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Belief divergence is a signifcant measure to quantify the discrepancy between evidence, which is benefcial for confict in-
formation management in Dempster–Shafer evidence theory. In this article, three new concepts are given, namely, the belief
Bhattacharyya coefcient, adjustment function, and enhancement factor. And based on them, a novel enhanced belief divergence,
called EBD, is proposed, which can assess the correlation of subsets and fully refect the uncertainty of multielement sets. Te
important properties of the EBD have been studied. In particular, a new EBD-based multisource information fusion method is
designed to handle evidence confict, where the weight of evidence is decided by the EBD between evidence and the information
volume of each evidence. Compared with other methods, the proposed method in the applications of target recognition and iris
classifcation can produce more rational and telling outcomes when dealing with confict information. Finally, an application in
risk priority evaluation of the failure modes of rotor blades of an aircraft turbine is provided to validate that the proposed method
has the extensive applicability.

1. Introduction

Multisource information fusion is an invaluable information
processing technology to achieve precise decisions by ana-
lyzing heterogeneous data from multiple sensors [1–3].
However, in practical scenarios, owing to the infuence of
diferent factors, such as bad weather conditions, mechanical
failures, and wireless communication problems, the in-
formation collected from various sensors may be imprecise,
incomplete, and ambiguous [4].Te Dempster–Shafer (D-S)
evidence theory possesses the ability to directly express
uncertain information by means of assigning basic proba-
bility assignment (BPA) to multielement sets, and can fuse
evidence without the consideration of prior information to
diminish the uncertainty of the system and improve its
performance [5, 6]. So, it has been broadly applied in risk
evaluation [7–9], output control [10], image processing
[11, 12], and multicriteria decision-making [13, 14]. Nev-
ertheless, when confronted with highly conficting evidence,

the D-S evidence theory yields counter-intuitive results [15];
then, a misdirected consequence may be brought about in
a system. Terefore, how to deal with confict is still an
urgent problem in evidence theory.

To address this issue, existing research methods are
primarily conducted by modifying Dempster’s combination
rule or preprocessing the bodies of evidence before com-
bination [16–22]. In this article, we focus on the latter. In the
study of evidence preprocessing, it is discovered that un-
certainty and discrepancy measures have been extensively
studied [23–28], and can be further utilized to investigate the
evidence confict. Specifcally, a total uncertainty measure,
based on the Euclidean distance between the belief interval
of the singleton subset and the most uncertain interval, was
employed to settle the confict [29]. Cui et al. presented
a plausibility entropy to measure the uncertainty of BPA
[30]. Xiao presented an evidential confict coefcient to
measure the confict between evidence [31]. Based on
Tanimoto measurement, Deng devised an evidential
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similarity measurement to describe the evidence in-
consistency [32]. Deng et al. exploited the evidence distance
to manage confict [33]. Xiao proposed belief Jensen–
Shannon (BJS) divergence to measure the discrepancy be-
tween evidence, but it is found that BJS divergence ignores
the efect of multielement sets and produces measurement
error [34]. Zhu et al. put forward the belief Hellinger (BH)
distance and overcame the defciency of BJS divergence [35].
Yet, BH distance diferentiates multielement sets and sin-
gletons just by the cardinality of multielement sets. As for
those multielement sets with same cardinality, BH distance
cannot embody their diference. Specially, it is worth
mentioning that Florea and Bossé gave a corrected extension
of the Bhattacharyya distance based on the Bhattacharyya
coefcient in probability theory to the D-S evidence theory
[36]; however, the extensive form is still not mature enough
to adequately refect the diversity of evidence.

Te main motivation of this study lies in the following
points:

(1) In [36], Florea and Bossé’s distance ignores the
uncertainty of multielement sets and the in-
terrelationship of sets, which are also the existing
drawbacks of BJS divergence and BH distance, re-
spectively. It means that a new belief divergence
should be constructed to handle the uncertainty of
evidence.

(2) It is signifcant to boost the performance of the
fusion system for achieving efcient decision-
making. Terefore, it is necessary to design a new
algorithm to improve the accuracy of fusion.

However, there are still several challenges in this study:

(1) How to accurately refect the uncertainty charac-
teristics of evidence is a challenge.

(2) Designing an efcient algorithm to obtain better
fusion results is a complex and challenging task.

In this paper, an enhanced belief divergence, named as
EBD, is proposed to quantify the discrepancy. It fully
considers the impact of multielement sets and the re-
lationship between sets to ofer a more valid solution for
discrepancy measurement. Te EBD satisfes the properties
of boundedness, nondegeneracy, and symmetry. Based on
the EBD, a new multisource information fusion algorithm is
devised for confict resolution, where the EBD determines
the weights of evidence to better refect their reliability and
importance, and meanwhile, the information volume of
evidence is also considered. Te fusion algorithm is applied
in target recognition and iris classifcation to evaluate its
performance. Finally, the proposed method is exploited to
make the risk evaluation of the rotor blades of an aircraft
turbine, and verifed efective and practical.

Te main contributions of this study are summarized as
follows:

(1) Te belief Bhattacharyya coefcient and adjustment
function are defned. Te belief Bhattacharyya co-
efcient considers the uncertainty of multielement

sets by the cardinality of subsets. Te adjustment
function can describe the correlation between dif-
ferent subsets. Based on the belief Bhattacharyya
coefcient and infuenced by the adjustment func-
tion, a new belief divergence BD is proposed and
takes the uncertainty of the evidence into account.

(2) Te enhancement factor is defned to promote the
performance of the BD. After improvement, the
enhanced belief divergence, called EBD, is presented.
Compared with the other divergence and distance
measures, the EBD performs discrepancy refection
more efectively.

(3) To settle confict, an EBD-based multisource in-
formation fusion algorithm is designed, in which the
EBD is employed to decide the weight of evidence.
With the experiments of target recognition and iris
classifcation to evaluate the performance and ef-
fectiveness, it demonstrates that the algorithm can
achieve a more precise decision. Furthermore, the
algorithm is applicable to the risk evaluation of the
rotor blades of an aircraft turbine.

Te paper is organized as follows. In Section 2, the pre-
liminaries of this paper are briefy introduced. In Section 3, the
belief Bhattacharyya coefcient and adjustment function are
defned, and a new belief divergence BD is presented. In
Section 4, based on the enhancement factor, an enhanced belief
divergence EBD is proposed and its properties are proven.
Furthermore, a comparative analysis is given to illustrate the
validity of the EBD. In Section 5, the EBD-based multisource
information fusion algorithm is designed. In Section 6, two
experiments are utilized to demonstrate the efectiveness of the
algorithm. In Section 7, an application in the risk priority
evaluation of the failuremodes of the rotor blades of an aircraft
turbine demonstrates the practicality of the EBD-based fusion
algorithm. Finally, conclusions are drawn in Section 8.

2. Preliminaries

In this section, some concise knowledge, including
Dempster–Shafer evidence theory, base belief function, and
Deng entropy, is introduced. Besides, several belief di-
vergence and distance measures are investigated, and their
inadequacies are pointed out by the examples.

2.1. Dempster–Shafer Evidence Teory. As an efective
method to model and process uncertain information, the
Dempster–Shafer evidence theory is primitively presented
by Dempster and perfected by Shafer. [5, 6] Te core
concepts of it are introduced in the following.

Defnition 1 (Frame of discernment). Let Θ be a fnite and
complete set which is composed ofNmutually exclusive and
collectively exhaustive hypotheses. Θ is called a frame of
discernment [5, 6].

Θ � θ1, θ2, . . . , θN􏼈 􏼉. (1)
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Te power set of Θ, consisting of all subsets of Θ, is
defned as follows:

2Θ � ∅, θ1, θ2, . . . , θN, θ1, θ2􏼈 􏼉, . . . , θ1, θ2, θ3􏼈 􏼉, . . . ,Θ􏼈 􏼉.

(2)

For any A⊆Θ, A corresponds to a proposition. If
|A| � 1, A is called a singleton; if |A|> 1, A is called
a multielement set, where |A| indicates the cardinality of A.

Defnition 2 (Basic probability assignment). Let Θ be
a frame of discernment, ∀A⊆Θ, if a function
m: 2Θ ⟶ [0, 1] satisfes the following two conditions:

m(∅) � 0,

􏽘
A⊆Θ

m(A) � 1,

⎧⎪⎨

⎪⎩
(3)

m is called a basic probability assignment (BPA) or mass
function, [5, 6] where m(A) is the support degree to
proposition A. If m(A)≠ 0, A is called a focal element.

Defnition 3 (Dempster’s combination rule). Let m1 and m2
be two independent BPAs on Θ, m � m1 ⊕m2 is a new
evidence after combination between m1 and m2. Dempster’s
combination rule is defned as follows [5, 6]:

m(∅) � 0,

m(A) �
1

1 − k
􏽘

A�B∩C
m1(B)m2(C),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where B, C⊆Θ and k � 􏽐B∩C�∅m1(B)m2(C) is called
confict coefcient, k satisfes 0≤ k< 1.

2.2. Base Belief Function. Base belief function is primarily
proposed to address the fusion problem of highly conficting
evidence [37]. In this paper, base belief function is fexibly
utilized to solve zero belief value by modifying the evidence.

Defnition 4 (Base belief function). Let Θ be a frame of
discernment, composed of N mutually exclusive and col-
lectively exhaustive hypotheses. Te power set of Θ contains
2N propositions, for every proposition Ai(i � 1, . . . , 2N) in
2Θ except ∅, base belief function is defned as follows [37]:

mb Ai( 􏼁 �
1

2N
− 1

. (5)

2.3. Deng Entropy. Te uncertainty of BPA is considered
benefcial for handling confict, therefore, a quantity of
uncertainty measures have been explored from diferent
perspectives [38, 39]. As the extension of Shannon entropy,

the Deng entropy is proposed to represent the uncertainty of
evidence. Te Deng entropy is denoted as in [40].

Ed � − 􏽘
A⊆Θ

m(A)log2
m(A)

2|A|
− 1

, (6)

where A⊆Θ and |A| is cardinal number of A.

2.4. Divergence and Distance Measures. In D-S evidence
theory, how to choose an appropriate method to determine
the diference between evidence is still an open issue. To
date, a score of discrepancy measures have been developed
[41, 42]. In this section, Bhattacharyya distance, Florea and
Bossé’s distance, belief Jenson–Shannon divergence, and
belief Hellinger distance are introduced.

In statistics, the Bhattacharyya distance is utilized to
measure the similarity between two probability distribu-
tions, and it is closely related to the Bhattacharyya coefcient
which is used to calculate the overlap degree between
samples [43]. Bhattacharyya distance is defned as follows.

Defnition 5 (Bhattacharyya distance). Given two proba-
bility distributions P � (p1, . . . , pn) and Q � (q1, . . . , qn)

with 􏽐ipi � 􏽐iqi � 1, Bhattacharyya distance is defned
as −ln(BC), where BC is the Bhattacharyya coefcient and
denoted by [43]

BC(p, q) � 􏽘
n

i�1

����
piqi

􏽰
. (7)

BC satisfes 0≤BC(p, q)≤ 1.
Ristic and Smets put forward the extension of Bhatta-

charyya distance from probability theory to D-S evidence
theory [44]. By correcting the above distance, Florea and
Bossé’s distance is given by [36]

dB m1, m2( 􏼁 � 1 − 􏽘
A⊆Θ

�����������

m1(A)m2(A)

􏽱
⎡⎣ ⎤⎦

p

, (8)

where m1 and m2 are two independent BPAs defned on Θ
and p could be any positive number.

In this paper, we only pay attention to the case of
p � 1/2, namely, dB(m1, m2) � [1 − 􏽐A⊆Θ�����������

m1(A)m2(A)
􏽰

]1/2.
Nevertheless, Florea and Bossé’s distance is immature to

accurately refect evidence diference. In other words, Florea
and Bossé’s distance is unable to diferentiate between
probability distribution and BPA without considering the
uncertainty carried by BPA.

Xiao incorporated Jensen–Shannon divergence into
evidence theory and proposed a novel belief divergence,
which is presented as follows [34].
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Defnition 6 (Belief Jensen–Shannon divergence). Given
two independent BPAs m1 and m2 defned on Θ, belief
Jensen–Shannon (BJS) divergence between m1 and m2 is
defned as follows [34]:

BJS m1, m2( 􏼁 �
1
2

􏽘
i

m1 Ai( 􏼁log
2m1 Ai( 􏼁

m1 Ai( 􏼁 + m2 Ai( 􏼁
+ 􏽘

i

m2 Ai( 􏼁log
2m2 Ai( 􏼁

m1 Ai( 􏼁 + m2 Ai( 􏼁
⎡⎣ ⎤⎦, (9)

where 􏽐imj(Ai) � 1, (i � 1, . . . , n; j � 1, 2).
BJS divergence has a preferable efect on describing the

deviation between evidence, but it fails to recognize the
multielement sets. Tis restriction is illustrated by
Example 1.

Example 1. Suppose m1, m2, and m3 are three independent
BPAs defned on Θ � A, B{ }.

m1: m1( A{ }) � 0.80, m1( B{ }) � 0.10, m1( A, B{ }) � 0.10;

m2: m2( A{ }) � 0.10, m2( B{ }) � 0.80, m2( A, B{ }) � 0.10;

m3: m3( A{ }) � 0.10, m3( B{ }) � 0.10, m3( A, B{ }) � 0.80.

(10)

Intuitively, m1 strongly supports A{ } and m2 strongly
supports B{ }, so m1 and m2 are highly conficting. m3
supports the proposition A, B{ }, which represents a un-
certain state to support A or B. Terefore, the divergence
between m1 and m2 is the largest amongst all evidence, the
divergence between m3 and m2 is identical with that between
m3 and m1. However, according to equation (9), the results
are calculated as follows:

BJS m1, m2( 􏼁 � 0.4471,BJS m1, m3( 􏼁 � 0.4471,BJS m2, m3( 􏼁 � 0.4471. (11)

Obviously, it is not consistent with the intuition. Te
reason for such counter-intuitive results is that BJS di-
vergence neglects the multielement subset A, B{ } with un-
certainty by treating it as a singleton.

Generalized from the Hellinger distance of probability
theory, belief Hellinger distance, which overcomes the defect
of BJS divergence, is defned as follows [35].

Defnition 7 (Belief Hellinger distance). Let m1 and m2 be
two independent BPAs defned on Θ, belief Hellinger (BH)
distance between m1 and m2 is defned as follows [35]:

BH m1, m2( 􏼁 �
1
�
2

√

������������������������

􏽘

n

i�1

������

m1 Ai( 􏼁

􏽱

−

������

m2 Ai( 􏼁

􏽱

􏼒 􏼓
2

2 Ai| | − 1

􏽶
􏽴

,
(12)

where Ai ∈ 2Θ, |Ai| is cardinal number of Ai.
From (12), BH distance takes the cardinal number of

subset into account, so multielement set can be distin-
guished from singleton by the size diference. Recalculate
Example 1 by BH distance, the results are obtained as
follows:

BH m1, m2( 􏼁 � 0.5782,BH m1, m3( 􏼁 � 0.4721,BH m2, m3( 􏼁 � 0.4721. (13)

In comparison with BJS divergence, the above results by
BH distance are more reasonable. Nevertheless, BH cannot
embody the correlation between hypotheses contained in
diferent subsets. Explicitly, if the cardinality of all multi-
element sets is designed as the same, BH distance is unable to
identify the diference between these sets, which have the
same cardinality but diferent elements.Tis situation will be
vividly illustrated by Example 2.

Example 2. Suppose m1, m2, and m3 are three independent
BPAs defned on Θ � A, B, C, D{ }.

m1: m1( A{ }) � 0.30, m1( B{ }) � 0.40, m1( A, B{ }) � 0.30;

m2: m2( A{ }) � 0.30, m2( B{ }) � 0.40, m2( A, C{ }) � 0.30;

m3: m3( A{ }) � 0.30, m3( B{ }) � 0.40, m3( C, D{ }) � 0.30.

(14)

It can be seen that m1, m2, and m3 all support the
proposition B{ }. Meanwhile, the cardinality of multielement
sets, A, B{ }, A, C{ }, and C, D{ }, in three evidence is identical,
and the diference of three evidence is only that of hy-
potheses included in them. Specifcally, A, B{ } in m1 are
probable to distribute its belief to hypothesis A or B, so m1
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may have further possibility to support B. A, C{ } in m2 has
more probability to support A. Dissimilarly, C, D{ } in m3
does not have any likelihood to support A and B. From

above analysis, BH distance between evidence should satisfy
BH(m1, m2)<BH(m2, m3)<BH(m1, m3). However, by
equation (12), the results are calculated as follows:

BH m1, m2( 􏼁 � 0.3162,BH m1, m3( 􏼁 � 0.3162,BH m2, m3( 􏼁 � 0.3162. (15)

Apparently, BH distance does not change, which is in-
sufcient as an evidence distance measure. Terefore, it is
needed to fnd a more reliable and stable belief discrepancy
measure.

3. A New Belief Divergence Measure

In this section, the belief Bhattacharyya coefcient is pre-
sented. In addition, an adjustment function is defned. Based
on the belief Bhattacharyya coefcient and afected by the
adjustment function, a new belief divergence is proposed to
signify the discrepancy between evidence.

In order to refect the impact of multielement sets, it is
considered that the cardinality factor can tell the multiele-
ment sets from singletons. Attributed to this peculiarity, the
belief Bhattacharyya coefcient is proposed as follows.

Defnition 8 (belief Bhattacharyya coefcient). Let m1 and
m2 be two mass functions on Θ, the belief Bhattacharyya
coefcient (BBC) between m1 and m2 is defned as follows:

BBC m1, m2( 􏼁 � 􏽘

n

i�1

������������
m1 Ai( 􏼁m2 Ai( 􏼁

􏽱

2 Ai| | − 1
. (16)

According to the boundedness of Bhattacharyya co-
efcient, the belief Bhattacharyya coefcient also satisfes
0≤BBC(m1, m2)≤ 1.

In addition, the Bhattacharyya coefcient can be denoted
as fdelity; the physical signifcance of fdelity is the inner
product of two probability vectors on a sphere, representing
the similarity between two probability distributions [45].
Te belief Bhattacharyya coefcient can be seen as a gen-
eralization of fdelity in Dempster–Shafer theory. In [45],
another extension of fdelity called FBIP has been proposed.
To demonstrate the meaningfulness and value of our ex-
tension, a comparative experiment between BBC and FBIP is
conducted in Example 3.

Example 3. Suppose m1 and m2 are two independent BPAs
defned on Θ � A, B, C, D{ }, where x ranges from 0 to 1.

m1: m1( A{ }) � 1, m1( B{ }) � 0, m1( C, D{ }) � 0;

m2: m2( A{ }) � x, m2( B{ }) � 0, m2( C, D{ }) � 1 − x.

(17)

Figure 1 depicts the change of the BBC and FBIP as x
uniformly increases from 0 to 1 with an increment of
∆ � 0.01. As x gradually increases, m1 and m2 become more
similar, leading to an increase in both BBC and FBIP.
Specifcally, at x� 0, m1 and m2 are completely conficting,

resulting in a similarity of 0; at x� 1, the evidence distri-
butions are identical, yielding a similarity of 1. Overall, the
change of BBC is relatively uniform, and the change of FBIP
becomes signifcantly less pronounced after x> 0.6. Tere-
fore, the BBC exhibits better measurement characteristics.

In order to reveal the relationship between sets, it is
learned that the transformation factor G in [46] can measure
the intersection relationship between focal elements, [46]
but we fnd that, the sum of the transformed mass function
may be greater than 1, which spoils the nature of BPA.
Hence, by the normalization of each row of the trans-
formation factor, a new adjustment function is defned as
follows.

Defnition 9 (adjustment function). Let m1 and m2 be two
mass functions on Θ including N hypotheses.
A1, A2, . . . , An􏼈 􏼉 is a set of n focal elements, adjustment
function is defned as

ΓAi,Aj
�

2 Ai∩Aj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼒 􏼓/ 2 Ai∪Aj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼒 􏼓

􏽐
n
j�1 2 Ai∩Aj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼒 􏼓/ 2 Ai∪Aj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼒 􏼓

, i, j � 1, 2, . . . , n.

(18)

Adjustment function Γ is the ratio of the interaction
degree between Ai and Aj to the whole sum of that between
Ai and all focal elements, which implies the importance ofAj

in all interaction relationships of Ai. In other words, ΓAi,Aj
is

the ratio of the belief that Ai assigns to Aj relative to the
belief of Ai itself. Terefore, ΓAi,Aj

not only retains the
primary property of BPA, namely, the sum of modifed BPA
with Γ is 1 but also has the ability to express the contribution
diference of diferent subsets to the supportive proposition
of evidence.

In Example 2, intuitively, the supportive proposition in
m1 and m3 is B{ }, the contribution degree of A, B{ } to B{ } in
m1 is greater than that of C, D{ } to B{ } in m3. By (18), the
adjustment function Γ B{ }, A,B{ } in m1 is 1/4, the adjustment
function Γ B{ }, C,D{ } in m3 is 0, which is in conformity with the
intuition.

Based on the BBC and Γ, a new belief divergence,
considering the uncertainty of multielement sets and the
correlation between subsets, is proposed. Its detailed def-
nition is as follows.

Defnition 10 (the belief divergence BD). Given two in-
dependent BPAs m1 and m2 defned on Θ including N

hypotheses, A1, A2, . . . , An􏼈 􏼉 is a set of n focal elements,
satisfying m1(Ai)≠ 0∨m2(Ai)≠ 0, Ai ∈ 2Θ, the belief di-
vergence is defned as follows:
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BD m1, m2( 􏼁 �

��������������������������������������������

1 −
BBC Γm1,

Γ
m2􏼐 􏼑

BBC Γm1,
Γ
m1􏼐 􏼑 + BBC Γm2,

Γ
m2􏼐 􏼑 − BBC Γm1,

Γ
m2􏼐 􏼑

􏽶
􏽴

, (19)

where BBC(Γm1,
Γm2) � 􏽐

n
i�1

��������������
Γm1(Ai)

Γm2(Ai)

􏽱

/(2|Ai| − 1),

i � 1, 2, . . . , n. Γm1 and Γm2 are new BPAs after m1 and m2
are modifed by adjustment function, the concrete modif-
cation process is displayed as follows:

Γ
m1 Ai( 􏼁 � 􏽘

n

j�1
m1 Aj􏼐 􏼑ΓAj,Ai

,

Γ
m2 Ai( 􏼁 � 􏽘

n

j�1
m2 Aj􏼐 􏼑ΓAj,Ai

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

Here, we provide additional explanations to illustrate the
divergence. Te divergence measure is utilized to refect the
variation of information distribution and can be seen as an
extension of the uncertainty measure. Te information
quality IQ (p) proposed by Yager is the negation of the Gini
index; both of them are uncertainty measures [47, 48]. Te
Bhattacharyya coefcient BC can be seen as a similarity
measure of the IQ (p) in [47] or Gini index in [48]. Li ex-
tended IQ (p) to the information quality IQ (m) under the
framework of evidence theory [49]. Te belief Bhattacharyya
coefcient BBC, a generalization of the Bhattacharyya co-
efcient, can be seen as a similarity measure of the IQ (m).
Terefore, the BD based on the BBC can be seen as a belief
divergence of the IQ (m).

Recall Examples 1 and 2, where the divergence measure
among m1, m2, and m3 is recalculated by BD, which is
compared with BJS divergence and BH distance in Table 1.
From Table 1, diferent with the unreasonable results by BJS
divergence and BH distance, it is uncovered that in Example
1, BD(m1, m2)>BD(m1, m3) � BD(m2, m3), in Example 2,
BD(m1, m3)>BD(m2, m3)>BD(m1, m2). Te BD is more
accurate to measure the confict between evidence.

4. The Enhanced Belief Divergence

Te BD does refect the degree of confict between evidence
from diverse sources and has vanquished the demerits of BJS
divergence and BH distance. Notably, it appears that the
divergence measures of all groups of evidence, respectively,
in the frst case of zero belief value and the second case of the
same cardinality, are the same. To address this limitation, an
enhancement factor is proposed, and a base belief function is
used to reinforce the BD; that is, an enhanced belief di-
vergence EBD is presented. Besides, the properties of the
EBD have been discussed. Finally, a comparative evaluation
is given to illustrate the validity and superiority of the EBD.

4.1. Modifcation with the Base Belief Function. From the
operational property of the BBC, it is observed that the BD
may fail in measuring the discrepancy of evidence, when
evidence has a zero belief value. Te nature of this phe-
nomenon is concretely illustrated by the Case 11.

Case 11. Suppose m1 and m2, m3 and m4 are two groups of
BPAs defned on Θ � A, B, C, D{ }.

Group 1
m1( A{ }) � 0.7, m1( B{ }) � 0, m1( C{ }) � 0.3,

m2( A{ }) � 0, m2( B{ }) � 1, m2( C{ }) � 0,
􏼨

Group 2
m3( A{ }) � 0.7, m3( B, C{ }) � 0, m3( D{ }) � 0.3,

m4( A{ }) � 0, m4( B, C{ }) � 1, m4( D{ }) � 0.
􏼨

(21)

In group 1, m1 and m2 are conficting. In group 2, be-
cause of the uncertainty of the multielement set B, C{ } in m4,
the confict degree between m3 and m4 is smaller than that of
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Figure 1: Te comparison of the BBC and FBIP.
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group 1. By equation (20), both groups of modifed BPAs are
obtained as follows:

Group 1
Γ
m1: (0.7, 0, 0.3),

Γ
m2: (0, 1, 0),

⎧⎨

⎩

Group 2
Γ
m3: (0.7, 0, 0.3),

Γ
m4: (0, 1, 0).

⎧⎨

⎩

(22)

According to equation (16), we have

BBC Γm1,
Γ
m2􏼐 􏼑 � 0,

BBC Γm3,
Γ
m4􏼐 􏼑 � 0.

(23)

Ten, according to equation (19), the BD is calculated as
follows:

BD m1, m2( 􏼁 � 1,

BD m3, m4( 􏼁 � 1.
(24)

From the above result, the degree of confict of the two
groups is the same. It is counterintuitive. Actually, as for
each focal element of Γm1 and Γm2, if its belief value in Γm1
or Γm2 is 0, the BBC is 0, then the BD is always equal to 1 in
this situation.

It is noticed that Liu exploited the base belief function to
handle a possible zero in the denominator of the divergence
[46]. Inspired by it, in this paper, for resolving zero belief, we
modify the Γm by averaging it and mb to obtain Γbm, then
belief of all focal elements in Γbm is made nonzero. Tus, the
Case 11 for the BD is managed.

4.2. Te Enhancement Factor. In addition, it is found from
(19) that when all focal elements of two pieces of evidence
have the same cardinality, the infuence of cardinality will be
ofset by the fractional term BBC(Γm1,

Γm2)/[BBC
(Γm1,

Γm1) + BBC(Γm2,
Γm2) − BBC(Γm1,

Γm2)]. Tis is
interpreted in detail by Case 12.

Case 12. Suppose m1 and m2, m3 and m4, and m5 and m6 are
three groups of BPAs defned on Θ � θ1, θ2, θ3, θ4, θ5, θ6􏼈 􏼉.

Group 1
m1 θ1􏼈 􏼉( 􏼁 � 0.90, m1 θ2􏼈 􏼉( 􏼁 � 0.10,

m2 θ1􏼈 􏼉( 􏼁 � 0.10, m2 θ2􏼈 􏼉( 􏼁 � 0.90,
􏼨

Group 2
m3 θ1, θ2􏼈 􏼉( 􏼁 � 0.90, m3 θ3, θ4􏼈 􏼉( 􏼁 � 0.10,

m4 θ1, θ2􏼈 􏼉( 􏼁 � 0.10, m4 θ3, θ4􏼈 􏼉( 􏼁 � 0.90,
􏼨

Group 3
m5 θ1, θ2, θ3􏼈 􏼉( 􏼁 � 0.90, m5 θ4, θ5, θ6􏼈 􏼉( 􏼁 � 0.10,

m6 θ1, θ2, θ3􏼈 􏼉( 􏼁 � 0.10, m6 θ4, θ5, θ6􏼈 􏼉( 􏼁 � 0.90.
􏼨

(25)

In this example, each group of evidence is highly con-
ficting. With the cardinality of subsets enlarging, m5 and m6
in group 3 carry the largest ambiguity. Terefore, the di-
vergence between m5 and m6 is the smallest, and that be-
tween m1 andm2 is the largest.Whereas, by applying the BD,
we obtain the divergences as follows:

BD m1, m2( 􏼁 � 0.7559,

BD m3, m4( 􏼁 � 0.7559,

BD m5, m6( 􏼁 � 0.7559.

(26)

Te above result is not in line with the intuitive analysis.
Te reason for this is that the item 1/(2|Ai| − 1) in equation
(19) appears in both the numerator and denominator
of BBC(Γm1,

Γm2)/[BBC(Γm1,
Γm1) + BBC(Γm2,

Γm2) −

BBC(Γm1,
Γm2)]. When the cardinality of all focal elements

in each group is the same, the fractional expression makes
the infuence of |Ai| eliminated.

To deal with this case, an enhancement factor is devised
to perfect the measure efect of the BD, which is defned as
follows.

Defnition 13 (the enhancement factor β). Given two in-
dependent BPAs m1 and m2 defned on Θ including N

hypotheses, A1, A2, . . . , An􏼈 􏼉 is a set of n focal elements
satisfying m1(Ai)≠ 0∨m2(Ai)≠ 0, Ai ∈ 2Θ, the enhance-
ment factor β is denoted as follows:

β �

1, else,

1
c
, ∀ Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � c(c≥ 2), m1 Ai( 􏼁≠ 0∨m2 Ai( 􏼁≠ 0, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

Table 1: Te results comparison with BJS divergence in Example 1 and BH distance in Example 2.

Examples Discrepancy measure BD

Example 1
BJS(m1, m2) � 0.4471 BD(m1, m2) � 0.6646
BJS(m1, m3) � 0.4471 BD(m1, m3) � 0.4123
BJS(m2, m3) � 0.4471 BD(m2, m3) � 0.4123

Example 2
BH(m1, m2) � 0.3162 BD(m1, m2) � 0.1868
BH(m1, m3) � 0.3162 BD(m1, m3) � 0.3865
BH(m2, m3) � 0.3162 BD(m2, m3) � 0.2638
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As can be seen in (27), the enhancement factor considers
the ambiguity diference by various values of c.Tus, by it, the
BD can distinguish evidence confict degree of the Case 2.

4.3.Te Enhanced Belief Divergence. With the enhancement
factor and base belief function, the enhanced belief di-
vergence EBD is proposed.

Defnition 14 (the enhanced belief divergence EBD). Given
two independent BPAs m1 and m2 defned onΘ including N

hypotheses. A1, A2, . . . , An􏼈 􏼉 is a set of n focal elements
satisfying m1(Ai)≠ 0∨m2(Ai)≠ 0, Ai ∈ 2Θ. Te enhanced
belief divergence EBD is defned as follows:

EBD m1, m2( 􏼁 � β ×

���������������������������������������������

1 −
BBC Γbm1,

Γ
bm2􏼐 􏼑

BBC Γbm1,
Γ
bm1􏼐 􏼑 + BBC Γbm2,

Γ
bm2􏼐 􏼑 − BBC Γbm1,

Γ
bm2􏼐 􏼑

􏽶
􏽴

, (28)

where Γbm1 and Γbm2 are new BPAs after Γm1 and Γm2 are
modifed by the base belief function. Te detailed modif-
cation process is showed as follows:

Γ
bm1 Ai( 􏼁 �

Γ
m1 Ai( 􏼁 + mb Ai( 􏼁

2
,

Γ
bm2 Ai( 􏼁 �

Γ
m2 Ai( 􏼁 + mb Ai( 􏼁

2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

where mb(Ai) � 1/(2N − 1).
Te EBD is an improved BD by modifying BPA; in the

same way as the BD, it can also be regarded as a belief
divergence of the IQ(m). In addition, the EBDmaintains the
excellent qualities of the BD, namely, it can diferentiate
multielement sets from singletons and allow for the cor-
relation between subsets. Furthermore, the EBD improves
the performance of the BD to measure the dissimilarity of
evidence more efectively.

In order to show the calculation process clearly, Example
2 is adopted. Te divergence measures among m1, m2, and
m3 are calculated by the EBD as follows.

In Example 2, as for m1 and m2, there are four focal ele-
ments A{ }, B{ }, A, B{ }, and A, C{ } that satisfy m1(Ai)≠ 0∨m2
(Ai) ≠ 0, Ai ∈ 2Θ. According to the (27), it is obtained thatβ is 1.
For convenient calculation, m1 and m2 are simplifed as follows:

m1: (0.3, 0.4, 0.3, 0);

m2: (0.3, 0.4, 0, 0.3).
(30)

In accordance to (18), the adjustment function ΓAi,Aj

between m1 and m2 is obtained in the following Table 2.
From (20), modifying m1 and m2 by adjustment func-

tion, Γm1 and Γm2 are obtained as follows:

Γ
m1: (0.2353, 0.3553, 0.3258, 0.0837);

Γ
m2: (0.2477, 0.3000, 0.1890, 0.2632).

(31)

Because Θ � A, B, C, D{ } includes 4 mutually exclusive
and collectively exhaustive events, according to (5), the base
belief function mb � 1/(24 − 1) � 0.0667. By (29), after Γm1

and Γm2 are averaged with mb, Γbm1 and Γbm2 are obtained as
follows:

Γ
bm1: (0.1510, 0.2110, 0.1963, 0.0752);

Γ
bm2: (0.1572, 0.1834, 0.1279, 0.1650).

(32)

From (16), BBC(Γbm1,
Γ
bm2), BBC(Γbm1,

Γ
bm1), and

BBC(Γbm2,
Γ
bm2) are gotten as follows:

BBC Γbm1,
Γ
bm2􏼐 􏼑 � 0.4407,

BBC Γbm1,
Γ
bm1􏼐 􏼑 � 0.4525,

BBC Γbm2,
Γ
bm2􏼐 􏼑 � 0.4382.

(33)

Terefore, according to (28), we have

EBD m1, m2( 􏼁 � 1 ×

�����������������������

1 −
0.4407

0.4525 + 0.4382 − 0.4407

􏽲

� 0.1438.

(34)

Similarly, EBD(m1, m3) and EBD(m2, m3) are calculated
as follows:

EBD m1, m3( 􏼁 � 0.2403,

EBD m2, m3( 􏼁 � 0.1917.
(35)

Te result shows that EBD(m1, m2) � 0.1438<EBD(m2,

m3) � 0.1917<EBD(m1, m3) � 0.2403. It is more reason-
able than the original results generated by BH divergence.

Besides, for the purpose of verifying whether the EBD have
solved Case 11 and Case 12, the two cases are recalculated by the
EBD and the results are compared with the BD in Table 3.

From Table 3, in Case 11, the confict degree of group 2
by the EBD is smaller than that of group 1, in Case 12, with
the uncertainty of the three groups of evidence increasing,
the EBD is diminishing, which conforms to the analysis of
the two cases. Consequently, the EBD is more reasonable
and valid than the BD for evidence discrepancy
measurement.

4.4. Te Properties of the Enhanced Belief Divergence. In this
section, the major properties of the enhanced belief di-
vergence EBD are presented as follows.
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Theorem 15. Te EBD has the properties of boundedness,
nondegeneracy, and symmetry.

Property 16. Let m1 and m2 be two BPAs defned on the
frame of discernment Θ:

(1) Boundedness: 0≤EBD(m1, m2)≤ 1;
(2) Nondegeneracy: EBD(m1, m2) � 0 if and only if

m1 � m2;

(3) Symmetry: EBD(m1, m2) � EBD(m2, m1).

Proof. (1) m1 and m2 satisfy 0≤m1(Ai), m2(Ai)≤ 1. In the
light of the characteristics of the adjustment function and
base belief function, Γbm1 and Γbm2 meet with 0≤
Γ
bm1(Ai),

Γ
bm2(Ai)≤ 1. According to the mean inequality, we

have Γbm1(Ai) + Γbm2(Ai)≥ 2
��������������
Γ
bm1(Ai)

Γ
bm2(Ai)

􏽱
, therefore,

􏽘

n

i�1

Γ
bm1 Ai( 􏼁

2 Ai| | − 1
+ 􏽘

n

i�1

Γ
bm2 Ai( 􏼁

2 Ai| | − 1
� 􏽘

n

i�1

Γ
bm1 Ai( 􏼁 + Γbm2 Ai( 􏼁

2 Ai| | − 1
≥ 􏽘

n

i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| | − 1
. (36)

Ten, we obtain

􏽐
n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 −􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

≥ 0. (37)

According to

􏽘

n

i�1

Γ
bm1 Ai( 􏼁

2 Ai| | − 1
+ 􏽘

n

i�1

Γ
bm2 Ai( 􏼁

2 Ai| | − 1
≥ 􏽘

n

i�1

2
��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| | − 1
,

(38)

we have

􏽘

n

i�1

Γ
bm1 Ai( 􏼁

2 Ai| | − 1
+ 􏽘

n

i�1

Γ
bm2 Ai( 􏼁

2 Ai| | − 1
− 􏽘

n

i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| | − 1
≥ 􏽘

n

i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| | − 1
. (39)

Terefore,

Table 2: Te adjustment function ΓAi,Aj
between m1 and m2.

ΓAi,Aj
A B AB AC

A 3/5 0 1/5 1/5
B 0 3/4 1/4 0
AB 7/38 7/38 21/38 3/38
AC 7/31 0 3/31 21/31

Table 3: Te results comparison with the BD in Case 11 and Case 12.

Case BD EBD

Case 11 BD(m1, m2) � 1 EBD(m1, m2) � 0.7930
BD(m3, m4) � 1 EBD(m3, m4) � 0.7732

Case 12
BD(m1, m2) � 0.7559 EBD(m1, m2) � 0.7337
BD(m3, m4) � 0.7559 EBD(m3, m4) � 0.3669
BD(m5, m6) � 0.7559 EBD(m5, m6) � 0.2446
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􏽐
n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

≤ 1. (40)

As a result,

0≤
􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱
/ 2 Ai| | − 1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| | − 1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| | − 1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱
/ 2 Ai| | − 1􏼒 􏼓

≤ 1. (41)

Finally,

0≤EBD m1, m2( 􏼁 �

�������������������������������������������������������������������������

1 −
􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽶
􏽵
􏽴

≤ 1.

(42)

Te boundedness has been proven. □ Proof. (2) Given two BPAs m1 and m2 defned on Θ:

m1 � m2⇒
Γ
m1 Ai( 􏼁�

Γ
m2 Ai( 􏼁⇒Γbm1 Ai( 􏼁 �

Γ
bm2 Ai( 􏼁

⇒􏽘
n

i�1

Γ
bm1 Ai( 􏼁

2 Ai| |−1
� 􏽘

n

i�1

Γ
bm2 Ai( 􏼁

2 Ai| |−1
� 􏽘

n

i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| |−1

⇒
􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

� 1

⇒EBD m1, m2( 􏼁 �

������������������������������������������������������������������������

1 −
􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽶
􏽵
􏽴

� 0.

(43)

Conversely,
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EBD m1, m2( 􏼁 �

������������������������������������������������������������������������

1 −
􏽐

n
i�1

��������������
Γ
b
m1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽶
􏽵
􏽴

� 0

⇒
􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

􏽐
n
i�1
Γ
bm1 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 + 􏽐

n
i�1
Γ
bm2 Ai( 􏼁/ 2 Ai| |−1􏼒 􏼓 − 􏽐

n
i�1

��������������
Γ
bm1 Ai( 􏼁

Γ
bm2 Ai( 􏼁

􏽱

/ 2 Ai| |−1􏼒 􏼓

� 1

⇒􏽘
n

i�1

Γ
bm1 Ai( 􏼁

2 Ai| |−1
+ 􏽘

n

i�1

Γ
bm2 Ai( 􏼁

2 Ai| |−1
� 2􏽘

n

i�1

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| |−1

⇒􏽘

n

i�1

Γ
bm1 Ai( 􏼁 + Γbm2 Ai( 􏼁−2

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

2 Ai| |−1
� 0

⇒Γbm1 Ai( 􏼁 +
Γ
bm2 Ai( 􏼁 � 2

��������������
Γ
bm1 Ai( 􏼁Γbm2 Ai( 􏼁

􏽱

⇒Γbm1 Ai( 􏼁 �
Γ
bm2 Ai( 􏼁

⇒Γm1 Ai( 􏼁�
Γ
m2 Ai( 􏼁

⇒m1 � m2.

(44)

Te nondegeneracy has been proven. □ Proof. (3) Given two BPAs m1 and m2 defned on Θ:

EBD m1, m2( 􏼁 �

�������������������������������������������������������������������������
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Γ
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i�1
Γ
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􏽶
􏽵
􏽴
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�������������������������������������������������������������������������
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􏽐
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��������������
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Γ
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􏽵
􏽴
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(45)

Apparently,

EBD m1, m2( 􏼁 � EBD m2, m1( 􏼁. (46)

Te symmetry has been proven. □

4.5. Te Comparison Analysis. In this section, several
comparative examples with Florea and Bossé’s distance
dB(p � 1/2), BJS divergence, and BH distance are utilized to
illustrate the validity and superiority of the EBD.

Example 4. Suppose m1 and m2 are two independent BPAs
defned on Θ � A, B, C, D, E, F, G, H, I, J{ }. At is a variable
set from A{ } toΘ, t: 1⟶ 10, adding one element to the set
each time, in the order from A to J.

m1: m1( B{ }) � 0.05, m1 At􏼈 􏼉( 􏼁 � 0.95;

m2: m2( B{ }) � 0.95, m2 At􏼈 􏼉( 􏼁 � 0.05.
(47)

In this example, the enhancement factor β of the EBD is
1. As t � 1, it is discovered that m1 and m2, respectively,
support A{ } and B{ }, which is highly conficting. As t � 2, At

has the element B, it increases the probable belief of B{ } in
m1, the discrepancy between m1 and m2 decreases. Ten, as
the number of elements in At enlarges, the divergence be-
tween m1 and m2 also enlarges.

However, as depicted in Figure 2(a), it is clear that Florea
and Bossé’s distance dB and BJS divergence keep unchanged,
which is not proper. In addition, although BH distance has
varying values with t, it is unreasonable to have a downward
trend. We can observe that only the EBD accords with the
changing tendency of confict degree between m1 and m2.

Example 5. Suppose m1 and m2 are two independent BPAs
defned on Θ � A, B, C, D, E, F, G, H, I, J{ }, At is a variable
set from A{ } to Θ, t: 1⟶ 10, the specifc variations of At

are the same as those in Example 4.
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m1: m1 At􏼈 􏼉( 􏼁 � 1;

m2: m2( A, B{ }) � 0.8,

m2( C{ }) � 0.2.

(48)

In this example, m1 has the varying focal elements At􏼈 􏼉

and m2 has the focal elements A, B{ } and C{ }. Because the
cardinality of them is not identical, the enhancement factor
is 1. When t � 1, m1 supports the A{ } and m2 supports the
A, B{ }. As t � 2, m1 completely supports the proposition
A, B{ } same as the supportive proposition of m2, thus, the
value of divergence between m1 and m2 decreases. As t � 3,
with the hypothesis C added to the At􏼈 􏼉, m1 has the pos-
sibility to support C{ }, the confict degree between m1 and
m2 decreases. When At􏼈 􏼉 continue to add other elements,
the divergence is getting large.

As displayed in Figure 2(b), dB and BJS divergence are
always kept as one except t � 2. BH distance keeps de-
creasing with t in general. Obviously, it infers that the EBD
can perform better than the other divergences on discrep-
ancy measurement.

Example 6. Suppose m1 and m2 are two independent BPAs
defned on Θ, At is a variable set defned as Table 4.

m1: m1( A{ }) � 0.7, m1 At􏼈 􏼉( 􏼁 � 0.3;

m2: m2( A{ }) � 0.7, m2( A, B{ }) � 0.3.
(49)

In this example, the belief value distributions of m1 and
m2 are identical, the diference between m1 and m2 is that
between focal elements At and A, B{ }. When t � 1, the two
evidence is identical, so the evidence betweenm1 and m2 is 0.
When t � 2, At in m1 becomes A, C{ }, which is diferent

from A, B{ } in m2. In the similar way, as t � 3, 4, it is just the
hypothesis C that respectively changes to D and E, therefore,
the divergence between m1 and m2 at t � 2, 3, 4 is the same.
As t � 5, At in m1 is B, C{ }, the intersection of A{ } and At is
∅, which decreases the possibility to support A{ }, so the
value of divergence is much larger than the former states.
Te situation of t � 6, 7 is similar to that of t � 5, namely, m1
and m2 at t � 5, 6, 7 is also the same. Te remaining cir-
cumstance t � 8, 9, 10 can be concluded likewise.

However, as portrayed in Figure 3, it can be observed
that dB, BJS divergence and BH distance maintain un-
changed except at t � 1, which cannot refect the correlation
between diferent types of subsets. Terefore, the results by
the EBD show more reasonable and efective.

5. A New EBD-Based Multisource Information
Fusion Method

Multisource information fusion refers to the means that
integrate data from various sensors to generate a rational
and precise result. Te data gathered from every sensor can
be modeled as a piece of evidence, but the credibility of the
evidence is susceptible to sensor failure or detrimental en-
vironmental factors, which have an impact on the accuracy
of the result. Terefore, it is crucial to evaluate the reliability
of evidence during the information fusion process.

In this section, based on the EBD and Deng entropy,
a new multisource information fusion approach is devised.
Specifcally, the weight of evidence is decided by the di-
vergence between the evidence and the uncertainty con-
tained in evidence. Te EBD can allude to the extent of
evidence inconsistency, where the evidence modeled by the
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Figure 2: Te comparison with the dB, BJS divergence, and BH distance in Examples 4 and 5, (a) Example 4, (b) Example 5.
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fawed information source is highly conficting with the
normal one. Deng entropy can be used to quantify the
uncertainty of evidence, where the evidence with more
uncertainty conserves a wealth of potential useful in-
formation. Te algorithm fowchart of this method is shown
in Figure 4 and the detailed steps are given as follows.

Assume that there are n sensors, from which n pieces of
evidence m1, m2, . . . mn are collected. Te BPAs are defned
on the frame of discernment Θ � A1, A2, . . . , Am􏼈 􏼉.

Step 1. Determining the credibility weight Wc of
evidence.

Step 1.1: Construct divergence measure matrix.
Based on the EBD given in Equation (28), the di-
vergence between evidence mi(i � 1, 2, . . . , n) and
mj(j � 1, 2, . . . , n) is denoted as dij. Ten, the di-
vergence measure matrix DMM � (dij)n×n can be
established as follows:

DMM �

0 · · · d1i · · · d1n

⋮ ⋮ ⋮ ⋮ ⋮

di1 · · · 0 · · · din

⋮ ⋮ ⋮ ⋮ ⋮

dn1 · · · dni · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Step 1.2: Calculate the average divergence measure.
On the basis of the DMM, the average divergence of
evidence mi is indicated as d(mi), the formula is
represented as follows:

d mi( 􏼁 �
􏽐

n
j�1dij

n − 1
, i � 1, . . . , n; j � 1, . . . , n. (51)

Step 1.3: Generate the support degree.
Te support degree Sup(mi) of evidence mi can be
calculated as follows:

Sup mi( 􏼁 �
1

d mi( 􏼁
, i � 1, . . . , n. (52)

Step 1.4: Obtain the credibility weight.
Te credibility weight Wc(mi) of evidence mi can be
obtained as follows:

Wc mi( 􏼁 �
Sup mi( 􏼁

􏽐
n
j�1Sup mj􏼐 􏼑

, i � 1, . . . , n. (53)

Step 2. Forming the information volume weight Wiv of
evidence.

Step 2.1: Calculate the Deng entropy.
According to equation (6), the Deng entropy Ed(mi)

of evidence mi is generated as follows:

Ed mi( 􏼁 � − 􏽘
A⊆Θ

mi(A)log2
mi(A)

2|A|
− 1

, i � 1, . . . , n.

(54)

Step 2.2: Get the information volume.
Te information volume IV(mi) of evidence mi is
defned as follows:

Table 4: Te variation of set At.

t 1 2 3 4 5 6 7 8 9 10
At A, B{ } A, C{ } A, D{ } A, E{ } B, C{ } B, D{ } B, E{ } C, D{ } C, E{ } D, E{ }
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Figure 3: Te comparison with the dB, BJS divergence and BH distance in Example 6.
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IV mi( 􏼁 � e
Ed mi( ), i � 1, . . . , n. (55)

Step 2.3: Obtain the information volume weight.
By normalizing the IV, the information volume
weight Wiv(mi) of evidence mi is denoted as follows:

Wiv mi( 􏼁 �
IV mi( 􏼁

􏽐
n
j�1IV mj􏼐 􏼑

, i � 1, . . . , n. (56)

Step 3. Producing the weighted average evidence.

Step 3.1: Generate the fnal weight.
Combing the credibility weight and information
volume weight of evidence mi, the fnal weight W(mi)

of evidence mi is acquired as follows:

W mi( 􏼁 �
Wc mi( 􏼁 × Wiv mi( 􏼁

􏽐
n
i�1Wc mi( 􏼁 × Wiv mi( 􏼁

, i � 1, . . . , n.

(57)

Step 3.2: Weight the body of evidence.
Te weighted average evidence is calculated as follows:

􏽥m(A) � 􏽘
n

i�1
W mi( 􏼁 × mi(A), A⊆Θ. (58)

Step 4. Fuse the weighted average evidence.
Te weighted average evidence is fused with the
Dempster’s combination rule equation (4) by n − 1
times, the eventual result is obtained as follows:
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m � 􏽥m⊕ 􏽥m⊕ · · · ⊕ 􏽥m􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
n−1 times

. (59)

6. Experiment

To demonstrate the feasibility and efectiveness of our
method, two experiments, i.e., a target recognition problem
and a classifcation problem are presented. Te comparison
with other methods is conducted to further illustrate the
superiority of the EBD-based multisource information fu-
sion approach.

6.1. Target Recognition. In a multisensor-based target rec-
ognition system, suppose the frame of discernment, in-
cluding three possible targets, is Θ � A, B, C{ }, there are fve
installed sensors S1, S2, S3, S4, S5􏼈 􏼉 in the system. Te data
collected from the fve sensors are modeled as fve BPAs,
m1, m2, m3, m4, m5􏼈 􏼉, shown in Figure 5. Tis experimental
data is based on Deng [33].

From Figure 5, it is noted that the target directivity of
sensors m1, m3, m4, and m5 is more oriented to A; therefore,
we can infer that A is the real target, which should be al-
located a high level of accuracy in the fusion results. While
only m2 assigns most of its belief to strongly support the
target B, it has a diferent direction from the other sensors.
As a result, it is believed that m2 is highly conficting with
other four pieces of evidence. As a comparison, the fusion
results of the well-knownmethods and the proposedmethod
are presented in Table 5.

As can be seen in Table 5, the comparative results in-
dicate that A is the real target, which verifes the perception
from the above analysis. Obtained by Dempster’s method,
the fusion result realizes C as the identifed target and
distributes zero belief to A. Evidently, such a result is un-
reasonable. Hence, it is unsuitable to adopt Dempster’s
combination rule directly to combine the conficting evi-
dence. Murphy’s method can correctly determine the target
type as A. Moreover, the recognized target of Deng’s method
is in accordance with that of Murphy’s method with a higher
belief. Although the two aforesaid methods are able to
identify the real target, it is noteworthy that the proposed
method can achieve the highest accuracy of 0.9904. From
these fndings, the proposed method can make a more ac-
curate decision result when dealing with conficting
evidence.

6.2. Iris Classifcation. An iris dataset-based classifcation
experiment, containing the data without confict and with
confict, is implemented here. For the sake of fairly com-
paring the results, the generated BPAs in Qian [50] are
referred to further assess the performance of our method.

6.2.1. Fusion without Confict. Tere are three types of iris
fowers (Setosa, Versicolor, and Virginica), and the frame-
work of discernment is Θ � Se,Vc,Vi{ }. In addition, each
type of iris fower has four attributes, namely Sepal Length
(SL), Sepal Width (SW), Petal Length (PL), and Petal Width

(PW). Te converted BPAs based on the iris dataset are
shown in Figure 6.

From Figure 6, the BPAs of the four attributes, m1, m2,
m3, and m4, all bestow a relatively high belief to the fower
type Se. In other words, there is no confict between them,
and the belief allocated to Se{ } should be the highest after
fusion. Te fusion results of the proposed method and
comparative methods are presented in Table 6. From Table 6,
as we expected, all methods, including our method, can
identify the fower type, when evidence is not conficting.

6.2.2. Fusion with Confict. To further verify the robustness
of the proposed method, the data of attribute SW source is
revised to serve as noisy evidence. A group of obtained
evidence with confict is shown in Figure 7. From Figure 7, it
infers that the SL attribute has no clear directivity toward the
fower types of Se and Vc, with proximate belief values of
0.3337 and 0.3165. While the SW attribute assigns almost all
beliefs toVc.Te attributes of PL and PW believe that the test
sample belongs to the fower type of Se. As a consequence, it
is suggested that the correct fower type of the test sample
is Se.

After conducting the proposed method and other re-
searchers’ schemes, the fusion results are shown in Table 7.
As can be seen from Table 7, Dempster’s method and
Murphy’s method trust that Vc is the real fower type of the
test sample, and they give Se a low support degree, which
yields a completely misleading result. Terefore, they cannot
work efectively when the evidence is conficting. Both
Deng’s method and the proposed method can precisely
recognize the real target; what’s more, the proposed method
endows a larger belief to Se than Deng’s method dose.

Te reason why the proposed method outperforms other
methods is that in Dempster’s method, it directly uses the
combination rule to fuse highly conficting evidence, but
produces a counter-intuitive result. To a certain extent,
Murphy’s method can handle the confict by simply aver-
aging the evidence. However, it makes all evidence have the
same weight, which may eliminate the confict among ev-
idence and greatly infuence the fusion result. Taking the
distance between evidence into account, Deng’s method
distributes diferent weights to evidence, while it ignores the
information volume of evidence itself. Te proposed method
considers not only the divergence but also the information
volume to thoroughly calculate the weight of the evidence.
Terefore, it can be concluded that the proposed method has
a preferable efect on decision fusion.

7. Application in Failure Mode and Effects
Analysis of Aircraft Turbine Rotor Blades

Information fusion is widely applied in risk evaluation and
expert system [51, 52]. In the aerospace feld, rotor blades,
including compressor rotor blades and turbo rotor blades, are
the major components of an aircraft turbine, whose reliability
seriously afects the overall aircraft turbine security. In order
to enhance their safety, failure mode and efects analysis
(FMEA) can facilitate the identifcation of potential failures
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and determine the efect of each failure to decrease failure
rates and avoid hazardous accidents. However, there may be
a load of failure modes with diferent risks and efects.
Consequently, it is necessary to prioritize their risks. Te risk
priority number (RPN) is one way to rank these failure
modes. Te RPN is the product of the three factors, the
probability of the occurrence of a failure mode (O), the
severity of a failure efect (S), and the probability of a failure
being detected (D), expressed as RPN � O × S × D. However,
multiple experts may give diferent risk evaluations on three

risk factors for one failure mode, which may be imprecise and
uncertain. Terefore, multisource information fusion can be
used to promote the accuracy of evaluation.

In this section, the EBD-based multisource fusion
method is adopted to calculate the new mean value of the
RPN, and then determine the risk priority of multiple failure
modes of aircraft turbine rotor blades, in which the EBD
plays a key role in deciding the weights of experts. Fur-
thermore, the risk ranking results are compared with other
methods to determine the validity of our method.
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Figure 5: Te fve BPAs from sensors in target recognition.

Table 5: Te fusion results of the four methods in target recognition.

Methods m( A{ }) m( B{ }) m( C{ }) m( A, C{ }) Target
Dempster [5] 0 0.1404 0.8596 0 C

Murphy [20] 0.9688 0.0156 0.0127 0.0029 A

Deng [33] 0.9869 0.0010 0.0088 0.0032 A

Proposed method 0.9904 0.0001 0.0047 0.0047 A
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Figure 6: Te BPAs from four attributes without confict in the iris classifcation.
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7.1. Problem Statement. In FMEA, there are three risk
factors: occurrence (O), severity (S) and detection (D)

included in the RPN, which have a numeric scale rating from
1 to 10, suggested criteria of rating for each risk factor is
listed as Tables S1–S3 in Supplementary Description. Sup-
pose there are J experts: E1, . . . , EJ􏽮 􏽯 and N failure modes:
FM1, . . . , FMN􏼈 􏼉. Te experts may give their diferent
evaluations to the same risk factor, which are modeled as J

evidence: m1, . . . , mJ􏽮 􏽯. Consequently, there are three dis-
cernment frames respectively forO, S andD. Moreover, for the
N failure modes, the total number of discernment frame is 3N.
Under this circumstance, the frame of discernment of the i th
risk factor of the n th failure mode can be presented as follows:

Θn
i � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10{ }, i � O, S, D; n � 1, 2, . . . , N.

(60)

For convenience, Yang et al. simplifed the frame of
discernment Θn

i , which is denoted as follows [53]:

Θn
i � minX |X⊆Θn

i
,minX |X⊆Θn

i
+ 1, . . . ,maxX |X⊆Θn

i
􏽮 􏽯,

(61)

where minX|X⊆Θn
i
and maxX|X⊆Θn

i
separately means the

minimum andmaximum of the rank of the n th failure mode
to the i th risk factor from J experts.

7.2. Implementation. Te rotor blades of an aircraft turbine
consist of two subsystems, the compressor rotor blades and
the turbo rotor blades. According to the practical engi-
neering background, there are nine potential failure modes
in the compressor rotor blades and eight failure modes in the
turbo rotor blades, namely, 17 recognized failure modes
FM1, . . . , FM17􏼈 􏼉 in total [53].

In this experiment, the BPAs in Yuan [54], transformed
from the evaluation information of the three experts
E1, E2, E3􏼈 􏼉 to O, S and D on the 17 failure modes, are
referred. On the simplifed frame of discernment in (61), we

Table 6: Te fusion results of non-confict data by diferent methods in iris classifcation.

Method m( Se{ }) m( Vc{ }) m( Vi{ }) m( Se,Vc{ }) m( Se,Vi{ }) m( Vc,Vi{ }) m( Se,Vc,Vi{ })

Dempster [5] 0.8940 0.0933 0.0127 0 0 0 0
Murphy [20] 0.8854 0.0880 0.0266 0 0 0 0
Deng [33] 0.8867 0.0872 0.0261 0 0 0 0
Proposed method 0.7230 0.1707 0.1061 0 0 0 0

0.6996 0.212 0.0658 0 0 0.0226 0

0.6699 0.2374 0.0884 0 00.00430
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Figure 7: Te BPAs from four attributes with confict in the iris classifcation.

Table 7: Te fusion results of confict data by diferent methods in iris classifcation.

Method m( Se{ }) m( Vc{ }) m( Vi{ }) m( Se,Vc{ }) m( Se,Vi{ }) m( Vc,Vi{ }) m( Se,Vc,Vi{ })

Dempster [5] 0 0.9988 0.0012 0 0 0 0
Murphy [20] 0.4422 0.5546 0.0032 0 0 0 0
Deng [33] 0.7301 0.2652 0.0047 0 0 0 0
Proposed method 0.8322 0.1511 0.0167 0 0 0 0
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use the EBD-based information fusion algorithm in Section
5 to aggregate the BPAs of i th risk factor in the n th failure
mode, the fusion results are obtained as mn

i (A), A⊆Θn
i ,

i � O, S, D, where A represents the rating of the risk factors.
Attributed to the axiom of additivity, mn

i (A) can be regarded
as the probability of A. According to [54], the mean value of
RPN can be used to compare the overall risk of each failure
mode. Based on the proposed fusion method, the new mean
value of RPN, named as EBD RPNavg, can be obtained by

i
n
avg � 􏽘

10

A�1
A × m

n
i (A), i � O, S, D; n � 1, 2, . . . , 17,

EBD RPNn
avg � O

n
avg × S

n
avg × D

n
avg.

(62)

For ease of understanding, the above process of calcu-
lating the EBD RPNavg is showed in the form of a fowchart
as Figure 8. At the same time, the calculated EBD RPNavgs of
17 failure modes are presented in Table 8.

As shown in Table 8, among the 8 failure modes of
compressor rotor blades, failure mode 2 has the largest
EBD RPNavg and failure mode 5 has the least EBD RPNavg.
Decided by sorting numeric size of EBD RPNavg, the risk
priority order of them is FM2 ≻FM6 ≻FM1 ≻FM3 ≻
FM7 ≻FM4 ≻FM8 ≻FM5. Among the 9 failure modes of
turbo rotor blades, failuremode 9 has the largest EBD RPNavg
and failure mode 16 has the least EBD RPNavg, the risk

priority order of them is FM9 ≻FM10 ≻FM14 ≻FM12 ≻
FM11 ≻FM13 ≻FM15 ≻FM17 ≻FM16,≻hints that the pre-
vious item has a higher priority.

Several comparative methods to investigate the RPN in
FMEA are introduced here. In detail, AMWRPN takes into
consideration of the relative weight of diferent risk factors,
by measuring the ambiguity degree of the experts’ assess-
ments, to get a new ambiguity measure weighted risk pri-
ority number [55]. MVRPN calculates the average of the
obtained RPN values with the modifed belief function and
combination rule [53]. Te improved MVRPN constructs
the BPA to handle the conficting evidence and refne the
MVRPN [56]. Te method in the literature [54] gives a new
mean value of RPN based on triangular fuzzy numbers,
negation of BPAs and evidence distance. Te comparison
results with the above methods are shown in Table 9.

From Table 9, the results of the AMWRPN method in
FM1 − FM17 are very close. And the values of the MVRPN
method are similar to those of the improved MVRPN
method. In addition, for turbo rotor blades, in the MVRPN
method, failure mode 10, 13, and 14 have the same RPN 60,
and failure mode 11 and 12 have the same RPN 50. In the
improved MVRPN method, the RPN of failure mode 11, 12,
and 13 is all the same. Remarkably, the results by ourmethod
are very close to those of RPNavg. It is worth noting that the
values of EBD RPNavg are not dense and well distinguished,
which contributes to the diferentiated risk ranking of
multiple failure modes of rotor blades.
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Figure 8: Te fowchart for prioritizing risk based on the EBD RPNavg.
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Te rank results of failure modes of rotor blades for an
aircraft turbine are shown in Figure 9. In Figure 9(a), the risk
priorities for compressor rotor blades by ourmethod are nearly
consistent with othermethods. In Figure 9(b), the risk priorities
for turbo rotor blades by our method completely coincide with
the RPNavg. Although the risk priorities by EBD RPNavg are

slightly diferent with the three other methods, this is ac-
ceptable. It is the reason that the several identical RPN values,
in the MVRPN method and the improved MVRPN method,
lead to the sorting diference. Terefore, in the FMEA of the
rotor blades of an aircraft turbine, the proposed method has
efectiveness and practicality.
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Figure 9: Te risk ranking consequences of failure modes of rotor blades for an aircraft turbine. (a) Compressor rotor blades. (b) Turbo
rotor blades.
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8. Conclusion

In this paper, an enhanced belief divergence, named as EBD,
is proposed to measure the discrepancy between evidence.
Te proposed EBD can distinguish between singletons and
multielement sets and express the intersection relationship
among subsets. Some important properties of the EBD are
inferred. In addition, the comparison interprets that the
EBD has a preferable efect on confict measurement. Next,
an EBD-based multisource information fusion method is
devised. In the applications of target recognition and iris
classifcation, the proposed method can efectively handle
uncertainty and confict with higher accuracy values. Spe-
cially, the basic belief assignment of the true target in target
recognition achieves 0.9904. Finally, in the risk priority
evaluation of the failure modes of the rotor blades of an
aircraft turbine, the risk ranking results by the proposed
method are almost consistent with other methods, dem-
onstrating the applicability of the proposed method.

In our future work, we intend to further study the
performance of the proposed method to handle non-
conficting information. Also, we can broaden the pro-
posed approach to solve other practical problems, such as
image processing problems. Besides, we will deepen our
research on fusion method when the BPA is an
interval value.

Data Availability

Te authors declare that all data supporting the fndings of
this study are included within the article.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Tis work is supported by the Fundamental Research Funds
for the Central Universities (No. 2572023DJ04 and No.
2572018BC21).

Supplementary Materials

Te three risk factors, occurrence (O), severity (S) and
detection (D), use a numeric scale rating from 1 to 10, Tables
S1–S3 in Supplementary Description ofer the suggested
criteria of rating for each risk factor of a failure in FMEA.
(Supplementary Materials)

References

[1] J. W. Lai, J. Chang, L. Ang, and K. H. Cheong, “Multi-level
information fusion to alleviate network congestion,” In-
formation Fusion, vol. 63, pp. 248–255, 2020.

[2] Z. Wu and H. Liao, “A consensus reaching process for large-
scale group decision making with heterogeneous preference
information,” International Journal of Intelligent Systems,
vol. 36, no. 9, pp. 4560–4591, 2021.

[3] E. Lefevre, O. Colot, and P. Vannoorenberghe, “Belief
function combination and confict management,” In-
formation Fusion, vol. 3, no. 2, pp. 149–162, 2002.

[4] X. Wang and Y. Song, “Uncertainty measure in evidence
theory with its applications,” Applied Intelligence, vol. 48,
no. 7, pp. 1672–1688, 2018.

[5] A. P. Dempster, “Upper and lower probabilities induced by
a multi-valued mapping,” Te Annals of Mathematical Sta-
tistics, vol. 38, no. 2, pp. 325–339, 1967.

[6] G. Shafer, “A mathematical theory of evidence,” Techno-
metrics, vol. 20, no. 1, p. 106, 1978.

[7] X. Chen and Y. Deng, “A new belief entropy and its appli-
cation in software risk analysis,” International Journal of
Computers, Communications and Control, vol. 18, no. 2, 2023.

[8] Y. Pan, L. Zhang, Z. Li, and L. Ding, “Improved fuzzy Bayesian
network-based risk analysis with interval-valued fuzzy sets
and D-S evidence theory,” IEEE Transactions on Fuzzy Sys-
tems, vol. 28, no. 9, pp. 2063–2077, 2020.

[9] D. Wu and Y. Tang, “An improved failure mode and efects
analysis method based on uncertainty measure in the evidence
theory,” Quality and Reliability Engineering International,
vol. 36, no. 5, pp. 1786–1807, 2020.

[10] L. Chang, L. Zhang, C. Fu, and Y.-W. Chen, “Transparent
digital twin for output control using belief rule base,” IEEE
Transactions on Cybernetics, vol. 52, no. 10, pp. 10364–10378,
2022.

[11] X. J. Ma, M. N. Li, and J. F. Wang, “High-density impulse
noise recognition algorithm based on D-S credibility weighted
model,” Chinese Journal of Sensors and Actuators, vol. 35,
no. 6, pp. 769–777, 2022.

[12] J. X. Zhang, X. J. Ma, T. T. Song, A. Wang, and Y. H. Lin, “An
enhanced pignistic transformation-based fusion scheme with
applications in image segmentation,” IEEE Access, vol. 11,
pp. 19892–19913, 2023.

[13] C. Fu, W. Chang, and S. Yang, “Multiple criteria group de-
cision making based on group satisfaction,” Information
Sciences, vol. 518, pp. 309–329, 2020.

[14] P. Liu, X. Zhang, and W. Pedrycz, “A consensus model for
hesitant fuzzy linguistic group decision-making in the
framework of Dempster–Shafer evidence theory,” Knowledge-
Based Systems, vol. 212, Article ID 106559, 2021.

[15] L. Xiong, X. Su, and H. Qian, “Conficting evidence combi-
nation from the perspective of networks,” Information Sci-
ences, vol. 580, pp. 408–418, 2021.

[16] R. R. Yager, “On the Dempster-Shafer framework and new
combination rules,” Information Sciences, vol. 41, no. 2,
pp. 93–137, 1987.

[17] D. Dubois and H. Prade, “Representation and combination of
uncertainty with belief functions and possibility measures,”
Computational Intelligence, vol. 4, no. 3, pp. 244–264, 1988.

[18] X. Chen and Y. Deng, “A novel combination rule for confict
management in data fusion,” Soft Computing, vol. 27, no. 22,
pp. 16483–16492, 2023.

[19] W. Zhang and Y. Deng, “Combining conficting evidence
using the DEMATEL method,” Soft Computing, vol. 23,
no. 17, pp. 8207–8216, 2019.

[20] C. K. Murphy, “Combining belief functions when evidence
conficts,” Decision Support Systems, vol. 29, no. 1, pp. 1–9,
2000.

[21] X. Gao and F. Xiao, “A generalized x2 divergence for mul-
tisource information fusion and its application in fault di-
agnosis,” International Journal of Intelligent Systems, vol. 37,
no. 1, pp. 5–29, 2022.

22 International Journal of Intelligent Systems

https://downloads.hindawi.com/journals/ijis/2024/2140919.f1.zip


[22] C. Zhu, F. Xiao, and Z. Cao, “A generalized Rényi divergence
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