
Research Article
A Novel Approach to Optimizing Convolutional Neural
Networks for Improved Digital Image Segmentation

Kongduo Xing,1 Junhua Ku ,2 and Jie Zhao2

1College of Information Engineering, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China
2School of Science, Qiongtai Normal University, Haikou, Hainan 571127, China

Correspondence should be addressed to Junhua Ku; junhuacoge@mail.qtnu.edu.cn

Received 19 August 2023; Revised 9 April 2024; Accepted 22 April 2024; Published 8 May 2024

Academic Editor: Tao Li

Copyright © 2024 KongduoXing et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To divide a digital image into individual parts that share similar characteristics is known as digital image segmentation, and it is
a vital research subject in the feld of computer vision. Object recognition, medical imaging, surveillance, and video processing are
just a few of the many real-world contexts where this study could prove useful. While digital image segmentation research has
come a long way, there are still certain obstacles to overcome. Segmentation algorithms frequently encounter challenges in
achieving both accuracy and efciency when confronted with intricate settings, noisy pictures, or fuctuating lighting conditions.
Te absence of established evaluation standards adds complexity to the process of performing equitable comparisons among
diferent segmentation methodologies. Due to the subjective nature of photo segmentation, attaining consistent results among
specialists can be challenging. Te integration of machine learning and deep neural networks into segmentation algorithms has
introduced new challenges, including the need for large amounts of annotated data and the interpretability of the outcomes. Given
these challenges, the objective of this study is to enhance the segmentation model. To this end, this research suggests a model of
convolutional neural networks that is optimal for digital picture segmentation. Te model is based on a dense convolution neural
network, and it incorporates a transfer learning technique to signifcantly boost the model’s robustness and the quality of picture
segmentation. Te model’s adaptability to new datasets is improved by the incorporation of a transfer learning method. As
demonstrated by experimental results on two publicly available datasets, the suggested methodology considerably enhances the
resilience of digital picture segmentation.

1. Introduction

Segmenting a digital image involves dividing it into several
portions, each representing a diferent object or character-
istic. Many computer vision and image processing appli-
cations use this method for object detection, shape
recognition, and change detection. Segmentation techniques
use intensity or color information to arrange similar images
into distinct sections [1]. Wemust discover and isolate visual
components having unique properties, such as edges, cor-
ners, textures, or colors and then isolate them. Depending on
the objective and image complexity, thresholding, edge
detection, clustering, and region expansion may be used.
Binary segmentation labels pixels as foreground or back-
ground, gray-level segmentation divides the image into

regions, and color segmentation labels pixels by color.
Segmenting images containing many objects, occlusions, or
background noise is tough. To improve segmentation ac-
curacy and resilience, researchers have used machine
learning, prior knowledge, and many segmentation
methods. Segmentation is used in medical imaging to detect
tumors and other abnormalities, surveillance and security to
detect items or persons in video streams, and robotics and
automation to guide object movement or manipulation.

Digital image segmentation is a crucial process for
various applications such as medical imaging [2], object
recognition [3], autonomous driving [4], and video sur-
veillance [5]. In the feld of medical image analysis, Li et al.
[6] delve into automatic liver segmentation using deep
learning, reviewing various models, including CNNs and
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GANs, along with their pros, cons, and applications in liver
segmentation. Te authors extensively explore deep
learning-based autonomous liver segmentation methods,
weighing their merits and drawbacks. Wang et al. review
deep learning-based semantic segmentation for medical
picture analysis [7]. Dalvand et al. proposed a parallel fusion
method using majority voting technology to enhance the
credibility and user interaction of interactive image seg-
mentation algorithms and introduced a spiking neural-like P
system model to reduce the computational burden [8].
Narayan et al. summarized the importance and use of image
segmentation in the feld of medical images. At the same
time, they also analyzed the problems, current technology,
and mathematical implementation in medical imaging [9].
Shukla et al. proposed a new method called TrustMIS to
solve this problem. TrustMIS improves performance and
trustworthiness by studying trustworthiness and selecting
the most trustworthy models [10]. Most of the above studies
introduce deep learning methods to improve image seg-
mentation performance. However, other problems will be
introduced in the process of improving segmentation
accuracy.

Recent years have seen signifcant advances in digital
picture segmentation. Deep learning algorithms such as
CNNs excel in semantic segmentation, instance segmenta-
tion, and object detection. Unsupervised and weakly su-
pervised learning methods have also shown potential in
photo segmentation. Despite the progress in digital image
segmentation, several challenges remain. When applied to
new data, segmentation models may lack the robustness and
generalization needed to handle complicated problems. In
order to solve the above problems, this paper has carried out
a series of work. Tese are the primary contributions of this
study: (1) To enhance the resilience of the image segmen-
tation model, we propose the implementation of a con-
volutional neural network model based on optimization.
Our primary objective in this model design is to enhance the
robustness of dense convolutional neural networks by re-
fning their foundation across various scenarios and datasets.
(2) Implementation of a mechanism for transfer learning. To
further enhance the model’s robustness and the accuracy of
image segmentation, we deftly incorporated the transfer
learning mechanism into the architecture. By utilizing this
mechanism, the model is capable of more efectively
adjusting to diverse datasets, thus signifcantly augmenting
its adaptability in real-world scenarios. (3) A dense con-
volutional neural network is chosen as the foundational
architecture. Leveraging the dense convolutional neural
network architecture, it is capable of capturing image fea-
tures and contextual information more efectively, thereby
enhancing its capability to assist with image segmentation
tasks. Experimental demonstration: We conduct exhaustive
experiments on two public datasets, and the results show
that the proposed model achieves signifcant performance
improvements in digital image segmentation. Specifcally,
we observe that the robustness of the model is signifcantly

improved, while the segmentation accuracy is also efectively
improved.

2. Application of Deep Learning in Image
Segmentation

2.1. Te Principle of Deep Learning Applied to Digital Image
Segmentation. Te process of splitting an image into several
segments or areas, each of which corresponds to a separate
object or component of an object, is referred to as image
segmentation. Tis process takes place during image pro-
cessing. Because it can automatically learn relevant char-
acteristics and patterns in images, deep learning is
a technique that is becoming increasingly popular for ap-
plication in image segmentation.

When it comes to image segmentation, the fundamental
idea behind deep learning is to train a convolutional neural
network (CNN) to learn a mapping from the input image to
a pixel-by-pixel segmentation mask. Tis is how deep
learning works. Te CNN is made up of numerous layers,
each of which is responsible for learning progressively
complicated properties from the input image. Te fnal layer
generates a segmentation mask that assigns a predicted class
label (such as “object” or “background”) to each pixel in the
input image. Tis label may indicate whether the pixel
represents an object or the backdrop. After that, the output
segmentation mask may be put to use to either isolate the
object of interest or conduct additional research. Te basic
idea behind using a depth learning algorithm to the seg-
mentation of digital images is illustrated in Figure 1.

While deep learning has shown promise in the feld of
picture segmentation, it still faces a number of obstacles.
Large amounts of labeled data are required to train the
model, which presents a challenge. Annotation is the labor-
intensive and resource-intensive process of manually
assigning a class label to each pixel in an image. Not only that
but the training data’s high quality and quantity determine
the segmentation’s fnal quality. One difculty is that the
data may have an unbalanced representation of classes, with
some classes being more common than others. Tis can
cause segmentation performance for the minority class to
sufer because of bias toward the majority class. Data aug-
mentation, loss function balancing, and ensemble learning
are only few of the methods ofered to deal with class im-
balance. As an added complication, deep learningmodels are
notoriously complex and computationally costly, making
them challenging to train and roll out. Model performance is
highly sensitive to architectural, hyperparameter, and op-
timization algorithm selections. Overftting, in which the
model memorizes the training data instead of learning to
generalize to new data, is another prominent issue in deep
learning applied to picture segmentation. Although deep
learning has demonstrated impressive promise for picture
segmentation tasks, it still takes signifcant thought and
expertise in data annotation and model design to provide
accurate results.
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2.2. Convolution Neural Network

2.2.1. Basic Network Organization. Computer scientists
have developed the CNN algorithm by assimilating pertinent
information from various felds. Researchers in the past
abstracted the transmission principle and procedure from
studies of animal visual cortex signals to the computer in
order to create CNN [11]. CNNs mimic the brain’s signal
transmission mechanism at each stage of the network, in-
cluding the pooling layer and the convolution layer. Figure 2
depicts the modular nature of such a building. Many neu-
rons make up the various “layers” of a network.

Layer one is the input. Preprocessed images of food are
used as the input for a convolutional neural network for use
in pattern identifcation. Te overall model’s detection ac-
curacy in a convolutional neural network depends critically
on the image quality input. Input image data balance must
be maintained. Every food picture provided in the input
layer is a matrix that needs to be transformed into a single
dimension. Te images have three channels because they are
RGB color images. Rotating, scaling, and slicing the food
sample can increase the sample size and decrease the
overftting problem that occurs when training a model, all of
which are important to guarantee the diversity of data and to
enlarge the sample. To further reduce visual interference on
convolutional neural networks, some approaches exist for
preprocessing numerous images, such as averaging, nor-
malization, and other operations.

Layer two is the convolutional flter. Te convolution
layer is the backbone of the entire CNN. A model of neu-
ronal behavior in the human brain has been used to inform

the design of this layer. In the architecture of the con-
volutional layer, it comprises multiple convolutional strata.
Te connectivity paradigm within this structure is such that
nodes at diferent levels do not exhibit direct in-
terconnections. However, nodes residing in adjacent con-
volutional layers are linked through a transmission
relationship, allowing selective data intake from the pre-
ceding layer’s nodes. Tis organizational schema ensures
comprehensive representation of the entire image’s in-
formation by assigning distinct nodes to encapsulate various
facets of the image. Consequently, individual nodes are not
burdened with the necessity of processing the entirety of
the image.

Figure 3 elucidates the process inherent in the convo-
lution operation. Tis process utilizes convolutional com-
putations to synthesize multiple features. It achieves this by
amalgamating data from numerous nodes in the antecedent
layer into a singular node in the subsequent layer. Te di-
mensions of the convolution matrix are congruent with the
size of the convolution kernel. Furthermore, the values
constituting the convolution kernel are adjustable, allowing
for contextual customization to optimize feature extraction.

Te activation function is a vital part of the convolution
layer. Linearity holds true even if all convolutions are linked
through convolution calculation. As time went on, though,
experts suggested that an activation function may transform
a linear structure into a nonlinear one. Activation functions,
which are what connect the convolutions, are more in line
with the way true recognition works. Te weighted sum
process is generated after the image has been processed in
the input layer, operated on in the convolution layer, and so
on. Here is how it works,

Xj
′ � f 
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l−1
i ∗ k

l
ij + b

l
j

⎛⎝ ⎞⎠, (1)

where Xj
′ represents the jth feature of the lth volume layer,

xl−1
i represents one of the features, and bl

j indicates the ofset
of the feature.

(1) Pool Layer. In order to join two volumes together,
a pooling layer is necessary. Te pooling layer is there to
avoid any overftting. It operates in a manner analogous to
that of a convolution layer. You can choose your pooling
matrix in the pooling layer and then use the window sliding
to get at the next layer’s important data. Tere are two
primary approaches to pooling in the pooling layer: maximal
pooling and average pooling. With maximum pooling, the
largest possible values are retained in the output pool. When
you pool an area’s average value, you are doing average
pooling. Two pooling techniques, with a convolution core
size of 2∗2, are shown in the process and output in Figure 4.
Te increment is 2 steps.

Te pooling layer must also have some of the afore-
mentioned traits, but the most crucial one is that it must
preserve the original image’s attributes. We can guarantee
that the picture’s characteristics will not change no matter
what we do to the photo. Tis method is useful for image
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Build a 
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Figure 1: Principle of image segmentation based on deep learning.
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recognition since it helps preserve image characteristics
while also reducing data duplication.

Tere is a complete layer of connections in place in the
fourth position. CNN’s fnal layer is the entire connection
layer. After the convolution is calculated, the image is sent
on to the entire connection layer. Te term “full connection
layer” is used to describe the process of connecting nu-
merous independent networks into one larger one. Often
times, the connection layer is multilayered. Several full
connection levels can be confgured to meet varying re-
quirements. Te whole connection layer can be expressed as

x
i

� f W
i
x

i−1
+ b

i
 , (2)

where xl−1
i represents the characteristics of the i-1 layer in

the network and Wi and bi represent the weights and ofsets,
respectively.

CNNs can use one of four standard activation func-
tions—the sigmoid, Tanh, ReLU, or Leak-ReLU. Here are the
written forms for the four activation functions,
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1

1 + e
−x, (3)

tanh(x) �
e

x
− e

−x

e
x

+ e
−x, (4)

f(x) �
x, x> 0,

0, x≤ 0.
 (5)

f(x) �
x, x> 0,

ax, x≤ 0.
 (6)

2.2.2. Communication Mode of Network. With a convolu-
tion neural network, information can travel both forward
and backward in the network [12]. CNNs are trained in
image recognition processing utilizing forward propaga-
tion and backward propagation techniques, respectively,
until a satisfactory model is achieved. Te primary pro-
cedure can be stated by defning the input picture as I and
the output image as O using convolutional neural net-
works. In order to train, O must be fne-tuned over and
over again until the desired output is achieved. Te act of
communicating is a continual process of learning and
training.

Te output layer of a CNN is responsible for deriving the
fnal output of the network’s processing of the input signal.
We refer to the mode of propagation used during this phase
of training as forward propagation, and its formula is as
follows:

… … …

…

…

…
…

convolutional layer

Classifcation

fully connected layer

input layer

convolutional layer
convolutional layer

Figure 2: Network structure of CNN.
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Figure 3: Convolution operation.
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Figure 4: Pooling operation.
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where aj
′ represents the output node of the jth neuron in the

l-layer network, al−1
k represents the output value of the k-th

neuron in the layer l-1 network, andW represents the weight
of neurons. z is the activation function, and its expression is
as follows:

z′ � w′al−1
+ b

l
,

a′ � f z′( .

⎧⎨

⎩ (8)

Te reverse of the forward propagation mode is known
as the backward propagation mode. Te basic goal of
backward propagation in a convolution neural network is to
minimize the error problem. Te heart of back-propagation
is a way for continuously adjusting the trend by using the
loss function to tweak the weight and bias. If you are familiar
with the forward propagation approach of ideology, you will
see a big diference between this and that.

Assuming x is the value used as the sample from the
image, with n being the total number of samples, the output
is given by the formula y� y (x). Te formula for its back-
propagation is as follows:

C �
1
2n


x

‖y(x) − a(x)′‖ 2
. (9)

where e is the expected value.

3. TLDenseNet Model

3.1. Image Segmentation Based on TLDenseNet Model.
Te use cases for digital picture segmentation are numerous,
as are the types of images that can be segmented. In this
research, we propose an improved version of DenseNet [13]
(TLDenseNet)—one of the best CNN models—by in-
tegrating the transfer learning mechanism to better handle
pictures with varying attributes and segmentation needs.
Figure 5 depicts the basic idea behind this model-based
approach to digital picture segmentation.

First, the dataset is entered into the initial dense con-
volution network to obtain the dense network with pa-
rameter information, as shown in the fgure. Using this
network as a foundation, we ofer a transfer learning
technique to build a high-density convolutional network
with a built-in transfer learning function. Second, the
aforementioned network is trained using the image to be
segmented as input, and a model for doing so is obtained.
Lastly, the test picture can be segmented using the trained
model to achieve the fnal segmentation result.

3.2. DenseNet. As the dense convolution network does not
have to retrain and learn the redundant feature map, it may
function with fewer parameters than the standard convo-
lution network. In this network architecture, new in-
formation is very distinct from existing information that is
kept [14]. Te DenseNet architectural framework is char-
acterized by its slender convolution layers, a direct

consequence of the profuse interconnectivity among nodes
within the network. Augmentations to this network are
constituted by a modest assemblage of feature maps, which
notably retain their original, unaltered state. Te ultimate
classifcation process within this architecture is predicated
upon an integrative analysis of all the feature maps present
across the network, leveraging their collective information
for accurate prediction outcomes. When compared to the
residual network, the dense connection technique proposed
by DenseNet is more radical. As can be seen in Figure 6,
DenseNet’s dense connection mechanism consists of blocks
of connections. It is clear how the layers are interconnected
and how the feature maps of successive levels are identical in
size and used as input by the one before them.Te frst layer
takes its input from a merged [x0, x1, . . . , xl−1] feature di-
agram from all lower layers. Layer l’s method of calculation
is as follows:

xl � Hl x0, x1, ..., xl−1 ( , (10)

where [x0, x1, . . . , xl−1] is the splicing of all previous feature
maps and Hl represents a composite operation composed of
batch normalization, corrected linear unit, and convolution.

A deep convolutional network with L layers has a total of
L (L+ 1)/2 connections. Tis is a highly interconnected
node, especially when compared to the residual network.
DenseNet also directly merges feature maps from several
layers. Tis process enhances efciency since it allows for
enhanced feature reuse. In this regard, DenseNet difers
signifcantly from the residual network.

Te hyperparameter k is called the growth rate of the
network. Te growth rate k represents the number of
characteristic graphs generated by the function H of each
layer, so the calculation formula of the number of charac-
teristic graphs k of the frst layer as input is

kl � k0 +(l − 1)k. (11)

For example, let k0 stand for the total number of
characteristic graphs that were used as input. DenseNet is
distinctive from the current network architecture in that it
is much more compact. A more modest rate of expansion
can nonetheless yield satisfactory outcomes. Tis is because
the network acquires “collective knowledge” at the dense
connection block, where feature maps from each successive
layer can be coupled. Instead of having to repeat between
layers, as in a conventional network architecture, calling
the characteristic graph is possible at any point in the
network.

Network blocks with dense connections and a transition
layer make up the bulk of DenseNet’s architecture. DenseNet
architecture is depicted in Figure 7. Tere are three clusters
of connections representing signifcant parts of the structure
in the diagram. Te dense convolution network can be
segmented intomany dense connection blocks to ensure that
the feature graph sizes are uniform across the network and
that splicing will not be an issue.

Within the DenseNet architecture, the dense connection
block incorporates a bottleneck layer, designed to reduce
computational demands. Tis reduction is achieved
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primarily through the integration of 1× 1 convolutions. Te
structure of this layer follows a sequence: batch normali-
zation, followed by a modifed linear unit, a 1× 1 convo-
lution, another batch normalization, a second modifed
linear unit, and culminating with a 3× 3 convolution. Tis
confguration is referred to as the DenseNet-B structure.Te
primary function of the 1× 1 convolution within this se-
quence is to diminish the number of features, thereby en-
hancing computational efciency. Additionally, this
convolution facilitates the amalgamation of features across
various channels.

Adjacent to each dense connection block is a transition
layer, tasked with reducing the number of feature maps.Tis
reduction is accomplished through a combination of con-
volution and pooling processes. Te transition layer is
composed of three distinct components: a BN (batch nor-
malization) layer, a convolution layer, and a pooling layer. If
a dense connection block outputs “m” characteristic maps,
the ensuing transition layer will produce “A” characteristic
maps as its output. Here, “B” symbolizes the compression
coefcient, denoting the proportion of feature map re-
duction. Tis aspect of the DenseNet architecture is termed
DenseNet-C.

Both the bottleneck and transition layers are integral to
a model variant known as DenseNet-BC. Te transition
layer’s role is pivotal; it compresses and consequently re-
duces the channel count before transmitting data to the
subsequent dense connection block. Tis function un-
derscores the essentiality of the transition layer within the
DenseNet framework.

3.3. Transfer Learning Mechanism. Training data are re-
quired by traditional classifcation algorithms; however, the
labeling cost of these training data is very high, and the
amount of training data must be continuously grown to keep
up with the demand. Te vast amount of previously labeled
data is lost when we have to relabel the training set in re-
sponse to a similar demand.What insights can we draw from
these numbers to better prepare us for the work ahead of us?
Transfer learning aims to address this issue [15]. Instead of
being a single algorithm model, the term “transfer learning”
refers to a set of approaches that have proven efective in the
modern study of deep learning. We apply the model’s
learnings from one set of problems to the solution of another
set of problems that are conceptually similar. As a result, the
model can use its prior knowledge to speed up its training on
the current task. Figure 8 depicts the specifc principle in
detail.

We may essentially classify the transfer learning strategy
into three types: (1) Te sample-based transfer learning
approach selects data from the source domain dataset that
has a probability distribution that is close to that of the target
domain data. (2) A transfer learning strategy based on
features. We reduce the dissimilarity between source and
target domain samples by projecting them into renewable
and hilt space (RKHS). (3) A parameter/model-based
transfer learning approach. To use the network as a fea-
ture extractor before training, just swap out the last layer for
a classifer. During fne-tuning, all weights are recalculated
using the initialized model parameters from before training.
It is not advised to increase the learning rate beyond the
learning rate during the tuning procedure. A better option is
1e− 5 most of the time.

4. Experimental Structure and Analysis

4.1. Experimental Data. Several picture segmentation
datasets are available. Currently, the most researched
datasets are those for medical image segmentation and scene

dataset

Dense network (parameter information)

segmentation model

Segmentation result

initial dense network

Dense Networks (Transfer Learning)

training dataset test dataset

training

training

Classifcation

Figure 5: Image segmentation principle based on TLDenseNet model.

X1 X2 X3 X4

Figure 6: Dense connection block.
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analysis. Because of this, we chose to conduct our experi-
ment using the liver image segmentation dataset [16] and the
MIT scene analysis dataset [17].

Te 2017 IEEE International Biomedical Imaging
Symposium (ISBI) Liver Tumor Segmentation Challenge
(LiTS) dataset is used in this paper. In addition, the LiTS
dataset includes 400 individual sheets, each of which is a 512
by 512 CT image of a patient with hepatocellular carcinoma.
In addition, the sample data are heterogeneous due to the
vast variances across each CT, which successfully empha-
sizes the generalizability of model segmentation outcomes.

Te MIT scenario analysis dataset can be found at
https://sceneparsing.csail.mit.edu/ for download. Scene
analysis may be practiced and tested on a consistent,
industry-standard platform, thanks to this data collection.

Tere are more than 20,000 high-quality photos of scenes,
each annotated with precise details about the objects in the
shot.Te dataset is broken down into a training set of 20,000
photographs, a verifcation set of 2,000 images, and a sep-
arate set of test data. Tere are 150 diferent types of items
and scenes represented in the dataset, from roads and grass
to the sky and people. Rather than appearing randomly, as
would be the case in real life, the things in the image have the
appearance they would have in a realistic computer-
generated environment. An image’s semantic segmenta-
tion mask is generated by the segmentation algorithm’s
predictions about which semantic category each pixel
belongs to.

4.2. Experimental Environment and Settings. Te experi-
mental test bed utilized in this study is confgured with
a Windows 10 64 bit operating system and is powered by an
Intel Core i7-9700K CPU. It also includes a GTX 1080Ti
GPU and is equipped with 16GB of RAM. Te software
development environment is comprised of Python 3.6 and
version 1.1.0 of an unspecifed software component. For the
training of the model, specifc parameters are employed.
Tese include a training duration of 100 epochs and
a learning rate set at 1e− 2. Additionally, the model pro-
cesses data in batches, with each batch containing 64 in-
stances. Pixel Accuracy (PA) and Intersection-Over-Union
(IoU) are the two major performance indicators that are
utilized in relation to the evaluation of the efectiveness of
the segmentation algorithm [18]. PA is defned as the

Input image

convolution

densely connected 
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convolution

pooling

densely connected 
block

convolution

pooling
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convolution
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Figure 7: DenseNet structure diagram.
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Figure 8: Transfer learning mechanism in deep learning.
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proportion of pixels in a picture that are correctly identifed.
In essence, PA is a measurement of the ratio of pixels that
have been correctly labeled to the total number of pixels in
the image. Te Intersection-Over-Union metric, on the
other hand, is a measure that provides an indication of the
precision of the segmentation algorithm. It does this by
providing a measurement of the overlap that exists between
the predicted segmentation and the ground truth,

PA �


n
i�0pii


n
i�0

n
j�0pij

�
TP + TN

TP + TN + FP + FN
, (12)

when there are n categories, plus the extra one for the
context; the total number of categories is n+ 1. Te number
of predicted category I pixels is denoted by pii, where I is the
category of the actual pixels. Te number of pixels whose
actual category is I that are incorrectly identifed as category j
is denoted as pij, where pi is the total number of pixels and j
is the anticipated category. A true positive (TP) is a case
where both the label and the anticipated value are correct. As
the name implies, TN is the total number of instances where
both the label and the forecasted value were incorrect. When
the label is negative but the predicted value is positive, we say
that there was a certain amount of false positives. Te false
negative (FN) is a positive label and a negative prediction.
Four added together equals the full complement of picture
elements. Correct categorization counts as TP +TN.

In semantic segmentation, Intersection-Over-Union
(IoU) is a popular indicator. Te overlap region between
the prediction segmentation and the labels is the IOU. Tis
indication goes from 0 to 1, with 0 denoting fully separate
regions and 1 indicating full overlap between them. Te
following is the mathematical formula:

IoU �
|A∩B|

|A∪B|
�

TP

TP + FP + FN
. (13)

4.3. Analysis of Experimental Results. In this study, we
compare the proposed model to several others used for
digital image segmentation, including CNN [19], recurrent
neural network (RNN) [20], long short-term memory

(LSTM) [21], Unet [22], and DenseNet [23]. Tables 1 and 2
display the models’ segmentation results on the MIT liver
tumor dataset. Te experimental data are the average value
obtained after training the model fve times.

Table 1 shows the segmentation results of six deep
learning models for liver dataset. First, observing the PA
indicator, TLDenseNet performed the best, reaching 0.9626,
which has higher pixel-level accuracy than other models.
Followed by Unet and DenseNet, with 0.9445 and 0.9376,
respectively, their performance is also relatively good. Te
PA means of RNN and LSTM are 0.9024 and 0.9341, re-
spectively, which are slightly lower than other models. Tis
shows that TLDenseNet has signifcant advantages in pixel-
level classifcation accuracy. Second, when examining the
IoU index, TLDenseNet also performed well, reaching
0.9452, showing its excellent performance in terms of
overlap of target areas. Te IoU means of Unet and Den-
seNet are 0.9342 and 0.9101, respectively, which are still at
a relatively high level. Te IoUmeans of RNN and LSTM are
0.8645 and 0.9006, respectively, indicating that their overlap
in the target area is relatively low. In addition, we also
observed the standard deviation (std) of each model on the
two indicators. Te standard deviations of TLDenseNet on
PA and IoU are relatively small, 0.0215 and 0.0156, re-
spectively, showing the relative stability of its model per-
formance. Te standard deviations of other models are also
within the acceptable range, but TLDenseNet performs
better in this regard.

Table 2 shows the segmentation results of six deep
learning models for MITdatasets. First, as can be seen from
the PA indicator, TLDenseNet performs best at the level of
0.7328, which has stronger performance in pixel-level ac-
curacy than other models, Followed by DenseNet and Unet,
with 0.7123 and 0.6452, respectively. Te PA means of RNN
and LSTM are 0.6632 and 0.7017, respectively, showing their
relatively low performance in this regard. Second, it can be
seen from the IoU indicator that TLDenseNet reaches the
highest value at the level of 0.4205, showing superior per-
formance in terms of overlap of target areas. Te IoU means
of DenseNet and Unet are 0.4017 and 0.3590, respectively,
which are also at a relatively high level. Te IoU means of
RNN and LSTM are 0.3735 and 0.3921, which are relatively

Table 1: Segmentation results of liver tumor dataset.

Index\Model CNN RNN LSTM Unet DenseNet TLDenseNet

PA Mean 0.9153 0.9024 0.9341 0.9445 0.9376 0.9626
std 0.0465 0.0643 0.0245 0.0172 0.0354 0.0115

IoU Mean 0.8799 0.8645 0.9006 0.9342 0.9101 0.9452
std 0.0097 0.0175 0.0202 0.0123 0.0087 0.0106

Table 2: Split results of MIT dataset.

Index\Model CNN RNN LSTM Unet DenseNet TLDenseNet

PA Mean 0.6037 0.6632 0.7017 0.6452 0.7123 0.7328
std 0.0242 0.0193 0.0146 0.0087 0.0901 0.0075

IoU Mean 0.3253 0.3735 0.3921 0.3590 0.4017 0.4205
std 0.0194 0.0215 0.0176 0.0131 0.0201 0.0102
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low. In terms of standard deviation, the standard deviation
of TLDenseNet on PA and IoU is relatively small, showing
that its performance on the MIT dataset is relatively stable.
Te standard deviation of DenseNet is large, especially on
PA, which indicates that its performance on this dataset
fuctuates greatly.

5. Conclusion

Segmenting a digital imagemeans breaking it up into smaller
pieces that each refects a diferent feature of the image.
Segmenting an image digitally is difcult since it calls for the
algorithm to precisely locate the edges of objects and dis-
tinguish them from the backdrop. Since deep learning al-
gorithms can automatically discover useful features from
large volumes of data, they have become valuable tools for
digital image segmentation. CNNs are a common choice for
digital picture segmentation problems since they are a sort of
deep learning algorithm. CNNs may be trained to recognize
important picture features and then utilize that knowledge to
assign a label to each pixel in an image. Digital picture
segmentation performance has been greatly enhanced by
recent advancements in deep learning algorithms.Tis paper
enhances the convolutional neural network’s robustness and
segmentation performance by introducing a transfer
learning method. Te model described in this research
exhibits strong stability and segmentation accuracy in both
medical picture segmentation and general image segmen-
tation tasks. Tere are still obstacles to be overcome, not-
withstanding the achievements of deep learning algorithms
in digital picture segmentation. Large amounts of labeled
data are required to train the algorithms, which is a signif-
icant problem. To generate huge datasets for various ap-
plications, image annotation is a time-consuming and costly
operation. Future research can focus on developing un-
supervised or weakly supervised image segmentation
methods. Tese methods can reduce the need for large
amounts of labeled data, thereby reducing the cost and
complexity of training algorithms.
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