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Precisely segmenting the organs at risk (OARs) in computed tomography (CT) plays an important role in radiotherapy’s
treatment planning, aiding in the protection of critical tissues during irradiation. Renowned deep convolutional neural networks
(DCNNs) and prevailing transformer-based architectures are widely utilized to accomplish the segmentation task, showcasing
advantages in capturing local and contextual characteristics. Graph convolutional networks (GCNs) are another specializedmodel
designed for processing the nongrid dataset, e.g., citation relationship. Te DCNNs and GCNs are considered as two distinct
models applicable to the grid and nongrid datasets, respectively. Motivated by the recently developed dynamic-channel GCN
(DCGCN) that attempts to leverage the graph structure to enhance the feature extracted by the DCNNs, this paper proposes
a novel architecture termed adaptive sparse GCN (ASGCN) to mitigate the inherent limitations in DCGCN from the aspect of
node’s representation and adjacency matrix’s construction. For the node’s representation, the global average pooling used in the
DCGCN is replaced by the learning mechanism to accommodate the segmentation task. For the adjacency matrix, an adaptive
regularization strategy is leveraged to penalize the coefcient in the adjacency matrix, resulting in a sparse one that can better
exploit the relationships between nodes. Rigorous experiments on multiple OARs’ segmentation tasks of the head and neck
demonstrate that the proposed ASGCN can efectively improve the segmentation accuracy. Comparison between the proposed
method and other prevalent architectures further confrms the superiority of the ASGCN.

1. Introduction

Segmenting the organs at risk (OARs) in computed to-
mography (CT) is a crucial step in radiotherapy treatment
planning that helps protect the healthy tissue during irra-
diation [1]. OARs are defned as healthy tissues or organs
near the clinical target volume (CTV) whose irradiation
could potentially cause damage. For example, the heart is an
OAR in the left breast cancer, and constrictor naris is an
OAR in the nasopharyngeal cancer. Deep neural networks
(DNNs), including discrete deep convolutional neural
networks (DCNNs) [2] and continuous ordinary diferential
equation (ODE) based networks [3], have become ubiqui-
tous models for the segmentation task. One of the most well-
known segmentation models is U-Net [4], a simple yet
powerful architecture composed of an encoder, a decoder,
and shortcut connections between them. Despite its

simplicity, U-Net and its variants have delivered promising
performance in medical image segmentation tasks. Notably,
the recently proposed nnU-Net [5], abbreviated as no new
U-Net, has achieved multiple state-of-the-art records by
deliberately designed rules for preprocessing, training, and
postprocessing strategies, further confrming the efective-
ness of the U-Net’s paradigm. In addition, researchers in the
feld have leveraged the transformer [6] architecture to
enhance the representation ability of U-Net, as seen in
UNETR [7].

In addition to the medical images formed by regular 2D
or 3D grids, there are numerous datasets in the non-
Euclidean spaces, such as citation datasets [8], knowledge
graphs [9], and protein datasets [10]. For those non-
Euclidean datasets, graph-based models comprising nodes
and edges are the ideal choice for efectively capturing the
intrinsic characteristics. Inspired by the breakthrough
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achieved by the DCNNs, graph convolutional networks
(GCNs) [11], specialized neural networks with embedded
graph structures, have been widely employed for the analysis
of non-Euclidean datasets. Te GCNs attempt to learn the
representation of nodes by aggregating information through
the adjacency matrix in an end-to-endmanner. Encouraging
results on multiple graph-related tasks (e.g., node classif-
cation or graph classifcation) have been reported by GCNs.

Te DCNNs and GCNs are considered as two distinct
models for analyzing the Euclidean and non-Euclidean
datasets, respectively. Nevertheless, a newly proposed
method named dynamic-channel GCN (DCGCN) [12] in-
corporates the graph structure to model the relationships
between channels of the feature maps extracted by the
DCNNs. Specifcally, each channel is regarded as a node, and
a symmetric adjacency matrix describing the relationships
between nodes is constructed using a deliberately designed
activation function. Te activation function is designed to
constrain the symmetric channelwise relationship within the
range of 0 and 1. Experimental results on the fundus’ retinal
vessel segmentation task demonstrate that the channel graph
contributes to improving segmentation accuracy. Moreover,
visualization results indicate that the adjacency matrix re-
mains stable throughout the training phase, suggesting that
the network has efectively learned the intricate channelwise
relationships.

Despite the DCGCN demonstrating superior perfor-
mance compared to networks lacking a graph structure, it
exhibits two notable limitations. Te frst limitation lies in
the constrained representation of each channel. In DCGCN,
the global average pooling (GAP) [13] that averages the
feature map along the channel is used to obtain the con-
textual representation of each channel. When dealing with
medical images containing small OARs or feature maps with
large spatial sizes, employing the average operation would
introduce noise and deteriorate the network’s performance.
Tis may also account for the limited usage of DCGCN in
the retinal vessel segmentation task [12], which only applies
the DCGCN in the last shortcut connection in U-Net. Te
second limitation of DCGCN is related to the construction
of the adjacency matrix within the graph. In DCGCN, the
adjacency matrix is derived from the activation function,
whose input is the representation of each channel. Te
deviation of the channel’s representation would accumulate
when constructing the adjacency matrix.

Faced with the aforementioned limitations in DCGCN,
this paper proposes a novel graph structure termed adaptive
sparse graph convolutional networks (ASGCNs).TeASGCN
aims to construct a dynamic sparse graph to describe the
topological connection between channels, thereby enhancing
the network’s feature extraction ability for OARs’ segmen-
tation tasks. Te limitations of DCGCN in the aspect of node
representation and adjacency matrix construction are
addressed in the proposed ASGCN. For the node represen-
tation, the GAP in DCGCN is replaced by the learning
mechanism that attempts to adjust each channel’s repre-
sentation to accommodate the segmentation task. For the
construction of the adjacency matrix, motivated by the self-
attention module in the transformer [6], we leverage the

coefcient matrix between the key and value in the self-
attention module as the adjacency matrix in the graph. Be-
yond the fully connected adjacency matrix, the ASGCN
adaptively truncates the linkage between two nodes based on
their correlation, resulting in an adaptive sparse adjacency
matrix that contributes to regularizing the segmentation
model. Te computational principle of the proposed ASGCN
can be divided into three steps, as illustrated in Figure 1. In the
frst step, we establish the node representation and adjacency
matrix through the features generated by the neural networks
to create the graph structure.Te second step involves shifting
the adjacency matrix from dense to sparse through an
adaptive truncation operation. Finally, in the third step, the
features are reconstructed by leveraging the sparse adjacency
matrix. In summary, the primary objective of ASGCN is to
augment the features in the segmentation network by in-
corporating the graph structure. Te main contributions of
this paper are as follows:

(i) A plug-and-play module termed ASGCN is pro-
posed, which leverages a learning mechanism to
overcome the potential noise in the node repre-
sentation within the DCGCN.

(ii) Motivated by the dropout method, the adjacency
matrix that describes the topological relationship
between nodes is adaptively regularized during the
training phase, mitigating the overftting problem in
the OARs segmentation tasks.

(iii) Experimental results of the proposed ASGCN and
the control methods demonstrate the efectiveness
of the graph structure in the OARs
segmentation tasks.

Te paper is organized as follows. Section 2 summarizes
the related works of the DNN-based methods for medical
image segmentation tasks and the current progress of the
GCNs. Section 3 provides a detailed illustration of the
proposed ASGCN, including graph construction and
adaptive sparsity. Section 4 conducts experiments by frst
verifying the parameter sensitivity of the ASGCN, followed
by comparing the ASGCN and control methods. Section 5
discusses the relationship between the proposed ASGCN
and closely related approaches. Finally, Section 6 presents
the conclusion of the ASGCN.

2. Related Works

In this section, we frst summarize medical image seg-
mentation using variants of DNNs, including the DCNNs-
based and transformer-based models. Ten, we present the
architecture of GCNs and their application in medical image
analysis.

2.1. Medical Image Segmentation Based on DNNs.
Starting with the breakthrough brought by AlexNet [2],
DCNNs have dominated the analysis of vision-related tasks,
changing the paradigm from handcrafted low-level features
to learning-based high-level ones driven by large-scale an-
notated datasets. Numerous novel architectures of DCNNs
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have been proposed, including the VGG [14], Inception [15],
ResNet [16], and EfcientNet [17], all of which have achieved
promising accuracy in the ImageNet [18] dataset. Along with
the enormous success achieved by DCNNs, it has also be-
come the de-facto method in medical image segmentation
tasks. One of the most renowned segmentation networks is
U-Net [4], an efcient architecture of fully convolutional
networks (FCNs) that won the ISBI cell tracking challenge in
2015. Besides the 2D biomedical image addressed by the
original U-Net, there are multiple 3D volumetric datasets,
such as CT and magnetic resonance imaging (MRI), where
models that consider the depth information are preferred.
Based on this concern, the 3DU-Net [19, 20] that models the
volumetric characteristics of the target is proposed. It
achieves superior performance compared with its 2D
counterparts. In addition, the nnU-Net [5] has achieved
multiple state-of-the-art records in various biomedical
segmentation competitions, further indicating the efciency
of the U-Net architecture. Besides the U-Net architecture,
a patch-based learning framework [21] has been proposed to
segment the spine in the CT slices. Experimental results on
multiple public datasets demonstrate that the patch-based
method delivers precise segmentation results.

Among the various architectures of DNNs, perhaps one
of the most exciting developments is the attention mecha-
nism [22], which was frst proposed to augment the recurrent
neural networks (RNNs) to learn the long-range relationship
in machine translation tasks. Besides the natural language
processing tasks, the attention mechanism has also been
widely applied in the medical image segmentation feld.
Oktay et al. [23] proposed the attention U-Net, which le-
verages the gate block [24] to modulate the channelwise
information produced by the encoder of U-Net. Experi-
mental results show that the attention U-Net is superior to
the vanilla U-Net on the pancreas segmentation task. Fol-
lowing the channelwise and spatialwise attention mechanism
[25, 26] used in the natural image, CS2-Net [27] extends the
attention method to curvilinear structures (e.g., blood ves-
sels) in the 3D medical image. Te CS2-Net achieves a higher
segmentation accuracy compared with variants of U-Net on
multiple retinal vessel datasets. Te idea behind the attention
mechanism is to highlight the signifcant features while
suppressing the irrelevant ones. Reverse attention [28],
a novel attention module that works oppositely compared
with the commonly used one, has also been applied in the
polyp segmentation [29] and achieved encouraging seg-
mentation accuracy. Wang et al. [30] proposed the mask
attention module to precisely segment the lung regions. Te
mask attention module attempts to focus on lung regions
while suppressing the lesion-related artifacts.

While the attention module helps to enhance DCNNs’
representation ability, it is not until the introduction of the
self-attention module [6] that the attention-based models
became the mainstream for both natural image and medical
image analysis tasks. Compared with the traditional con-
volutional operator or recurrent connection, the self-
attention module exhibits superiority in modeling long-
range dependencies with the assistance of the large-scale
annotated dataset. Te self-attention frst overwhelms the
RNNs in the natural language processing feld. It later shows
superiority over the DCNNs in the ImageNet dataset with
the proposition of vision transformer (ViT) [31]. However,
one signifcant limitation of self-attention for the image-
related tasks lies in the increased requirement for the an-
notated dataset, which poses challenges for tasks with
a limited dataset, e.g., medical image segmentation. Tis
motivates researchers to propose hybrid networks that blend
the convolution and self-attention modules. For example,
the UNETR [7] and Swin UNETR [32] are segmentation
architectures for volumetric medical images that use the
transformer-based encoders and convolutional-based de-
coders. Recently, Zhang et al. [33] proposed a Swin-based
[34] two-stage method for the segmentation of the spine
[33]. Te method frst localizes the spine by using Swin-
YOLOX, and then accomplishes the segmentation by using
Swin-UNet.

In addition to their applications in medical imaging,
variants of DNNs have been used in remote sensing, a feld
characterized by vast quantities of multimodal images. For
example, Hong et al. introduced HighDAN [35], a high-
resolution domain adaptation network aimed at addressing
the challenge of cross-city semantic segmentation. To tackle
the task of land use and land cover classifcation, a novel
architecture combining the transformer and CNNs has been
developed [36]. Furthermore, a cross-attention mechanism
has been designed to enhance the spatial resolution of
hyperspectral images by leveraging multispectral counter-
parts [37]. In the realm of semisupervised learning, strategies
have been employed to harness the vast amount of unlabeled
images for hyperspectral image classifcation [38]. In ad-
dition, SpectralGPT [39], a foundational model tailored for
remote sensing image analysis, demonstrates promising
performance across various downstream tasks following its
pretraining on a dataset of one million spectral images.

2.2. Graph Convolutional Networks. GCNs are graph-based
neural networks that attempt to model non-Euclidean
structures, e.g., social networks. Te GCNs can be catego-
rized into two classes, i.e., the spectral and spatial ap-
proaches. For the spectral class, Bruna et al. [40] defned the
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Figure 1: Te computational principle of the proposed ASGCN. Each channel in the raw representation is marked by a number, and their
topological relationship is described by a dynamic sparse graph.
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convolution for the graph in the Fourier domain by utilizing
the eigenvectors of its graph Laplacian. Nevertheless, the
eigendecomposition of the graph Laplacian is computa-
tionally expensive, which limits the GCNs’ application for
large-scale graphs. Deferrard et al. [41] later proposed to use
the Chebyshev polynomials to approximate the localized
convolutional flters, eliminating the eigendecomposition of
the Laplacian. For the spatial class, Kipf and Welling [11]
introduced the GCNs by considering the frst-order
neighborhood of each node, signifcantly outperforming
the commonly used methods and becoming the de-facto
approach for the analysis of graph datasets. Later, multiple
variants of GCNs have been proposed, including the
GraphSAGE [42] and graph attention networks (GAT) [43].

Many researchers have also explored the application of
GCNs in medical image analysis tasks. For instance, the
multimodal graph learning (MMGL) framework [44] is
proposed to utilize GCNs for disease prediction using
a multimodal dataset, which includes images, biomarkers,
demographics, and more. ImageGCN [45] builds a multi-
relational image-level GCN to identify diseases in chest X-
rays. Each node in the ImageGCN represents features from
an X-ray image, where the edge between the two nodes
indicates their relationships.Te recently proposed DCGCN
[12] is a specialized graph-based model designed to augment
the feature in the DCNNs-based segmentation network for
retinal vessels. Despite the accuracy improvements reported
by DCGCN, the constrained representation of each node
may introduce noise. Tis inherent limitation inspires us to
propose the ASGCN, which is detailed in the next section.

3. Methodology

In this section, we illustrate the details of the proposed
ASGCN, including the graph construction and the adaptive
sparse adjacency matrix, which are shown in the blue and
green blocks in Figure 2, respectively. Finally, we summarize
the training algorithm of the proposed ASGCN. We now
delve into the graph construction of ASGCN.

3.1. Graph Construction. Let G � (V,E) denote the graph
with the node set V and edge set E. For the node set, we
suppose there are C nodes in graph G, and each node is
denoted as vi ∈V. Let X ∈ RC×K represent the matrix of
nodes’ raw features, with each row denoting the feature of
a node having dimension K. For the edge set, the edge
between (vi, vj) ∈ E is described by the adjacency matrix
A ∈ RC×C, where each element Ai,j represents the connec-
tivity between the i-th and j-th nodes. Alongside the ad-
jacency matrix A, the diagonal degree matrix D , with its
elements defned as Dii � 􏽐jAij, represents the degree of
node i.

In the GCNs proposed by the authors in [11], the
propagation of information can be formulated as

H
l+1

� σ 􏽢AH
l
W

l
􏼐 􏼑,

􏽢A � 􏽢D
−1/2

(A + I) 􏽢D
−1/2

,

⎧⎪⎨

⎪⎩
(1)

where Hl+1 represents the transformed representation of
nodes in layer l + 1 and 􏽢A∈ RN×N denotes the renormalized
adjacency matrix.Te frst line in equation (1) represents the
parameterized transformation betweenHl andHl+1, where σ
is the nonlinear activation function and Wl is the learnable
parameters. Te second line in equation (1) denotes the
renormalization of the adjacency matrix A whose node is
added with self-connection I. Te 􏽢D is the diagonal degree
matrix of A + I. Te renormalization assures that the
message passing between the two nodes considers the degree
of the two connected nodes simultaneously.

As demonstrated in equation (1), the graph’s adjacency
matrix 􏽢A and the node’s representation Hl simultaneously
impact the representation of nodes in layer l + 1. Inspired by
these two components in the GCN, this paper proposes
a graph structure to enhance the features extracted by
DCNNs. It is known that the channel of the feature map in
DCNNs is an essential factor that describes the semantic
patterns of the input. When considering the 3D feature map
in the shape of [C, D, H, W] as a graph, each channel can be
regarded as a node whose dimension is D × H × W. Ten,
the interchannel relationship and intrachannel representa-
tion correspond to the adjacency matrix and node’s rep-
resentation, respectively. However, directly applying
equation (1) to model the graph of the feature map in
DCNNs is difcult for the disparate structures between the
non-Euclidean graph described by equation (1) and the
feature map’s Euclidean graph. Te following paragraphs
illustrate the strategies used in constructing adjacency
matrix 􏽢A, followed by the computation of the nodes’ rep-
resentation Hl for the graph of the feature map.

First is the construction of the adjacency matrix. In
conventional GCNs, the adjacency matrix A describes the
connections between nodes and its renormed form 􏽢A is used
in the layerwise forward computation. Te simplest form of
A in the conventional undirected graph is in the binary
format, in which 1 and 0 represent two nodes having or not
connected, respectively. Te binarized adjacency matrix A

can be regarded as a hard mode, while its renormed form 􏽢A

is in the softmode.Tis paper aims to design a soft adjacency
matrix to describe the channelwise relationship of the fea-
ture map extracted by the DCNNs. Motivated by the self-
attention approach [6], we leverage the scaled-dot product
paradigm to obtain the relationship between channels,
which can be formulated as follows:

A
l

�
Fq H

l
; W

l
q􏼐 􏼑F

T
k H

l
; W

l
k􏼐 􏼑

��
K

√ , (2)

where the Fq and Fk denote the transformation embedded
with the learnable parameters Wl

q and Wl
k, respectively. Te

divided K represents the dimension of each node for nu-
merical stability. Te original scaled-dot product described
in [6] is implemented by the fully connected linear trans-
formation designed for the word token in natural language
processing. Nevertheless, the Hl obtained from 3D DCNNs
is a tensor with dimensions of [C, D, H, W]. Due to the high
dimensionality of the feature in 3D DCNNs, directly ap-
plying the fully connected transformation to each node may
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introduce a severe overftting problem. Terefore, a trans-
formation that can adapt to the characteristics of the feature
map is preferred. Based on this consideration, the Fq and Fk

in equation (2) are replaced by the 3D convolution to ef-
fciently extract the features. Note that, the adjacency matrix
Al in equation (2) is appended with the superscript l, in-
dicating that the adjacency matrix is adaptively adjusted
along with the layer, rather than the fxed one in
equation (1).

After obtaining the adjacency matrix Al, the next re-
quired operation is normalization, which aims to control the
scale of each node by considering its connected nodes. Let
the normalization be abbreviated as Norm. Ten, the
resulting normalized adjacency matrix can be denoted as
􏽢A

l
� Norm(Al). In ASGCN, two commonly used normal-

ization operations are considered, including the softmax and
the degree-based normalization. We consider the element
􏽢A

l

i,j in 􏽢A
l ∈ RC×C. Te softmax normalization can be for-

mulated as 􏽢A
l

i,j � eAl
i,j /􏽐C

k�1e
Al

i,k , which ensures that the sum
of each row is equal to 1. Te degree-based normalization
can be described as 􏽢A

l

i,j � Al
i,j/

����
didj

􏽱
, where di and dj denote

the degree of the i-th and j-th nodes in A + I, respectively.
Take the di as an example, its value is determined as
di � 􏽐j(Al + I)ij. Both the two normalization approaches
own appealing properties. Te softmax function aims to
normalize the adjacency coefcient as probability, ensuring
that each element is squashed to a value between 0 and 1
while their sum equals 1. Te degree-based method ac-
complishes normalization by considering the degree of the
two connected nodes. To investigate their efectiveness in the
medical image segmentation tasks, we rigorously compared
the two normalization approaches in Section 4.2.

Te preceding paragraphs illustrate the construction of
the normalized adjacency matrix 􏽢A

l in ASGCN, analogous to
the second line in equation (1). Te 􏽢A

l is then utilized to
aggregate features fromHl toHl+1, as shown in the frst line of
equation (1). In the proposed ASGCN, the feature Hl un-
dergoes initial processing through another 3D convolution,
which can be considered analogous to the Wl in the frst line
of equation (1). Tis processed feature is subsequently mul-
tiplied by the adjacency matrix, resulting in the transformed
representation Hl+1. However, rather than directly applying

the 􏽢A
l to aggregate nodes’ representation, another property of

interest is sparsity, which contributes to the network’s gen-
eralization ability. Te following subsection illustrates the
strategies employed to introduce sparsity to 􏽢A

l.

3.2. Adaptive Sparse Adjacency Matrix. Sparsity is a critical
factor that helps to alleviate the overftting problem, espe-
cially for tasks with a limited annotated dataset size, e.g.,
medical image segmentation. Endow sparsity to 􏽢A

l could
result in a compact representation of features, thus con-
tributing to the networks’ generalization ability. A
straightforward way to implement the sparsity is to leverage
the idea of dropout [46] to randomly reset the coefcient in
􏽢A

l to 0. Te vanilla dropout randomly drops neurons fol-
lowing the Bernoulli distribution parameterized by θ, i.e.,
each neuron has the probability θ to be kept or 1 − θ to be
dropped. When the neuron is dropped, its activation value is
reset to 0, which implies that it does not contribute to the
prediction result. Many studies have adopted dropout as
a regularizer in training DNNs to mitigate the overftting
problem.

While dropout is an efective regularization method, our
recent study [47] shows that the dropout is sensitive to its
applied layer and the value of θ. Previous experimental
results have shown that applying vanilla dropout to multiple
shallow layers can increase the risk of underftting. Tis
phenomenon is attributed to the stagnation of information
fow during forward computation. Tis inherent limitation
has motivated us to propose a variant known as surrogate
dropout [47], an efective method that does not sufer from
the abovementioned constraint yet surpasses the vanilla
dropout on both natural andmedical image analysis tasks. In
the proposed ASGCN, surrogate dropout is employed to
adaptively regularize the normalized adjacency matrix 􏽢A

l,
resulting in a sparse matrix 􏽥A

l. Specifcally, the element 􏽢A
l

i,j

is categorized into two classes based on the hyperparameter
β. 􏽢A

l

i,j ≥ β denotes that the i-th and j-th nodes are correlated,
while the opposite suggests that the two nodes are un-
correlated. Following the strategies used in the surrogate
dropout, we adaptively regularize the correlated nodes while
keeping the rest uncorrelated, which can be described as
follows:

[C, D, H, W]

[C, D, H, W] [C, D×H×W]

[C, D×H×W]
[C, D, H, W]
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Raw representation
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Figure 2: Te framework of the proposed ASGCNs.
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b
l
i,j �

Bernoulli 􏽢A
l

i,j􏼒 􏼓, if 􏽢A
l

i,j ≥ β,

1, if 􏽢A
l

i,j < β.

⎧⎪⎪⎨

⎪⎪⎩
(3)

Te bl
i,j is a binary variable that indicates the kept or

dropped status of the 􏽢A
l

i,j. Equation (3) indicates that the
correlated nodes are moderately penalized, preventing the
segmentation results from overly depending on them.
Moreover, adaptive regularization efectiveness is achieved
since the 􏽢A

l

i,j that parameterizes the Bernoulli distribution is
continuously updated along with the training phase. Af-
terwards, the adaptively regularized sparse adjacency matrix
􏽥A

l

i,j can be obtained through the pointwise multiplication

between 􏽢A
l

i,j and bl
i,j as

􏽥A
l

i,j � 􏽢A
l

i,j ⊙ b
l
i,j. (4)

In the vanilla dropout, each neuron follows a fxed
Bernoulli distribution with a probability denoted as θ. Te
fxed θ may impede information propagation when exten-
sive layers are applied with dropout. In the proposed
ASGCN, the kept probability is determined by 􏽢A

l

i,j, which
can be adaptively adjusted during the training. Tis self-
regulated property of the ASGCN can greatly expand the
application of dropout since the Bernoulli distribution for
each coefcient can be independently adjusted according to
the task’s requirement. Te ASGCN changes the θ in the
vanilla dropout that represents the kept probability of each
neuron to β that categorizes 􏽢A

l

i,j.
During the training phase, each coefcient 􏽢A

l

i,j is ad-
justed according to the rules defned in equations (3) and (4).
When in the test phase, the ideal inference mode is to iterate
the kept and dropped status for all the 􏽢A

l

i,j that is larger than
β and average eachmodel’s prediction as the fnal result. One
distinct limitation of this inference mode is the prohibitive
time cost caused by the exponential possible combinations.
Based on this consideration, the expectation of the Bernoulli
distribution is used during the test phase.Te value of 􏽥A

l

i,j in
the test phase is determined as follows:

􏽥A
l

i,j �

􏽢A
l

i,j, if 􏽢A
l

i,j ≥ β,

1, if 􏽢A
l

i,j < β.

⎧⎪⎨

⎪⎩
(5)

3.3. Algorithm of ASGCN. Algorithm 1 summarizes the
computation process of the proposed ASGCN method.
Given the feature map Hl extracted by the DCNNs, the
channelwise adjacency matrix Al is obtained in line 1, where
the symbol ∗ denotes the convolution operator. Te matrix
is later normalized to 􏽢A

l in line 2, where the possible
normalization methods include the softmax and degree-
based approaches. Ten, its sparse version 􏽥A

l is computed
from lines 3 to 7. Finally, the augmented feature 􏽢H

l can be
obtained through the matrix multiplication shown in line 8.

Similar to the self-attentionmodule in the transformer, there
are three learnable parameter matrices in the proposed
method. However, the proposed method is only applied to
the shortcut connections in the 3D U-Net. Tus, the in-
cremental computational cost incurred by the proposed
method is marginal.

4. Experiments

Tis section empirically verifes the efectiveness of the
proposed method through multiple OARs’ segmentation
tasks. Te used datasets and experimental setups are pre-
sented frst. Ten, we evaluated the ASGCN through three
aspects, including its parameter sensitivity, application to
segment OARs with varied sizes, and visualization of the
predictions.

4.1. Dataset and Experimental Setup. Te CT dataset for the
head and neck cancers [1] is used in the experiments, which
can be downloaded from the following website: https://
github.com/uci-cbcl/UaNet. Te dataset is proposed for
radiotherapy treatment planning of nasopharyngeal carci-
noma, where a large number of OARs are considered during
the treatment. Six OARs are used in the experiments, in-
cluding the constrictor naris, eyes, lens, optic nerves, tem-
poral lobes, and thyroids. Te reason for choosing the OARs
lies in the variety, which contains tissues ranging from small
(lens) to large (temporal lobes). For OARs consisting of both
left and right components, such as the left and right lens, the
two parts are merged into one class to eliminate the impact
of positions. Te dataset is split into training, validation, and
test, with three partitions containing roughly 90, 20, and 20
cases, respectively.

Te proposed ASGCN is a plug-and-play module that
can be incorporated into modern segmentation networks to
enhance its representation ability. Te broadly used 3D U-
Net [19] architecture is employed in the experiments.Te 3D
U-Net comprises three components, including an encoder
with four stages, a decoder with three stages, and shortcut
connections between the encoder and decoder. During the
experiments, the ASGCN is applied to all the shortcut
connections. Cross entropy is used as the loss function,
which is optimized by the Adam [48] with the default
learning rate of 0.0001. Note that, this paper is not intended
to achieve the state-of-the-art records but to leverage the
graph structure to augment the representation ability of the
network.

Te two most widely used segmentation metrics are
considered in the experiments, including the dice similarity
coefcient (DSC) and 95th percentile Hausdorf distance
(HD). Te DSC is defned as DSC � 2|Vp ∩Vg|/|Vp| + |Vg|,
where the Vp and Vg denote the volume of prediction and
ground truth, respectively. For the defnition of HD, let Cp

and Cg represent the contours of the prediction and ground
truth mask, respectively. Ten, the HD can be described as
max d(Cp, Cg), d(Cg, Cp)􏽮 􏽯, where d(Cp, Cg) is the distance
between the two sets that is defned as
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d(Cp, Cg) � maxa∈Cp
minb∈Cg

‖a − b‖. Since the HD is sen-
sitive to outliers, the 95th percentile of HD between the
prediction and ground truth is used.

4.2. Study of Parameter Sensitivity. Tis subsection frst
studies the parameter sensitivity of the proposed ASGCN.
Two normalization methods, including the softmax and
degree-based ones, are empirically compared across a range
of β values from 0.1 to 0.9. Te DSC values of the two
methods for the segmentation of thyroids are shown in
Figure 3. For the softmax-based normalization, the ASGCN
consistently surpasses the baseline, with the highest DSC
achieved when the value of β is 0.3. Note that, the value of β
indicates the strength of regularization, where the very high
(0.9) or low (0.1) values represent weak and strong regu-
larization, respectively. Tough the value of β refers to
extreme values, the DSC of the ASGCN is still higher than
the baseline, implying the broad applicability of the pro-
posed method. For the degree-based normalization, it can be
seen that the DSC of ASGCN fuctuates with the increment
of β. Te DSC of the degree-based normalization is even
lower than the baseline when the value of β is 0.5. We
hypothesize that the reason for the fuctuation of the degree-
based normalization lies in the diferences between the
Euclidean and non-Euclidean datasets. Te degree-based
approach is frequently used for the non-Euclidean dataset
by considering the degree of each two connected nodes.
However, the graph of the feature map modeled by the
ASGCN is in the Euclidean space, where directly leveraging
the degree defned in the non-Euclidean space cannot
precisely measure the strength of connectivity between
nodes. Based on the results shown in Figure 3, the softmax
normalization is used in the following experiments with β set
to 0.3.

4.3. U-Net with ASGCN. We compare the vanilla 3D U-Net
and the one applied with ASGCN on the six OARs. Ex-
perimental results are shown in Table 1. It can be found that
the ASGCN consistently achieves better metrics than the
vanilla 3D U-Net for all the OARs. Regarding the DSC score,
the highest increment can be observed for the optic nerves,
where the ASGCN increases the DSC from 0.6077 to 0.6418.

For the HD score, the maximum decrease can be found at
the lens, where the ASGCN decreases the HD from 4.6414 to
2.4956. Note that, both the lens and optic nerves are OARs
with small sizes, which are sensitive to the features extracted
by the network. Te promotion brought by the ASGCN
manifests that the graph structure helps the network seg-
ment small targets. Besides the small OARs, the proposed
ASGCN also contributes to enhancing the network’s per-
formance for the OARs with large sizes. For example, the
ASGCN increases the DSC of the temporal lobes from
0.8595 to 0.8690 while decreasing the HD from 3.0174 to
2.1383. Te experimental results presented in Table 1
demonstrate the efectiveness of the ASGCN in enhancing
the network’s segmentation performance for OARs of
diferent sizes.

4.4. Comparison of Related Approaches. Besides the com-
parison between the vanilla 3D U-Net and the network
applied with the ASGCN, we also quantitatively compare the
ASGCN with four closely related methods, namely, the Swin
UNETR [49], DCGCN [12], squeeze-and-excitation (SE)
[50], and attention gate (AG) [23]. Both compared methods
aim to enhance the representation ability of the DCNNs.
Experimental results are shown in Table 2. For the

Input: Treshold β; convolutional kernel Wl
q, Wl

k, Wl
v; and input feature Hl

Output: Augmented feature 􏽢H
l

(1) Al � (Hl ∗Wl
q) · (Hl ∗Wl

k)T/
��
K

√

(2) 􏽢A
l

� Norm(Al)

(3) if 􏽢A
l

i,j ≥ β then
(4) bl

i,j � Bernoulli(􏽢A
l

i,j)

(5) else
(6) bl

i,j � 1
(7) 􏽥A

l
� 􏽢A

l ⊙ bl

(8) 􏽢H
l

� 􏽥A
l
· (Hl ∗Wl

v)

ALGORITHM 1: Training phase of the proposed ASGCN.
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Figure 3: Comparison of softmax and degree-based normalization
in the ASGCN for the segmentation of thyroid.
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constrictor naris, the AG achieves the highest DSC of 0.7774,
while also obtaining the lowest HD among the methods. For
the eyes, the SE obtains the highest DSC of 0.8968, while the
ASGCN achieves a comparable score of 0.8951. Te lowest
HD of the eyes can be observed in the ASGCN, which is
1.1163. For the lens, which is a very small OAR, the Swin
UNETR shows the best performance among the fve models.
For the rest three OARs, the ASGCN consistently achieves
the highest DSC and the lowest HD simultaneously. Re-
garding the DSC, the ASGCN shows remarkable advantages
in the segmentation of thyroids, surpassing the rest of the
methods by a large margin. For the HD, the ASGCN exhibits
superiority in the segmentation of the temporal lobes with
an HD value of 2.1383, which is signifcantly lower than that
of other methods.

4.5. Visualization of Predictions. We further qualitatively
compare the predictions of all the methods with the ground
truth in this subsection. Te comparisons are shown in
Figure 4. For the image of the constrictor naris shown in the
frst row, it can be observed that both the ASGCN, Swin
UNETR, AG, DCGCN, and SE have precisely identifed the
target, except for the vanilla 3D U-Net, whose prediction is
discrete. Similar results can be observed in the eyes and lens,
where the prediction of vanilla 3D U-Net is less smooth
compared to that of the ASGCN. For the optic nerves shown
in the fourth row, it can be found that the prediction of the
ASGCN is closest to the ground truth among the compared
methods. In contrast, the predictions of other methods are
either discrete (vanilla 3D U-Net and DCGCN) or in-
complete (Swin UNETR and SE). Regarding the temporal
lobes, most methods have recognized the majority region of
the target (except Swin UNETR), which can be attributed to
the clear boundaries between the soft and bone tissues. For

the thyroids shown in the last row, only the ASGCN has
identifed the top regions, while the prediction of the rest of
the methods is incomplete. Te visualization results shown
in Figure 4 demonstrate that ASGCN exhibits the best
performance among the compared methods, which can be
attributed to the embedded sparse graph in the segmentation
network.

5. Discussion

Te proposed ASGCN aims to leverage the graph structure
to enhance the features extracted by the DCNNs. By ex-
amining the computational principle of the ASGCN, we can
observe that the GCN [11] is closely related to the trans-
former [6] architecture. Specifcally, by regarding the ad-
jacency matrix in the GCN to the product between the query
and the key in the transformer, we can instantly bridge the
gap between the GCN and transformer. Nevertheless, there
are noteworthy diferences between the proposed ASGCN
and the transformer. Te transformer utilizes the fully
connected layer to obtain the representation of query, key,
and value. Te fully connected layer is a powerful generic
connectionism given the large-scale annotated datasets.
However, its efectiveness would be signifcantly reduced
when dealing with limited dataset sizes, e.g., the segmen-
tation task of OARs.Tus, the proposed ASGCN replaces the
fully connected layers with the 3D convolution to take
advantage of the efcient parameter-sharing property in-
herent in the convolution.

Te ASGCN addresses the limitations of node repre-
sentation in the DCGCN. Te GAP that attempts to obtain
the node representation in the DCGCN is replaced by the
learning mechanism introduced in the ASGCN. Te latter
approach proves to be more robust in segmenting OARs
with varied appearances and sizes. In addition, the adjacency

Table 1: Comparison between the vanilla 3D U-Net and the network applied with the proposed ASGCN.

ROI DSC ( ↑ ) of 3D
U-Net DSC ( ↑ ) of ASGCN HD ( ↓ ) of 3D

U-Net HD ( ↓ ) of ASGCN

Constrictor naris 0.7565 0.  22 2.1913 1. 650
Eyes 0.8791 0.8951 2.0778 1.1163
Lens 0.6160 0.6495 4.6414 2.4956
Optic nerves 0.6077 0.6418 2.5521 2.3080
Temporal lobes 0.8595 0.8690 3.0174 2.1383
Tyroids 0.7826 0.8089 2.9000 2.0280
Te upward and downward arrows indicate that the higher and lower are better, respectively. Te bold value denotes better performance.

Table 2: Comparison between the network applied with the ASGCN and the related approaches.

ROI DSC of
ASGCN

DSC of
Swin

UNETR

DSC of
DCGCN DSC of SE DSC of AG HD of

ASGCN

HD of
Swin

UNETR

HD of
DCGCN HD of SE HD of AG

Constrictor naris 0.7722 0.7428 0.7738 0.7702 0.   4 1.7650 2.6254 1.7373 1.7634 1.6910
Eyes 0.8951 0.8855 0.8890 0.8968 0.8864 1.1163 1.1728 1.3087 1.1728 1.1584
Lens 0.6495 0.6554 0.6119 0.6454 0.6300 2.4956 1.4060 4.4368 4.3967 5.2654
Optic nerves 0.6418 0.6294 0.6326 0.6220 0.6372 2.3080 2.7100 2.6552 2.8887 2.5706
Temporal lobes 0.8690 0.7939 0.8577 0.8594 0.8579 2.1383 5.8505 3.3170 2.8090 3.6000
Tyroids 0.8089 0.7686 0.7990 0.7965 0.7886 2.0280 2.9508 4.8513 2.3406 2.3329
Higher DSC and lower HD represent superior performance. Te bold value denotes better performance.
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matrix in the ASGCN exhibits sparsity compared to the
DCGCN. In the proposed ASGCN, the adjacency matrix is
adaptively regularized throughout the training process,
preventing the network from being overdependent on sig-
nifcant features and alleviating the overftting problem.

6. Conclusions

Tis paper proposes a graph-based module named ASGCN to
increase the representation ability of DCNNs. By considering
each channel of the features extracted by the DCNNs as a node,
we construct the adjacency matrix that describes the re-
lationship between nodes in the Euclidean space.Te adjacency
matrix is adaptively regularized, displaying insensitivity to-
wards hyperparameters. Experiments are carried out on seg-
menting six OARs in the head and neck. Results demonstrate
the superiority of the ASGCN over the compared methods.

In terms of the limitations of the proposed ASGCN, the
property of sparsity can be further improved. Currently, the
idea of dropout is leveraged to explicitly introduce the
sparsity into the adjacency matrix in the ASGCN. However,
other approaches, such as the deliberately designed regu-
larization term in the loss function, can be used to implicitly
assign sparsity. Moreover, besides the task-specifc seg-
mentation model, the prompt-guided universal segmenta-
tion model, either the task prompt or the location prompt, is
prevalent in medical image segmentation tasks. In future
works, we plan to integrate the graph structure into the
design of the prompt to construct the universal task-agnostic
medical image segmentation model.
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