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Belief divergence is a significant measure to quantify the discrepancy between evidence, which is beneficial for conflict in-
formation management in Dempster—Shafer evidence theory. In this article, three new concepts are given, namely, the belief
Bhattacharyya coefficient, adjustment function, and enhancement factor. And based on them, a novel enhanced belief divergence,
called EBD, is proposed, which can assess the correlation of subsets and fully reflect the uncertainty of multielement sets. The
important properties of the EBD have been studied. In particular, a new EBD-based multisource information fusion method is
designed to handle evidence conflict, where the weight of evidence is decided by the EBD between evidence and the information
volume of each evidence. Compared with other methods, the proposed method in the applications of target recognition and iris
classification can produce more rational and telling outcomes when dealing with conflict information. Finally, an application in
risk priority evaluation of the failure modes of rotor blades of an aircraft turbine is provided to validate that the proposed method

has the extensive applicability.

1. Introduction

Multisource information fusion is an invaluable information
processing technology to achieve precise decisions by ana-
lyzing heterogeneous data from multiple sensors [1-3].
However, in practical scenarios, owing to the influence of
different factors, such as bad weather conditions, mechanical
failures, and wireless communication problems, the in-
formation collected from various sensors may be imprecise,
incomplete, and ambiguous [4]. The Dempster—Shafer (D-S)
evidence theory possesses the ability to directly express
uncertain information by means of assigning basic proba-
bility assignment (BPA) to multielement sets, and can fuse
evidence without the consideration of prior information to
diminish the uncertainty of the system and improve its
performance [5, 6]. So, it has been broadly applied in risk
evaluation [7-9], output control [10], image processing
[11, 12], and multicriteria decision-making [13, 14]. Nev-
ertheless, when confronted with highly conflicting evidence,

the D-S evidence theory yields counter-intuitive results [15];
then, a misdirected consequence may be brought about in
a system. Therefore, how to deal with conflict is still an
urgent problem in evidence theory.

To address this issue, existing research methods are
primarily conducted by modifying Dempster’s combination
rule or preprocessing the bodies of evidence before com-
bination [16-22]. In this article, we focus on the latter. In the
study of evidence preprocessing, it is discovered that un-
certainty and discrepancy measures have been extensively
studied [23-28], and can be further utilized to investigate the
evidence conflict. Specifically, a total uncertainty measure,
based on the Euclidean distance between the belief interval
of the singleton subset and the most uncertain interval, was
employed to settle the conflict [29]. Cui et al. presented
a plausibility entropy to measure the uncertainty of BPA
[30]. Xiao presented an evidential conflict coefficient to
measure the conflict between evidence [31]. Based on
Tanimoto measurement, Deng devised an evidential
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similarity measurement to describe the evidence in-
consistency [32]. Deng et al. exploited the evidence distance
to manage conflict [33]. Xiao proposed belief Jensen-
Shannon (BJS) divergence to measure the discrepancy be-
tween evidence, but it is found that BJS divergence ignores
the effect of multielement sets and produces measurement
error [34]. Zhu et al. put forward the belief Hellinger (BH)
distance and overcame the deficiency of BJS divergence [35].
Yet, BH distance differentiates multielement sets and sin-
gletons just by the cardinality of multielement sets. As for
those multielement sets with same cardinality, BH distance
cannot embody their difference. Specially, it is worth
mentioning that Florea and Bossé gave a corrected extension
of the Bhattacharyya distance based on the Bhattacharyya
coefficient in probability theory to the D-S evidence theory
[36]; however, the extensive form is still not mature enough
to adequately reflect the diversity of evidence.

The main motivation of this study lies in the following
points:

(1) In [36], Florea and Bossé’s distance ignores the
uncertainty of multielement sets and the in-
terrelationship of sets, which are also the existing
drawbacks of BJS divergence and BH distance, re-
spectively. It means that a new belief divergence
should be constructed to handle the uncertainty of
evidence.

(2) It is significant to boost the performance of the
fusion system for achieving efficient decision-
making. Therefore, it is necessary to design a new
algorithm to improve the accuracy of fusion.

However, there are still several challenges in this study:

(1) How to accurately reflect the uncertainty charac-
teristics of evidence is a challenge.

(2) Designing an efficient algorithm to obtain better
fusion results is a complex and challenging task.

In this paper, an enhanced belief divergence, named as
EBD, is proposed to quantify the discrepancy. It fully
considers the impact of multielement sets and the re-
lationship between sets to offer a more valid solution for
discrepancy measurement. The EBD satisfies the properties
of boundedness, nondegeneracy, and symmetry. Based on
the EBD, a new multisource information fusion algorithm is
devised for conflict resolution, where the EBD determines
the weights of evidence to better reflect their reliability and
importance, and meanwhile, the information volume of
evidence is also considered. The fusion algorithm is applied
in target recognition and iris classification to evaluate its
performance. Finally, the proposed method is exploited to
make the risk evaluation of the rotor blades of an aircraft
turbine, and verified effective and practical.

The main contributions of this study are summarized as
follows:

(1) The belief Bhattacharyya coefficient and adjustment
function are defined. The belief Bhattacharyya co-
efficient considers the uncertainty of multielement
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sets by the cardinality of subsets. The adjustment
function can describe the correlation between dif-
ferent subsets. Based on the belief Bhattacharyya
coefficient and influenced by the adjustment func-
tion, a new belief divergence BD is proposed and
takes the uncertainty of the evidence into account.

(2) The enhancement factor is defined to promote the
performance of the BD. After improvement, the
enhanced belief divergence, called EBD, is presented.
Compared with the other divergence and distance
measures, the EBD performs discrepancy reflection
more effectively.

(3) To settle conflict, an EBD-based multisource in-
formation fusion algorithm is designed, in which the
EBD is employed to decide the weight of evidence.
With the experiments of target recognition and iris
classification to evaluate the performance and ef-
fectiveness, it demonstrates that the algorithm can
achieve a more precise decision. Furthermore, the
algorithm is applicable to the risk evaluation of the
rotor blades of an aircraft turbine.

The paper is organized as follows. In Section 2, the pre-
liminaries of this paper are briefly introduced. In Section 3, the
belief Bhattacharyya coefficient and adjustment function are
defined, and a new belief divergence BD is presented. In
Section 4, based on the enhancement factor, an enhanced belief
divergence EBD is proposed and its properties are proven.
Furthermore, a comparative analysis is given to illustrate the
validity of the EBD. In Section 5, the EBD-based multisource
information fusion algorithm is designed. In Section 6, two
experiments are utilized to demonstrate the effectiveness of the
algorithm. In Section 7, an application in the risk priority
evaluation of the failure modes of the rotor blades of an aircraft
turbine demonstrates the practicality of the EBD-based fusion
algorithm. Finally, conclusions are drawn in Section 8.

2. Preliminaries

In this section, some concise knowledge, including
Dempster-Shafer evidence theory, base belief function, and
Deng entropy, is introduced. Besides, several belief di-
vergence and distance measures are investigated, and their
inadequacies are pointed out by the examples.

2.1. Dempster-Shafer Evidence Theory. As an effective
method to model and process uncertain information, the
Dempster—Shafer evidence theory is primitively presented
by Dempster and perfected by Shafer. [5, 6] The core
concepts of it are introduced in the following.

Definition 1 (Frame of discernment). Let ® be a finite and
complete set which is composed of N mutually exclusive and
collectively exhaustive hypotheses. ® is called a frame of
discernment [5, 6].

®=1{6,,6,,...,04}. (1)
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The power set of O, consisting of all subsets of ®, is
defined as follows:

2° ={2,0,,0,,...,04,{0,,6,},...,{6,,6,,6;},...,0}.

(2)
For any Ac®, A corresponds to a proposition. If

[Al =1, A is called a singleton; if |A|>1, A is called
a multielement set, where |A| indicates the cardinality of A.

Definition 2 (Basic probability assignment). Let © be
a frame of discernment, VAC®, if a function
m: 2© — [0, 1] satisfies the following two conditions:

m(J) =0,
Z m(A) =1, (3)
ACO

m is called a basic probability assignment (BPA) or mass
function, [5, 6] where m(A) is the support degree to
proposition A. If m(A)#0, A is called a focal element.

Definition 3 (Dempster’s combination rule). Let m, and m,
be two independent BPAs on ®, m =m,; &m, is a new
evidence after combination between 1, and m,. Dempster’s
combination rule is defined as follows [5, 6]:

m(D) =0,
| 4)
m Z ny (B)mz ),

A=BnC

where B,CCO® and k=Yg cgm; (B)m,(C) is called
conflict coefficient, k satisfies 0 <k < 1.

m(A) =

2.2. Base Belief Function. Base belief function is primarily
proposed to address the fusion problem of highly conflicting
evidence [37]. In this paper, base belief function is flexibly
utilized to solve zero belief value by modifying the evidence.

Definition 4 (Base belief function). Let ® be a frame of
discernment, composed of N mutually exclusive and col-
lectively exhaustive hypotheses. The power set of ® contains

2N propositions, for every proposition A;(i =1,...,2Y) in
29 except @, base belief function is defined as follows [37]:
1
m, (4;) = . (5)
J4) =

2.3. Deng Entropy. The uncertainty of BPA is considered
beneficial for handling conflict, therefore, a quantity of
uncertainty measures have been explored from different
perspectives [38, 39]. As the extension of Shannon entropy,

the Deng entropy is proposed to represent the uncertainty of
evidence. The Deng entropy is denoted as in [40].

A
E;=- Z m(A)logZ%, (6)
Ac® 27 -1

where AC® and |A| is cardinal number of A.

2.4. Divergence and Distance Measures. In D-S evidence
theory, how to choose an appropriate method to determine
the difference between evidence is still an open issue. To
date, a score of discrepancy measures have been developed
[41, 42]. In this section, Bhattacharyya distance, Florea and
Bossé’s distance, belief Jenson-Shannon divergence, and
belief Hellinger distance are introduced.

In statistics, the Bhattacharyya distance is utilized to
measure the similarity between two probability distribu-
tions, and it is closely related to the Bhattacharyya coeflicient
which is used to calculate the overlap degree between
samples [43]. Bhattacharyya distance is defined as follows.

Definition 5 (Bhattacharyya distance). Given two proba-
bility distributions P = (p;,...,p,) and Q= (q,...,q,)
with },;p; = Y,q; = 1, Bhattacharyya distance is defined
as —In(BC), where BC is the Bhattacharyya coefficient and
denoted by [43]

BC(p.9) = ). vPid: (7)
i=1

BC satisfies 0<BC(p,q) < 1.

Ristic and Smets put forward the extension of Bhatta-
charyya distance from probability theory to D-S evidence
theory [44]. By correcting the above distance, Florea and
Bossé’s distance is given by [36]

p
dg(my,m,) = [1 - Z my (A)m, (A)] , (8)

AcO

where m, and m, are two independent BPAs defined on ©
and p could be any positive number.

In this paper, we only pay attention to the case of
p=1/2, namely, dg(m;,m,) =[1-3 sco
\Jm, (Aym, (A) V2.

Nevertheless, Florea and Bossé’s distance is immature to
accurately reflect evidence difference. In other words, Florea
and Bossé’s distance is unable to differentiate between
probability distribution and BPA without considering the
uncertainty carried by BPA.

Xiao incorporated Jensen-Shannon divergence into
evidence theory and proposed a novel belief divergence,
which is presented as follows [34].



Definition 6 (Belief Jensen-Shannon divergence). Given
two independent BPAs m;, and m, defined on O, belief
Jensen-Shannon (BJ]S) divergence between m; and m, is
defined as follows [34]:

1
BJS (mpmz) = B Z m (Ai)log

where }m;(A) =1,(i=1,...

BJS divergence has a preferable effect on describing the
deviation between evidence, but it fails to recognize the
multielement sets. This restriction is illustrated by
Example 1.

,n;j=1,2).

Example 1. Suppose m,, m,, and m; are three independent
BPAs defined on © = {A, B}.

my: m; ({A}) = 0.80,m, ({B}) = 0.10,m, ({A, B}) = 0.10;

my: m, ({A}) = 0.10,m, ({B}) = 0.80,m, ({A, B}) = 0.10;

ms: m; ({A}) = 0.10, m; ({B}) = 0.10, m5 ({A, B}) = 0.80.
(10)

2m, (4;)
my (A;) +my (4;) ’ Z’mz (4)log my (A;) +my (A;) [ ©)
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2m, (Ai)

Intuitively, m, strongly supports {A} and m, strongly
supports {B}, so m; and m, are highly conflicting. m;
supports the proposition {A, B}, which represents a un-
certain state to support A or B. Therefore, the divergence
between m, and m, is the largest amongst all evidence, the
divergence between m; and m, is identical with that between
m; and m,. However, according to equation (9), the results
are calculated as follows:

BJS (m,, m,) = 0.4471, BJS (m,, m;) = 0.4471, BJS (m,, m;) = 0.4471. (11)

Obviously, it is not consistent with the intuition. The
reason for such counter-intuitive results is that BJS di-
vergence neglects the multielement subset {A, B} with un-
certainty by treating it as a singleton.

Generalized from the Hellinger distance of probability
theory, belief Hellinger distance, which overcomes the defect
of BJS divergence, is defined as follows [35].

Definition 7 (Belief Hellinger distance). Let m; and m, be
two independent BPAs defined on O, belief Hellinger (BH)
distance between m, and m, is defined as follows [35]:

n my (4;) - \/mz (4) 2
BH (m,,m,) =% ; <\/ SIAl > 1

where A; € 29, |A,] is cardinal number of A,.

From (12), BH distance takes the cardinal number of
subset into account, so multielement set can be distin-
guished from singleton by the size difference. Recalculate
Example 1 by BH distance, the results are obtained as
follows:

BH (m,,m,) = 0.5782, BH (m,,m;) = 0.4721, BH (m,, m;) = 0.4721. (13)

In comparison with BJS divergence, the above results by
BH distance are more reasonable. Nevertheless, BH cannot
embody the correlation between hypotheses contained in
different subsets. Explicitly, if the cardinality of all multi-
element sets is designed as the same, BH distance is unable to
identify the difference between these sets, which have the
same cardinality but different elements. This situation will be
vividly illustrated by Example 2.

Example 2. Suppose m,, m,, and m; are three independent
BPAs defined on ©® = {A, B,C, D}.

m,: my ({A}) = 0.30,m, ({B}) = 0.40,m, ({A, B}) = 0.30;

m,: m, ({A}) = 0.30,m, ({B}) = 0.40,m, ({A,C}) = 0.30;

my: my({A}) = 0.30, m; ({B}) = 0.40,m; ({C, D}) = 0.30.
(14)

It can be seen that m;, m,, and m; all support the
proposition {B}. Meanwhile, the cardinality of multielement
sets, {A, B}, {A, C}, and {C, D}, in three evidence is identical,
and the difference of three evidence is only that of hy-
potheses included in them. Specifically, {A, B} in m, are
probable to distribute its belief to hypothesis A or B, so m,
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may have further possibility to support B. {A, C} in m, has
more probability to support A. Dissimilarly, {C, D} in m;
does not have any likelihood to support A and B. From

BH (m,,m,)

Apparently, BH distance does not change, which is in-
sufficient as an evidence distance measure. Therefore, it is
needed to find a more reliable and stable belief discrepancy
measure.

3. A New Belief Divergence Measure

In this section, the belief Bhattacharyya coefficient is pre-
sented. In addition, an adjustment function is defined. Based
on the belief Bhattacharyya coefficient and affected by the
adjustment function, a new belief divergence is proposed to
signify the discrepancy between evidence.

In order to reflect the impact of multielement sets, it is
considered that the cardinality factor can tell the multiele-
ment sets from singletons. Attributed to this peculiarity, the
belief Bhattacharyya coefficient is proposed as follows.

Definition 8 (belief Bhattacharyya coeflicient). Let m, and
m, be two mass functions on O, the belief Bhattacharyya
coefficient (BBC) between m, and m, is defined as follows:

Z”: \rmy (Ag)m; (4 ) (16)

BBC(m,,m,) = AT

i=

According to the boundedness of Bhattacharyya co-
efficient, the belief Bhattacharyya coeflicient also satisfies
0<BBC(m,;,m,)<1.

In addition, the Bhattacharyya coefficient can be denoted
as fidelity; the physical significance of fidelity is the inner
product of two probability vectors on a sphere, representing
the similarity between two probability distributions [45].
The belief Bhattacharyya coefficient can be seen as a gen-
eralization of fidelity in Dempster-Shafer theory. In [45],
another extension of fidelity called FBIP has been proposed.
To demonstrate the meaningfulness and value of our ex-
tension, a comparative experiment between BBC and FBIP is
conducted in Example 3.

Example 3. Suppose m, and m, are two independent BPAs
defined on ® = {A, B,C, D}, where x ranges from 0 to 1.

m1: ml ({A}) = 1’ ml ({B}) = 0> m] ({C>D}) =0

my: m, ({A}) = x,m, ({B}) = 0,m, ({C,D}) =1 - x

(17)

Figure 1 depicts the change of the BBC and FBIP as x
uniformly increases from 0 to 1 with an increment of
A =0.01. As x gradually increases, m, and m, become more

similar, leading to an increase in both BBC and FBIP.
Specifically, at x=0, m; and m, are completely conflicting,

above analysis, BH distance between evidence should satisfy
BH (m,,m,) < BH (m,, m;) <BH(m,,m;). However, by
equation (12), the results are calculated as follows:

= 0.3162, BH (m,, m;) = 0.3162, BH (m,, m;) = 0.3162. (15)

resulting in a similarity of 0; at x=1, the evidence distri-
butions are identical, yielding a similarity of 1. Overall, the
change of BBC is relatively uniform, and the change of FBIP
becomes significantly less pronounced after x > 0.6. There-
fore, the BBC exhibits better measurement characteristics.

In order to reveal the relationship between sets, it is
learned that the transformation factor G in [46] can measure
the intersection relationship between focal elements, [46]
but we find that, the sum of the transformed mass function
may be greater than 1, which spoils the nature of BPA.
Hence, by the normalization of each row of the trans-
formation factor, a new adjustment function is defined as
follows.

Definition 9 (adjustment function). Let m,; and m, be two
mass functions on © including N hypotheses.
{A,A,,...,A,} is a set of n focal elements, adjustment
function is defined as

2|A,nAj| B 1)/<2lA,UAj| B 1)
I‘A,»,A» = s b
j z;,:1(2|,A,,.rm1| _ 1)/(2|AiUA]| _ 1)

=12,...,n

(18)

Adjustment function T is the ratio of the interaction
degree between A; and A; to the whole sum of that between
A; and all focal elements, which implies the importance of A;
in all interaction relationships of A;. In other words, I', A, 1s
the ratio of the belief that A; assigns to A; relative to the
belief of A, itself. Therefore, [4,4, mot only retains the
primary property of BPA, namely, ‘the sum of modified BPA
with I is 1 but also has the ability to express the contribution
difference of different subsets to the supportive proposition
of evidence.

In Example 2, intuitively, the supportive proposition in
m, and m; is {B}, the contribution degree of {4, B} to {B} in
m, is greater than that of {C, D} to {B} in m;. By (18), the
adjustment function F{B} (ap} in my is 1/4, the adjustment
function I', (¢ py in m5 is 0, which is in conformity with the
intuition.

Based on the BBC and I, a new belief divergence,
considering the uncertainty of multielement sets and the
correlation between subsets, is proposed. Its detailed defi-
nition is as follows.

Definition 10 (the belief divergence BD). Given two in-
dependent BPAs m,; and m, defined on ® including N
hypotheses, {A},A,,...,A,} is a set of n focal elements,
satisfying m,; (A;) #0Vm, (A,) #0, A; € 29, the belief di-
vergence is defined as follows:
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FIGURE 1: The comparison of the BBC and FBIP.

BBC(rml,rmz) (19)

BD (m;,m,) = \|1

where BBC("m,,'m,) = Y7 \[Tm, (A;)'m, (A)/(21A1 - 1),
i=1,2,...,n.'m, and "'m, are new BPAs after m, and m,
are modified by adjustment function, the concrete modifi-
cation process is displayed as follows:

r”’h (Ai) = Z ml(Aj)rAj,Ai’
. (20)
rm2 (Ai) = Z mz(Aj)rAj,A,.-

Here, we provide additional explanations to illustrate the
divergence. The divergence measure is utilized to reflect the
variation of information distribution and can be seen as an
extension of the uncertainty measure. The information
quality IQ (p) proposed by Yager is the negation of the Gini
index; both of them are uncertainty measures [47, 48]. The
Bhattacharyya coefficient BC can be seen as a similarity
measure of the IQ (p) in [47] or Gini index in [48]. Li ex-
tended IQ (p) to the information quality IQ (m) under the
framework of evidence theory [49]. The belief Bhattacharyya
coefficient BBC, a generalization of the Bhattacharyya co-
efficient, can be seen as a similarity measure of the IQ (m).
Therefore, the BD based on the BBC can be seen as a belief
divergence of the IQ (m).

Recall Examples 1 and 2, where the divergence measure
among m,, m,, and mj; is recalculated by BD, which is
compared with BJS divergence and BH distance in Table 1.
From Table 1, different with the unreasonable results by BJS
divergence and BH distance, it is uncovered that in Example
1, BD (m;, m,) > BD (m;, m;) = BD (m,, m;), in Example 2,
BD (m,, m;) > BD (m,, m;) > BD (m,,m,). The BD is more
accurate to measure the conflict between evidence.

~ BBC("my."m, ) + BBC("my."m,) — BBC("m,,Tm, )

4. The Enhanced Belief Divergence

The BD does reflect the degree of conflict between evidence
from diverse sources and has vanquished the demerits of BJS
divergence and BH distance. Notably, it appears that the
divergence measures of all groups of evidence, respectively,
in the first case of zero belief value and the second case of the
same cardinality, are the same. To address this limitation, an
enhancement factor is proposed, and a base belief function is
used to reinforce the BD; that is, an enhanced belief di-
vergence EBD is presented. Besides, the properties of the
EBD have been discussed. Finally, a comparative evaluation
is given to illustrate the validity and superiority of the EBD.

4.1. Modification with the Base Belief Function. From the
operational property of the BBC, it is observed that the BD
may fail in measuring the discrepancy of evidence, when
evidence has a zero belief value. The nature of this phe-
nomenon is concretely illustrated by the Case 11.

Case 11. Suppose m, and m,, m; and m, are two groups of
BPAs defined on ® = {A, B,C, D}.

Gr 1{ m; ({A}) = 0.7,m, ({B}) = 0,m, ({C}) = 0.3,
m, ({A}) = 0,m, ({B}) = 1,m, ({C}) = 0,
{m3 ({A}) =0.7,m; ({B,C}) = 0,m; ({D}) = 0.3,
Group 2
my ({A}) = 0,m, ({B,C}) = 1,m, ({D}) = 0.
(21)

In group 1, m, and m, are conflicting. In group 2, be-
cause of the uncertainty of the multielement set {B, C} in m,,
the conflict degree between m1; and m, is smaller than that of
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TaBLE 1: The results comparison with BJS divergence in Example 1 and BH distance in Example 2.

Examples

Discrepancy measure

BD

Example 1

BJS (m,, m,) = 0.4471
BJS (m,, m;) = 0.4471
BJS (m,, m3) = 0.4471

BD (m,,m,) = 0.6646
BD (m,,m,) = 0.4123
BD (m,,m,) = 0.4123

Example 2

BH (m,,m,) = 0.3162
BH (m,, m;) = 0.3162
BH (m,,m;) = 0.3162

BD (m,,m,) = 0.1868
BD (m,, m,) = 0.3865
BD (m,,m;) = 0.2638

group 1. By equation (20), both groups of modified BPAs are
obtained as follows:

Grows 1 "'m,: (0.7,0,0.3),
roup
rmZ: (0) 130)) (22)
"my: (0.7,0,0.3),
Group 21 .
my: (0,1,0).

According to equation (16), we have

BBC('m,,'m,) =0, )
BBC(my,'m,) = 0.

Then, according to equation (19), the BD is calculated as
follows:

BD (my,m,) =1,

(24)
BD (m,, m,) = 1.

From the above result, the degree of conflict of the two
groups is the same. It is counterintuitive. Actually, as for
each focal element of 'm, and 'm,, if its belief value in 'm,
or 'm, is 0, the BBC is 0, then the BD is always equal to 1 in
this situation.

It is noticed that Liu exploited the base belief function to
handle a possible zero in the denominator of the divergence
[46]. Inspired by it, in this paper, for resolving zero belief, we
modify the 'm by averaging it and m,, to obtain }m, then
belief of all focal elements in ;m is made nonzero. Thus, the
Case 11 for the BD is managed.

4.2. The Enhancement Factor. In addition, it is found from
(19) that when all focal elements of two pieces of evidence
have the same cardinality, the influence of cardinality will be
offset by the fractional term BBC('m,, 'm,)/[BBC
(*my, 'm,) + BBC (*m,, 'm,) - BBC(*m,, 'm,)]. 'This is
interpreted in detail by Case 12.

1, else,

=
Il

Case 12. Suppose m, and m,, m; and m,, and ms and m; are
three groups of BPAs defined on ® = {6,,6,,6,,6,, 65, 6;}.

Grou 1«[ my ({6,}) = 0.90,m, ({6,}) = 0.10,
m ({6,}) = 0.10,m, ({6.1) = 0.90,

Gro 2{ m; ({6,,0,}) = 0.90,m; ({65, 60,}) = 0.10,
my ({6,,0,}) = 0.10,m, ({65, 0,}) = 0.90,
ms ({6;,0,,6,}) = 0.90,m ({0, 65, 65}) = 0.10,
me ({6,, 05, 05}) = 0.10,m¢ ({6, 05, 65}) = 0.90.
(25)

Group 3{

In this example, each group of evidence is highly con-
flicting. With the cardinality of subsets enlarging, m; and m,
in group 3 carry the largest ambiguity. Therefore, the di-
vergence between ms and mi is the smallest, and that be-
tween m, and m, is the largest. Whereas, by applying the BD,
we obtain the divergences as follows:

BD (m,,m,) = 0.7559,
BD (m;, my) = 0.7559, (26)
BD (ms, mg) = 0.7559.

The above result is not in line with the intuitive analysis.
The reason for this is that the item 1/ (24! = 1) in equation
(19) appears in both the numerator and denominator
of BBC('my, 'm,)/[BBC('m,, 'm,) + BBC (*m,, T'm,) -
BBC ('m,, 'm,)]. When the cardinality of all focal elements
in each group is the same, the fractional expression makes
the influence of |A,| eliminated.

To deal with this case, an enhancement factor is devised
to perfect the measure effect of the BD, which is defined as
follows.

Definition 13 (the enhancement factor ). Given two in-
dependent BPAs m,; and m, defined on ® including N
hypotheses, {A},A,,...,A,} is a set of n focal elements
satisfying m;, (A;,) #0Vm, (A;)#0, A; € 2°, the enhance-
ment factor f3 is denoted as follows:

(27)

1
> V|Ai| =c(c=2),m (A;)#0Vvm,(A;)+0, i=12,...,n



As can be seen in (27), the enhancement factor considers
the ambiguity difference by various values of ¢. Thus, by it, the
BD can distinguish evidence conflict degree of the Case 2.

4.3. The Enhanced Belief Divergence. With the enhancement
factor and base belief function, the enhanced belief di-
vergence EBD is proposed.
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Definition 14 (the enhanced belief divergence EBD). Given
two independent BPAs m1; and m, defined on © including N
hypotheses. {A},A,,...,A,} is a set of n focal elements
satisfying m, (A;) #0Vm, (A;)#0, A; € 2°. The enhanced
belief divergence EBD is defined as follows:

BBC(iml, lr,mz) (28)

EBD (m,m,) = x \|1 -

where ;m, and ;m, are new BPAs after 'm, and 'm, are
modified by the base belief function. The detailed modifi-
cation process is showed as follows:

rm1 (A) +my (A)
2

zr,ml (Ai) =

>

(29)

r
gmz (Az) — m, (Ai); "y (Ai)’
where m, (A;) = 1/(2N - 1).

The EBD is an improved BD by modifying BPA; in the
same way as the BD, it can also be regarded as a belief
divergence of the IQ(m). In addition, the EBD maintains the
excellent qualities of the BD, namely, it can differentiate
multielement sets from singletons and allow for the cor-
relation between subsets. Furthermore, the EBD improves
the performance of the BD to measure the dissimilarity of
evidence more effectively.

In order to show the calculation process clearly, Example
2 is adopted. The divergence measures among m,, m,, and
m; are calculated by the EBD as follows.

In Example 2, as for m, and m,, there are four focal ele-
ments {A}, {B}, {A, B}, and {A, C} that satisty m, (4;) #0Vm,
(A;) #0, A; € 29, According to the (27), it is obtained that 8 is 1.
For convenient calculation, m11; and m, are simplified as follows:

m,: (0.3,0.4,0.3,0);

(30)
m,: (0.3,0.4,0,0.3).
In accordance to (18), the adjustment function T, ,
between m, and m, is obtained in the following Table 2.
From (20), modifying m, and m, by adjustment func-
tion, 'm, and "m, are obtained as follows:

1“ml: (0.2353,0.3553,0.3258, 0.0837); (31)
31
rmz: (0.2477,0.3000, 0.1890, 0.2632).

Because ® = {A, B,C, D} includes 4 mutually exclusive
and collectively exhaustive events, according to (5), the base
belief function m,, = 1/(2* — 1) = 0.0667. By (29), after 'm,

BBC(gml,gml) + BBC(gmz, gmz) - BBC(gml, gmz)’

and "m, are averaged with m,,, ;m, and | m, are obtained as
follows:

gmlz (0.1510,0.2110, 0.1963, 0.0752);

(32)
py: (0.1572,0.1834,0.1279,0.1650).

From (16), BBC(;m,,;m,), BBC(,m;,;m;), and
BBC (}m,,}m,) are gotten as follows:

BBC(,m, ,m, ) = 0.4407,
BBC(y,m,,,m, ) = 0.4525, (33)
BBC(,m,, ,m, ) = 0.4382.

Therefore, according to (28), we have

0.4407

- =0.1438.
0.4525 + 0.4382 — 0.4407

EBD (m,,m,) = 1 x \jl
(34)

Similarly, EBD (m,,m;) and EBD (m,, m,) are calculated
as follows:

EBD (m,,m;) = 0.2403,

(35)
EBD (m,, m;) = 0.1917.

The result shows that EBD (m,,m,) = 0.1438 < EBD (m,,
ms) = 0.1917 < EBD (m;,m;) = 0.2403. It is more reason-
able than the original results generated by BH divergence.

Besides, for the purpose of verifying whether the EBD have
solved Case 11 and Case 12, the two cases are recalculated by the
EBD and the results are compared with the BD in Table 3.

From Table 3, in Case 11, the conflict degree of group 2
by the EBD is smaller than that of group 1, in Case 12, with
the uncertainty of the three groups of evidence increasing,
the EBD is diminishing, which conforms to the analysis of
the two cases. Consequently, the EBD is more reasonable
and valid than the BD for evidence discrepancy
measurement.

4.4. The Properties of the Enhanced Belief Divergence. In this
section, the major properties of the enhanced belief di-
vergence EBD are presented as follows.
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TaBLE 2: The adjustment function Ty A between m, and m,.
Tos, A B AB AC
A 3/5 0 1/5 1/5
B 0 3/4 1/4 0
AB 7/38 7/38 21/38 3/38
AC 7/31 0 3/31 21/31
TaBLE 3: The results comparison with the BD in Case 11 and Case 12.
Case BD EBD
Case 11 BD (m,,m,) =1 EBD (m,,m,) = 0.7930
BD (m;,m,) =1 EBD (mj,m,) = 0.7732
BD (m,,m,) = 0.7559 EBD (m,,m,) = 0.7337
Case 12 BD (m;,m,) = 0.7559 EBD (mj,m,) = 0.3669
BD (5, my) = 0.7559 EBD (ms, m) = 0.2446

Theorem 15. The EBD has the properties of boundedness,
nondegeneracy, and symmetry.

Property 16. Let m; and m, be two BPAs defined on the
frame of discernment ®:

(1) Boundedness: 0 <EBD (m,,m,) <1;

(2) Nondegeneracy: EBD (m,,m,) =0
my = m,;

if and only if

(3) Symmetry: EBD (m,, m,) = EBD (m,, m,).

Proof. (1) m, and m, satisfy 0 <m, (4;),m,(A;) <1. In the
light of the characteristics of the adjustment function and

base belief function, }m; and }m, meet with 0<
ymy (A;),5m, (A;) < 1. According to the mean inequality, we

have m, (A;) + ;m, (A;) 22+/bm; (A;)Em, (4)), therefore,

mel(A mez (4)) z": by (4;) + bmz z”: \/hml (Am, (4 ) (36)

Lol TG, & Al LAl
Then, we obtain

Y \pm (Ad)yma (A7) (2|A| >
A A A (37)
zlbml(A)/( 2! il_l) mz(A)/< 2kl 1) -2 1\/b””1 (A)yma (A7) ( 24l >
According to we have
iiml (4) .\ = om, (4;) Z": b (A)yms (A7)
Lol T Al T 4 Al oy
(38)
n r . r .
mel (4) Z by, (A;) Z \/ my (A;)pm; (A Z \/bml (A))pm, (A1)' (39)
e E B R R 1T 5

Therefore,
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Vi \pm (A7), (Ai)/<2|Ai|_l)

S () (211) 52 (A (11 - B G (21-1) "
As a result,
- s a2 1) o
_Z?:1 b (Ai)/<2|Ai| - 1) + i1 b (Ai)/<2|Ai| - 1) 2\ (A)ms ( )/<2IAI - 1) -
Finally,
0<EBD (m,,m,) = \|1 - Zie\om (A )/< 2 1)
S (A)(241-1) & 3 G (A0 (241-1) = 3\, (4)m, (4,211 1)
(42)

The boundedness has been proven. O  Proof. (2) Given two BPAs m, and m, defined on ©:

my = mzﬁr”ﬁ (Ai):rmz (Ai):ﬁgml (4) = Zmz (A)

n T n n A [tm m, (A;)
ymy (A Tmy (A) 1 (Apmy (4
= P

,12|A|1 5ol 5 214l

S (4, (a)/(211-1) B (43)
S (4)/(241-1) ¢ T by (A1 (241-1) = 31l (4] (402111

ZL\/iml(1‘\1')m/(2|*‘f|—1>
Yo (A <2|A,|_1) +Y im, (Ai)/(2|A*|—1) oy \/m/(ZlA‘l—l)

=EBD (m;,m,) = \|1-

=0.

Conversely,
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EBD (m,,m,) = 1—

Z?=1\/m/(2|Af|_l)

Y- 1bm1 (4 )/<2|A| 1) +X 1hmz( i) (2|A| 1) X \/gml (A)ym, (Ai)/(zlAil_l) i

S (241

Y 1hm1 (4 )/( 2l 1) + X0 1bm2( i)/ (2|A‘|_1) Sy ngl (Ai)zrzmz (Ai)/(zlA'|_1> )

\lbml (A)hm, (A)

N i b (A7) + i b (A7) _

Solaly  Holaly T4 1

olal_q (44)

ﬁi sy (A7) +ymy (A)- z\jbml( i)EmZ(Ai)_

= 2l4ly
=ymy (A;) +ym; (A;)
=ymy (A) = ym; (A;)
:>rm1 (Ai):rmz (4)

=m; = m,.

The nondegeneracy has been proven. O

=2 £m1 (Ai)if"z (A)

Proof. (3) Given two BPAs m,; and m, defined on ©:

1\ (&) (211

EBD (m,,m,) = \1 -

S (A (240-0) 4 51y (4024 1) = 2\ (A (41 (2141-1)

(45)

Yi\pma (A (Ai)/(2|A"|—1>

EBD (m,,m,) = \1 -

Apparently,
EBD (m,, m,) = EBD (m,, m,). (46)
The symmetry has been proven. O

4.5. The Comparison Analysis. In this section, several
comparative examples with Florea and Bossé’s distance
dy (p = 1/2), B]S divergence, and BH distance are utilized to
illustrate the validity and superiority of the EBD.

Example 4. Suppose m, and m, are two independent BPAs
defined on ® = {A,B,C,D,E,F,G,H,1,]}. A, is a variable
set from {A} to ®, t: 1 — 10, adding one element to the set
each time, in the order from A to J.

my: my ({B}) = 0.05,m, ({A,;}) = 0.95;

m,: m, ({B}) = 0.95,m, ({A,}) = 0.05.

Qi lme (4)/ <2|A| 1) + 2 lbml (Ai)/<2|Ai|_1> - Z?:l\/m/(ZlA"l—l)‘

In this example, the enhancement factor 8 of the EBD is
1. As t =1, it is discovered that m, and m,, respectively,
support {A} and {B}, which is highly conflicting. Ast = 2, A,
has the element B, it increases the probable belief of {B} in
m;, the discrepancy between m, and m, decreases. Then, as
the number of elements in A, enlarges, the divergence be-
tween m, and m, also enlarges.

However, as depicted in Figure 2(a), it is clear that Florea
and Bossé’s distance d and BJS divergence keep unchanged,
which is not proper. In addition, although BH distance has
varying values with ¢, it is unreasonable to have a downward
trend. We can observe that only the EBD accords with the
changing tendency of conflict degree between m, and m,.

Example 5. Suppose m, and m, are two independent BPAs
defined on ® = {A,B,C,D,E,F,G,H, I, ]}, A, is a variable
set from {A} to @, t: 1 — 10, the specific variations of A,
are the same as those in Example 4.
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FIGURE 2: The comparison with the dg, BJS divergence, and BH distance in Examples 4 and 5, (a) Example 4, (b) Example 5.

my: my ({At}) =1
m,: m, ({A, B}) = 0.8,
m, ({C}) = 0.2.

(48)

In this example, m, has the varying focal elements {A,}
and m, has the focal elements {A, B} and {C}. Because the
cardinality of them is not identical, the enhancement factor
is 1. When ¢ = 1, m, supports the {A} and m, supports the
{A,B}. As t =2, m; completely supports the proposition
{A, B} same as the supportive proposition of m,, thus, the
value of divergence between m, and m, decreases. Ast = 3,
with the hypothesis C added to the {A,}, m, has the pos-
sibility to support {C}, the conflict degree between m, and
m, decreases. When {A,} continue to add other elements,
the divergence is getting large.

As displayed in Figure 2(b), d and BJS divergence are
always kept as one except t =2. BH distance keeps de-
creasing with t in general. Obviously, it infers that the EBD
can perform better than the other divergences on discrep-
ancy measurement.

Example 6. Suppose m; and m, are two independent BPAs
defined on @, A, is a variable set defined as Table 4.

my: my ({A}) = 0.7,m; ({A,}) = 0.3;

(49)
my: my ({A}) = 0.7, m, ({A, B}) = 0.3.

In this example, the belief value distributions of m1, and
m, are identical, the difference between m, and m, is that
between focal elements A, and {A, B}. When t = 1, the two
evidence is identical, so the evidence between m, and m, is 0.
When t =2, A, in m; becomes {A,C}, which is different

from {A, B} in m,. In the similar way, as t = 3,4, it is just the
hypothesis C that respectively changes to D and E, therefore,
the divergence between m, and m, att = 2, 3,4 is the same.
Ast =5, A, in m, is {B, C}, the intersection of {A} and A, is
&, which decreases the possibility to support {A}, so the
value of divergence is much larger than the former states.
The situation of t = 6, 7 is similar to that of t = 5, namely, m,
and m, at t =5,6,7 is also the same. The remaining cir-
cumstance t = 8,9, 10 can be concluded likewise.

However, as portrayed in Figure 3, it can be observed
that dg, BJS divergence and BH distance maintain un-
changed except at t = 1, which cannot reflect the correlation
between different types of subsets. Therefore, the results by
the EBD show more reasonable and effective.

5. A New EBD-Based Multisource Information
Fusion Method

Multisource information fusion refers to the means that
integrate data from various sensors to generate a rational
and precise result. The data gathered from every sensor can
be modeled as a piece of evidence, but the credibility of the
evidence is susceptible to sensor failure or detrimental en-
vironmental factors, which have an impact on the accuracy
of the result. Therefore, it is crucial to evaluate the reliability
of evidence during the information fusion process.

In this section, based on the EBD and Deng entropy,
a new multisource information fusion approach is devised.
Specifically, the weight of evidence is decided by the di-
vergence between the evidence and the uncertainty con-
tained in evidence. The EBD can allude to the extent of
evidence inconsistency, where the evidence modeled by the
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TaBLE 4: The variation of set A,.
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FIGURE 3: The comparison with the dg, BJS divergence and BH distance in Example 6.
flawed information source is highly conflicting with the _ 3t d.
R _ &j=17ij . s (51)
normal one. Deng entropy can be used to quantify the d(m;) = no1’ T L..omj=1...,n

uncertainty of evidence, where the evidence with more
uncertainty conserves a wealth of potential useful in-
formation. The algorithm flowchart of this method is shown
in Figure 4 and the detailed steps are given as follows.

Assume that there are n sensors, from which n pieces of
evidence m,,m,, ...m, are collected. The BPAs are defined
on the frame of discernment ® = {A, A,,..., A, }.

Step 1. Determining the credibility weight W_ of
evidence.

Step 1.1: Construct divergence measure matrix.
Based on the EBD given in Equation (28), the di-
vergence between evidence m;(i=1,2,...,n) and

mj(j =1,2,...,n) is denoted as dij. Then, the di-
vergence measure matrix DMM = (d;;),., can be
established as follows:

0

Cdy ey

DMM=|d, -+ 0 - d, | (50)

ld, - d,; - 0 |
Step 1.2: Calculate the average divergence measure.
On the basis of the DMM, the average divergence of

evidence m; is indicated as d(m;,), the formula is
represented as follows:

Step 1.3: Generate the support degree.
The support degree Sup (m;) of evidence m; can be
calculated as follows:

i=1,...,n

Sup (m;) = (52)

1
d(m;)
Step 1.4: Obtain the credibility weight.

The credibility weight W (m;) of evidence m; can be
obtained as follows:

Sup (m;)

Wem) =7
%-1Sup(m;)

i=1,...,n (53)

Step 2. Forming the information volume weight W, of
evidence.

Step 2.1: Calculate the Deng entropy.
According to equation (6), the Deng entropy E, (m;)
of evidence m; is generated as follows:

m; (A)

Eg(m)=-) m; (A)log,—r—
ACO 27 -1

i=1,...,n

(54)

Step 2.2: Get the information volume.
The information volume IV (m;) of evidence m; is
defined as follows:
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FIGURE 4: The flowchart of the EBD-based multisource information fusion algorithm.

IV (m)=e™ "), i=1, . ,n (55)

Step 2.3: Obtain the information volume weight.
By normalizing the IV, the information volume
weight W, (m;) of evidence m; is denoted as follows:
IV (m; .
Wiv(mi):#, i=1,...,n (56)
ZjaV(m))

Step 3. Producing the weighted average evidence.

Step 3.1: Generate the final weight.

Combing the credibility weight and information
volume weight of evidence m;, the final weight W (m,)
of evidence m; is acquired as follows:

i=1,...,n

m) = W (m;) x W, (m;)
W) = S W ) W ()
(57)

Step 3.2: Weight the body of evidence.
The weighted average evidence is calculated as follows:

m(A) = iW(mi) xm;(A), ACO.

i=1

(58)

Step 4. Fuse the weighted average evidence.

The weighted average evidence is fused with the
Dempster’s combination rule equation (4) by n—-1
times, the eventual result is obtained as follows:
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m=meme - --- dm . (59)
n-1times

6. Experiment

To demonstrate the feasibility and effectiveness of our
method, two experiments, i.e., a target recognition problem
and a classification problem are presented. The comparison
with other methods is conducted to further illustrate the
superiority of the EBD-based multisource information fu-
sion approach.

6.1. Target Recognition. In a multisensor-based target rec-
ognition system, suppose the frame of discernment, in-
cluding three possible targets, is ®@ = {A, B, C}, there are five
installed sensors {S;,S,,8S5,S,,S5} in the system. The data
collected from the five sensors are modeled as five BPAs,
{m,,m,, m;,my,ms}, shown in Figure 5. This experimental
data is based on Deng [33].

From Figure 5, it is noted that the target directivity of
sensors my, ms, My, and ms is more oriented to A; therefore,
we can infer that A is the real target, which should be al-
located a high level of accuracy in the fusion results. While
only m, assigns most of its belief to strongly support the
target B, it has a different direction from the other sensors.
As a result, it is believed that m, is highly conflicting with
other four pieces of evidence. As a comparison, the fusion
results of the well-known methods and the proposed method
are presented in Table 5.

As can be seen in Table 5, the comparative results in-
dicate that A is the real target, which verifies the perception
from the above analysis. Obtained by Dempster’s method,
the fusion result realizes C as the identified target and
distributes zero belief to A. Evidently, such a result is un-
reasonable. Hence, it is unsuitable to adopt Dempster’s
combination rule directly to combine the conflicting evi-
dence. Murphy’s method can correctly determine the target
type as A. Moreover, the recognized target of Deng’s method
is in accordance with that of Murphy’s method with a higher
belief. Although the two aforesaid methods are able to
identify the real target, it is noteworthy that the proposed
method can achieve the highest accuracy of 0.9904. From
these findings, the proposed method can make a more ac-
curate decision result when dealing with conflicting
evidence.

6.2. Iris Classification. An iris dataset-based classification
experiment, containing the data without conflict and with
conflict, is implemented here. For the sake of fairly com-
paring the results, the generated BPAs in Qian [50] are
referred to further assess the performance of our method.

6.2.1. Fusion without Conflict. There are three types of iris
flowers (Setosa, Versicolor, and Virginica), and the frame-
work of discernment is ® = {Se, V¢, Vi}. In addition, each
type of iris flower has four attributes, namely Sepal Length
(SL), Sepal Width (SW), Petal Length (PL), and Petal Width
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(PW). The converted BPAs based on the iris dataset are
shown in Figure 6.

From Figure 6, the BPAs of the four attributes, m,, m,,
ms, and my,, all bestow a relatively high belief to the flower
type Se. In other words, there is no conflict between them,
and the belief allocated to {Se} should be the highest after
fusion. The fusion results of the proposed method and
comparative methods are presented in Table 6. From Table 6,
as we expected, all methods, including our method, can
identify the flower type, when evidence is not conflicting.

6.2.2. Fusion with Conflict. To further verify the robustness
of the proposed method, the data of attribute SW source is
revised to serve as noisy evidence. A group of obtained
evidence with conflict is shown in Figure 7. From Figure 7, it
infers that the SL attribute has no clear directivity toward the
flower types of Se and V¢, with proximate belief values of
0.3337 and 0.3165. While the SW attribute assigns almost all
beliefs to Vc. The attributes of PL and PW believe that the test
sample belongs to the flower type of Se. As a consequence, it
is suggested that the correct flower type of the test sample
is Se.

After conducting the proposed method and other re-
searchers’ schemes, the fusion results are shown in Table 7.
As can be seen from Table 7, Dempster’s method and
Murphy’s method trust that V¢ is the real flower type of the
test sample, and they give Se a low support degree, which
yields a completely misleading result. Therefore, they cannot
work effectively when the evidence is conflicting. Both
Deng’s method and the proposed method can precisely
recognize the real target; what’s more, the proposed method
endows a larger belief to Se than Deng’s method dose.

The reason why the proposed method outperforms other
methods is that in Dempster’s method, it directly uses the
combination rule to fuse highly conflicting evidence, but
produces a counter-intuitive result. To a certain extent,
Murphy’s method can handle the conflict by simply aver-
aging the evidence. However, it makes all evidence have the
same weight, which may eliminate the conflict among ev-
idence and greatly influence the fusion result. Taking the
distance between evidence into account, Deng’s method
distributes different weights to evidence, while it ignores the
information volume of evidence itself. The proposed method
considers not only the divergence but also the information
volume to thoroughly calculate the weight of the evidence.
Therefore, it can be concluded that the proposed method has
a preferable effect on decision fusion.

7. Application in Failure Mode and Effects
Analysis of Aircraft Turbine Rotor Blades

Information fusion is widely applied in risk evaluation and
expert system [51, 52]. In the aerospace field, rotor blades,
including compressor rotor blades and turbo rotor blades, are
the major components of an aircraft turbine, whose reliability
seriously affects the overall aircraft turbine security. In order
to enhance their safety, failure mode and effects analysis
(FMEA) can facilitate the identification of potential failures
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TaBLE 5: The fusion results of the four methods in target recognition.
Methods m({A}) m({B}) m({C}) m({A,C}) Target
Dempster [5] 0 0.1404 0.8596 0 C
Murphy [20] 0.9688 0.0156 0.0127 0.0029 A
Deng [33] 0.9869 0.0010 0.0088 0.0032 A
Proposed method 0.9904 0.0001 0.0047 0.0047 A
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FiGUure 6: The BPAs from four attributes without conflict in the iris classification.

and determine the effect of each failure to decrease failure
rates and avoid hazardous accidents. However, there may be
a load of failure modes with different risks and effects.
Consequently, it is necessary to prioritize their risks. The risk
priority number (RPN) is one way to rank these failure
modes. The RPN is the product of the three factors, the
probability of the occurrence of a failure mode (O), the
severity of a failure effect (S), and the probability of a failure
being detected (D), expressed as RPN = O x S x D. However,
multiple experts may give different risk evaluations on three

risk factors for one failure mode, which may be imprecise and
uncertain. Therefore, multisource information fusion can be
used to promote the accuracy of evaluation.

In this section, the EBD-based multisource fusion
method is adopted to calculate the new mean value of the
RPN, and then determine the risk priority of multiple failure
modes of aircraft turbine rotor blades, in which the EBD
plays a key role in deciding the weights of experts. Fur-
thermore, the risk ranking results are compared with other
methods to determine the validity of our method.
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TaBLE 6: The fusion results of non-conflict data by different methods in iris classification.

Method m ({Se}) m({Vc}) m({Vi}) m ({Se, Vc}) m ({Se, Vi}) m({Vc, Vi}) m ({Se, V¢, Vi})
Dempster [5] 0.8940 0.0933 0.0127 0 0 0 0
Murphy [20] 0.8854 0.0880 0.0266 0 0 0 0
Deng [33] 0.8867 0.0872 0.0261 0 0 0 0
Proposed method 0.7230 0.1707 0.1061 0 0 0 0
0.9900
PWim} BONCEI 0212  0.0658 0 0.0226 0
0.7920
PL
{m.} BOYTE 02374 0.0884 0 0.0043 0 0.5940
=
m
o “ 0 0 O o
0.1980
SL {m,} 0.0307  0.0052  0.0272  0.0052
0.000
{Se} {Ve} {vi} {Se, Ve}  {Se, Vi}  {Vc, Vi} {Se, V¢, Vi}
Propositions

FiGure 7: The BPAs from four attributes with conflict in the iris classification.

TaBLE 7: The fusion results of conflict data by different methods in iris classification.

Method m ({Se}) m({Vc}) m ({Vi}) m ({Se, Vc}) m ({Se, Vi}) m({Vc, Vi}) m({Se, V¢, Vi})
Dempster [5] 0 0.9988 0.0012 0 0 0 0
Murphy [20] 0.4422 0.5546 0.0032 0 0 0 0
Deng [33] 0.7301 0.2652 0.0047 0 0 0 0
Proposed method 0.8322 0.1511 0.0167 0 0 0 0

7.1. Problem Statement. In FMEA, there are three risk
factors: occurrence (O), severity (S) and detection (D)
included in the RPN, which have a numeric scale rating from
1 to 10, suggested criteria of rating for each risk factor is
listed as Tables S1-S3 in Supplementary Description. Sup-
pose there are ] experts: {El, . ,E,} and N failure modes:
{FM,,...,FMy}. The experts may give their different
evaluations to the same risk factor, which are modeled as J

evidence: {ml, e ,m,}. Consequently, there are three dis-

cernment frames respectively for O, S and D. Moreover, for the
N failure modes, the total number of discernment frame is 3N.
Under this circumstance, the frame of discernment of the i th
risk factor of the # th failure mode can be presented as follows:

0! ={1,2,3,4,5,6,7,8,9,10}, i=0,5,D;n=1,2,...,N.

(60)

For convenience, Yang et al. simplified the frame of
discernment @7, which is denoted as follows [53]:

o :{minXlxg@)?,minXng@in +1,...,max X IX@?},

(61)

where min X|ycgr and max X|ycg: separately means the
minimum and maximum of the rank of the # th failure mode
to the i th risk factor from ] experts.

7.2. Implementation. The rotor blades of an aircraft turbine
consist of two subsystems, the compressor rotor blades and
the turbo rotor blades. According to the practical engi-
neering background, there are nine potential failure modes
in the compressor rotor blades and eight failure modes in the
turbo rotor blades, namely, 17 recognized failure modes
{FM,,...,FM;} in total [53].

In this experiment, the BPAs in Yuan [54], transformed
from the evaluation information of the three experts
{E|,E,,E5} to O, S and D on the 17 failure modes, are
referred. On the simplified frame of discernment in (61), we
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use the EBD-based information fusion algorithm in Section
5 to aggregate the BPAs of i th risk factor in the » th failure
mode, the fusion results are obtained as m (A), AC®,
i =0,S, D, where A represents the rating of the risk factors.
Attributed to the axiom of additivity, m (A) can be regarded
as the probability of A. According to [54], the mean value of
RPN can be used to compare the overall risk of each failure
mode. Based on the proposed fusion method, the new mean
value of RPN, named as EBD_RPN,,,, can be obtained by

avg

avg

10
ing= Axml(A), i=0,8Din=12,...,17,
A=1

EBD_RPN’

_ " n n
avg — Oavg x Savg xD

avg’

(62)

For ease of understanding, the above process of calcu-
lating the EBD_RPN,,, is showed in the form of a flowchart
as Figure 8. At the same time, the calculated EBD_RPN,, s of
17 failure modes are presented in Table 8.

As shown in Table 8, among the 8 failure modes of
compressor rotor blades, failure mode 2 has the largest
EBD_RPN,,, and failure mode 5 has the least EBD_RPN,,.
Decided by sorting numeric size of EBD_RPN,,,, the risk
priority order of them is FM,>FM¢>FM,>FM; >
FM,>FM,>FMg>FM;. Among the 9 failure modes of
turbo rotor blades, failure mode 9 has the largest EBD_RPN
and failure mode 16 has the least EBD_RPN

avg

the risk

avg’

priority order of them is FMgy>FM,,>FM,,>FM,, >
FM,, >FM;3>FM,s>FM,; > FM,,>hints that the pre-
vious item has a higher priority.

Several comparative methods to investigate the RPN in
FMEA are introduced here. In detail, AMWRPN takes into
consideration of the relative weight of different risk factors,
by measuring the ambiguity degree of the experts’ assess-
ments, to get a new ambiguity measure weighted risk pri-
ority number [55]. MVRPN calculates the average of the
obtained RPN values with the modified belief function and
combination rule [53]. The improved MVRPN constructs
the BPA to handle the conflicting evidence and refine the
MVRPN [56]. The method in the literature [54] gives a new
mean value of RPN based on triangular fuzzy numbers,
negation of BPAs and evidence distance. The comparison
results with the above methods are shown in Table 9.

From Table 9, the results of the AMWRPN method in
FM, — FM,, are very close. And the values of the MVRPN
method are similar to those of the improved MVRPN
method. In addition, for turbo rotor blades, in the MVRPN
method, failure mode 10, 13, and 14 have the same RPN 60,
and failure mode 11 and 12 have the same RPN 50. In the
improved MVRPN method, the RPN of failure mode 11, 12,
and 13 is all the same. Remarkably, the results by our method
are very close to those of RPN,,,. It is worth noting that the
values of EBD_RPN,, are not dense and well distinguished,
which contributes to the differentiated risk ranking of
multiple failure modes of rotor blades.
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FiGure 9: The risk ranking consequences of failure modes of rotor blades for an aircraft turbine. (a) Compressor rotor blades. (b) Turbo
rotor blades.

The rank results of failure modes of rotor blades for an  slightly different with the three other methods, this is ac-
aircraft turbine are shown in Figure 9. In Figure 9(a), the risk ceptable. It is the reason that the several identical RPN values,
priorities for compressor rotor blades by our method are nearly ~ in the MVRPN method and the improved MVRPN method,
consistent with other methods. In Figure 9(b), the risk priorities ~ lead to the sorting difference. Therefore, in the FMEA of the
for turbo rotor blades by our method completely coincide with ~ rotor blades of an aircraft turbine, the proposed method has
the RPN,,. Although the risk priorities by EBD_RPN,,,, are effectiveness and practicality.
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8. Conclusion

In this paper, an enhanced belief divergence, named as EBD,
is proposed to measure the discrepancy between evidence.
The proposed EBD can distinguish between singletons and
multielement sets and express the intersection relationship
among subsets. Some important properties of the EBD are
inferred. In addition, the comparison interprets that the
EBD has a preferable effect on conflict measurement. Next,
an EBD-based multisource information fusion method is
devised. In the applications of target recognition and iris
classification, the proposed method can effectively handle
uncertainty and conflict with higher accuracy values. Spe-
cially, the basic belief assignment of the true target in target
recognition achieves 0.9904. Finally, in the risk priority
evaluation of the failure modes of the rotor blades of an
aircraft turbine, the risk ranking results by the proposed
method are almost consistent with other methods, dem-
onstrating the applicability of the proposed method.

In our future work, we intend to further study the
performance of the proposed method to handle non-
conflicting information. Also, we can broaden the pro-
posed approach to solve other practical problems, such as
image processing problems. Besides, we will deepen our
research on fusion method when the BPA is an
interval value.
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