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In traditional state feedback control, the difculty in determining the coefcient matrix is a signifcant factor that prevents
achieving optimal control. To address this issue, this paper proposes the integration of adaptive genetic algorithms with state
feedback control. Te efectiveness of the proposed algorithm is validated via an electro-hydraulic braking system. Firstly, a model
of the electro-hydraulic braking system is introduced. Next, a state feedback controller optimized by parameter-adaptive genetic
algorithm is designed. Additionally, a penalty term is introduced into the ftness function to suppress overshoots. Finally,
simulations are conducted to compare the convergence speed of parameter-adaptive genetic algorithmwith genetic algorithm, ant
colony optimization, and particle swarm optimization. Furthermore, the performance of the proposed algorithm, the state
feedback control, and the proportional-integral control are also compared. Te comparison results show that the proposed
algorithm efectively accelerates the settling time of the electro-hydraulic braking system and suppresses the overshoots.

1. Introduction

Te electro-hydraulic brake system (EHB) is diferent from
the traditional automobile braking system. EHB is an ad-
vanced mechatronic system by replacing local mechanical
components with electronic components [1]. EHB uses
a comprehensive brake module to replace the pressure
regulator and antilock braking system (ABS) and can adjust
the braking pressure of four wheels independently [2, 3].
Compared with the traditional automobile braking system,
EHB has the advantages of soft braking process, compact
structure and fast response, which leads the development
trend of automobile braking systems [4, 5].

Te output pressure of an electro-hydraulic braking
system (EHB) is primarily controlled by an electrical signal,
typically voltage or current, regulated by an electronic
control unit (ECU).When the driver presses the brake pedal,
sensors on the pedal generate an electrical signal and
transmit it to the EHB control unit. Te control unit then
calculates and adjusts the pressure of the brake fuid based
on the received signal, enabling precise control of the
braking force on the wheels [6, 7]. But in fact, in the process

of converting electrical signals into mechanical force, due to
energy transfer losses, structural defects, and external en-
vironmental interference, the actual output pressure is far
from the target pressure [8, 9].

At present, there is a wide range of research focused on
improving the performance of EHB. Among them, state
feedback control is highly favoured by many scholars due to
its applicability to multiinput multioutput systems and its
simplicity. Reference [10] introduces an optimal feld-
oriented control using a linear quadratic regulator (LQR)
for the in-wheel motor. An analytical method for de-
termining Q and R matrices is examined. Reference [11] an
analytical method is introduced to determine the coefcient
matrix in the linear quadratic controller. Tis controller
demonstrates an excellent disturbance rejection perfor-
mance. In [12], a linear matrix inequality-based robust
multiobjective LQR controller is designed for active trailer
braking system with constraints on closed-loop pole loca-
tions and guarantee of robust stability. In [13], the lateral
stability is achieved through independent motor torque
control using LQR and PID. However, in the above research,
the selection of coefcient matrices is based on empirical or
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experimental analysis methods. Tese approaches heavily
rely on the designer’s experience and it is highly difcult to
obtain the optimal value.

Recently, some nature-inspired algorithms, such as the
genetic algorithm (GA) and particle swarm optimization
(PSO) have been applied to obtain the global optimal pa-
rameters of LQR controllers. In [14–16], PSO, adaptive
particle swarm optimization (APSO), and ant colony opti-
mization (ACO) algorithms are used to determine the co-
efcient matrix in the linear quadratic controller. In [17],
a comparison was made between the GA-based LQR and the
traditional LQR applied to a doubly-fed asynchronous
generator system. Te results indicated that the GA-based
LQR outperforms the traditional LQR in terms of stability
and robustness. Reference [18] focuses on controlling
a double inverted pendulum using pole placement and LQR
control. To optimize LQR control parameters, GA and PSO
are employed. Reference [19] addresses the design of LQR
and PID controllers for an aircraft’s pitch control system.
GA is employed to optimize the parameters of both LQR and
PID controllers. In the above research, most controllers use
similar ftness functions, which aim to minimize the dif-
ference between the reference values and the actual values
without incorporating additional constraints. In this situa-
tion, it may lead to excessive overshoots, as reported in
[18, 20, 21]. In addition, the issue of GA being susceptible to
get trapped in local optima has not been efectively
addressed. Terefore, to prevent extreme optimization and
the risk of falling into local optima during the optimization
process, it is essential to incorporate penalty terms into the
ftness function and thus to improve the GA performance.

Considering the above issues, a parameter-adaptive
genetic algorithm-based optimization control method has
been proposed. Te following are the major contributions of
this paper:

(1) Combining GA with SFC, this approach uses the
global optimization capabilities of GA to seek the
optimal coefcient matrices within state feedback
control. Tis innovative method addresses the
challenge that the appropriate coefcient matrices
are difcult to be determined in traditional SFC.

(2) In order to prevent extreme optimization scenarios,
this paper modifes the ftness function by in-
corporating penalty terms designed to suppress
overshoot.

(3) Te adjustment of crossover and mutation proba-
bilities based on individual ftness is employed to
achieve parameter self-adaptation, efectively accel-
erating the convergence speed of the GA.

Te rest of this paper is organized as follows. Mathe-
matical model of EHB is in Section 2. Ten the pressure
tracking controller design is presented in Section 3. In
Section 4, the simulation verifcation and result analysis are
introduced, followed by conclusions.

2. Electro-Hydraulic Braking System Model

Te simplifed diagram of single wheel electric-hydraulic
braking is shown in Figure 1. Te brake valve used in the
system is proportional reducing valve.Te electronic control
unit of the EHB calculates the brake pressure required for the
wheel based on information such as brake pedal travel, road
adhesion coefcient, and vehicle speed. Ten the electronic
control unit controls the opening amount of the pro-
portional reducing valve, allowing hydraulic oil to enter the
brake wheel cylinder, and then brake the wheel.

Te mathematical model of the EHB can be represented
as follows [9]:
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d
2
xv

dt2
+ B1

dxv

dt
+ K1 + Ks( 􏼁xv,

Kqxv − Kcpc � Ap

dxp

dt
+

Vt

4βe

dpc

dt
,

pcAp � mt

d
2
xp

dt2
+ Bp

dxp

dt
+ Kyxp.

(1)
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Te brake system model given by equations (2)–(6) can
be described in the standard form of linear state equations as
follows:

_x � Ax + Bu, (7)

where
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 u � u0.

(8)

3. Pressure Tracking Controller Design

Te performance objective of an efective braking system is
to follow the desired pressure target rapidly and precisely.
Terefore, the control problem for the system can be defned
by the following performance function:
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1
2

􏽚
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e(t)
TQe(t) + u(t)

TRu(t)􏽨 􏽩dt, (9)

where Q is the weight coefcient matrix with
Q � diag q1 q2 q3 q4 q5􏼂 􏼃( 􏼁; R is the control weight co-
efcient with R � [r]; e � xr − x is the error values of the
state variables; t0 and tf are the start time and the end time,
respectively. Te control problem currently is: fnd an op-
timal control u to make the performance functional J take
a minimum.

According to Pontryagin’s minimum principle, it can be
concluded that the optimal control u(t) is

u(t) � −Q
−1

B
T
Px(t) + R

−1
B

T
g, (10)

where P and g satisfy the following equations:

A
T
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Te values of Q and R have a signifcant impact on the
dynamic performance of the system. When the diagonal
elements of the Q takes the same value, it indicates that all
state variables of the system are equally important.Te larger
the value, the more important the corresponding state
variable. On the other hand, the R matrix is closely related to
the control inputs. Te larger the values of the diagonal
elements, the greater the limitations imposed on the cor-
responding control inputs. Tis may lead to overshooting,
but it can reduce the control efort.

After obtaining the control input u(t) via solving the
equations (10)–(12), it appears that a solution to the optimal
control problem has been obtained. However, since the Q
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Figure 1: Te principle of electro-hydraulic braking system.
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and R in equation (10) are manually specifed, diferent
choices of Q and R lead to diferent values of u(t), conse-
quently resulting in varying cost values J. To address this
issue and determine the values of Q and R that minimize J,
this paper employs the GA.

GA is an optimization algorithm inspired by the natural
process of evolution. It simulates the principles of biological
evolution to search for optimal solutions. Figure 2 illustrates
the optimization process of the GA.

Tis paper adopts binary encoding method. Te length
of binary code is related to the accuracy of solving the
problem. Suppose an individual code is expressed as

X � a1a2a3a4 · · · al−1al. (13)

Te corresponding decoding method is

x � Umin + 􏽘
l

i�1
ai · 2i−1⎛⎝ ⎞⎠ ·

Umax − Umin

2l
− 1

, (14)

where Umax and Umin represent the range of decimal values
for parameters, and l is the number of bits for binary
encoding.

In this paper, the individual code length is 60, and its
genotype is composed of 60 binary numbers. Te frst ffty
represent matrixQ, with a value range of 1–1000, and the last
ten represent matrix R with a value range of 1–10.

In GA, Te ftness function is used to assess the per-
formance or quality of each individual solution in the
problem space, quantifying the degree to which an indi-
vidual is superior or inferior in solving a specifc problem.
Here, we frst initialize the defnition of the objective
function as

Fnpen � 􏽚
tf

t0

exv
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + exp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + epc

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓dt. (15)

For the purpose of facilitating comparisons with other
algorithms, we have modifed the “roulette” selection as shown
in formula (17). After the modifcation, individuals with
smaller ftness values will have a larger selection probability.

Pi �
􏽐

M
j�1Fj

M · Fi

. (16)

In traditional GA, the probabilities of crossover and
mutation are fxed. Choosing values that are too large can
result in nonconvergence, while values that are too small can
lead to slow convergence. Terefore, this paper proposes
a PAGA (Parameter adaptive genetic algorithm) in which
the crossover and mutation probabilities for each individual
are determined by the population’s average ftness, indi-
vidual ftness, and minimum ftness, as expressed below.

Pc �

k1 Fi − Fmin( 􏼁

Fave − Fmin
, Fi ≤Fave

k2, Fi >Fave

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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k4, Fi >Fave

⎧⎪⎪⎨

⎪⎪⎩
, (18)

where Pc is the crossover probability, Pm is the mutation
probability, Fi(i�1...M) is the individual ftness, Fmin is the
minimum ftness, Fave is the average ftness, and ki(i�1...4) are
adjustment parameters.

In the above, we initially defne the objective function as
(15), which means the sum of errors between various state
variables. Because it does not impose any restrictions on the
overoptimization situations, it may lead to considerable
overshooting. Tis overshooting can have adverse efects on
safety. To efectively suppress overshooting, a penalty term is
introduced into the objective function.

Fpen � 􏽚
tf

t0

exv
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + exp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + λepc􏼒 􏼓dt, (19)

where exv � xref
v − xx, exp � xref

p − xp, epc � pref
c − pc,

λ �
−a, epc < 0
1, epc ≥ 0

􏼨 . a is the penalty coefcient, which will be

determined in Section 4.
Figure 3 is the fow diagram of the control system

proposed in this paper, which is composed of two parts. Te
upper part is the PAGA, and the lower part is the LQR and
EHB model. At the beginning, the PAGA randomly gen-
erates an initial population consisting of 20 individuals. Each
individual decodes the corresponding Q and R according to
the formula (14), and then substitutes them into the sim-
ulation model of LQR and EHB one by one to get the actual
response curve. Ten, the ftness is calculated through the
formula (19). When overshoots occur, that is, epc < 0, the
ftness will increase signifcantly, thereby reducing the
probability of selecting individuals with overshoots, and
further suppressing the generation of overftting. Te next
step will judge whether the number of evolutions reaches the
set value, if not, then the next generation will be produced
according to the individual ftness in the way of “roulette”
selection (16), and it is possible that crossover and mutation
will happen according to the set probability. Cycle the above
process until the number of evolutions reaches the set end
value. Te individual with the highest ftness in the last
generation is the optimal individual, and the decoded Q and
R are the optimal weight coefcients.

To better illustrate the mechanism of how the penalty
term suppresses overshoot, we provide a detailed explana-
tion combined with the following Figure 4. We initial that
the population size is 20, and the initial state of each
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individual is represented by a 60 bit binary number. After
decoding, it is transformed into coefcient matrices Q (5× 5)
and R (1× 1), which are then brought into the simulation
models of LQR and EHB to obtain the response curve. Te
ftness of the individual is calculated using the ftness

calculation formula (19). Due to the addition of the penalty
term, the overshoot part will be amplifed ten times,
resulting in an increase in ftness and subsequently a de-
crease in the probability of selection and inheritance to the
next generation. Over multiple generations of evolution,
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Figure 2: Genetic algorithm fowchart.
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individuals carrying the gene for overshoot will gradually
disappear from the population, efectively preventing the
occurrence of overshoot.

4. Simulation Verification

In order to verify the performance of the proposed algo-
rithm, this paper establishes a simulationmodel for the EHB,
and compares the performance of the GA, PAGA, PSO, and
ACO algorithms. Te relevant parameters of the EHB and
the GA are listed in Tables 1 [2] and 2.

In this simulation, typical values were chosen for the
parameters of all optimization algorithms, while the ad-
justment parameters ki(i�1...4) for PAGA derived from
multiple experimental trials.

To determine the appropriate penalty coefcient, we
compared the efects of diferent penalty coefcients on
suppressing overshoot by using the TO after 20 iterations as
the evaluation criterion. Te formula for calculating the TO
is as follows:

TO � 􏽚
te

ts

epc

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dt, (20)

where ts and te are the time of the start overshoot and end
overshoot.

Figure 5 shows the TO after 20 iterations for diferent
values of a. It can be observed that when the value of a

exceeds 10, the TO is suppressed to nearly zero. Terefore,

this study selects a � 10. So, the λ �
−10, epc < 0
1, epc ≥ 0

􏼨 .

To highlight the advantages of PAGA in terms of op-
timization speed and the ability to overcome local optima,
three additional algorithms are introduced, PSO, ACO, and
GA for parameters turning process. Figure 6 is the average
ftness convergence curve of four algorithms after 10 ex-
periments with the same ftness function (15). Table 3
presents the statistical data for four algorithms across ten
runs, where MF stands for “Minimum Fitness” and TItMF is
the abbreviation for “Iteration Times to Minimum Fitness.”

By comparing Figure 6 and Table 3, it can be observed
that, under the same number of iterations, the PAGA
converges much faster. PAGA fnds the optimal solution at
the 19th iteration, whereas PSO converges at the 36th it-
eration, ACO converges at the 26th iteration, and GA
converges at the 20th iteration. In addition, although all
three algorithms converge after 40 iterations, but they end
with diferent minimum values. Te minimum value found
by PSO is 9.6762; ACO reaches a minimum value of 9.4348,
while GA obtains a minimum value of 9.3583. In addition,
the GA briefy encountered local optima, whereas in PAGA,
this problem was efectively resolved. Tis suggests that
during the parameter tuning process, PSO, ACO, and GA
might have become trapped in local optima, while only
PAGA managed to avoid local optima and fnd the global
optimum solution. Te simulation results demonstrate that
the proposed parameter-adaptive GA efectively avoids local
optima and accelerates convergence.

Figure 7 shows the response curve during the auto-
tuning procedure with PAGA. With the increase in the
iteration, the response curve tends to converge more
closely to the reference value. In Figure 7(a) (with no
penalty term), the algorithm tends to minimize tracking
errors as much as possible without imposing constraints
on the overshooting behaviour. Tis results in extreme
operating conditions in the result. However, in
Figure 7(b), with the introduction of a penalty term, this
risky condition is efectively suppressed.

After 40 iterations, the coefcient matrices with and
without penalty term are shown below. It can be observed
that the overall values of Qnpen are higher than Qpen, while

Table 2: Algorithm parameters.

Parameters Value
PAGA
M 20
T 40
Pc 0.5
Pm 0.005
k1 0.8
k2 0.5
k3 0.1
k4 0.75
GA
M 20
T 40
Pc 0.5
Pm 0.005
PSO
M 20
T 40
c1 1.5
c2 1.5
w 0.8
ACO
M 20
T 40
ρ 0.9
p 0.2

Table 1: Parameters of the electro-hydraulic braking system.

Parameters Value
Ki 89.256
K0 0.0746
Am 4.52 × 10−5

m1 2.91 × 10−2

B1 3.24
K1 824
Ks 0.0005
Kq 300
Kc 0.83 × 10−2

Ap 80
Vt 102.5
βe 7 × 105
mt 30
Bp 6000
Ky 1.79 × 105
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Figure 5: TO with diferent a.

Table 3: Algorithm performance comparison table.

PAGA GA PSO ACO
MF ITtMF MF ITtMF MF ITtMF MF ITtMF

1 9.3577 19 9.3579 19 9.4800 35 9.3689 28
2 9.3523 21 9.3575 24 9.5563 35 9.3922 17
3 9.3474 17 9.3590 17 9.5884 37 9.3789 28
4 9.3491 16 9.3582 21 9.5569 34 9.4728 20
5 9.3499 19 9.3588 20 9.7313 38 9.3812 24
6 9.3508 16 9.3575 25 9.6797 37 9.5625 34
7 9.3624 19 9.3592 21 9.7813 40 9.3758 32
8 9.3519 19 9.3582 18 9.6485 38 9.3708 21
9 9.3514 22 9.3575 17 10.0240 32 9.5051 24
10 9.3566 26 9.3589 22 9.7159 39 9.5394 37
AVG 9. 5 0 19.4 9.3583 20.5 9.6762 36.0 9.4348 26.5
Te bold values are those yielded with the proposed method, while the unbold ones in that row are those yielded with compared methods.
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Figure 6: Iterative curves of four algorithms.
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Rnpen is lower than Rpen. Tis indicates that a larger Q places
more emphasis on state values, and a smaller R results in less
emphasis on control values.

Qnpen �

969.7 0 0 0 0

0 850.9 0 0 0

0 0 320.2 0 0

0 0 0 437.5 0

0 0 0 0 985.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Rnpen � [1]

Qpen �

997.1 0 0 0 0

0 525.4 0 0 0

0 0 898.5 0 0

0 0 0 279.3 0

0 0 0 0 250.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Rpen � [5.5].

(21)

To evaluate the stability of the proposed algorithm, we
conducted tests under three diferent operating conditions.
Additionally, a comparison was made with the traditional
SFC (Q0 � diag([100 100 100 100 100], R0 � diag[2]), SFC
optimized by PAGA with Fnpen (PAGA-SFC1), SFC opti-
mized by PAGA with Fpen (PAGA-SFC2), and the PID
controller optimized by GA (GA-PID). Figures 7–9 depict
the responses of the EHB under no load, constant load, and
variable load conditions, respectively.

4.1. Constant Load Condition. When the load pressure is set
to 1MPa, all pressure tracking controllers are able to achieve
zero steady-state error. As shown in Figure 8(a), the SFC
shows a slower rise time compared to the other controllers
and takes a longer time to reach the target value. Although
GA-PI has a faster rise time than SFC, the pressure values
show larger variations, and the settling time is also longer.
However, PAGA-SFC1 and PAGA-SFC2 demonstrate sig-
nifcantly faster rise times and steady-state times.
PAGA-SFC2 efectively suppresses overshoot due to the

introduction of the penalty term, but it slightly increases the
rise time. Figures 8(b) and 8(c) present the state values xv

and xp for SFC, PAGA-SFC1, PAGA-SFC2, and GA-PI. In
this test, both reference values are set to zero. With the help
of the penalty term, PAGA-SFC1 and PAGA-SFC2 exhibit
smaller oscillation amplitudes and smoother curves com-
pared to the other two algorithms.

4.2. Sudden Load Condition. In this condition, the load
pressure is initially set to 1MPa. At 0.075 s and 0.2 s, 0.1MPa
sudden load pressure disturbances are introduced to test the
disturbance rejection performance. Te variations in pres-
sure and system state responses are shown in Figure 8.

As shown in Figure 9(a), when a sudden load pressure
disturbance occurs, all three SFC controllers undergo an
increase or decrease in pressure, with amplitudes smaller
than that of GA-PI. However, the time it takes for each of
them to return to the original state is signifcantly diferent.
Among them, PAGA-SFC1 and PAGA-SFC2 exhibit much
faster recovery speeds. PAGA-SFC1 shows a slight overshoot
after the disturbance ends, while GA-SFC2 efectively
suppresses pressure overshoot due to the introduction of the
penalty term. Tis diference can be mainly explained by the
variations in the weighting matrices R associated with the
control signals. Te R0 is greater than R1 and R2. Terefore,
SFC imposes more constraints on the control signals, lim-
iting the amount of energy given to the system. As a result,
GA-SFC1 and SFC2 demonstrate better disturbance re-
jection characteristics compared to GA-PI, while SFC per-
formance in this regard is less satisfactory. Figures 9(b) and
9(c) show the variations in the state variables under diferent
algorithms. Similarly, PAGA-SFC1 and PAGA-SFC2 exhibit
signifcantly smaller fuctuations in their ranges.

4.3.Variable LoadCondition. In this simulation experiment,
the load pressure is set to vary from 0.8 to 1.2MPa according
to the expression 0.2 × sin(50t) + 1. Te braking pressure
output by the EHB is recorded in Figure 10(a). It can be
observed that, compared to the two previous operating
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Figure 7: Response curve during auto-tuning procedure with PAGA. (a) PAGA-SFC1. (b) PAGA-SFC2.
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Figure 8: Responses of electro-hydraulic braking system at constant load conditions: (a) pressure, (b) armature displacement, and (c)
cylinder piston displacement.
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Figure 9: Responses of electro-hydraulic braking system at sudden load conditions: (a) pressure, (b) armature displacement, and (c)
cylinder piston displacement.

10 International Journal of Intelligent Systems



SFC
PAGA-SFC1

PAGA-SFC2
GA-PI

0

0.5

1

1.5

p c (M
Pa

)
0.05 0.1 0.15 0.2 0.25 0.30

t (s)

(a)

SFC

PAGA-SFC2

×10-4

×10-4

×10-4

×10-4

GA-PI

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

PAGA-SFC1

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

-2

0

2

4

6

x v (m
)

0

5

10

15

x v (m
)

0

5

10

x v (m
)

0

5

10

x v (m
)

(b)

SFC

PAGA-SFC2

×10-8

×10-8

×10-8

×10-8

GA-PI

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

PAGA-SFC1

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

0.05 0.1 0.15 0.2 0.25 0.30
t (s)

0

2

4

6

x p (m
)

0

2

4

6

x p (m
)

0

2

4

6

x p (m
)

0

2

4

6

x p (m
)

(c)

Figure 10: Responses of electro-hydraulic braking system at variable load conditions: (a) pressure, (b) armature displacement, and (c)
cylinder piston displacement.
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conditions, all algorithms show some steady-state error
under the varying load pressure condition. However,
PAGA-SFC1 and PAGA-SFC2 show signifcantly faster
response speed and higher accuracy than the other two. Tis
behavior can be explained by the weighting matrix Q, where
larger values indicate more constraints on the corresponding
variables, and q5 is related to the pressure error. In Q1,
q5 � 1000; in Q2, q5 � 250.1; while in Q1, q5 � 100.Tis means
that PAGA-SFC1 and PAGA-SFC2 are more concerned
about velocity reference tracking compared to SFC. As
a result, GA-SFC1 and GA-SFC2 demonstrate better per-
formance in following the varying load pressure.

5. Conclusions

Te selection of the coefcient matrices Q and R in tradi-
tional LQR control signifcantly infuences control perfor-
mance. To address this issue, this paper proposes an
approach that combines the genetic algorithm with LQR for
automatic parameter tuning. In addition, to accelerate the
convergence speed of the genetic algorithm, an adaptive
genetic algorithm is introduced, which adjusts crossover and
mutation probabilities based on individual ftness. Fur-
thermore, to prevent overshooting, a penalty factor is in-
corporated into the ftness function to suppress the
occurrence of overshoot.Te proposed algorithm, compared
to PSO and ACO, has a faster convergence speed and is less
likely to fall into local optima.When compared to traditional
LQR and GA-PI, it has a faster response speed and
stability time.

However, there are also shortcomings in this paper. Only
a single brake system model was digitally simulated without
considering the impact on the control efect when the
control object is the entire vehicle. Subsequent work will
attempt to change the control object to the entire vehicle and
verify the performance of the proposed control method
under more external factors.

Abbreviations

EHB: Electro-hydraulic brake
ABS: Antilock braking system
GA: Genetic algorithm
PAGA: Parameter adaptive genetic algorithm
PSO: Particle swarm optimization
ACO: Ant colony optimization
APSO: Adaptive particle swarm optimization
SFC: State feedback control
LQR: Linear quadratic regulator
PAGA − SFC1: SFC optimized by PAGA with Fnpen
PAGA − SFC2: SFC optimized by PAGA with Fpen
TO: Total overshoot
Nomenclature

MF: Minimum ftness
TItMF: Iteration times to minimum ftness
M: Size of the population
T: Te number of iterations
Pm: Mutation probability

Pc: Crossover probability
ki(i�1,2,3,4): Adjustment parameters
c1: Learning factor 1
c2: Learning factor 2
w: Inertia weight
ρ: Pheromone evaporation factor
p: Transition probability
Fnpen: Fitness function with no penalty
Fpen: Fitness function with a penalty
K0: K0 � 1/Rc + rp/Ω−1

u0: Amplifer output voltage (V)
pc: Outlet pressure of pressure (MPa)
Am: Valve spool end face area (m2)
m1: Equivalent mass (kg)
xv: Armature displacement (m)
B1: Comprehensive damping coefcient

(N · S · cm−1)
K1: Spring stifness of pressure reducing valve

(N · cm−1)
Ks: Hydrodynamic stifness coefcient (N · cm−1)
Kq: Proportional valve fow gain (L · min−1 · cm−1)
Kc: Proportional valve fow pressure gain

(L · min−1 · Pa−1)
Ap: Piston area (cm2)
xp: Piston displacement (m)
Vt: Te volume of hydraulic cylinder control

chamber (cm3)
βe: Bulk elastic modulus of liquid (Pa)
mt: Te total mass of the piston and load (kg)
Bp: Viscous damping coefcient (N · m−1 · s)
Ky: Load spring stifness (N · m−1).
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