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Security issues are always considered in systems with wireless networks. However, few of them investigated covert signals existing
on diferent communication channels to confuse advisories. In this paper, we consider the cooperation between two energy-
constrained agents, who could inject covert signals. First, the system performance is measured by Kullback–Leibler divergence
(KLD) to avoid much deviation. Ten, the cooperative game between two agents is considered, in which two agents share the
common goal at confusing advisories. More formally, this cooperative game is formulated as a Markov decision process (MDP)
and the most economic strategies are obtained through reinforcement learning (RL) under the imperfect information. Finally, the
feasibility of theoretical results is demonstrated on the interconnected New England test system (NETS) as well as its reduced
system.

1. Introduction

With high fexibility in establishing communications,
wireless communication is playing an increasingly vital role
in many felds such as aerospace, transportation, mine
monitoring, and power systems [1–4]. Meanwhile, the In-
ternet of Tings is a concept that has attracted signifcant
attention since the emergence of wireless communication
technology. As shown in Figure 1, a wireless communication
system involves multiple modules to process the data and
interact with the user ends and the communication is
necessary for passing on sensor observations to controllers
(S-C) and control signals to actuators (C-A) [5]. Terefore,
the design of a communication frame is a crucial demand for
system functionality. However, the main defciency of
wireless systems is in security because of their strong reliance
on the wireless network, through which malicious adver-
saries could launch attacks to degrade the performance of
the systems, or even destroy the systems. Tere are some
common types of attacks including Denial-of-Service (DoS)
attacks [6–9], false data injection (FDI) attacks [10–12] and
so on, which could result in unacceptable consequences by

hampering the critical infrastructure. Hence, security issues
have become a crucial factor for wireless systems [13, 14].

To mitigate the defects caused by attacks, various de-
tection methods were proposed. For example, an intelligent
system was designed in [15] that could select a proper al-
gorithm in an adaptive way to improve the detection per-
formance. An online cyber-attack detection problem was
formulated as a partially observableMarkov decision process
(MDP) problem, and a solution was proposed by the model-
free RL for partially observable MDPs in [16]. An inference
algorithm was proposed in [17] for smart grid systems
subjected to stealthy attacks.

In [18], the Kullback–Leibler divergence (KLD) was
introduced to measure the stealthiness of attacks, which is
independent of any specifc detection method such as the χ2
detector. Moreover, some researchers also take constrained
energy into consideration out of practicality. In [19], the
efect of DoS attacks with the energy budget was investigated
and evaluated and the optimal DoS attack scheduling was
proposed. A practical stealthily attack model against state
estimation in power distribution systems was proposed in
[20]. Based on these observations, covert strategies with

Hindawi
International Journal of Intelligent Systems
Volume 2023, Article ID 9973580, 14 pages
https://doi.org/10.1155/2023/9973580

https://orcid.org/0000-0002-9822-6360
mailto:guoli@nsccsz.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9973580


restricted energy to confuse advisories are considered in
this paper.

In addition, cooperative games are common in real life,
such as the coordination of autonomous vehicles [21] and
trafc junctions [22]. In [23], the cooperative game of
a discrete-time multiplayer system with control constraints
was researched through adaptive dynamic programming
techniques, and the graphical Nash equilibrium was studied
in [24] by proposing a model-free distributed Q-learning
algorithm, achieving attenuation of maximizing the worst-
case adversarial inputs. A zero-sum stochastic game with
two players was formulated, and a Nash Q-learning method
was proposed to solve the Nash equilibrium [25]. Actually,
the cooperative game is a special case of nonzero-sum
games, where all the players have an identical goal to
achieve. Due to the complexity of modern wireless systems
such as smart grids and autonomous vehicles, the co-
operation of advisories may lead to a huge potential danger,
e.g., the manipulated electricity market prices or blackouts.
Furthermore, to tackle the computation complexity of
wireless systems efciently, reinforcement learning (RL) is
adopted in this paper, which is applicable for obtaining the
optimal solution in an uncertain environment [26].

In light of these aforementioned analyses, we consider
the Markov cooperative game with independently energy-
constrained agents who could emit covert signals via dif-
ferent communication channels of wireless systems. Here,
“independent” means that two agents make their own
strategies only based on the other’s historical information
excluding the current one. Moreover, S-C and C-A com-
munication channels of wireless systems as mentioned be-
fore are specifcally selected as two diferent communication
channels wherein two agents launch the covert signals. Since
the environment, i.e., wireless systems, is unknown to the
agents, one of the RL methods, named the policy gradient
[27], is applied. Diferent from the previous works that only
applied dynamic programming methods (note that the
policy gradient method is also categorized as an approximate
dynamic programming method) [28–30], our work also

involves a multiagent learning process called fctitious play
[31, 32]. Moreover, the economic strategies are modeled as
Gaussian distribution, which actually is a continuous action
space and also motivates us to learn the deterministic policy
[33]. Consequently, the most economic strategies for the two
agents are investigated when both of them are energy-
limited through the policy gradient method. With the
previous description, the contributions of this paper are as
follows:

(1) A Markov cooperative game between two in-
dependent energy-constrained agents is formulated,
in which two agents emit covert signals to wireless
communication channels and have identical payof
functions

(2) Te estimation error covariance of the system state is
recalculated, and the system performance with co-
vert signals is analysed and measured by KLD be-
tween the normal and modifed innovation based on
the state estimation error covariance

(3) By guaranteeing the system’s performance, the most
economic strategies are obtained through the RL
method

Furthermore, to guarantee that every agent’s strategy
converges to the optimal solution, the behaviors of the two
agents are modeled as fctitious play, where each agent
decides its current action based on the belief of the other’s
history actions.

Te arrangement of the remaining paper is as follows.
Section 2 presents the problem formulation including the
system model and the covert signal model. Te system
performance is analysed, and the most economic strategies
are obtained through the policy gradient method in Section
3. Simulation is given to illustrate the efciency of the
proposed results in Section 4, followed by the conclusion in
Section 5.

1.1. Notations. R,Z,N are the sets of real numbers, non-
negative, and positive integers, respectively. Sn

+ and Sn
++

denote the set of n by n symmetric positive semidefne and
positive defne matrices. k ∈ Z is the time index. Rn stands
for the n dimensional Euclidean space. N(μ,Σ) denotes the
Gaussian distribution with a mean μ and a covariance Σ. E[·]

is the expectation of a random variable, and E[∙|∙] is the
conditional expectation. Tr [·] stands for the trace of
a matrix. (·)T is the transposition. ‖ · ‖ and | · | denote the
Euclidean norm for a vector and the absolute value,
respectively.

2. Problem Formulation

2.1. System Model. Under the sampled-data control
framework, the continuous-time state space and measure-
ment space can be transformed into a discrete-time system
with a zero-order holder. Te linear discrete system is
a general system model considered in the previous works
[19, 34–37], which is also the research target of this paper as
shown in the following equation:
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Figure 1: Architecture of a wireless communication system with
two layers.
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xk+1 � Axk + Buk + wk,

yk � Cxk + vk,
(1)

where A, B, C are the constant matrices with appropriate
dimensions; xk ∈ Rn is the state vector with the initial
condition x0, obeying the zero-mean Gaussian distribution
with covarianceΩ, i.e., x0 ∼ N(0,Ω) andΩ ∈ Sn

+; yk ∈ Rm is
a vector of sensor measurements; and uk ∈ Rp is the control
input. Te sequences wk􏼈 􏼉k∈N≥0 and vk􏼈 􏼉k∈N≥0 represent the
process noises andmeasurement noises, respectively, both of
which are the independent and identically distributed (i.i.d.)
Gaussian random vectors with wk ∼ N(0, Q), vk ∼ N(0, R),
Q ∈ Sn

+, and R ∈ Sm
++. Moreover, we assume that (A,

��
Q

√
) is

controllable and (A, C) is observable.
Te controller employs a Kalman flter, which calculates

the minimum mean-square error (MMSE) to estimate and
monitor the process state. Ik � y0, y1, y2, . . . , yk􏼈 􏼉 is the
information set collected up to time k. Te controller’s local
state estimate 􏽢xk and its corresponding error covariance Pk

are calculated, respectively, as 􏽢xk ≔ E[xk | Ik] and
Pk ≔ E[(xk − 􏽢xk)(xk − 􏽢xk)T | Ik].

Te optimal state estimate 􏽢xk of a Kalman flter is
generated by the following equations:

􏽢x
−
k � A􏽢xk− 1 + Buk− 1,

P
−
k � APk− 1A

T
+ Q,

Kk � P
−
kC

T
CP

−
k C

T
+ R􏼐 􏼑

− 1
,

􏽢xk � 􏽢x
−
k + Kk yk − C􏽢x

−
k( 􏼁,

Pk � I − KkC( 􏼁P
−
k ,

(2)

where 􏽢x−
k is a priori MMSE estimate of the state xk with the

initial condition 􏽢x−
0 � x0. P−

k is the corresponding error
covariance with P−

k ≔ E[(xk − 􏽢x−
k )(xk − 􏽢x−

k )T | Ik− 1]. Kk is
the Kalman gain, and the innovation zk ≜yk − C􏽢x−

k is
a Gaussian process with zk ∼ N(0,Σzk) and Σzk � CP−

k CT + R.
It is well known that the Kalman flter converges ex-

ponentially fast from any initial condition. Accordingly, it is
reasonable to defne the steady-state error covariance
P≜ limk⟶∞P−

k , where P is the unique positive semidefnite
solution of X � AXAT + Q − AXCT(CXCT + R)− 1CXAT.
Without the loss of generality, the system is assumed to start
from k � − ∞ which results in a fxed-gain Kalman flter
starting from k � 0, i.e.,

K � PC
T

CPC
T

+ R􏼐 􏼑
− 1

. (3)

2.2. Covert SignalModel. Te security of system information
is guaranteed by two agents, who could launch covert signals
on two communication channels. We assumed that the two
agents (1) know the dimensions of the wireless system, which
is public knowledge, (2) can add arbitrarily independent
Gaussian noises into C-A and S-C channels, respectively, (3)

know the existence of each other, and (4) are mutually
independent.

Te covert signals are given in the following equation:

uk � 􏽥uk + ∆uk,

􏽥yk � yk + ∆yk,
(4)

where uk and 􏽥yk are the modifed control input and mea-
surement output and 􏽥uk � L􏽢􏽥xk, yk � C􏽥xk + vk, and 􏽥xk are
the input, output, and state of the system with covert signals.
􏽢􏽥xk is the posteriori MMSE estimate of 􏽥xk, and L is a proper
matrix such that A + BL is stable. ∆uk ∼ N(μu

k,Σuk) and
∆yk ∼ N(μy

k ,Σyk ) are the Gaussian signals injected by the
two agents on C-A and S-C channels, respectively. We as-
sumed that wk, vk, ∆yk, and ∆uk are mutually independent
processes.

Remark 1. Since wireless systems in real life are large-scale
and vulnerable, it is necessary for agents located at diferent
nodes (positions) to emit external signals to confuse ad-
versaries so as to avoid damage. To fulfl this aim, we
consider a cooperative game with an assumption that each
agent is able to observe the information of others (e.g.
through communications). Moreover, each agent makes its
own strategy based on the collected information before each
time step of a decision, which is named as an independent
decision. In addition, it is practical and reasonable to take
the energy budget of a signal injection as a constraint to
reach the economic behaviour.

Moreover, the Kalman flter uses the modifed mea-
surements of 􏽥yk to run. 􏽥Pk ≔ E[(􏽥xk − 􏽢􏽥xk)(􏽥xk − 􏽢􏽥xk)T] is
defned as the estimate error covariance of the system with
covert signals, and 􏽢􏽥x

−

k is denoted as the correspondingly
prior MMSE estimate of 􏽥xk. 􏽢􏽥x

−

k and 􏽢􏽥xk are obtained from the
following recursions:

􏽢􏽥x
−

k � A􏽢􏽥xk− 1 + B􏽥uk− 1,

􏽢􏽥xk � 􏽢􏽥x
−

k + K 􏽥yk − C􏽢􏽥x
−

k ).􏼐
(5)

Ten, the limited energy budget of agents is considered,
which is common in reality. Specifcally, the energy distri-
bution as time goes by on the C-A channel is denoted as

B
u

� B
u
0 , B

u
1 , B

u
2 , · · ·, B

u
k, · · ·􏼂 􏼃

T
, (6)

where Bu
k ≤Mu and Mu is a constant. Similarly, the energy

distribution on the S-C channel is denoted as

B
y

� B
y
0 , B

y
1 , B

y
2 , · · ·, B

y

k , · · ·􏽨 􏽩
T

, (7)

where B
y

k ≤My and My is also a constant. Under the al-
location of energy shown previously, the covert signal
launched on the C-A channel at instant k is defned as
∆uk(Bu

k): R⟶ Rn. Due to the simplicity of notation, this
covert signal is rewritten as ∆uk. Obviously, ∆uk is also
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restricted to an upper bound because of the existence of an
energy upper bound. Ten, it is reasonable to give the
following defnition of covert signals on the C-A channel:

∆uk ≔ ∆uk,1,∆uk,2, · · ·,∆uk,n􏽨 􏽩
T

, (8)

where |∆uk,i|≤ 􏽢u, 1≤ i≤ n, and 􏽢u is a constant. Clearly, these
signals obey truncated normal distribution and a similar
defnition of the covert signal on an S-C channel is given as
follows:

∆yk ≔ ∆yk,1,∆yk,2, · · ·,∆yk,m􏽨 􏽩
T
, (9)

where |∆yk,i|≤ 􏽢y, 1≤ i≤m, and 􏽢y is a constant.Ten, the two
most expensive covert signals could be given, which are
constant vectors and are defned as follows:

| 􏽢U| ≔ [􏽢u, 􏽢u, · · ·, 􏽢u]
T
,

|􏽢Y| ≔ [􏽢y, 􏽢y, · · ·, 􏽢y]
T
.

(10)

Remark 2. Te restrained energy budget is transformed as
the restricted injection covert signals, i.e., the equations
defned in (8) and (9), although the specifc mapping is not
discussed.

Clearly, agents aim at confusing the advisories and
guaranteeing the system performance simultaneously. Te
performance is measured by the divergence between the
modifed innovation 􏽥zk and the normal innovation zk in this
paper, and the KLD, defned as follows, is always adopted to
measure the diference between the modifed and normal
states.

Defnition 3 (see [38]). Let xk and yk be two random se-
quences with joint probability density functions fxk

and fyk
,

respectively. Te KLD between xk and yk is defned as
follows:

D xk yk

����􏼐 􏼑 � 􏽚
ξk fxk

􏼌􏼌􏼌􏼌 ξk( )>0􏽮 􏽯
log

fxk
ξk( 􏼁

fyk
ξk( 􏼁

fxk
ξk( 􏼁dξk. (11)

Note that KLD is a non-negative quantity, that is,
(xk‖yk)≥ 0, and it gauges the dissimilarity between the two
probability density functions with D(xk‖yk) � 0 if xk � yk.
When KLD exceeds a certain threshold, an alarm will be
triggered, which indicates that the system performance is
violated. Agents should guarantee the normal running of the
system by keeping KLD between the modifed innovation 􏽥zk

and the normal one zk which is small enough. In other
words, the agents should ensure that KLD D(zk‖zk) is not
bigger than a threshold when emitting covert signals.

Obviously, the injection of covert signals will deviate 􏽥zk

from zk. Tis results in widening the disparity between 􏽥zk

and zk, i.e., increasing D(zk‖zk), which may trigger an
alarm. However, there is always an upper bound of
D(zk‖zk), which means that the agents could ensure that the
system performs normally. Te related results are provided
in the next section.

2.3. Problem of Interest. In this paper, there are two agents
that launch the covert signals on S-C and C-A channels
independently. Te economic strategies of the two agents
with limited energy budgets are investigated, and this de-
cision process is formulated as a Markov cooperative game
with two players. In this Markov cooperative game model,
two players have the identical payof function and the
economic strategies are obtained by a RL method, that is,
policy gradient.

3. Cooperative Game

3.1. Game Teoretic Framework. Tis Markov cooperative
game, denoted by G, is characterized by a fve-tuple
〈N,A,S,L, T , J〉, where

Players: N � u, y􏼈 􏼉 denotes the set of agents, i.e., two
agents on C-A and S-C channels, respectively.
Action: Ai denotes the set of actions of agent i and
i ∈N. Te action of agent i at an instant k is denoted as
ai

k ∈ A
i with defnitions in (8) and (9) for the two

agents.
State: S � s0, s1, . . . , sk, . . .􏼈 􏼉 is the set of states, where
sk is the estimated state from the Kalman flter. Note
that sk � 􏽢xk before the injection of the frst covert
signal, otherwise, sk � 􏽢􏽥xk.
Policy (strategy): πi: S⟶ Ai is the policy of agent i,
such that ai

k � πi(sk), and Li denotes the policy space
for agent i with πi ∈ Li.
Transition probability: T(s, a) is a transition function
that defnes transition probabilities between states, i.e.,
sk+1←T(sk, ak). However, the specifc transition
probability function is unknown for the agents.
Payof: in a cooperative game, all players have the same
payof function to maximize as follows:

J(x, s,∆u,∆y) � E
πu,πy

􏽘

+∞

k�0
βk

rk xk, sk,∆uk,∆yk( 􏼁⎡⎣ ⎤⎦,

(12)

where ∆u ∈ Au and ∆y ∈ Ay denote any possible action
of agents, β: 0≤ β< 1 is the discount factor, and
rk(xk, sk,∆uk,∆yk) abbreviated as rk is the immediate
reward with the following defnition:

rk � sk − xk( 􏼁
T

sk − xk( 􏼁 − D 􏽥zk zk

����􏼐 􏼑 − ∆uk( 􏼁
T∆uk − ∆yk( 􏼁

T∆yk. (13)
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Remark 4. Note that rk not only indicates the constrained
covert signals but also refects the state deviation. Precisely, the
item (sk − xk) in (13) could reveal the level of deviation about
the state trajectory, and the last three items in (13) show that the
agents aim at minimizing D(􏽥zk‖zk) to guarantee the system
performancewith less energy cost.Tediscount factor β controls
how much efect future rewards have on the optimal decisions,
with a small value of β emphasizing the near-term gain and
larger values giving signifcant weight to future rewards.

3.2. Fictitious Play. Players in a game may or may not know
some information about other players, especially in a com-
plex system. So, we assumed that the two agents in this paper
know the existence of each other but do not know the

current action of the other one. Based on the above-
mentioned analysis, fctitious play is adopted to describe this
kind of an interaction between the two agents. Actually,
fctitious play is a model of learning behavior, where players
in a game could observe the historical actions made by every
other player. Ten, each player is able to predict the other
players’ current action based on these players’ previous
actions, and then, every individual player could play the best
response to other players’ historical actions, resulting in the
optimal strategy for every player in a game.

Defnition 5. Te best response for each agent in a gameG is
defned as

BR(∆u) � ∆y
⋆ ∈ Ay

|J(x, s,∆u,∆y)≤ J x, s,∆u,∆y
⋆

( 􏼁,∀∆y ∈ Ay
􏼈 􏼉,

BR(∆y) � ∆u
⋆ ∈ Au

|J(x, s,∆u,∆y)≤ J x, s,∆u
⋆
,∆y( 􏼁,∀∆u ∈ Au

􏼈 􏼉.
(14)

Furthermore, fctitious play will be elaborated according
to the setting of this paper where two agents are considered.
Based on the observation of the other agent’s actions from
initial instant to instant k − 1, the concept of empirical
frequency of the two agents is necessary and is defned as the
percentage of stages as follows:

αk �
1
k

􏽘

k− 1

j�0
I ∆uk � ∆uj􏽮 􏽯,

ck �
1
k

􏽘

k− 1

j�0
I ∆yk � ∆yj􏽮 􏽯,

(15)

where αk is the empirical frequency for the agent u, ck is the
one for the agent y, and I ·{ } denotes the indicator function
such that I ∆uj � ∆u􏽮 􏽯 � 1 if ∆uj � ∆u, otherwise,
I ∆uj � ∆u􏽮 􏽯 � 0.

According to the empirical frequency, every player could
estimate the current action of the other players and then
make their own action to maximize the payof function; that
is, every player plays the best response, BR(·), to the em-
pirical frequency of other players’ actions at each instant
which is represented by the following equation:

BR ck( 􏼁 � ∆uk max
∆uk∈Au

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

+∞

k�0
βk

rk xk, sk,∆uk,∆y( 􏼁 × ck

⎧⎨

⎩

⎫⎬

⎭,

BR αk( 􏼁 � ∆yk max
∆yk∈Ay

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

+∞

k�0
βk

rk xk, sk,∆u,∆yk( 􏼁 × αk

⎧⎨

⎩

⎫⎬

⎭.

(16)

3.3. Deviation of the System State. To study the deviation of
a system state measured by D(􏽥zk‖zk), the modifed in-
novation 􏽥zk needs to be analysed. It is known that the
normal innovation zk obeys the Gaussian distribution, i.e.,
zk ∼ N(0, CPCT + R), and the modifed innovation 􏽥zk still
obeys the Gaussian distribution as covert signals are
Gaussian with 􏽥zk ∼ N(μz

k, 􏽥Σk). Tis naturally motivates us
to investigate the estimate error covariance at the Kalman
flter.

When signals on C-A and S-C channels are modifed by
two agents, the estimate error covariance is recalculated in
the following proposition. First, we defne P ≔ (I − KC)P

with K given in (3). According to (2) and (3), one can [34]
obtain the following equation:

P � (I − KC)P(I − KC)
T

+ KRK
T
,

P � APA
T

+ Q.
(17)

Once the covert signals are injected, the system is
modifed and the injection efect will last continuously until
the system stops running. Terefore, it is assumed that the
frst injection is launched at instant k, before which the
system was operated under the normal situation with an
initial state.

Proposition 6. When covert signals defned in (3) are in-
jected, the estimate error covariance of the Kalman flter can
be obtained from the following recursion:
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􏽥Pk+q � (I − KC)A􏽥Pk+q− 1A
T
(I − KC)

T
+ KRK

T
+(I − KC)Q(I − KC)

T
+ KE

y

k+qK
T

+(I − KC)BE
u
k+q− 1B

T
(I − KC)

T
,

(18)

where

E
y

k+q � E ∆yk+q∆y
T
k+q􏽨 􏽩

� μy

k+q μy

k+q􏼒 􏼓
T

+ Σyk+q,

E
u
k+q− 1 � E ∆uk+q− 1∆u

T
k+q− 1􏽨 􏽩

� μu
k+q− 1 μu

k+q− 1􏼐 􏼑
T

+ Σuk+q− 1,

(19)

and q≥ 0. Furthermore, (10) could be rewritten as
􏽥Pk+q � P + Eq + Fq, (20)

where

Eq � 􏽘

q

i�0
((I − KC)A)

i
KE

y

k+iK
T

A
T
(I − KC)

T
􏼐 􏼑

i
,

Fq � 􏽘

q

i�0
((I − KC)A)

i
(I − KC)BE

u
k+iB

T
(I − KC)

T
A

T
(I − KC)

T
􏼐 􏼑

i
.

(21)

For the coherence of logic, the proof of Proposition 6 is
seen in Appendix A. Besides, to guarantee that the system
performance fuctuated at a certain interval, the following
defnition is given.

Defnition 7. Te system performance could be guaranteed
if D(􏽥zk‖zk)≤ δ, where δ is the threshold.

In this work, since 􏽥zk is an independent Gaussian
random variable with 􏽥zk ∼ N(μz

k, 􏽥Σk), D(􏽥zk‖zk) follows that

D 􏽥zk zk

����􏼐 􏼑 �
1
2
Tr Σ− 1􏽥Σk􏽨 􏽩 −

m

2
+
1
2
log

det(Σ)
det 􏽥Σk( 􏼁

+ μz
k( 􏼁

T
􏽘

− 1

k

μz
k.

(22)

Te mean and covariance of 􏽥zk are still defnite even
though the agents launched the most expensive covert
signals defned in (10) at every instant from the frst
emission. Ten, the following proposition is given to show
that the system performance could be guaranteed when KLD
is utilized as a measurement.

Proposition 8. Te state performance with covert signals
defned in (4) and (5) could be guaranteed from the sense of
KLD by choosing the proper parameters.

Te proof of Proposition 8 is shown in Appendix A.1.

3.4. Design of the Most Economic Strategies through RL.
In this subsection, we analyse the most economic strategy for
two agents. Te goal of the agents is not only to make system
information covert but also to guarantee the system per-
formance as well as to avoid high energy consumption.

Simply speaking, every energy-constrained agent makes
their own most economic strategy by maximizing the
reward.

Based on the payof function (12), the following Markov
cooperative game is investigated with fve constraints.

Problem 9. For each agent, max∆u∈Au,∆y∈Ay J(x, s,∆u,∆y)

s.t.  sk � s
−
k + K 􏽥yk − Cs

−
k( 􏼁, (23)

s
−
k � Ask− 1 + B􏽥uk− 1, (24)

∆uk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽢u, 1≤ i≤ n, (25)

∆yk,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽢y, 1≤ j≤m, (26)

D 􏽥zk zk

����􏼐 􏼑≤ δ, (27)

where J(x, s,∆u,∆y) defned in (12) and (23) is the state
equation, (24) is the prior MMSE estimate equation,
(25) and (26) are the energy budget of the two channels
as well as (27) measures the deviation of the system
states.

Before deriving the optimal solution to Problem 9, MDP
is elaborated frst. MDP is a discrete-time stochastic control
process, in which an agent decides an action ak ∈ A at each
state sk ∈ S emitted from an environment via a probabilistic
transition function. Te environment gives a reward rk to
measure the performance of an action at each time step. RL
is a learning paradigm which aims to fnd an optimal policy
π(ak|sk) by maximizing the expectation over cumulative
long-term rewards. Mathematically, it can be expressed as
max

π
Eπ[􏽐
∞
k�0β

krk].
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As mentioned before, the transition probability is un-
known for the agents since agents do not know the dynamics
of the wireless system. To solve Problem 9, a policy-based RL
method, that is, policy gradient, is applied as this meth-
odology is unnecessary to leverage the transition probability
distribution within MDP. Moreover, since the covert signal
is continuous, we use the deterministic policy gradient
(DPG) [39] to learn each agent’s policy directly. Actually, the
policy-based methods are more useful in continuous space
because there are infnite actions and (or) states. In contrast,
the value-based approaches such as Q-learning [40] are
computationally much more expensive.

To be more specifc, diferent from the value-based
methods, the policy gradient directly learns the policy π,
which is modeled as a parameterized function with respect to
θ, denoted by πθ. Ten, the value of the payof function is
acquired depending on this policy and the maximum payof
could be obtained by optimizing θ, that is, by maximizing the
objective function as follows:

J(θ) � E
πθ 􏽘

∞

k�0
βk

r sk, ak( 􏼁⎡⎣ ⎤⎦. (28)

Te maximum payof is achieved, and J(θ) is always
denoted as Qπθ(s, a) given a state-action pair (s, a), i.e., J(θ) �

Qπθ(s, a) � Eπθ[􏽐
∞
k�0β

kr(sk, ak)|s0 � s, a0 � a]. Ten, since
the gradient of J(θ) with respect to θ cannot be directly cal-
culated, the policy gradient theorem [41] is used to approximate
the gradient such that

∇θJ(θ) � E
πθ Q

πθ(s, a)∇θlogπθ(a | s)􏼂 􏼃. (29)

Basically, policy gradient algorithms involve two main
parts: actor and critic [42]. Precisely, the policy πθ(a|s) and
Q-value Qπθ(s, a) are called the actor and the critic, re-
spectively, both of which need to be learned.

In the multiagent scenarios [43], the gradient of each
agent i can be represented as

∇θi
J θi( 􏼁 � E

πθi Q
πθi

i s, a
i

􏼐 􏼑∇θi
logπθi

a
i
| s􏼐 􏼑􏽨 􏽩, (30)

where Q
πθi

i (s, ai) is the estimation of the long-term reward
of each agent i for the current policy. Ten, the ap-
proximate gradient of each agent is reformulated as DPG
such that

∇θi
J θi( 􏼁 � E

πθi ∇θi
πi
θi

(s)∇ai Q
πθi

i s, a
i

􏼐 􏼑 a
i

� πi
θi

(s)
􏼌􏼌􏼌􏼌􏼌􏼔 􏼕, (31)

where πi
θi

is a deterministic policy of agent i, parame-
terized by θi. Consequently, this formulation is applied to
learn the policy for each agent. To obtain the most eco-
nomic strategiesof π∗u � ∆u∗0 ,∆u∗1 , · · · ,∆u∗k , · · ·􏼈 􏼉 and π∗y �

∆y∗0 ,􏼈 ∆y∗1 , · · · ,∆y∗k , · · ·}, DPG is executed through the
following steps. First, when the state of the wireless system
is sk, agents choose the current actions ∆uk and ∆yk

according to their policies, both of which are added with
a unit Gaussian noise Nk ∼ N(0, I) to improve explora-
tion, where I is an identity matrix with an appropriate
dimension and the policy of each agent is optimized based
on its estimated policy gradient (31) and the Q-value

Q
πθi

i (s, ai;ωi) parameterized by ωi is updated by the fol-
lowing minimization problem [44]:

minωi

1
2

rk + Q
πθi

i sk+1, a
i
k+1;ωi􏼐 􏼑 − Q

πθi

i sk, a
i
k;ωi􏼐 􏼑􏼐 􏼑

2
,

(32)

where ai
k and ai

k+1 are the covert signals and sampled from
the policy introduced previously. Since the unit Gaussian noise
Nk is added, ai

k and ai
k+1 are replaced by 􏽢ai

k ≔ ai
k + Nk and

􏽢ai
k+1 ≔ ai

k+1 + Nk+1 in the learning process. In addition, this
added unit Gaussian noise during learning is so small that the
randomly selected policy will not deviate from the mean too
much. On the other hand, the state of the system for each agent
implicitly represents the other agent’s history actions according
to the Markov property, that is, a state is induced from the
history actions of agents. For this reason, each agent’s policy or
Q-value can be seen as a group of parameters, constructing
a mapping between its current and historic actions of the other
agent. In order to describe such a mapping, the original fc-
titious play is used and the empirical frequency of each agent up
to the current instant is considered as a parameter for DPG. In
other words, DPG is an implementation of the fctitious play
for the continuous action space.

Based on the abovementioned analysis, the solution to
Problem 9 is given in Algorithm 1 and the convergence of
this algorithm is shown in Teorem 10 in the sequel. In
Algorithm 1, M denotes the number of episodes and the
larger M could achieve a better learning and T denotes the
length of a learning episode.

Before providing the proof of convergence for Algo-
rithm 1, the following fact needs to be known frst. In [45],
the authors showed that the actor-critic process is a member
of the fctitious play. Terefore, we will mainly discuss the
convergence of the Markov cooperative game G when
a fctitious play is introduced. In addition, in [46], a con-
tinuous-time embedding of a stochastic zero-sum game with
a fctitious play converged to the set of Nash equilibrium
strategies was proved. As a result, the convergence of the
Markov cooperative game with fctitious play is analysed in
Teorem 10 with a similar proof sketch in [46], and some
central concepts of [46] should also be noted. Since the
agents only can receive the current reward and cannot
calculate the future expected discounted payof, the def-
nition of an auxiliary game for each state was introduced to
estimate the long-term payof (or the future expected dis-
counted payof). In every auxiliary game, an arbitrary set of
the long-term payof was assumed. Tat is to say, the payof
for an action in each auxiliary game was given by the im-
mediate payof plus the expected long-term payof at the
subsequent states. Te long-term payof of each auxiliary
game was updated at the rate of (1/t), where t is the calendar
time. Obviously, the rate (1/t) becomes slow gradually as
time goes on and this is benefcial for players to get close to
the equilibrium of the auxiliary game. Conversely, the long-
term payof would converge, which results in that agents’
current strategy approaching an equilibrium strategy. Ac-
tually, this kind of an idea aligns with the Bellman residual
and (32) is a relaxation of the Bellman residual.
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Theorem 10. In theMarkov cooperative gameG, the strategy
of each agent, πi

s, i ∈N, converges to the set of stationary
optimal strategies for each state of s ∈ S.

Proof. Te proof is shown in Appendix B. □

4. Simulation

In this section, we assess the performance of the proposed
algorithm on the interconnected New England test system
(NETS) and the New York power system (NYPS) of the
1970s, where the dimension of xk is more than 100. In
a power system, the loads on buses are the consumption
(e.g., electricity) from users, and therefore, our algorithm
aims to process these collected user data from the central
data hub (cloud data). In order to show the efect of the main
results well, Algorithm 1 is frst verifed over a 68-bus, 16-
machine, and a 5-area system, which is an equivalent system
of NETS-NYPS with reduced size and is named as the
NETS-NYPS 68-bus system [47].

Some parameters in this simulation are given as follows.
For agents, the upper bounds of covert signals are chosen to
be 􏽢u � 6 and 􏽢y � 6; that is, the action space for the agent on

the C-A channel is (− 6∗ [1, 1, . . . , 1, 1]􏽼√√√√√􏽻􏽺√√√√√􏽽

T

n dimension

, 6∗ [1, 1, . . . , 1, 1]􏽼√√√√√􏽻􏽺√√√√√􏽽

T

n dimension

)

and the action space for the agent on the S-C channel is

(− 6∗ [1, 1, . . . , 1, 1]􏽼√√√√√􏽻􏽺√√√√√􏽽

T

m dimension

, 6∗ [1,1,...,1,1]􏽼√√√􏽻􏽺√√√􏽽
T

m dimension

). For the proposed Al-

gorithm 1, the number of episodes is chosen as M � 1500
and the length of an episode is T � 100, and the learning rate
for policy and Q-value are chosen to be 0.01 and 0.001,
respectively.

For the NETS-NYPS 68-bus system, the convergence is
shown in (a) of Figure 2. In this subfgure, the episode
reward in the blue line denotes the average reward of T �

100 immediate rewards in one episode and the red line
represents the average of all episode rewards up to the
current episode. From the beginning instant, both the

(1) Randomly initialize the critic Qπθi (s, ai;ωi) with parameter ωi and the actor πθi
(ai | s) with parameter θi of each agent i, where ai is

the covert signal of each agent defned in (8) and (9)
(2) for episode � 1: M do
(3) Initialize an unit Gaussian process Nk for action exploration
(4) Acquire the initial state s0
(5) for k � 1: T do
(6) Select action 􏽢ai

k � ai
k + Nk according to the current policy πθi

and exploration noise Nk

(7) Execute action 􏽢ai
k and acquire the immediate reward rk as well as the new state sk+1

(8) Update the critic by minimizing the loss (32)
(9) Update the actor policy using the sampled policy gradient (31)
(10) end for
(11) end for

ALGORITHM 1: DPG algorithm for economic strategies of two agents.
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Figure 2: Te NETS-NYPS 68-bus system. (a) Convergence of Algorithm 1. (b) Evolution of KLD.
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episode reward and the average reward increase gradually.
After 20 episodes, the average reward foats in a certain
interval. Tis illustrates that Algorithm 1 is convergent and
the most economic strategies are obtained. Also, (b) in
Figure 2 shows the changing of KLD. Clearly, the value of
D(􏽥zk‖zk) stabilizes at a tiny interval after the initial increase
and subsequent decrease. Tat is to say, the performance of
the system could be guaranteed.

For the interconnected NETS-NYPS, Figure 3 shows
a similar meaning to Figure 2. However, there are more
fuctuations in the former fgure than in the latter fgure
since the interconnected NETS-NYPS is a large system with
many states. In (a) of Figure 3, the average reward also varies
in a certain range after the initial rise. Similar to (b) of
Figure 2, the performance of the system could also be
guaranteed even though there are great changes in the value
of KLD as shown in (b) of Figure 3. Based on the fgures, it is
concluded that the simpler the systems, the easier it is to
implement it in the guaranteeing of the system performance
and in the smoothening of the convergence performance of
Algorithm 1.

5. Conclusion

Tis paper addressed the cooperative game between the
two energy-constrained agents who injected the covert
signals into the two communication channels of the
wireless systems, namely, C-A and S-C channels, in order
to confuse the advisories. Tis process is modeled as
a Markov game with identical payofs for both the agents.
Since the wireless system is unknown to agents, the policy
gradient method is applied to search for the optimal
strategy, combined with fctitious play. Te system per-
formance with covert signals is measured by KLD when
covert signals are launched to confuse the advisories. In

addition, the economic strategy is considered to avoid
excessive waste of signal injections. Te feasibility of
theoretical results was validated on both the NETS-NYPS
68-bus system and the interconnected NETS-NYPS. In the
future work, this research will be extended to the scenario
where attackers will be able to detect the defence strategies
(e.g., injecting the covert signals in this paper). In this
case, it is necessary to propose an additional predictor to
estimate the attackers’ behaviours so as to dynamically
change the defence strategies. Also, the problem of co-
operation or competition among agents (more than two
agents) deserves to be investigated in a similar setting.

Appendix

A. Proof of Proposition 6

When the system is subjected to covert signals in (4), the
state equation, output equation, and the state estimate
equation should be rewritten as

􏽥xk+1 � Axk + B 􏽥uk + ∆uk( 􏼁 + wk,

􏽥yk � Cxk + vk + ∆yk,

􏽢􏽥xk � 􏽢x
−
k + K 􏽥yk − C􏽢x

−
k( 􏼁,

(A.1)

where the state equation follows from the assumption that
the agent launches signals from instant k and 􏽢x−

k is also not
changed at instant k since 􏽢x−

k relates to the historic instants,
which are the instants before k. Ten, one has

􏽥xk − 􏽢􏽥xk � xk − 􏽢􏽥xk � (I − KC) xk − 􏽢x
−
k( 􏼁 − Kvk − K∆yk,

(A.2)

and the estimate error covariance at instant k is
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Figure 3: Te interconnected NETS-NYPS. (a) Convergence of Algorithm 1. (b) Evolution of KLD.
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􏽥Pk � E 􏽥xk − 􏽢􏽥xk􏼐 􏼑 􏽥xk − 􏽢􏽥xk􏼐 􏼑
T

􏼔 􏼕

� P + K μy

k μy

k􏼐 􏼑
T

+ Σyk􏼔 􏼕K
T

,

(A.3)

which is derived from vk and ∆yk which are mutually in-
dependent Gaussian processes and (17).

At instant k + 1, the output equation, state estimate
equation, and the priori state estimate equation are denoted
as

􏽥yk+1 � C􏽥xk+1 + vk+1 + ∆yk+1,

􏽢􏽥xk+1 � 􏽢􏽥x
−

k+1 + K 􏽥yk+1 − C􏽢􏽥x
−

k+1􏼒 􏼓,

􏽢􏽥x
−

k+1 � A􏽢􏽥xk + B􏽥uk.

(A.4)

Ten, one has

􏽥xk+1 − 􏽢􏽥xk+1 � A xk − 􏽢􏽥xk􏼐 􏼑 + B∆uk + wk − Kvk+1 − KC 􏽥xk+1 − 􏽢􏽥x
−

k+1􏼐 􏼑 − K∆yk+1. (A.5)

Te term 􏽥xk+1 − 􏽢􏽥x
−

k+1 could be further evaluated as

􏽥xk+1 − 􏽢􏽥x
−

k+1 � A xk − 􏽢􏽥xk) + wk + B∆uk.􏼐 (A.6)

Hence, (A.5) could be further represented in the form of

􏽥xk+1 − 􏽢􏽥xk+1 � (I − KC) A xk − 􏽢􏽥xk) + wk) − Kvk+1 +(I − KC)B∆uk − K∆yk+1.􏼐􏼐 (A.7)

and the corresponding estimate error covariance of 􏽥Pk+1 is

􏽥Pk+1 � E 􏽥xk+1 − 􏽢􏽥xk+1􏼐 􏼑 􏽥xk+1 − 􏽢􏽥xk+1􏼐 􏼑
T

􏼔 􏼕

� (I − KC)A􏽥PkA
T
(I − KC)

T
+ KRK

T
+(I − KC)Q(I − KC)

T

+ KE ∆yk+1∆y
T
k+1􏽨 􏽩K

T
+(I − KC)BE ∆uk∆u

T
k􏽨 􏽩B

T
(I − KC)

T

� P +(I − KC)BE
u
kB

T
(I − KC)

T

+ 􏽘
1

i�0
((I − KC)A)

i
KE

y

k+iK
T

A
T
(I − KC)

T
􏼐 􏼑

i
,

(A.8)

where the third equality is obtained by substituting (A) into
􏽥Pk+1. At instant k + 2, the state equation, output equation,

state estimate equation, and the priori state estimate
equation are deduced as

􏽥xk+2 � A􏽥xk+1 + B􏽥uk+1 + B∆uk+1 + wk+1,

􏽥yk+2 � C􏽥xk+2 + vk+2 + ∆yk+2,

􏽢􏽥xk+2 � 􏽢􏽥x
−

k+2 + K 􏽥yk+2 − C􏽢􏽥x
−

k+2􏼐 􏼑,

􏽢􏽥x
−

k+2 � A􏽢􏽥xk+1 + B􏽥uk+1.

(A.9)

Ten, one has

􏽥xk+2 − 􏽢􏽥xk+2 � (I − KC)A 􏽥xk+1 − 􏽢􏽥xk+1) +(I − KC)wk+1 +(I − KC)B∆uk+1 − Kvk+2 − K∆yk+2,􏼐 (A.10)
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and the estimate error covariance 􏽥Pk+2 is obtained as
shown in the following equation:

􏽥Pk+2 � E 􏽥xk+2 − 􏽢􏽥xk+2􏼐 􏼑 􏽥xk+2 − 􏽢􏽥xk+2􏼐 􏼑
T

􏼔 􏼕

� P + 􏽘
2

i�0
((I − KC)A)

i
KE

y

k+iK
T

A
T
(I − KC)

T
􏼐 􏼑

i

+ 􏽘
1

i�0
((I − KC)A)

i
(I − KC)BE

u
k+iB

T
(I − KC)

T
A

T
(I − KC)

T
􏼐 􏼑

i
.

(A.11)

Similarly, one has

􏽥Pk+q � P + 􏽘

q

i�0
((I − KC)A)

i
KE

y

k+iK
T

A
T
(I − KC)

T
􏼐 􏼑

i
,

(A.12)

where q≥ 0.

Terefore, the proof is completed according to the
defnitions of Eq and Fq.

A.1. Proof of Proposition 8. Firstly, (A.12) could be rewritten
as

􏽥Pk+q − P � 􏽘

q

i�0
((I − KC)A)

i
KE

y

k+iK
T

A
T
(I − KC)

T
􏼐 􏼑

i

+ 􏽘

q− 1

i�0
((I − KC)A)

i
(I − KC)BE

u
k+iB

T
(I − KC)

T
A

T
(I − KC)

T
􏼐 􏼑

i
.

(A.13)

Moreover, we could have

􏽥Pk+q − P≤ max
0≤i≤q

E
y

k+i

����
���� 􏽘

q

i�0
((I − KC)A)

i
KK

T
A

T
(I − KC)

T
􏼐 􏼑

i

+ max
0≤i≤q− 1

E
u
k+i

����
���� 􏽘

q− 1

i�0
((I − KC)A)

i
(I − KC)BB

T
(I − KC)

T
A

T
(I − KC)

T
􏼐 􏼑

i

≤ max
0≤i≤q

E
y

k+i

����
���� KK

T
����

���� 􏽘

q

i�0
((I − KC)A)

i
A

T
(I − KC)

T
􏼐 􏼑

i

+ max
0≤i≤q− 1

E
u
k+i

����
���� (I − KC)BB

T
(I − KC)

T
����

���� 􏽘

q

i�0
((I − KC)A)

i
A

T
(I − KC)

T
􏼐 􏼑

i

≤ max
0≤i≤q

E
y

k+i

����
���� KK

T
����

���� 􏽘

q

i�0

􏽢Aλi
+ max

0≤i≤q− 1
E

u
k+i

����
���� (I − KC)BB

T
(I − KC)

T
����

���� 􏽘

q− 1

i�0

􏽢Aλi
,

(A.14)

where the last inequality is based on the fact that there is
always a constant matrix 􏽢A such that ((I − KC)A((I−

KC)A)T)i ≤ 􏽢Aλi, where λ � ρ((I − KC)A)< 1 [34]. Tus,
there is always a constant δ1 such that
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􏽥Σk+q − Σ≤ max
0≤i≤q

E
y

k+i

����
���� KK

T
����

���� 􏽘

q

i�0
CA􏽢A

T
A

T
C

Tλi

+ max
0≤i≤q− 1

E
u
k+i

����
���� (I − KC)BB

T
(I − KC)

T
����

���� 􏽘

q− 1

i�0
CA􏽢AA

T
C

Tλi

≤ amax
0≤i≤q

E
y

k+i

����
���� + b max

0≤i≤q− 1
E

u
k+i

����
����􏼠 􏼡CA􏽢AA

T
C

T

≤ δ1CA􏽢AA
T
C

T
,

(A.15)

where Σ � C(APA + Q)CT + R � CPCT + R, 􏽥Σk+q � C

(A􏽥Pk+q− 1A
T + Q)CT + R, a � (‖K‖2/1 − λ), b � (‖(I − KC)

B‖2/1 − λ), and δ1 � amax0≤i≤q‖E
y

k+i‖ + b max
0≤i≤q− 1

‖Eu
k+i‖. Ten,

according to (A.15), one has

Σ− (1/2) 􏽥Σk+q − Σ􏼐 􏼑Σ(1/2) ≤ δ1Σ
− (1/2)

CA􏽢AA
T
C

TΣ(1/2)
.

(A.16)

Furthermore, (A.16) could be deduced as

Tr Σ− 1􏽥Σk+q􏽨 􏽩 − m≤ δ1Tr Σ
− 1

CA􏽢AA
T
C

T
􏽨 􏽩. (A.17)

In addition, we note that 􏽥Pk+q ≥P always holds according
to Proposition 6. Ten, one has

log
det(Σ)

det 􏽥Σk+q􏼐 􏼑
≤ 0. (A.18)

Also, the upper bound of (μz
k)T􏽐

− 1
k μz

k denoted as δ2
could be derived if the agents launch the most expensive
covert signals at every instant from the initial injection.
Terefore, by (A.17) and (A.18) and δ2, the system per-
formance is guaranteed according to Defnition 7 and (22)
subjected to the following condition:

δ1 ≤
2 δ − δ2( 􏼁

Tr Σ− 1CA􏽢AA
T
C

T
􏽨 􏽩

. (A.19)

B. Proof of Theorem 10

Te following three defnitions are essential for the proof.

Defnition B.1. Let b1 ≔ mins∈S,ai∈Ai r(s, au, ay), b2 ≔
maxs∈S,ai∈Ai r(s, au, ay), i ∈N, and 􏽢B ≔ [b1, b2]. Te best
responses of the auxiliary game in state s with the contin-
uation payof vector u

→ are denoted by

BR
u

s, u
→ πy

s( 􏼁 � argmax
πu,⋆

s ∈Lu

f
s, u
→ πu,⋆

s , πy
s( 􏼁,

BR
y

s, u
→ πu

s( 􏼁 � argmax
πy,⋆

s ∈Ly

f
s, u
→ πu

s , πy,⋆
s( 􏼁,

(B.1)

where u
→ is the vector of the long-term payof us and us ∈􏽢B is

an arbitrarily long-term payof in state s.

Remark B.2. It is noted that some notations in Defnition B.1
with subscript s, such as us, πu

s , π
y
s , and f

s, u
→(πu,⋆

s , πy
s ),

correspond to the notations defned in the previous sections.
More specifcally, us � rk (i.e., the immediate reward),

πi
s � πi(sk), and f

s, u
→ � J(x, s,∆u,∆y) (i.e. the payof), and

the same expressions also exist in Defnitions B.3 and B.4.

Defnition B.3. For every state s ∈ S at every time t≥ 1, the
best-response dynamic of agent i ∈N in Markov co-
operative game G evolves according to

_us(t) �
f

s, u
→

(t)
π1s (t), π2s (t)􏼐 􏼑 − us(t)

t
,

_πi
s(t) ∈ Is(t) BR

i

s, u
→

(t)
π− i

s (t)􏼐 􏼑 − πi
s(t)􏼒 􏼓,

(B.2)

where f
s, u
→(·) ≔ (1 − β)r(s) + β􏽐s′∈ST s,s′us′ is the future

expected discounted payof in state s, s′ denotes the next
state, − i denotes the other agent, and Is(t) also denotes the
indicator function such that Is(t) � 1 if the agents are in the
state s at time t, otherwise, Is(t) � 0.

Defnition B.4. For any stationary optimal strategy π, the
value of state s ∈ S denoted as Vals satisfes the following
equation: Vals � (1 − β)r(s, π) + β 􏽐

s∈S
Tπ
s,s′Vals′ .

Based on these defnitions, the sketch proof of Teorem
10 is given as follows. According to Defnitions B.1 and B.3,
the term |f

s, u
→

(t)
(πu

s (t), πy
s (t)) − us(t)| in (B.2) is bounded,

which could infer that | _us(t)|⟶ 0 as t⟶∞. In other
words, the long-term payof u

→ moves slowly. Tis could
conversely verify that |f

s, u
→

(t)
(πu

s (t), πy
s (t))−

v(g
s, u
→)|⟶ 0, where v(g

s, u
→) is the value of the co-

operative game and g
s, u
→ denotes the auxiliary game with

payof f
s, u
→. Ten, the optimal strategies could be derived

according to [46] and the references therein.
In fact, the dynamical system (B.2) could be considered

as a feedback system in which f
s, u
→

(t)
(πu

s (t), πy
s (t)) trans-

forms the economic strategy to payof and the best response
to the current belief about the other agent transforms the
payof back to the strategy.
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