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Pretrained LanguageModels (PLMs) acquire rich prior semantic knowledge during the pretraining phase and utilize it to enhance
downstream Natural Language Processing (NLP) tasks. Entity Matching (EM), a fundamental NLP task, aims to determine
whether two entity records from diferent knowledge bases refer to the same real-world entity. Tis study, for the frst time,
explores the potential of using a PLM to boost the EM task through two transfer learning techniques, namely, fne-tuning and
prompt learning. Our work also represents the frst application of the soft prompt in an EM task. Experimental results across
eleven EM datasets show that the soft prompt consistently outperforms other methods in terms of F1 scores across all datasets.
Additionally, this study also investigates the capability of prompt learning in few-shot learning and observes that the hard prompt
achieves the highest F1 scores in both zero-shot and one-shot context. Tese fndings underscore the efectiveness of prompt
learning paradigms in tackling challenging EM tasks.

1. Introduction

In the era of big data, extensive Knowledge Bases (KBs) or
Knowledge Graphs (KGs) have been constructed, serving as
structured repositories of knowledge about the world [1, 2].
However, the entities coming from diferent KBs are often
heterogeneous and presented using diferent attributes.
Figure 1 illustrates the disparities in attribute values for
a same product in two diferent online shopping KBs. When
integrating KBs to build recommendation systems or
question-answering systems [3–5], these disparities can lead
to increased redundancy and reduced performance in
downstream tasks. Entity Matching (EM), as a fundamental
knowledge extraction task in Natural Language Processing
(NLP), aims to determine whether two entity records from
diferent KBs refer to the same real-world entity, thereby
addressing the aforementioned challenge [6].

Early EM methods are based on editing distance, which
is convenient but less practical. Machine learning-based
approaches transform EM into a binary classifcation
problem using classifers like Support Vector Machine
(SVM) [7]. However, given that these methods require
manual feature engineering, their generalization is limited.
With the rise of deep learning, researchers also attempt to
tackle the matching problem leveraging techniques like
Convolutional Neural Networks (CNNs) or Recurrent
Neural Networks (RNNs) [8, 9]. However, these deep
learning-based approaches could only capture semantic
knowledge implicit in the training set, and obtaining labelled
training data is challenging.

In light of the aforementioned drawbacks associated
with deep learning, researchers have proposed Pretrained
Language Models (PLMs) consisting of multiple layers of
Transformer blocks [10], such as BERT [11] and ERNIE [12].
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Initially, these models acquire prior semantic knowledge
from extensive unlabelled text corpora through pretraining
tasks like Masked Language Model (MLM) [11] and Next
Sentence Prediction (NSP) [11]. Subsequently, this semantic
knowledge can be employed to enhance a variety of
downstream NLP tasks [13–15]. Tis can be regarded as
a form of transfer learning, and there are currently two
popular paradigms: fne-tuning and prompt learning [16].

Te fne-tuning paradigm involves modifying the model
structure for downstream tasks, such as adding an additional
classifer on top of the PLM’s encoder and discarding the
decoder part [17]. Terefore, fne-tuning will introduce
discrepancies of the training goal between downstream and
pretraining tasks, making it challenging for the model to
fully leverage the semantic knowledge acquired during
pretraining [18]. In contrast, prompt learning reformulates
downstream tasks based on the pretraining task of a PLM,
utilizing all the parameters in a PLM, including both the
encoder and decoder, rather than only using the encoder.
Taking the most representative BERT-series PLMs as an
example, when employing these PLMs for prompt learning,
they bridge the gap between downstream tasks and the
pretraining task by wrapping the raw input with prompt
templates containing [MASK] tokens, stimulating better
PLM semantic understanding capability by reproducing the
MLM process. At this point, downstream tasks are trans-
formed into predictions for these placeholders, resulting in
performance enhancement [19–21]. For example, Jin et al.
[17] proposed a “Word Transferred LM” for sentiment
analysis, transferring the target words of a sentence into
pivot tokens via MLM. Zhao et al. [22] developed a series of
prompt learning approaches, called PromptMR, in-
vestigating how prompt learning could improve metonymy
resolution. Te methods they proposed achieved competi-
tive accuracy compared to baseline models.

Evidently, the key to applying prompt learning lies in the
textual prompt templates. Depending on how templates are
generated, prompt learning can be categorized as hard
prompt (or discrete prompt) and soft prompt (or continuous
prompt) [18]. For the former one, templates consist of fxed
tokens [23], while for the latter one, templates are vectors
that can be learned in a continuous space [24]. Terefore,
although the templates generated by the soft prompt may
not be understandable as natural language by humans, they
have the capability to discover more suitable template
embeddings. However, there is no published work on
comparing the diferences between the fne-tuning and
prompt learning paradigms in EM tasks comprehensively,
and the properties of prompt learning in EM remain
unexplored.

Te present research provides, for the frst time, com-
prehensive comparison between fne-tuning and prompt
learning paradigms for the EM task and explores the ca-
pabilities of prompt learning in the context of few-shot
learning. Tis is also the frst study on how to apply soft
prompts to EM tasks. Te main contributions of this study
can be summarized as follows:

(1) We conduct a comprehensive comparison of fne-
tuning and prompt learning paradigms when applied
to EM. Specifcally, we transform the structured
attribute values of two entity records into textual
descriptions. Given that the BERT-series PLMs are
widely used and more representative, we chose
ERNIE-2.0-en, which shares the same architecture
and pretraining tasks as BERT, as the backbone
model. For fne-tuning, we train a binary classifer
using the representation of [CLS] to determine
whether the two entity records are “consistent.” For
hard prompt, we utilize the template consisting of
fxed tokens to convert the original input into se-
quences with [MASK] tokens and predict these
placeholders. Trough this way, the downstream EM
task is transformed into the pretraining task MLM.
Te approach for soft prompt is similar to that of the
hard one, but the template consists of pseudo tokens
and searches for their embeddings in a continuous
space using a Multilayer Perceptron (MLP). Addi-
tionally, this is the frst exploration of how to apply
the soft prompt to an EM task.

(2) We perform a comparative analysis of F1 scores
between fne-tuning and prompt learning on eleven
datasets. Notably, our fndings reveal that soft
prompts consistently exhibit superior performance
across all datasets. Nevertheless, it is worth noting
that, in datasets with a substantial number of training
samples, prompt learning demonstrates compara-
tively modest improvements in F1 scores. Addi-
tionally, we also tracked the loss values throughout
the training process, and our observations indicate
that hard prompts consistently yield the lowest loss
values in the initial training phases, suggesting their
potential for few-shot learning.

(3) Consequently, we also undertake experiments to
validate the capability of prompt learning for few-
shot learning. We observe the performance of both
fne-tuning and prompt learning in the contexts of
zero-shot learning and one-shot learning, utilizing
structured iTunes-Amazon and DBLP-Scholar
datasets. Te outcomes indicate that prompt learn-
ing consistently outperforms fne-tuning, with hard
prompt learning displaying the best performance in
the context of few-shot learning. Te raw datasets
used to support the fndings of this study are
available at https://github.com/anhaidgroup/
deepmatcher. We also have made the source code
publicly available on GitHub: https://github.com/
Briskyu/entity_matching.

Te overall structure of this study takes the form of six
sections. A brief review of the related work is presented in
Section 2. Section 3 deals with the methodology used in this
study. Te experimental results are presented in Section 4,
while the discussion is provided in Section 5. Finally, Section
6 concludes this study with a summary.
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2. Related Works

Early research into EM primarily utilized methods based on
edit distance or machine learning, such as [25–27]. However,
these methods either proved to be impractical or exhibited
poorer generalization.Terefore, the majority of current EM
research is based on deep learning or pretrained language
models.

2.1. Deep Learning. Deep learning has achieved remarkable
results in the feld of EM, driven by the development of
computer hardware, especially the Graphics Processing Unit
(GPU) [8]. For example, Di Cicco et al. [28] introduced
a methodology to produce explainable deep learning models
for the EM task. Nie et al. [29] proposed a deep sequence-to-
sequence entity matching model, denoted as Seq2Seq-
Matcher, which can efectively solve the heterogeneous
problems by modelling ER as a token-level sequence-to-
sequence matching task. Koolin et al. [30] proposed an EM
approach, which is mainly based on a record linkage process
and detects records that refer to the same entity. Gottapu
et al. [31] used a single-layer convolutional neural network to
perform an EM task. Kasai et al. [32] attempted to explore
the performance of deep learning in the low-resource RM
task. Tey designed an architecture that can learn a trans-
ferable model from a high-resource setting to a low-resource
one. Tese methods based on deep learning can learn fea-
tures from training data, eliminating the need for manual
feature engineering. However, the semantic knowledge they
acquire is limited to the training set, which constrains the
performance of deep learning-based EM models, especially
considering that obtaining labelled training data is
challenging.

2.2. Pretrained Language Models. PLMs consisting of mul-
tiple transformer blocks, such as BERT [11] and ERNIE [12],
can acquire prior semantic knowledge from large-scale
unlabelled corpora through pretraining phase and apply
this knowledge to downstream tasks. Consequently, PLM-
based approaches outperform deep learning-based methods
in various NLP tasks. Tere has been research focusing on
the application of PLMs to EM. For example, Chen et al. [33]
proposed a transfer-learning EM approach, leveraging
a knowledge base constructed through PLMs. Mehdi et al.
[34] investigated whether PLM-based EM models can be

trusted in real-world applications where data distribution is
diferent from that of training. Due to the existing difer-
ences in training goal between fne-tuning and pretraining,
recent eforts have focused on employing prompt learning to
bridge the gap between pretraining and downstream tasks,
namely, utilizing all the parameters both in the encoder and
decoder of a PLM. Te key to conducting prompt learning
lies in reformulating the downstream target task based on
the textual prompts. Tere are two types of textual prompts:
cloze prompts, which fll in the blanks of a textual string, and
prefx prompts, which continue a string prefx [18]. In
addition, prompt learning can generally be categorized into
two types: the hard prompt [23, 35] and soft prompt [24, 36].
Te diference lies in the fact that the hard prompt has fxed
templates, whereas the soft prompt allows the template to be
learned in a continuous space. According to the literature
review, there has been no comprehensive analysis of fne-
tuning and prompt learning specifcally for EM.

3. Methods

Tis section frst provides a detailed introduction to the
problem defnition of the EM task, followed by a thorough
presentation of the specifc model structures for the two
paradigms: fne-tuning and prompt learning.

3.1. Problem Defnition. Te EM task aims to determine
whether two entity mentions or records refer to one real-
world entity. Specifcally, given a dataset D � (E1, E2),􏼈

A, Y}, where E1 and E2 are sets of entity mentions, A denotes
the set of attributes, and Y denotes the set of true labels. For
any ei ∈ E1 and ej ∈ E2, both are composed of n attributes,
i.e., ei � ai1, ai2, ai3 . . . ain􏼈 􏼉 and ej � aj1, aj2, aj3 . . . ajn􏽮 􏽯,
where (ai1, ai2, ai3 . . . ain, aj1, aj2, aj3 . . . ajn) ∈ A. Assuming
the relation between two entity mentions is represented by
yk ∈ Y, a mapping function f(ei, ej)⟶ yk is calculated
through D. For another dataset D′ � (E1′, E2′), A′, Y′􏼈 􏼉 with
the same distribution as D, there exist ei

′ ∈ E1′ and ej
′ ∈ E2′.

y′ � f(ei
′, ej
′) should be the same as the true label yk

′ ∈ Y′.
Te goal of this study is to construct an appropriate model to
represent the mapping function f(·).

3.2. Fine-Tuning. For the fne-tuning paradigm, we follow
the method outlined in Figure 2. First, structured key-value
pairs are transformed into unstructured textual data denoted
as X � x1, x2, . . . , xn􏼈 􏼉, where n denotes the length of X.

Name Manufacturer Price

Adobe photoshop 
elements 4.0 

( mac )

Adobe
89.99

Name Manufacturer Price

adobe photoshop elements 
4.0 photo-editing sofware 

for mac

-
85.95

Entity Matching Same real-world entity

Amazon Google

Figure 1:Te illustration of entity matching.Te tables display the product (entity) records of “Adobe Photoshop” in Amazon and Google.
Te EM task involves determining whether these two entity records represent the same real-world entity.

International Journal of Intelligent Systems 3



Ten, the embeddings denoted as E � ecls, e1, e2, . . . ,􏼈

en, esep} are acquired by incorporating the [CLS] and [SEP]
tokens surrounding X and executing an embedding table
lookup. Te PLM generates the representations, which are
denoted as H � hcls, h1, h2, . . . , hn, hsep􏽮 􏽯, for each token
within the input sequence. In this context, the EM task can
be regarded as a binary classifcation task, and the objective
is to ascertain whether two entities are identical or dis-
similar. Finally, the representation corresponding to [CLS] is
used to calculate the predicted label yp through the fol-
lowing equation:

yp � argmax softmax Wc ∗ hc + bc( 􏼁( 􏼁, (1)

where Wc ∈ RM∗H and bc ∈ RM are the learnable weight
matrix and bias and initialized with random values. M is the
number of labels (M � 2 in this study), and H is the di-
mension of the hidden layer.

3.3. Prompt Learning. In contrast to fne-tuning, prompt
learning transforms the downstream task into the form of
the pretraining task, aligning the objectives of pretraining
and downstream tasks. In this study, the downstream task is
transformed into the MLM task since we select ERNIE-2.0-
en, which is a BERT-like PLM, as the backbone model.
According to the construction method of prompt templates,
it can be categorized as either the hard prompt or the soft
prompt.

3.3.1. Hard Prompt. For the hard prompt, structured key-
value pairs are frst transformed into two unstructured text
chunks, as shown in Figure 3(a). Ten, the new input se-
quence X � x1, x2, . . . , xn􏼈 􏼉 is constructed based on the
template “<sentence_1> and <sentence_2> they are
[MASK].” It is obvious that xn corresponds to the [MASK]
token. Subsequently, E � ecls, e1, e2, . . . , en, esep􏽮 􏽯 is obtained

as the same method as fne-tuning and input into the PLM.
Finally, hm ∈ H � hcls, h1, h2, . . . , hn, hsep􏽮 􏽯 generated by the
PLM is passed into the MLM head. Te most likely word w,
which can represent the predicted label yp, is selected from
a dictionary through the following equation:

w � argmax softmax Wm ∗ hm + bm( 􏼁( 􏼁, (2)

where Wm ∈ RK∗H and bc ∈ RK are the learnable weight
matrix and bias in the MLM head, but initialized with the
values learned by pretraining process. K is the size of the
word dictionary, and H is the dimension of the hidden layer.

3.3.2. Soft Prompt. For the soft prompt, structured key-value
pairs are also transformed into two text chunks, as illustrated
in Figure 3(b). Ten, a new input sequence
X � x1, x2, . . . , xp1, xp2, xn􏽮 􏽯 is constructed based on the
template “<sentence_1> and <sentence_2> pseudo pseudo
[MASK],” and xn corresponds to the [MASK] token. It is
worth noting that the template contains pseudo tokens,
which can be represented using [UNK], and the number of
pseudo tokens is a hyperparameter (set to 10 in this study).
E � ecls, e1, e2, . . . , ep1, ep2, en, esep􏽮 􏽯 is still acquired through
an embedding lookup operation. Te fnal input sequence to
the PLM is ecls, e1, e2, . . . , rp1, rp2, en, esep􏽮 􏽯, where rp1 and
rp2 are obtained using the following equations:

rp1 � Wp ∗ ep1 + bp, (3)

rp2 � Wp ∗ ep2 + bp, (4)

where Wp ∈ RL∗L and bP ∈ RL are the learnable parameters
of a Multilayer Perceptron (MLP) layer and L is the em-
bedding dimension. Finally, hm generated by the PLM is
passed into the MLM head, and w is selected from a dic-
tionary through the following equation:

PLM

Song Artist Time

Gal a Bubble Konshens 3:31

Song Artist Time

Get Busy Kaskade 4:13

Song: Artist: Time:Gal a Bubble, Konshens, 3:31, Song: Artist: Time:Get Busy, Kaskade, 4:13

SEPCLS x1 ...

Classifer Predicted label

ec e1 e2 e3 en es

hc

…

x2 x3 xn

Figure 2: Te model architecture of fne-tuning.
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w � argmax softmax Wm ∗ hm + bm( 􏼁( 􏼁, (5)

where Wm ∈ RK∗H and bc ∈ RK are the learnable weight
matrix and bias, but initialized with the values learned by

pretraining process, too. K is the size of the word dictionary,
and H is the dimension of the hidden layer. Trough the
aforementioned approach, the soft prompt can fnd more
appropriate template embeddings in continuous space.

PLM

Song Artist Time

Gal a Bubble Konshens 3:31

Song Artist Time

Get Busy Kaskade 4:13

Song: Artist: Time:Gal a Bubble, Konshens, 3:31 Song: Artist: Time:Get Busy, Kaskade, 4:13

SEPCLS ...

MLM headPredicted label

<sentence_1> and <sentence_2> they are [MASK]

MASK

…

ec e1 e2 e3 em es

x1 x2 x3

hm

(a)

PLM

Song Artist Time

Gal a Bubble Konshens 3:31

Song Artist Time

Get Busy Kaskade 4:13

Song: Artist: Time:Gal a Bubble, Konshens, 3:31 Song: Artist: Time:Get Busy, Kaskade, 4:13

SEPCLS ...

MLM headPredicted label

<sentence_1> and <sentence_2> pseudo pseudo [MASK]

MASK

…

MLP

hm

ec e1 e2 e3
em es

ep1 ep2

xp1 xp2

rp1 rp2

x1 x2 x3

(b)

Figure 3:Temodel architecture of hard prompt and soft prompt. (a)Te entity matching task with a hard prompt. (b)Te entity matching
task with a soft prompt.
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4. Experiments

Tis section aims to evaluate themethod proposed in Section
3 through experiments and presents the selected datasets,
evaluation metrics, hyperparameters, and experimental re-
sults. For the software environment of the experiments, we
utilized the Paddlepaddle deep learning framework, in-
troduced by Baidu (https://github.com/paddlepaddle/
paddle). As for the hardware environment, we employed
a 2-core CPU, a RAM with 16GB, and an NVIDIA V100
GPU with 16GB of memory for the experiments. Addi-
tionally, given that this study marks the frst application of
the soft prompt to EM, we refer to the EM approach based
on soft prompt as “our model.”

4.1. Datasets. We evaluated the proposed entity matching
method in this study using the datasets provided by Mudgal
et al. [37]. Tese datasets difer in terms of type, domain, and
size, allowing us to assess the generalizability of the entity
matching model. Table 1 presents an overview of the datasets,
indicating that the datasets consist of two types: structured
and dirty. Te dirty datasets are obtained by modifying the
structured dataset and are diferentiated using indices 1 and 2.
Specifcally, for each attribute except “title,” there is a 50%
chance that it will be randomly moved to the “title” attribute.
Tis simulates a common kind of dirty data seen in the real-
life scenarios while keeping the modifcations simple. Te
“Size” column represents the total number of labelled samples
for each dataset. We split all the dataset into three parts with
ratio of 3 :1 :1, for training, validation, and evaluation, re-
spectively. “Positive instances” represent the number of
positive samples in the dataset, indicating two entities that are
the same in the real world. “Attributes” indicate the number
of attributes corresponding to each entity in the dataset. Te
more detailed descriptions of each dataset are provided below:

(1) BeerAdvo-RateBeer: Tis dataset contains beer data
from BeerAdvocate and RateBeer. Te attributes
include beer name, brewery name, beer type, and
alcohol by volume.

(2) iTunes-Amazon: Tis dataset contains music data
from iTunes and Amazon. Te attributes include
song name, artist name, album name, genre, price,
copyright information, and release date.

(3) DBLP-ACM: Tis dataset contains bibliographic
data from DBLP and ACM. Te attributes include
title, author, venue, and year.

(4) DBLP-Scholar: Tis dataset contains bibliographic
data from DBLP and Google Scholar. Te attributes
include title, author, venue, and year.

(5) Amazon-Google: Tis dataset contains product data
from Amazon and Google. Te attributes include
title, manufacturer, and price.

(6) Walmart-Amazon: Tis dataset contains product
data from Walmart and Amazon. Te attributes
include title, category, brand, model number,
and price.

(7) Abt-Buy: Tis dataset contains product data from
Abt.com and Buy.com. Te attributes include name,
description, and price.

4.2. Hyperparameters. Te seven hyperparameters involved
in training the model are presented in Table 2. It should be
noted that for BeerAdvo-RateBeer and iTunes-Amazon
datasets, the epoch and batch size are set to 8 and 10, re-
spectively, while for the other datasets, these two hyper-
parameters are set to 16 and 5. For all datasets, we use
AdamW as the optimizer with an initial learning rate of
1e− 5, a maximum gradient norm of 1.0, and a maximum
input length of 512.

4.3. Evaluation Metrics. Te evaluation metric used in the
experiment is “F1,” calculated according to the following
formulation, where precision represents the ratio of cor-
rectly predicted number among the predicted positive
samples, and recall represents the ratio of correctly predicted
positive samples in the evaluation set.

F1 �
2∗ Precision∗Recall
Precision + Recall

. (6)

4.4. Experiment Results

4.4.1. F1 Scores of Diferent Models. As shown in Tables 3
and 4, we frst compare the F1 scores of our model on both
the structured and dirty datasets with four previously
popular entity matching models: DeepER, DeepMatcher,
Magellan, and Multicontext Attention (MCA). Te DeepER
proposed by Ebraheem et al. [38] utilizes GloVe [39] to
obtain word embeddings. Tese embeddings are used to
generate the representations of tuples through Long Short-
TermMemory (LSTM) and then employ cosine similarity to
determine whether they represent the same entity. Te
DeepMatcher proposed by Mudgal et al. [37] uses a bi-
directional RNN with decomposable attention to implement
attribute summarization. Magellan proposed by Konda et al.
[40] is an EM system that provides a step-by-step guide,
instructing users on how to operate in each EM scenario.
Zhang et al. [41] proposed an integrated multicontext at-
tention framework that takes into account self-attention,
pair-attention, and global-attention from three types of
contexts. Terefore, this model is referred to as MCA. In
summary, the four methods mentioned above are either
based on deep learning models such as RNN or LSTM, or
they incorporate attention mechanisms. Moreover, they do
not use PLMs to generate the representations that contain
prior semantic knowledge. In contrast, our model uses the
ERNIE-2.0-base-en to generate representations and employs
the soft prompt method introduced in Section 3.3.2 to train
the EM model. Te column “ΔF1” is set to indicate the
improvement in F1 scores achieved by our model compared
to the previous best result. It is evident that our proposed EM
method outperforms the others, both on the structured and
dirty datasets.
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4.4.2. F1 Scores of Diferent Paradigms. We also conduct
a comparative analysis between fne-tuning and prompt
learning paradigms on both structured and dirty datasets.
Te corresponding results are presented in Tables 5 and 6,
with the abbreviations “FT,” “HP,” and “SP” denoting “fne-
tuning,” “hard prompt,” and “soft prompt,” respectively.
“ΔF1” quantifes the enhancement in F1 scores. Based on the
experimental fndings, it is evident that the two prompt
learning approaches consistently outperform the fne-tuning
paradigm across the majority of datasets, with the exception
of the structured iTunes-Amazon and DBLP-Scholar data-
sets. For these particular datasets, the fne-tuning and the
adoption of a hard prompt yield nearly identical F1 scores.

Notably, the utilization of a soft prompt consistently
exhibited superior performance, manifesting an enhance-
ment in F1 scores across all datasets.

It is noteworthy that our observations indicate a po-
tential correlation between the magnitude of F1 scores’
improvement achieved through prompt learning and the
scale of the training dataset. Specifcally, prompt learning
demonstrates a propensity for generating higher enhance-
ments in F1 scores for smaller datasets. To illustrate, con-
sider the structured datasets BeerAdvo-RateBeer, DBLP-
ACM, and DBLP-Scholar, all having the number of attri-
butes with four. However, the BeerAdvo-RateBeer dataset
comprises a modest size of 450 instances, signifcantly

Table 1: Overview of the eleven EM datasets.

Type Name Domain Size Positive instances Attributes

Structured

BeerAdvo-RateBeer Beer 450 68 4
iTunes-Amazon1 Music 539 132 8
DBLP-ACM1 Citation 12,363 2,220 4
DBLP-Scholar1 Citation 28,707 5,347 4
Amazon-Google Software 11,460 1,167 3

Walmart-Amazon1 Electronics 10,242 962 5
Abt-Buy Product 9,575 1,028 3

Dirty

iTunes-Amazon2 Music 539 132 8
DBLP-ACM2 Citation 12,363 2,220 4
DBLP-Scholar2 Citation 28,707 5,347 4

Walmart-Amazon2 Electronics 10,242 962 5

Table 2: Overview of the hyperparameters.

Name Batch Epoch Learning rate Optimizer Max gradient
norm Max length

BeerAdvo-RateBeer 8 10 1e− 5 AdamW 1.0 512
iTunes-Amazon 8 10 1e− 5 AdamW 1.0 512
DBLP-ACM 16 5 1e− 5 AdamW 1.0 512
DBLP-Scholar 16 5 1e− 5 AdamW 1.0 512
Amazon-Google 16 5 1e− 5 AdamW 1.0 512
Walmart-Amazon 16 5 1e− 5 AdamW 1.0 512
Abt-Buy 16 5 1e− 5 AdamW 1.0 512

Table 3: F1 scores of diferent EM models on structured datasets.

Datasets DeepER Magellan DeepMatcher MCA Our model ΔF1
BeerAdvo-RateBeer 72.7 78.8 72.7 80.0 86.7 +6.7
iTunes-Amazon1 — 91.2 88.0 — 92.9 +1.7
DBLP-ACM1 97.6 98.4 98.4 98.9 99.2 +0.3
DBLP-Scholar1 92.3 92.3 94.7 95.2 95.7 +0.4
Amazon-Google 62.1 49.1 69.3 71.4 76.2 +4.8
Walmart-Amazon1 39.0 71.9 66.9 74.7 84.1 +9.4
Abt-Buy 36.1 43.6 62.8 69.3 80.0 +10.7

Table 4: F1 scores of diferent EM models on dirty datasets.

Datasets DeepER Magellan DeepMatcher MCA Our model ΔF1
iTunes-Amazon2 — 46.8 79.4 — 92.6 +13.4
DBLP-ACM2 94.9 91.9 98.1 98.5 99.4 +0.9
DBLP-Scholar2 92.3 92.3 94.7 95.2 95.3 +0.1
Walmart-Amazon2 33.6 37.4 59.2 74.7 84.6 +9.9
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smaller compared to themore extensive DBLP-ACM (12,363
instances) and DBLP-Scholar (28,707 instances) datasets.
Supporting this observation, Table 5 exhibits that, for the
structured BeerAdvo-RateBeer dataset, the deployment of
hard prompt leads to a notable increase of 3.6 percentage
points in the F1 scores, whereas for the structured
DBLP-ACM and DBLP-Scholar datasets, the F1 scores
attained by hard prompt are almost equivalent to those
achieved through fne-tuning.

4.4.3. Loss Values of Diferent Paradigms. Considering
Section 4.4.2 shows the comparable performance between
prompt learning and fne-tuning on the structured iTunes-
Amazon and DBLP-Scholar datasets, we recorded the loss
values of the EMmodels employing these paradigms at each
training epoch, with the intention of conducting a detailed
investigation into their performance in the EM task. Te
outcomes are presented in Tables 7 and 8. Furthermore,
Figures 4 and 5 provide a visual depiction of the descending
trend of the loss values. Notably, during the initial phases of
training on the iTunes-Amazon dataset, hard prompt
demonstrated the most favourable performance. As the
training progressed, fne-tuning manifested a rapid re-
duction in loss. However, upon reaching complete con-
vergence, its loss value is higher than that of two prompt
learning methods. Our model, which is based on the soft
prompt paradigm, ultimately achieved the most remarkable
outcome, with the lowest loss value of 6.27e− 5. In order to
provide a clearer representation of the descending trends of
loss values for diferent methods at the end of training, we
took the logarithm of the loss values using a base of 10, as
shown in the lower part of Figure 4. For the DBLP-Scholar
dataset, the observations in the frst epoch are consistent
with those of the iTunes-Amazon dataset. Nevertheless, as
the training advanced, all three methods converged to nearly
identical loss values.

4.4.4. F1 Scores of Few-Shot Learning under Diferent
Paradigms. Te aforementioned experiment underscores
that the prompt learning exhibits lower loss values in the

initial phases of training when compared to the fne-tuning-
based approach. Tis can be attributed to the narrowing of
the gap between downstream and pretraining tasks. To
further substantiate this fnding, we systematically in-
vestigated the performance of few-shot learning under
diferent paradigms. Specifcally, we conducted zero-shot
and one-shot learning using the test sets of the structured
iTunes-Amazon and DBLP-Scholar datasets as the query
sets. Within the context of zero-shot learning, we appraised
the performance of diferent paradigms on the query set
without prior training. In the scenario of one-shot learning,
we randomly selected an individual sample labelled as
“diferent” and another labelled as “consistent” from the
training dataset, thus constituting a support set for training.
Subsequently, we evaluated the performance of diverse
paradigms on this constructed support set. Figures 6 and 7
depict the F1 scores for zero-shot and one-shot learning on
the iTunes-Amazon and DBLP-Scholar datasets, re-
spectively. It becomes evident that, in the context of the
iTunes-Amazon dataset, the F1 scores yielded by the fne-
tuning are notably inferior in both zero-shot and one-shot
learning when contrasted with the outcomes of the prompt
learning. It is worth noting that in any few-shot learning
scenario, the hard prompt consistently attains the highest F1
score. Te outcomes derived from the DBLP-Scholar dataset
substantiate a similar assertion, wherein the prompt learning
surpasses the performance of fne-tuning. Tis congruity
echoes the observations drawn from the experiment detailed
in Section 4.4.3, particularly during the early training stages,
underscoring the efcacy of the hard prompt paradigm in
the context of few-shot learning.

5. Discussion

5.1. Performance of Diferent Models. Te experimental re-
sults presented in Tables 3 and 4 provide a comprehensive
assessment of the proposed EM model in comparison with
four established methods: DeepER [38], DeepMatcher [37],
Magellan [40], and MCA [41]. Among these four models,
some are based on deep learning architectures such as RNN

Table 5: F1 scores of diferent paradigms on structured datasets.

Datasets FT HP/ΔF1 SP/ΔF1
BeerAdvo-RateBeer 80.0 83.9/+3.9 86.7/+2.8
iTunes-Amazon1 91.5 91.5/0.0 92.9/+1.4
DBLP-ACM1 98.6 98.8/+0.2 99.2/+0.4
DBLP-Scholar1 95.7 95.6/−0.1 95.7/0.0
Amazon-Google 73.8 74.1/+0.3 76.2/+2.1
Walmart-Amazon1 79.9 83.5/+3.6 84.1/+0.6
Abt-Buy 74.1 79.0/+4.9 80.0/+1.0

Table 6: F1 scores of diferent paradigms on dirty datasets.

Datasets FT HP/ΔF1 SP/ΔF1
iTunes-Amazon2 90.9 91.5/+0.6 92.6/+1.1
DBLP-ACM2 98.5 99.1/+0.6 99.4/+0.3
DBLP-Scholar2 94.9 95.0/+0.1 95.3/+0.3
Walmart-Amazon2 81.8 83.2/+1.4 84.6/+1.4
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or LSTM. Even with the incorporation of attention mech-
anisms, these models can only capture semantic knowledge
from the training set, constraining their potential for per-
formance enhancement. Some models introduce word
embeddings like GloVe [39], but the semantic knowledge
embedded in them falls short of the richness found in PLMs.
In contrast, our model leverages the advantages of the PLM,
namely, ERNIE-2.0-base-en, to generate enriched repre-
sentations with contextual information, greatly benefting
the EM task. Furthermore, we incorporate prompt learning
to train the EM model. Prompt learning utilizes both the
parameters in the PLM’s encoder and decoder. Terefore, it
narrows the gap between the pretraining task and down-
stream task (in this case, entity matching), enabling the
model to conduct entity matching similar to the pretraining
task. “ΔF1” column clearly demonstrates the improvement
in F1 scores achieved by our model compared to the pre-
vious methods. Tis improvement underscores the efcacy
of our approach across diverse datasets (structured and
dirty), reafrming its robustness in various data contexts.

5.2. Performance of Diferent Paradigms

5.2.1. Comparison of F1 Scores. We also compared the
performance of fne-tuning and prompt learning paradigms
on both structured and dirty datasets, and the corresponding
results are presented in Tables 5 and 6. Evidently, the prompt
learning consistently exhibits superior performance over the
fne-tuning across the majority of datasets, highlighting its
robustness and universality. However, exceptions were
observed in the case of structured iTunes-Amazon and
DBLP-Scholar datasets, where the adoption of fne-tuning
and hard prompt yielded F1 scores that were almost in-
distinguishable. As mentioned earlier, this could be attrib-
uted to dataset characteristics, including the number of

attributes and the size of training sets. Given that the prompt
learning diminishes the gap between pretraining tasks and
downstream tasks, it is more suitable for small-scale datasets
with fewer attributes. For datasets with ample training
samples, as training progresses, the model can acquire more
task-specifc semantic knowledge from the training set.
Tus, for the structured iTunes-Amazon and DBLP-Scholar
datasets, fne-tuning and hard prompt learning achieved
nearly equivalent F1 scores. However, soft prompt, com-
pared to the hard one, allows the model to search for
a prompt template in the continuous vector space, which is
more conducive to prompt learning. Terefore, it consis-
tently obtains the highest F1 scores across all datasets.

5.2.2. Comparison of Loss Values. Considering the similarity
in F1 scores obtained by fne-tuning and hard prompt on the
structured iTunes-Amazon and DBLP-Scholar datasets, we
also recorded the average loss values at each training epoch
for diferent paradigms, as listed in Tables 7 and 8, to explore
the ftting capabilities of diferent paradigms on the training
set over the entire training phrase. Te results for the
structured iTunes-Amazon dataset indicate that compared
to prompt learning, fne-tuning consistently yields higher
loss values throughout the entire training process. However,
hard prompt, although starting with the lowest loss value,
performs less efectively than soft prompt at the end of
training. Tis phenomenon reafrms the prior analysis that
prompt learning, by adopting the MLM for downstream
tasks, can leverage the prior semantic knowledge embedded
in PLMs more efectively. As a result, prompt learning fts
the training set better, resulting in lower loss values than
fne-tuning. Additionally, the soft prompt searches for
suitable templates in a continuous space. Tus, although it
exhibits higher loss values than the hard prompt in the early
stages of training, it ultimately achieves the lowest loss value.

Table 7: Te loss values of diferent methods at each training epoch on the structured iTunes-Amazon dataset.

Epochs FT HP SP
1 0.663 0.563 0.624
2 0.367 0.366 0.404
3 0.123 0.156 0.225
4 0.0493 0.0683 0.0430
5 0.0464 0.0469 0.0301
6 0.0227 0.0244 7.97e− 4
7 0.0457 0.0346 5.12e− 5
8 0.0129 2.45e− 4 7.64e− 5
9 0.0106 1.01e− 4 6.42e− 5
10 1.35e− 3 2.34e− 4 6.27e− 5

Table 8: Te loss values of diferent methods at each training epoch on the structured DBLP-Scholar dataset.

Epochs FT HP SP
1 0.1561 0.1158 0.1314
2 0.0711 0.0663 0.0720
3 0.0477 0.0483 0.0508
4 0.0325 0.0299 0.0307
5 0.0204 0.0203 0.0203
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Te experiments conducted on the DBLP-Scholar
dataset also demonstrated similar results, indicating that
in the early stages of training, fne-tuning exhibited lower
ftting capacity to the training set compared to prompt
learning, and hard prompt achieved the lowest loss value.
However, the fnal loss value attained by fne-tuning aligns
with those of prompt learning. Tis may still be attributed to
the size of dataset, where for a larger number of training
samples, fne-tuning can acquire more latent semantic
knowledge as training progresses, compensating for its
structural diferences from prompt learning.

5.2.3. Comparison of the Performance of Few Shots. Te
preceding discussion elucidates how prompt learning can
efectively harness the prior semantic knowledge embedded
in PLMs. To further substantiate this assertion, we

systematically explored the capabilities of few-shot learning
under diferent paradigms. Experimental results indicate
that, compared to prompt learning, fne-tuning yields lower
F1 scores in both zero-shot and one-shot learning. Re-
gardless of the type of few-shot learning, hard prompts
exhibit an advantage in terms of F1 scores. Tis result aligns
with the observations detailed in Section 4.4.3, particularly
during the initial training phase. Fundamentally, the phe-
nomena observed in few-shot learning can be attributed to
the efcacy of the prompt learning in bridging the gap
between pretraining and downstream tasks, enabling both
soft and hard prompt methods to obtain superior F1 scores.
Considering that soft prompts require to optimize the
template embeddings in continuous space, the experimental
outcome further underscores the efectiveness of the hard
prompt in the domain of few-shot learning.

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1 2 3 4 5 6
Epoches

7 8 9 10

Lo
ss

 v
al

ue
s

0.600

0.100

0.010

0.001

1 2 3 4 5 6
Epoches

7 8 9 10

Lo
ss

 v
al

ue
s

fne-tuning
hard prompt
sof prompt

Figure 4: Loss values at each epoch on the structured iTunes-Amazon dataset using diferent methods. Te fgure below has taken the
logarithm of the loss values using a base of 10.
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5.3. Limitations and Shortcomings. Tis study extensively
analysed and compared the performance of diferent par-
adigms for the EM task. However, our research still has
limitations. We investigated the performance of prompt
learning based on the BERT-series models, but did not

contrast it with large generative language models such as
GPT (Generative Pretrained Transformer) [42] and GLM
(Generative Language Model). Considering the higher
hardware computing resource requirements of the LLM
(Large Language Model), we plan to introduce them into the
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Figure 5: Loss values at each epoch on the structured DBLP-Scholar dataset using diferent methods.
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Figure 6: F1 scores of zero-shot and one-shot learning on the structured iTunes-Amazon dataset using diferent methods.
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EM task in future work using PEFT (Parameter-Efcient
Fine-Tuning) or ICL (In-Context Learning) and CoT (Chain
of Tought) techniques.

6. Conclusions

In this study, we have explored the potential of leveraging
PLMs to enhance EM. Our investigation involves a com-
prehensive analysis of two transfer learning paradigms: fne-
tuning and prompt learning, across eleven EM datasets. Te
results indicate that the soft prompt consistently out-
performs other approaches across all datasets, demon-
strating that generating template embeddings in
a continuous space can enhance the performance of EM.
Furthermore, our exploration into the realm of few-shot
learning unveiled the potential of the hard prompt, showing
its efectiveness in both zero-shot and one-shot context. In
summary, this research contributes to our understanding of
how PLMs can be harnessed to augment EM task. For future
work, we will continue to delve into the application of large
language models in the EM task. By integrating EM tasks
with language models, we aim to enhance knowledge ex-
traction and data integration in various NLP applications
[43–45].
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