for reducing temporal diferences in reference images.

2.1.1. Moment Matching. MM is a mathematical statistical
method, commonly used in remote sensing image denoising
[31] and diference elimination [32]. In BSN, MM is used to
normalize multitemporal reference images. It should be
noted that, because parts of the information of the cloudy
image are covered by clouds, the statistical values of target
images are from cloudless regions. Tus, the cloud mask is
used to distinguish between the cloud and cloud-free pixels.
Te MM formula is as follows:

Io(x, y) �
σT

σR

IR(x, y) −
σT

σR

μR + μT, (1)

where I(x, y) is the pixel at the position (x, y) and μ and σ
represent the mean and variance of the entire image, re-
spectively. Te abbreviations O, R, T represent the output
image, the reference image, and the target image,
respectively.

Before MM, there are feature diferences between
multitemporal reference images due to temporal, weather,
and light intensity. For example, there are diferences in the
greenness degree of vegetation and the intensity of light

refections. MM can reduce these diferences to a certain
extent and contribute to the efciency of style transfer.

2.1.2. Deep Style Transfer. Style transfer is an evolving re-
search feld. Gatys et al. frst proposed a style transfer al-
gorithm based on neural networks [33, 34]. In neural style
transfer, two input images include a “content image” and a
“style image.” Te content of the image is defned as the
feature response from the pretrained CNN, while the style is
a summary feature statistic. Te task of style transfer is to
convert the image to an artistic style by changing the style.
However, preserving the required semantic content is a key
challenge, which is achieved by generally changing the
weights of pretrained CNNmodels [35]. In this paper, DSTis
applied to multitemporal reference images for normalizing
temporal diferences.

Te traditional style transfer method is efective for
simple styles, such as global color changes and tone curves. It
generates the output image by using the reference style
image on the content image. Te general objective function
is

Ltotal � 
N

l�1
αlL

l
C + c 

N

l�1
βlL

l
S, (2)

where Ltotal is the total loss in deep CNN, αl and βl are the
loss weights of the content image C and the style image S in
the l-th convolutional layer of the total N-layer, respectively,
c is the weight of all style images, and Ll

C and Ll
C represent

the content loss and style loss in the style transfer process,
respectively.

Before BSN, general fast style transfer had been used for
temporal diference elimination [30]. However, regular style
transfer methods are not suitable for realistic style and
complex transfers. Style transfer is particularly difcult for
remote sensing images with complex features, large scale,
and high resolution. To solve this problem, the style
transformation from input to output is constrained to be a
local afne projection in RGB color space. It has been
demonstrated that the local style transfer algorithm based on
spatial color mapping is more expressive [36]. Terefore,
DST is adopted [37].

DST can ensure the preservation of image structure,
semantic accuracy, and transfer faithfulness, which is ben-
efcial to complex remote sensing images. In optimization, a
realistic regularization term Lm is proposed in the objective
function. Te reconstructed image is constrained to be
represented by locally afne color transformations of the
input to prevent distortions. An optional guidance is in-
troduced to the style transfer process based on semantic
segmentation of reference images. Styles are only transferred
between features of reference images and similar features
of target images. Te style transfer process minimizes
the content-mismatch problem, which greatly improves the
photorealism of output images. Tis indicates that the
multiple classes of features and complex textures of remote
sensing images will not be lost in the process of style transfer.
Te method expects no cloud information in the transferred
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images. Terefore, regions covered by the cloud are use-
less. Te mask is added to the input image as an additional
channel to distinguish between cloud-covered and cloud-
free regions. Ten, the neural style algorithm is enhanced
by concatenating segmentation channels and updating the
augmented style loss LS+. More details can be found in
[37].

Te improved objective function of DST is

Ltotal � 
L

l�1
αlL

l
C + c 

L

l�1
βlL

l
S+ + δLm, (3)

where δ indicates the corresponding weight of the realistic
regularization term and Ll

C and LS+ represent the content
loss and the augmented style loss, respectively.

Te traditional fast style transfer method requires a
decision on the content and style of the image. Terefore,
the original content clarity of the image cannot be pre-
served, while the style is completely transferred. Fast style
transfer can only achieve rough style transfer, with little
change in its content. Tis leads to the fact that the
transferred image is not close enough to the style image
(cloudy target image). For example, in Figure 2(d),
vegetation and bareland are in a gradual transition in the
cloudy image, but the diference is obvious in the ref-
erence image. Although the images generated by fast style
transfer are similar in style to cloudy images, vegetation

and bareland are clearly distinguished. It is obviously
inappropriate as a preliminary result of cloud removal.
However, DST can realize transfer between similar fea-
tures, which makes the transfer process more accurate. As
a result of DST, the features of rivers, vegetation, and
bareland are highly consistent with cloudy target images
in Figure 2(e).

In the frst shift, MM and DST are applied to process
multitemporal reference remote sensing images, gradually
removing temporal diferences among images so that they
can contain more information similar to the target image.
Te preprocessed images provide more available informa-
tion for the subsequent work and are therefore reliable. In
the subsequent experimental sections, ablation experiments
are conducted to demonstrate the efects of preprocessed
measures.

2.2. Second Shift. Te frst shift preliminarily solves the
temporal diference problem of multitemporal images. To
obtain more accurate cloud-removed images, the second
shift recovers cloud-covered information by the proposed
reconstruction network. Tis network is performed on the
feature domain of the deep encoder learned end-to-end
from the training data, which is diferent from the tra-
ditional exemplar-based method [38] to fll pixels or
patches.

First shif

Mask

Reference images
(Multitemporal)

Cloudy image
(Target)

Cloud-free image

Moment 
matching

Style 
transfer

Reconstruction 
network

Preprocessed images

Second shif

Figure 1: Te framework of the proposed BSN.
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2.2.1. Reconstruction Network. Adversarial learning has
been adopted in low-level vision [39], image generation
[40, 41], and image inpainting [25] and exhibits its supe-
riority in restoring fne details and photo-realistic textures.
In the stage of the second shift, the reconstruction network
architecture is based on GAN, which includes a generator
and a discriminator, as shown in Figure 3. Te generator
learns distribution of data and improves the ability to
remove clouds from images by adversarial learning of the
generator and discriminator. After training, the generator
can transform the input cloud-covered image into a cloud-
free image.

Te reconstruction network in BSN is inspired by Shift-
Net [29]. As shown in Figure 4, its generator includes eight
convolutional modules and corresponding deconvolutional
modules. Convolutional modules are the encoders of the
network, and deconvolutional modules are decoders. En-
coders and corresponding decoders are associated with skip
connections [42]. Skip connections fuse diferent scales and
diferent levels of features, which can efectively reduce
gradient disappearance and network degradation problems.
Furthermore, skip connections can facilitate the use of in-
formation of convolution and deconvolution layers, which is
valuable for capturing local visual details of cloud removal
tasks of remote sensing images. In order to further enhance
the generator’s ability to capture local details, shift con-
nections are introduced. Shift connections demonstrate even
greater advantages through deep feature rearrangement. Te
appropriate placement of the shift connection layer ensures
both the computation time and the reconstruction perfor-
mance of the network.

Based on Shift-Net, BSN introduces DSC to improve the
network’s capabilities. For the frst and second modules of
the encoder, a combination of DSC [43], batch normali-
zation (BN) layer, and leaky ReLU activation function is
adopted. DSC splits the convolution operation into
depthwise convolution and 1× 1 pointwise convolution
operation. DSC of multichannel featuremaps of the previous

layer is performed by frst splitting them all into single-
channel feature maps. Ten, separate single-channel con-
volutions are performed and restacked. DSC reduces the
computation in convolution. Terefore, for smaller models,
the ability of the model may be signifcantly reduced if 2D
convolution is replaced by DSC. As a result, it may be
suboptimal. However, if used properly, DSC can help
achieve efciency gains without degrading the model per-
formance. In processing remote sensing images, it is ben-
efcial to minimize network parameters to improve training
efciency due to the large size of the remote sensing image,
and it has been found experimentally that DSC can improve
the accuracy of cloud removal, as is shown later in the
experimental section. Experience shows that the DSC layers
in the frst and second layers not only reduce the burden of
the network but also improve the efectiveness of feature
extraction. In addition, it can efectively generate clear,
detailed, and photo-realistic images.

Te discriminator judges whether input images are real
images in the dataset or generated fake cloud-free images.
Te structure of the discriminator is shown in Figure 5. Te
discriminator of GAN for cloud removal consists of fve
convolutional modules. Te frst module contains a con-
volutional layer and a leaky ReLU layer.Te second to fourth
modules are a combination of convolutional, leaky ReLU,
and instance batch norm (IBN) layers. Te last module is a
single convolutional layer. Te input image can be dis-
criminated by the multilayer convolution module of the
discriminator. Te discriminator determines whether the
input image is a false cloudless image or a real image
generated by using the generator to evaluate the cloud re-
moval ability of the generator. More information on the
parameters of the generator and the discriminator can be
found in Table 1.

2.2.2. Objective Function. For remote sensing images with
complex features, a suitable compound loss function is

(a) (b) (c) (d) (e)

Figure 2: Te results of style transfer. (a) Cloudy image. (b) Mask. (c) Reference image. (d) Fast style transfer. (e) Deep style transfer.
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Figure 3: Architecture of the reconstruction network.
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Figure 4: Generator of the reconstruction network.
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Figure 5: Discriminator of the reconstruction network.
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required to ensure a positive training process. After ex-
perimental attempts, the weighted combination of the
generative adversarial loss Lg, the l1 norm loss Ll1, and the

shift loss Lshift is applicable to the training of remote sensing
images. Te objective function is as follows:

Loss � Lg + λl1Ll1 + λshiftLshift, (4)

where λl1 and λshift are the hyperparameters of weights of Ll1,
and Lshift, respectively.

Te generative adversarial loss is used to guide the
optimization of the generator and the discriminator [40], as
shown in (5). E(∗ ) denotes the expected value of the
distribution function. Pcloudfree(x) and Pcloud(z) are the
values of pixel distribution in the cloud-covered region and
the cloud-free region.

Lg � min
G

max
D

V(D, G) � Ex∼pcloudfree(x)[log D(x)] + Ez∼pcloud(z)
[log(1 − D(G(z)))]. (5)

Te l1 norm loss is the absolute diference between
ground truth Igt and the estimated value I, which is
expressed as follows:

Ll1
� I − I

gt
. (6)

In the reconstruction network of the encoder-decoder
architecture, the shift loss Lshift is the constraint between
encoder features ΦL−l and corresponding decoder features
Φl, which is expressed as follows:

Lshift � ΦL−l −Φ2l . (7)

After the frst shift, the temporal diferences in reference
images are preliminarily eliminated. Te normalized mul-
titemporal images are then used for the training of the
reconstruction network in the second shift. Finally, the
reconstruction network recovers the information of the
cloud-covered region.

3. Experimental Results

In order to test the proposed BSN method, it was compared
with traditional cloud removal methods and deep learning
methods in real and simulated experiments. Te selected
traditional methods include exemplar-based methods [38]
and information cloning methods [2], which represent
spatial-based methods and temporal-based traditional
methods, respectively.Te compared deep learning methods
include style transfer [37], GAN-CA [25], U-Net [42], Shift-
Net [29], and SAR-opt-GAN [27]. Ten, the ablation ex-
periments are conducted to demonstrate the role of double
shifts and loss function. Te training data of all methods are
the same.

3.1. Experimental Settings. For diferent datasets, diferent
experimental settings should be used to achieve good results.
Details of our experimental settings are given.

3.1.1. Datasets. Our dataset consists of high-resolution
Level-1C Sentinel-2 images between 2019 and 2021
(downloaded from https://www.copernicus.eu/). Only visi-
ble bands (B2, B3, and B4) with a spatial resolution of 10
meters were selected, as shown in Table 2. In the simulation
experiments, four datasets containing diferent feature types
such as mountains, rivers, urban buildings, lakes, and oceans
were used to validate the efects of cloud removal. In real
experiments, another four datasets testifed the cloud re-
moval capability for diferent types and locations of cloud
occlusions.

In the simulated and real experiments, the whole scene
images were cropped as samples with a size of 512× 512× 3.
Te datasets of the simulated experiments are all cloudless
images, and simulated clouds are artifcially added. Te real
experimental datasets include cloud-covered images and
cloudless multitemporal images. It is worth noting that it is
helpful for the result of cloud removal with as many tem-
poral images as possible.

3.1.2. Parameter Settings. Reconstruction network training
adopts adaptive moment estimation (Adam) as a gradient
descent optimization algorithm [44]. Adam uses gradient
frst-order moment estimation and second-order moment
estimation to dynamically adjust the learning rate. Te
learning rate is initialized to 0.002, and the number of it-
erations is set to 1000 epochs.

DST employed pretrained VGG-19 [45] as a feature
extractor. Te derivative of the photorealism regularization
term is implemented in CUDA for gradient-based optimi-
zation. Te learning rate of the training is initialized to 0.1
and iterated 1000 epochs.

3.2. Simulated Experiment. In the simulated experiments,
comparison experiments and ablation experiments are
performed. In the comparison experiments, BSN is

Table 1: Parameters of the generator and the discriminator.

Kernel
size Stride Padding Negative

slope
Conv 4 2 1
Deconv 4 2 1
DSC (depthwise
conv) 3 1 1

DSC (pointwise
conv) 1 1 0

Leaky ReLU 0.2

International Journal of Intelligent Systems 7
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Table 2: Sentinel-2 multitemporal image datasets.

Jan. Feb. Mar. Apr. Mar Jun. Jul. Aug. Sep. Oct. Nov. Dec.
2019 ✓ ✓ ✓ ✓
2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2021 ✓ ✓ ✓

Dataset 1 Dataset 2 Dataset 3 Dataset 4

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 6: Te results of the simulated experiment. (a) Ground truth. (b) Simulated cloud mask. (c) Exemplar-based [38]. (d) Information
cloning [2]. (e) Style transfer [37]. (f ) GAN-CA [25]. (g) U-Net [42]. (h) Shift-Net [29]. (i) SAR-opt-GAN [27]. (j) Proposed.
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compared visually and quantitatively with traditional and
deep learning methods. Te efects of double shifts and loss
function are verifed in ablation experiments.

3.2.1. Comparison Experiments. Te cloud removal results
and detailed enlargements of the simulated experiment
are shown in Figure 6. Although the traditional exemplar-
based method can reconstruct the feature information of
cloud-covered regions, reconstructed features are in-
consistent with ground truth images. For example, in the
result of dataset 4 in Figure 6(c), the simulated cloud
covers the water and land, but it is incorrectly recon-
structed as land. Te information cloning method cannot
overcome temporal diferences between images (e.g.,
color inconsistency), and the result depends on the quality
of the temporal image being cloned. For example, in
Figure 6(d), datasets 1 and 2 have good results, while
datasets 3 and 4 have poor performance. It can be seen
from Figure 6(e) that the result of style transfer can only
ensure that the style of the reconstructed region is similar
to ground truth, but the content information of features is
inaccurate. Te result of cloud removal is severely afected
by the quality of temporal images. GAN-CA, U-Net, Shift-
Net, and SAR-opt-GAN are recent deep learning methods,
and the results are shown in Figures 6(f )–6(i). Te ground
objects after being reconstructed are highly consistent
with ground truth, which is signifcantly better than
traditional methods. However, the proposed method has
the highest clarity of ground objects after reconstruction
in cloud-covered regions, which can be further refected in
the following quantitative evaluation.

To better visualize the diferences between cloud-re-
moved and ground truth images, an error analysis map is
shown in Figure 7.Te colors corresponding to errors can be
found in the legend. Te red scatter on the error map
represents the diference between the restoration image and
ground truth, with the darker red color representing a larger
diference value. Te white color in the image indicates no
diference in ground truth. Except for style transfer, the error
maps of other methods are only present in the simulated
cloud-covered area, and the cloud masks are shown in
Figure 7(a). In Figure 7(b), the exemplar-based method has
the darkest red color, representing the greatest diference
between the results and ground truth. Te information
cloningmethod sometimes performs well, but it is not stable.
For example, in Figure 7(c), the water region of dataset 3 has
severe errors, while the other datasets show good results.
From Figure 7(d), it can be found that style transfer does not
ensure that the content outside the cloud mask remains
unchanged, so the entire image is inaccurate by a large
margin. Te cloud removal results of deep learning methods
are shown in Figures 7(e)–7(i), where the proposed method
has the best performance.

Furthermore, an error scatter plot was also produced to
evaluate the error between the reconstructed image and
ground truth. Te more dispersed scatter distribution in-
dicates the greater diference between the reconstructed
image and ground truth. Te results in Figure 8 show that

the proposed method has the most concentrated error
distribution among all methods, and therefore, the results
are most similar to ground truth.

Correlation coefcient (CC), structural similarity
(SSIM), and peak signal-to-noise ratio (PSNR) are used to
evaluate cloud removal results quantitatively in simulated
experiments. CC refects the image correlation between the
cloud-free image after cloud removal and the ground truth
image, with higher values representing a higher correlation
and a maximum of 1. SSIM is a measure of the similarity of
two images, and SSIM is equal to 1 when two images are

Dataset1 Dataset2 Dataset3 Dataset4

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Value Range
[0, 255] 0 [0, 5] [5, 10] [10, 20] [20, 40] [40, 60] [60, 80] [80, 100] >120

Figure 7: Te error analysis maps of ground truth and cloud
removal results. (a) Cloud mask. (b) Exemplar-based [38]. (c)
Information cloning [2]. (d) Style transfer [37]. (e) GAN-CA [25].
(f ) U-Net [42]. (g) Shift-Net [29]. (h) SAR-opt-GAN [27]. (i)
Proposed.
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Dataset1 Dataset2 Dataset3 Dataset4

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 8: Te error scatter plot of ground truth and cloud removal results. On each error scatter plot, the X coordinate represents ground
truth and the Y coordinate axis represents the reconstructed image (i.e., cloud removal image). (a) Exemplar-based [38]. (b) Information
cloning [2]. (c) Style transfer [37]. (d) GAN-CA [25]. (e) U-Net [42]. (f ) Shift-Net [29]. (g) SAR-opt-GAN [27]. (h) Proposed.
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Table 3: Quantitative evaluations of simulated experiments.

Methods Dataset CC↑ SSIM↑ PSNR↑ Parameters

Exemplar-based [38]

1 0.7915 0.6170 17.2868

—2 0.8639 0.8142 17.6311
3 0.8267 0.7130 19.1175
4 0.9072 0.8588 21.9067

Information cloning [2]

1 0.9675 0.8981 25.2477

—2 0.9934 0.9776 30.6375
3 0.9435 0.9126 23.3094
4 0.9949 0.9749 34.5889

Style transfer [37]

1 0.8544 0.6201 18.5816

—2 0.9281 0.8568 20.1406
3 0.8462 0.7097 19.4109
4 0.8986 0.7185 21.6804

GAN-CA [25]

1 0.9485 0.7901 23.2514

9.1M2 0.8887 0.6318 18.5822
3 0.8611 0.5795 20.2036
4 0.9772 0.8347 28.1387

U-Net [42]

1 0.9875 0.9495 28.9435

31.0M2 0.9871 0.9046 27.6569
3 0.9873 0.9441 30.3411
4 0.9964 0.9634 35.9552

Shift-Net [29]

1 0.9958 0.9756 33.8531

57.7M2 0.9925 0.9746 29.9933
3 0.9917 0.9616 32.0589
4 0.9973 0.9724 37.3791

SAR-opt-GAN [27]

1 0.9952 0.9819 33.1435

58.3M2 0.9947 0.9795 31.8443
3 0.9862 0.9490 30.2468
4 0.9971 0.9810 37.0992

Proposed

1 0.  76 0. 855 36.3430

60.2M2 0.  57 0. 848 32.3386
3 0.  3 0. 712 33.4386
4 0.  84 0. 781 3 .6004

Bold values mean the best value.

(a) (b) (c) (d) (e)

Figure 9:Te results of ablation experiments in double shifts. (a) Simulated cloudy image. (b) Ground truth image. (c) First shift. (d) Second
shift. (e) Proposed.

Table 4: Quantitative evaluation of double shifts.

Method CC↑ SSIM↑ PSNR↑
First shift 0.7307 0.4428 15.7596
Second shift 0.9269 0.9741 25.3217
Proposed 0.  76 0. 855 36.3430
Bold values mean the best value.
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identical. PSNR is the most common and widely used ob-
jective measurement to evaluate image quality, and a high
PSNR means high image quality after cloud removal.
Evaluation metrics for each method are shown in Table 3. In
quantitative evaluation, the exemplar-based method and
style transfer have the lowest accuracy of cloud removal.Tis
is consistent with the visual results and proves that the image
quality after cloud removal is poor. Te results of the in-
formation cloning method are unstable. For deep learning
methods, GAN-CA, U-Net, Shift-Net, SAR-opt-GAN, and
the proposed BSN have shown higher accuracies than tra-
ditional methods. Te proposed method has the highest
accuracy in CC, SSIM, and PSNR.Tis proves that the cloud
removal images of the proposed method are most similar to
ground truth images and that the proposed method is the
most efective.

3.2.2. Ablation Experiments. Te efects of double shifts,
DSC, loss function, and reference images on cloud removal
in remote sensing images are demonstrated in ablation
experiments.

(1) Te Efects of the Double Shift. First, the efects of double
shifts were tested. Ten reference images with large temporal
diferences in target cloudy images were adopted as datasets.
Experiments using only the frst shift or the second shift
were conducted. It can be seen from Figure 9(c) that when
only the frst shift was used, the correctness of recon-
struction of ground objects could not be guaranteed. When
there are large temporal diferences between the reference
image and the target image, the reconstructed information
of the cloud-covered regions usually has temporal difer-
ences in the ground truth image. In Figure 9(d), the cloud
removal result only using the second shift is visually obvi-
ously diferent from the ground truth image in the cloud-
covered region. Meanwhile, the proposed BSN that includes
both the frst shift and second shift can solve these problems
well as shown in Figure 9(e). In Table 4, the quantitative
evaluation of the proposed BSN is also signifcantly better
than using the frst shift or second shift alone. Terefore, the
frst shift is helpful in eliminating temporal diferences, and
the second shift guarantees the accuracy of reconstructed
features.

(2) Te Efects of Depthwise Separable Convolution. Te
efects of DSC were tested. Te reconstructed network with
DSC has stronger detail capturing ability in remote sensing

images. To demonstrate this, experiments on changing the
number of DSC layers of the proposed BSN were performed.
Te results are shown in Figure 10, and Figure 10(e) shows
the result of the proposed method with the addition of two
layers of DSC. Figures 10(c) and 10(d) show that models
with no or one layer of DSC result in blurred and discon-
tinuous boundaries. Figures 10(f ) and 10(g) show that more
than two layers of DSC do not enhance cloud removal but
rather lose some important information, as refected in the
inconsistent spectral information of the river. Te proposed
method with two layers of DSC demonstrates the best visual
results, as shown in Figure 10(e). It shows that a proper
amount of DSC can improve the accuracy in cloud removal.

(3) Te Efects of the Loss Function. To demonstrate the
efects of the loss function on the training process of the
reconstructed network, the experiments were conducted for
the training process. Te loss function of BSN consists of Lg,
Ll1, and Lshift. In the ablation experiment of the loss function,
Lg, Ll1, and Lshift were removed separately and the cloud
removal results were evaluated quantitatively. Te same
training datasets and 1000 training epochs were used in
training. Table 5 shows that removing any of Lg, Ll1, and
Lshift will reduce the accuracy of the cloud removal results.
Te loss function used in the proposed BSN achieves the
highest accuracy in CC, SSIM, and PSNR.

(4) Te Efects of Reference Images. As a temporal-based
method, the cloud removal capability of BSN is afected by
the number of reference images. Normally, more reference
images usually mean more valid reference information. An
experiment on the efect of the number of reference images
was conducted. BSN requires at least one reference image to
ensure the availability of the network. Te efect of reference
images with diferent numbers on the accuracy is shown in
Table 6. It can be seen in the experiment that more reference
images are helpful for the improvement of accuracy.
Terefore, it is desirable to ensure sufcient temporal ref-
erence images. If data acquisition is limited, a small number

(a) (b) (c) (d) (e) (f ) (g)

Figure 10: Te results of ablation experiments for the amount of DSC, where (e) is the proposed method with two layers of DSC. (a)
Simulated cloudy image. (b) Ground truth image. (c) Without DSC. (d)–(g) 1–4 layer of DSC.

Table 5: Quantitative evaluation of loss function.

Loss CC↑ SSIM↑ PSNR↑
Ll1 + Lshift 0.9951 0.9836 34.4274
Lg + Lshift 0.9944 0.9820 31.9331
Lg + Ll1 0.9973 0.9848 35.6671
Proposed 0.  76 0. 855 36.3430
Bold values mean the best value.
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Dataset 1 Dataset 2 Dataset 3 Dataset 4

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 11: Te result of the real experiment. (a) Cloudy image. (b) Exemplar-based [38]. (c) Information cloning [2]. (d) Style transfer
[37].(e) GAN-CA [25]. (f ) U-Net [42]. (g) Shift-Net [29]. (h) SAR-opt-GAN [27]. (i) Proposed.

Table 6: Accuracy of diferent numbers of reference images.

Number CC↑ SSIM↑ PSNR↑
1 0.9801 0.9340 27.3401
2 0.9850 0.9451 28.7423
4 0.9900 0.9627 30.2235
6 0.9915 0.9670 31.0447
8 0.9935 0.9705 31.7328
10 0.  42 0. 735 32.541 
Bold values mean the best value.
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of temporal images can also fnish reconstruction. As a
trade-of between reconstruction accuracy and the dif-
culty of data acquisition, ten multitemporal reference
images show a good performance in this experiment.
Considering that not many reference images are generally
used in practical applications and that there may be more
adverse efects of sudden changes, we have not conducted
more tests.

3.3. Real Experiment. In real experiments, cloudy images are
directly reconstructed. It is important to note that the
ground truth of cloudy images does not exist. Terefore, the
result can only be judged visually. Te cloud removal results
of the real experiment are shown in Figure 11. Te tradi-
tional exemplar-based methods can fll cloud-covered image
information but not actual features. In Figure 11(b), the
exemplar-based method often ignores the roads of images.

(a) (b) (c)

Figure 12: Additional real experiments. (a) Cloudy images. (b) Cloud-removed images. (c) Images in the same region of (a) acquired at
other times.
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In Figure 11(c), information cloning cannot always perform
well, and sometimes there are serious spectral errors. As can
be seen in Figure 11(d), for the result of style transfer, it is
not only that the overall spectral information is not con-
sistent with the target but also that the pixels in noncloud-
covered regions are altered. Style transfer and information
cloning do not perform well in the elimination of temporal
diferences, and images show severe chromatic aberrations.
GAN-CA cannot accurately capture the local details of the
image when removing clouds. It is easy to confuse when
dealing with the relationship between diferent features
(such as bareland, vegetation, and buildings). Moreover, the
output image of GAN-CA has low defnition. It is obvious in
the enlarged fgure, as shown in Figure 11(e). U-Net has
difculty recovering complex textures, such as vegetation
and mountains are interspersed, as shown in Figure 11(f ). In
Figure 11(g), the cloud removal results of Shift-Net are better
than those of the previous methods, and the visual efects are
quite good. Although the SAR-opt-GAN method is overall
acceptable, the cloud removal results showed temporal
diferences in dataset 2 and blurred images in dataset 3, as
shown in Figure 11(h). BSN has great advantages over other
traditional and recent cloud removal methods. For example,
the cloud-free images reconstructed by BSN show reason-
able global semantics and local details, accurate feature
classes, trace-free boundaries, and high-resolution cloud-
free images, as shown in Figure 11(i).

To further test and evaluate the efective cloud removal
capability of the proposed BSN, the experiments were
conducted on four additional real remote sensing images.
Te results are shown in Figure 12, which includes cloud-
contaminated images, cloud-removed images, and multi-
temporal images of the same region as a reference. Com-
paring the reconstructed image with the cloudy image, the
reconstructed area of the reconstructed image and the
noncloud-covered area of the cloud image are consistent
spectrally. Spatially, cloud-removed images have the same
features and textures as temporal images in reconstructed
regions. It can therefore be seen that the proposed BSN is
efective in cloud removal and performs well in both global
semantics and texture details.

4. Conclusions

In this article, two shift-based BSN was proposed for cloud
removal in optical remote sensing images. In the frst shift,
MM and DST are used. MM can preliminarily normalize
multitemporal images. DST can further eliminate temporal
diferences. Te preprocessing of the frst shift is conducive
to improving the efciency of the second shift and the ac-
curacy of cloud removal. In the second shift, the recon-
struction network is used to remove clouds from cloud-
covered images. In order to improve the reconstruction
network’s ability to extract local details and maintain global
consistency, shift connection and DSC are introduced. After
simulated experiments and real experiments, the proposed
method has obvious advantages over traditional methods
and deep learning methods in terms of accuracy and visual
efects. Te ablation experiments also demonstrate the role

of the double shift and loss function. BSN can efectively
remove clouds in optical remote sensing images, thereby
improving the efective information of optical remote
sensing images.

Te advantage of the proposed method is that the
original spectral information of the image is maintained
when clouds are removed, thus providing a good visual
efect. Although the proposed BSN has a great efect on
removing thick clouds in images, it still has some limitations.
For example, it requires cloudless multitemporal images as
reference data, and the quality of the results is afected by
multitemporal images. Considering the diferent locations of
clouds in cloud-covered images, several images can be
processed with simultaneous cloud removal in the future. At
present, some researchers have also combined optical and
SAR images based on deep learning to improve the ability of
cloud removal [11, 12]. For sudden changes in multi-
temporal remote sensing images, such as new buildings and
man-made landscapes, the envisioned future strategy is to
use multisource remote sensing images (e.g., SAR images) as
auxiliary data to improve the accuracy and reliability.
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