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Tis paper addresses the multiorder open-dimension three-dimensional rectangular packing problem (3D-MOSB-ODRPP), which
involves packing rectangular items from multiple orders into a single, size-adjustable container. We propose a novel metaheuristic
approach combining a genetic algorithm with the Gurobi solver. Te algorithm incorporates a lower neighborhood search strategy
and is underpinned by a mathematical model representing the multiorder open-dimension packing scenario. Extensive experiments
validate the efectiveness of the proposed approach.Te LNSGA algorithm outperforms Gurobi and the traditional genetic algorithm
in solution quality and computational efciency. For small-scale instances, LNSGA achieves optimal values in most cases. LNSGA
demonstrates signifcant optimization improvements over Gurobi and the genetic algorithm for large-scale instances. Te superior
performance is attributed to the efective integration of the lower neighborhood search mechanism and the Gurobi solver.Tis study
ofers valuable insights for optimizing the packing process in e-commerce warehousing and logistics operations.

1. Introduction

Amidst the rapid growth of e-commerce, the global express
business surpassed 170 billion pieces in 2021, with a year-on-
year surge of over 25% [1]. In China, the postal industry
achieved 139.1 billion dispatched parcels in 2022, with ex-
press business reaching 110.58 billion pieces, showcasing
a year-on-year growth of 2.1% [2]. Efcient parcel packaging
profoundly impacts user experience and can lead to savings
of up to 30% in logistics expenses [3], making it strategically
signifcant for e-commerce enterprises.

Te three-dimensional bin packing problem originated
in the 1960s, focusing on single-container packing [4]. Te
problem was proven to be NP-hard and exact algorithms
were time-consuming [5, 6]. Research transitioned to
metaheuristics, and as the 21st century progressed, the focus

shifted to multicontainer [7], dynamic packing [8], and
machine learning methodologies [9]. Recent advancements
have led to specialized cases such as open-dimension
packing [10] and multiorder mixed packing problems [11].

Open-dimension bin packing relaxes container size
constraints to better refect real-world scenarios. Existing
literature has employed algorithms such as simulated
annealing [12] and particle swarm optimization [13], which
rely on random search and can get trapped in local optima.
Te multiorder mixed packing problem involves factors
such as order priority and time limits, increasing complexity.
Te current research focuses on single objectives, with
limited attention to multiobjective decision-making [11, 14].

As packing tasks become more intricate, traditional exact
algorithms need help with multiple constraints. Metaheuristics
such as genetic algorithms [15], simulated annealing, and
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particle swarm algorithms [16, 17] have shown promise but
face challenges in obtaining satisfactory solutions for
complex problems. Researchers have explored integrating
metaheuristics with exact solvers, giving rise to meta-
heuristics [18, 19]. Metaheuristics combines the global
exploration capabilities of metaheuristics with the local
optimization power of exact solvers, demonstrating su-
perior performance in routing [20, 21], scheduling [22],
and packing problems [23, 24].

Tis paper introduces a novel metaheuristic approach to
address the multiorder open-dimension 3D rectangular
packing problem. Te proposed hybrid algorithm combines
a genetic algorithm with the Gurobi solver to manage
problem complexity and improve upon traditional meta-
heuristics. Te algorithm is underpinned by a mathematical
model representing the packing scenario and incorporates
a lower neighborhood search strategy. Comparative ex-
periments validate the approach’s efectiveness in tackling
modern packing problems and set a foundation for future
research.

Te paper is structured as follows. Section 2 reviews the
literature on packing problems and solution algorithms.
Section 3 presents the problem model and algorithm design.
Section 4 focuses on experimental results and analysis.
Section 5 concludes the paper and discusses future
directions.

2. Literature Review

In this section, we review related research on the packing
problem from three perspectives: application scenarios,
dimensionality, and solution algorithms, respectively.

2.1. Packing Problems inDiferent Scenarios. Te research on
packing problems spans various practical domains, such as
pallet loading, nesting problems, warehouse cargo packing,
container loading, and cutting stock flling problems, among
several others.

(1) Pallet loading problem: the pallet loading problem
(PLP) involves placing multiple items on a pallet of
a certain size to fnd the loading solution with the
lowest stacking height [25–27].

(2) Nesting problem: nesting problems focus on ef-
ciently cutting materials to obtain fnal items while
adhering to shape-based rules [28, 29]. Tese
problems are relevant across diverse industries, such
as textile, clothing, sheet metal cutting, furniture
manufacturing, and automobile industry [30, 31].

(3) Warehouse cargo packing problem: this problem
involves efciently packing goods based on order
information from a warehouse. Scholars have ex-
plored irregular parts packing [32], fexible packing
with nonfxed box sizes in e-commerce, and loading
goods onto vehicles during the outbound warehouse
process [33, 34].

(4) Container loading problem: the container loading
problem (CLP) aims to load items into a container

efciently, maximizing the loading rate or mini-
mizing the number of containers required, while
considering support and stability constraints [35]. It
encompasses three-dimensional container loading
for transportation via ships, trucks, or railroad cars
and air cargo packing. Researchers have also focused
on multicontainer loading problems [36, 37].

(5) Cutting stock flling problem: the cutting stock flling
problem involves efciently arranging multiple items
within a designated space in industrial contexts to
maximize space utilization or minimize the total
volume occupied [38, 39].

Tis paper focuses on the e-commerce warehousing
state’s packing problem, specifcally packing warehouse
goods. Te subsequent section reviews studies on various
dimensions of the packing problem.

2.2. Packing Problems in Diferent Dimensions. Packing
problems can be classifed based on dimensions, mainly one-
dimensional, two-dimensional, and three-dimensional
problems.

2.2.1. One-Dimensional and Two-Dimensional Packing
Problems. Tis study focuses on packing problems in the
context of e-commerce warehousing. One-dimensional
packing problems have been studied but must be more
relevant here [40]. Two-dimensional packing problems have
received signifcant attention, including the guillotine
knapsack packing problem, strip-packing problem with
knifng constraints [41], and case packing for regular and
irregular items [42].Te rectangular packing problem (RPP)
describes the rectangular strip-packing problem (RSPP)
[43]. Researchers have also investigated the undercutting,
strip, and open-dimension 2D packing problems for various
irregular objects [44].

2.2.2. Tree-Dimensional Packing Problem. Te three-
dimensional packing problem extends classical one- and
two-dimensional problems and has gained substantial at-
tention. Researchers often convert 3D problems into 2D
variants for easier solution procedures [45]. Te three-
dimensional packing problems include the following:

(1) 3D bin packing problems (3D-BPP): packing items
of diferent sizes into the minimum number of boxes
[46, 47].

(2) 3D knapsack loading problems (3D-KLP): maxi-
mizing the total value of items loaded into a knap-
sack [48, 49].

(3) 3D container packing problems (3D-CPP): loading
items into a container to minimize volume or
maximize loaded items [48, 50].

Scholars have studied 3D cutting and packing problems
with nonoverlapping constraints and container loading
problems within logistics platforms [51]. Container loading
problems include multicontainer, LTL, and single-container
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loading with transportation priority [52, 53]. Real-world
problems also involve multipoint constraints requiring
specifc box accessibility at each delivery point.

Tis paper focuses on the 3D bin packing problem in e-
commerce settings. However, the complexity of 3D packing
problems challenges traditional exact algorithms. Te next
section reviews solution algorithms for complex 3D packing
problems.

2.3. Algorithmic Research Based on the Tree-Dimensional
Packing Problem. Te 3D bin packing problem is an NP-
hard combinatorial optimization problem. Early studies
used exact algorithms, but as problem scales grew, com-
putation times became lengthy, and satisfactory solutions
took time to obtain. From the 1970s, researchers turned to
heuristic algorithms, with genetic algorithms performing
prominently. In the 21st century, metaheuristic algorithms
were widely adopted. Gezici and Livatyali improved the
Harris Hawks algorithm’s random parameter generation
strategy to enhance the global search ability [54]. Xiong’s
team proposed a deep reinforcement learning-based method
for online packing problems [55].

Unlike single-objective studies, El Yaagoubi et al. used
NSGA-II with heuristic rules for fast solving at diferent
scales [56]. Liu et al. targeted multibin packing problems
with irregular items using 3D point cloud techniques and
deep Q-networks [57]. Wang et al. abstracted resource al-
location in open RAN networks into a 2D bin packing model
and used a self-play reinforcement learning algorithm [58].
Gzara et al. designed an efcient algorithm for pallet loading
problems with vertical support and load constraints [27].
Erbayrak et al. incorporated packing stability and same-type
product grouping constraints into a multiobjective model
[59]. Chen et al. used a biogeography-based optimization
and diferential evolution hybrid for the bin design
problem [15].

As packing problems continue to grow in complexity,
researchers are constantly seeking to enhance solution al-
gorithms. To address the three-dimensional multiple bin size
bin packing problem with open dimension and reserve
parameter (3D-MOSB-ODRPP), this paper proposes an
improved genetic algorithm that incorporates a lower
neighborhood searchapproach.

2.4. Research Gap. Te comprehensive review of packing
problems and solution algorithms reveals several research
gaps this study aims to address. First, existing research on
packing problems has primarily concentrated on fxed-
dimension containers, with limited attention given to
open-dimension scenarios. However, in e-commerce
warehousing, the fexibility to adjust container sizes based
on order requirements is crucial for optimizing resource
utilization and reducing costs.Tis study incorporates open-
dimension packing into the problem formulation, allowing
for the determination of optimal container dimensions.

Second, although metaheuristic algorithms have been
widely adopted for solving packing problems, traditional
approaches often need help to balance global exploration

and local exploitation efectively. Tis study introduces
a novel metaheuristic approach that combines the strengths
of a genetic algorithm for global search with the local op-
timization capabilities of the Gurobi solver. By integrating
these two components, the proposed algorithm aims to
overcome the limitations of traditional metaheuristics and
enhance solution quality.

Lastly, while previous studies have considered various
constraints and practical factors, integrating multiple orders
and open dimensions in a single packing problem has re-
ceived limited attention. Tis study addresses this research
gap by formulating the 3D-MOSB-ODRPP, which optimizes
the packing of multiple orders with varying item sizes and
quantities into a single, size-adjustable container.

To further highlight the unique contributions of this
study, Table 1 compares the present research with the
existing studies across several key dimensions.

As evident from Table 1, the present study simulta-
neously addresses multiple key aspects of the 3D packing
problem. Hile’s existing studies have individually considered
some of these dimensions but still need to integrate them
into a comprehensive problem formulation and solution
approach. By bridging these research gaps, this study aims to
provide a more realistic and efective solution to the complex
3D-MOSB-ODRPP encountered in e-commerce
warehousing.

3. Methodology

Tis section introduces the 3D-MOSB-ODRPP model
proposed in this paper and the improved genetic algorithm
for solving this model. First, we will elaborate on the
mathematical model for the multiorder open-dimension 3D
packing problem, considering practical characteristics such
as mixed orders and adjustable bin sizes. Ten, we will
elucidate the solution approach of the lower neighborhood
search-based enhanced genetic algorithm, laying the
groundwork for the computational experiments in later
sections.

3.1. Problem Description. Tis paper primarily studies the
3D-MOSB-ODRPP. Tis problem expands on the 3D-
ODRPP proposed by Tsai by comprehensively considering
the optimization of adjustable container length, width,
and height under multiple orders with a single box type.
Specifcally, as shown in Figure 1 given multiple packing
orders where each order contains rectangular items with
known length, width, and height, the goal is to determine
a unifed box size so that all items across orders can be
packed into a container of that size, thus maximizing the
container space utilization. Tis problem is more practical
than fxed-size packing by tuning the box dimensions to
balance order demands, but the complex constraints also
increase the difculty of solving it. Tis paper formulates
a mixed-integer programming model to obtain accurate
solutions and designs an improved genetic algorithm for
efective solving, obtaining feasible schemes for the 3D-
MOSB-ODRPP.

International Journal of Intelligent Systems 3



3.2. Model Construction

3.2.1. Variable Assumptions. Tis paper primarily involves
two types of variables: conditional variables and decision
variables. Specifcally, in the multiorder open-dimension 3D
packing problem studied, the length, width, height of items,
and number of orders are conditional variables representing
predetermined inputs. Te container length, width, height,
and item positioning are decision variables that need to be
determined. In subsequent sections, we will defne the
conditional and decision variables involved in the studied
problem and present their exact representations in the
mathematical model.

(1) Conditional variables:
A detailed description of the condition variables is
shown in Table 2.

(2) Decision variables:

A detailed description of the decision variables is
shown in Table 3.

3.2.2. Mixed-Integer Programming Model. We construct
a mathematical model in this section to further solve
the 3D-MOSB-ODRPP proposed in this paper. First, in
order to maximize the space utilization efciency while
determining a unifed container size, we defne the

Table 1: Comparison of the present research with existing studies.

Literatures Open-dimension packing Precision
algorithm+metaheuristic algorithm Multiple orders Practical constraints

[57] ✓ ✓
[60] ✓ ✓
[61] ✓
[62] ✓
[59] ✓ ✓
[63] ✓ ✓ ✓
[64] ✓ ✓ ✓
[65] ✓ ✓ ✓
[66] ✓ ✓
[67] ✓ ✓ ✓
Tis study ✓ ✓ ✓ ✓
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Figure 1: Six kinds of rectangular items rotation direction.

Table 2: Description of condition variables.

Variables Description
lIir Te length of the ir-th item in the r-th order
wI

ir
Te width of the ir-th item in the r-th order

hI
ir

Te height of the ir-th item in the r-th order
q Number of orders
M A sufciently large positive number
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objective function of the mixed-integer programming
model as

max z � l
B

· w
B

· h
B
, (1)

where z represents the box’s volume, i.e., the product of
three dimensions: length, width, and height.

Ten, we introduce the constraint conditions in the
mathematical model. First, to ensure that items can be
smoothly packed into the container during the packing
operation, we need to limit the range of each item inside the
container to three dimensions-length, width, and height.Te
equations are as follows:

xir
+ T

ir
11 · l

I
ir

+ T
ir
12 · w

I
ir

+ T
ir
13 · h

I
ir
≤ l

B
, (2)

yir
+ T

ir
21 · l

I
ir

+ T
ir
22 · w

I
ir

+ T
ir
23 · h

I
ir
≤w

B
, (3)

zir
+ T

ir
31 · l

I
ir

+ T
ir
32 · w

I
ir

+ T
ir
33 · h

I
ir
≤ h

B
, (4)

where equation (2) calculates the range occupied by the item
in the x-axis direction inside the container, considering the
projection on the x-axis after rotation, which should be less
than or equal to the container length lB to ensure feasibility;
equation (3) calculates the range occupied in the y-axis
direction inside the container, which should be less than
or equal to the container width wB to ensure ft along the
y-axis; and equation (4) calculates the range occupied in the
z-axis direction inside the container, which should be less
than or equal to the container height hB to ensure ft along
the z-axis.

After constraining items from exceeding container
boundaries, we need to constrain that items do not overlap
when placed inside the container, as shown in equation (5).
Since after limiting items to be within the container as in
equations (2)–(4), solely satisfying this condition cannot
guarantee that the fnal packing solution is feasible. Pack-
aging multiple items into one container will likely overlap in
placement, leading to infeasibility. Tus, nonoverlap con-
straints must be added to clearly defne the relative place-
ment of items so that they do not overlap inside the
container, thereby ensuring solution feasibility. Together,

equations (2)–(5) ensure that the packing solutionmeets two
key requirements, flling the container and no overlaps.

D
k
ir,ir′

� 0 or 1, (5)

where Dk
ir,i

r′
indicates whether items ir and ir′ overlap in the

k-th direction (k ranges from 1 to 6, representing the positive
and negative directions of x, y, z axes). When Dk

ir,i
r′
takes the

value 0, it means that the two items do not overlap in this
dimension; when it takes the value 1, it means overlap is
allowed between the two items. In other words, 0 indicates no
overlap between the two items, and 1 indicates potential
overlap. By defning the 0-1 variable D, we can explicitly
formulate the relative placement relationship between items in
each axis, thus laying the foundation for subsequent non-
overlap constraint calculations. Note that, the D variable is
unrelated to the specifc overlap situation; it merely indicates
whether overlap is permitted between two items on a given axis.

In addition, to comprehensively and accurately ensure
no overlap between any two items inside the container, we
further need to add nonoverlap constraints between items
with diferent IDs, as shown in equation (6). Although the
previously defned 0-1 variableD clarifed whether overlap is
allowed between two items in each axis, it did not specifcally
defne the absolute spatial relationship between two items.
To achieve absolute nonoverlap inside the container, we
need to calculate the specifc coordinate ranges of diferent
items in each axis and restrict these ranges from intersecting.
Tis ensures that the two items do not overlap in a single-
dimensional axis and avoids overlap when integrated in
a three-dimensional space.

ir, ir′ � 1, 2, · · · m; ir ≠ ir′, (6)

where ir and ir′ represent the IDs of two diferent items in
the same order, ranging from 1 to the total number of items
m in the order.Te item IDs ir and ir′ must difer and cannot
take the same value. Tis is because, for the same item, its
spatial projection region will not overlap with itself. If the
IDs ir and ir′ take the same value, this nonoverlap constraint
will degrade to a constraint between an item and itself,
failing to achieve nonoverlap between diferent items.
Terefore, the nonoverlap constraint must be expressed
between two items with diferent IDs; only then can it truly

Table 3: Description of the decision variables.

Variables Description
lB Te length of the j-th packing case
wB Te width of the j-th packing case
hB Te height of the j-th packing case

xir

Coordinates of the x-axis position of the ir-th item in the r-th order loaded into the
packing box

yir

Coordinates of the y-axis position of the ir-th item in the r-th order loaded into the
packing box

zir

Coordinates of the z-axis position of the ir-th item in the r-th order loaded into the
packing box

T
ir
11, T

ir
12, T

ir
13, T

ir
21, T

ir
22, T

ir
23, T

ir
31, T

ir
32, T

ir
33

0-1 variables that determine the direction of rotation when the ir-th item in the r−th
order is boxed

Dk
ir,ir′

0-1 variable for designing nonoverlapping constraints between item ir and item ir′ in
the r-th order
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defne the relative placement relationship between diferent
items inside the container, avoiding overlap.

After ensuring no conficts between the items to be
packed and the container, we need to add constraints

between diferent items in the same container to avoid
overlaps and other conficts between items, as shown in the
following equations:

xir′
+ T

ir′
11 · l

I
ir′

+ T
ir′
12 · w

I
ir′

+ T
ir′
13 · h

I
ir′
≤ xir

+ 1 − D
1
ir,ir′

􏼐 􏼑 · M, (7)

xir
+ T

ir
11 · l

I
ir

+ T
ir
12 · w

I
ir

+ T
ir
13 · h

I
ir
≤ xir

+ 1 − D
2
ir,ir′

􏼐 􏼑 · M, (8)

yir′
+ T

ir′
21 · l

I
ir

+ T
ir′
22 · w

I
ir′

+ T
ir′
23 · h

I
ir′
≤yir

+ 1 − D
3
ir,ir′

􏼒 􏼓 · M, (9)

yir
+ T

ir
21 · l

I
ir

+ T
ir
22 · w

I
ir

+ T
i3
23 · h

I
ir
≤yir′

+ 1 − D
4
ir,ir′

􏼐 􏼑 · M, (10)

zir′
+ T

ir′
11 · l

I
ir′

+ T
ir′
12 · w

I
ir′

+ T
ir′
13 · h

I
ir′
≤ zir

+ 1 − D
5
ir,ir′

􏼒 􏼓 · M, (11)

zir
+ T

ir
11 · l

I
ir

+ T
ir
12 · w

I
ir

+ T
i
13 · h

I
ir
≤ zir′

+ 1 − D
6
ir,ir′

􏼒 􏼓 · M. (12)

In equation (7), ir and ir′ represent two diferent items,
xi

r′
+ T

i
r′
11 · lIi

r′
+ T

i
r′
12 · wI

i
r′

+ T
i
r′
13 · hI

i
r′

calculates the range
occupied by item ir′ in the x-axis direction.
xir

+ (1 − D1
ir,i

r′
), andM calculates the x-axis coordinate of

item ir multiplied by a large non-negative number M. D1
ir,i

r′
is a 0-1 variable, taking the value 1 when the two items do not
overlap, making M equal to 0 and satisfying the constraint.
When the two items overlap, D1

ir,i
r′
is 0, making M a very

large value, the right side greater than the left, and the
constraint unsatisfed. Similarly, equation (8) ensures that
items ir and ir′ do not overlap in the x-axis direction.

Equation (9), similar to equation (7), mainly calculates
the range occupied by item ir′ in the y-axis direction,
comparing it with the y-coordinate of item ir and a large
number M. When the two items do not overlap on the
y-axis, the 0-1 variable D3

ir,i
r′
is 1, making M equal to 0 and

satisfying the constraint. If the two items overlap on the
y-axis, D3

ir,i
r′
is 0, making M a large value and violating the

constraint. Equation (10) is similar to equation (8), utilizing
the 0-1 variable and the large number M to ensure that items
ir and ir′ do not overlap in the y-axis direction.

Equation (11), similar to equations (7) and (9), calculates
the range occupied by item ir′ in the z-axis direction and
compares it with the z-coordinate of item ir and a large
number M. When the two items do not overlap on the
z-axis, the 0-1 variable D5

ir,i
r′
is 1, making M equal to 0 and

satisfying the constraint. If overlap exists, D5
ir,i

r′
is 0, making

M a large value and violating the constraint. Finally,
equation (12) utilizes the 0-1 variable and large number M to
ensure ir and ir′ do not overlap on the z-axis.

In order to further confict between the items in the box,
the following constraints are therefore set:

D
1
ir,ir′

+ D
2
ir,ir′

+ D
3
ir,ir′

+ D
4
ir,ir′

+ D
5
ir,ir′

+ D
6
ir,ir′
≥ 1, (13)

where D1
ir,i

r′
to D6

ir,i
r′
are 0-1 variables indicating whether

items ir and ir′ overlap in the three dimensions. Since each D

variable can only take 0 or 1, at least one of these variables
must take the value 1, meaning the two items do not overlap
in that dimension.Tus, this constraint ensures that any two
items ir and ir′ do not overlap in at least one dimension,
avoiding three-dimensional conficts between them.

Te abovementioned constraints are mainly used to avoid
overlap conficts between items and between items and
container boundaries. To accurately calculate the space oc-
cupied by items in the container’s length, width, and height
dimensions, all possible placement directions of items need to
be considered. For example, a rectangular item can be placed
horizontally, vertically, or at various tilts. However, com-
puting and storing all direction combinations for each item
will greatly increase model complexity and solving difculty.
Terefore, this model uniquely determines the placement
direction of each item. Specifcally, we introduce 0-1 variables
T to indicate the rotation decision of each item in three
dimensions and construct rotation matrices to represent the
projected length in each direction. As shown in equations
(14)–(19), each item only chooses one placement direction,
signifcantly reducing the model difculty.

T
ir
11 + T

ir
12 + T

ir
13 � 1, (14)

T
ir
21 + T

ir
22 + T

ir
23 � 1, (15)

T
ir
31 + T

ir
32 + T

ir
33 � 1, (16)

T
ir
11 + T

ir
21 + T

ir
31 � 1, (17)

T
ir
12 + T

ir
22 + T

ir
32 � 1, (18)
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T
ir
13 + T

ir
23 + T

ir
33 � 1, (19)

where equation (14) indicates that item ir has three potential
rotation states in the positive x-axis direction of the container,
requiring that only one of these three states can take the value
one and the rest 0. Tis ensures a unique rotation decision for
the item in the x-axis direction. Equations (15) and (16) are
similar, limiting item ir to only one rotation state in the positive
y-axis and z-axis of the container. Ten, equation (17) further
requires that for the rotation states of each axis, only one can be
uniquely determined from the three options. Tat is, the ro-
tation combination of an itemmust take one state per axis and
cannot repeat selecting two or more states in one axis. Finally,
equations (18) and (19) ensure that the length, width, and
height of an item can only have unique efects in the three axes.

Te following constraint conditions are set to ensure the
uniqueness of item ir’s rotation state:

T
ir
11, T

ir
12, T

ir
13, T

ir
21, T

ir
22, T

ir
23, T

ir
31, T

ir
32, T

ir
33 � 0 or 1, (20)

where T
ir
jk(j � 1, 2, 3; k � 1, 2, 3) represents the 0-1 variable

for the k-th rotation state of item ir in the j-th axis direction.
Each T

ir
jk variable can only take 0 or 1, 0 meaning item ir does

not select the corresponding rotation state in that axis di-
rection, and 1meaning it selects that rotation state in that axis.
Tese 0-1 variables are introduced to explicitly represent the
rotation decision of items, providing a quantitative way to
model the rotation states. Since each item can only select one
rotation state, by requiring the T variables in each axis to sum
to 1, the uniqueness of the rotation scheme can be ensured.

In addition, to defne the value range of the rotation
decision k and to ensure accurate computing of the co-
ordinate’s positional relationship between items and the
container, the following equation is set as:

k � 1, 2, 3, 4, 5, 6, (21)

where k takes diferent integer values to represent the
correspondence between item length and width directions
and the three coordinate axes: k � 1 indicates that the item
length direction is consistent with the x-axis, k � 2 indicates
that the item length direction is consistent with the y-axis,
k � 3 indicates that the item length direction is consistent
with the z-axis, k � 4 indicates that the item width direction
is consistent with the x-axis, k � 5 indicates that the item
width is consistent with the y-axis, and k � 6 indicates that
the item width is consistent with the z-axis. Tis variable is
introduced to establish the connection between item length
and width directions and the spatial coordinate axes di-
rections, with k indicating possible item placement di-
rections. After determining the value of k, items’ spatial
occupancy and coordinate positions can be calculated based
on their projected dimensions on the corresponding axes.

Finally, to facilitate subsequent calculations of the
model, a relaxation constraint is set here as

M≫ 0. (22)

3.2.3. Algorithm Design. In order to address the challenges
posed by the 3D-MOSB-ODRPP, this section proposes
a hybrid approach termed the Gurobi-enhanced local

neighborhood search genetic algorithm (LNSGA). Tradi-
tional genetic algorithms focus on global exploration,
whereas the local neighborhood search mechanism targets
local exploration. Consequently, the LNSGA algorithm in-
tegrates both the global and local exploration organically.
Moreover, following the local neighborhood search, in-
voking the Gurobi solver ensures that the returned solution
represents the globally optimal solution for the three-
dimensional item packing.

A plain genetic algorithm (GA) is also implemented for
the 3D-MOSB-ODRPP problem to compare and analyze the
performance of the LNSGA algorithm. Te GA follows the
basic structure of genetic algorithms, including population
initialization, ftness evaluation, selection, crossover, and
mutation. However, unlike the LNSGA algorithm, the GA
does not incorporate the Gurobi solver or the lower
neighborhood search mechanism.

In the GA implementation, the three-space (TS) heu-
ristic algorithm is employed to calculate the packing con-
fguration of items. Te TS algorithm is a fundamental
heuristic approach in three-dimensional packing problems.
It operates by recursively dividing the remaining space into
three subspaces and selecting the most suitable subspace for
placing the next item. Te process continues until all items
are packed or no feasible subspace is available.

Te pseudocode of the GA algorithm is shown in Al-
gorithm 1, and its key steps are as follows:

(1) Initialization: generating an initial population of
individuals, each representing a potential packing
sequence of items.

(2) Fitness evaluation: evaluating each individual’s ft-
ness in the population using the TS algorithm. Te
volume utilization ratio of the packing confguration
determines the ftness value.

(3) Selection: applying a selection operator, such as
tournament selection or roulette wheel selection, to
choose individuals with higher ftness values for
reproduction.

(4) Crossover: performing a crossover operation, such as
one-point crossover or two-point crossover, to create
ofspring individuals by exchanging genetic in-
formation between selected parent individuals.

(5) Mutation: applying a mutation operator, such as
swap mutation or insertion mutation, to introduce
random variations in the ofspring individuals.

(6) Replacement: replacing a portion of the population
with the newly generated ofspring individuals based
on their ftness values.

(7) Termination: repeating steps 2–6 until a predefned
termination criterion is met, such as reaching
a maximum number of generations or achieving
a satisfactory solution quality.

Compared to the LNSGA algorithm, the GA relies solely
on the global exploration capabilities of genetic algorithms
and the basic TS heuristic for packing calculations. It does not
beneft from the targeted lower neighborhood search
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mechanism or the global optimization capabilities of the
Gurobi solver. As a result, the GA may need more perfor-
mance in terms of solution quality and computational ef-
ciency, especially for complex 3D-MOSB-ODRPP instances.

Te pseudocode of the LNSGA algorithm is shown in
Algorithm 2, and its key steps are as follows:

(1) Let O � O1, O2, . . . , Oq denote the set of q orders,
where each order Or (r ∈ 1, 2, . . . , q) is considered as
a distinct three-dimensional open-dimension rect-
angular packing problem (3D-ODRPP). Te Gurobi
solver is utilized to obtain the optimal packing di-
mensions (Lr, Wr, and Hr) for each order Or. Tra-
ditional genetic algorithms focus on global
exploration by searching the solution spaceS through
population evolution and information exchange.
However, for complex 3D-MOSB-ODRPP instances,
global exploration alone may lead to local optima. A
local neighborhood search mechanism is introduced
to perform local optimization on the current solution
s ∈ S to enhance local search capability.

(2) We sort the optimal packing dimensions of each
order (Lr, Wr, and Hr) in a descending order.Ten,
we determine the maximum length, width, and
height values across all orders, denoted as
(Lup, Wup, and Hup), which serve as the upper
bounds for the 3D-MOSB-ODRPP solution.
Mathematically, it is represented as

L
up

� max L
1
, L

2
, · · · , L

q
,

W
up

� maxW
1
, W

2
, · · · , W

q
,

H
up

� maxH
1
, H

2
, · · · , H

q
.

(23)

(3) Te lower neighborhood search scope for open
dimensions is defned as follows: given the upper
bounds (Lup, Wup, and Hup), the 1-step lower

neighborhoodN1(Lup, Wup, and Hup) consists of 7
value options, obtained by adding 0 or −1 to each
dimension, excluding the case where all increments
are 0. Te lower neighborhood search aims to fnd
better solutions s′ ∈N1(s) within the neighbor-
hood of the current solution s. By designing ap-
propriate neighborhood structures and search
strategies, the algorithm can escape from local
optima and explore the solution space more deeply.
Te lower neighborhood search adjusts the length,
width, and height dimensions to generate neigh-
boring solutions, thereby selecting the best one as
the new current solution (numbered 1–7 as shown
in Table 4).

(4) Based on the open dimensions’ 1-step lower
neighborhood search scope values, a step search
path is designed as shown in Figure 2. Te seven
nodes in each search step correspond to the seven
cases in the 1-step lower neighborhood search, and
the multi-step search accumulates value increments
based on the 1-step search. For example, starting
from (Lup, Wup, and Hup), when the search path is
5⟶ 2⟶ 3⟶ 3, the lower neighborhood
search values experienced sequentially by the open
dimension values are shown in Table 5.

(5) Te sequence of g node numbers in a lower
neighborhood search path is used as the chromo-
some encoding of an individual in the genetic al-
gorithm. Let Ci � (n1, n2, . . . , ng) denote the
chromosome of the i-th individual, where
nj ∈ 1, 2, . . . , 7 represents the node number at the
j-th step of the search path.

(6) We randomly generated an initial population P �

C1, C2, . . . , CMgroup
consisting of Mgroup chromo-

somes, each corresponding to a lower neighbor-
hood search path.

Require: population size N, crossover probability pc, mutation probability pm, and maximum number of generations Gmax
Ensure: best solution s∗

(1) Initialize population P with N randomly generated individuals
(2) Evaluate the ftness of each individual in P using the TS heuristic
(3) g← 0
(4) while g<Gmax do
(5) P′ ←∅
(6) while |P′|<N do
(7) Select parents p1 andp2 from P using the selection operator
(8) o1, o2← Crossover (p1, p2) with probability pc

(9) o1← Mutate (o1) with probability pm

(10) o2← Mutate (o2) with probability pm

(11) Evaluate the ftness of o1 and o2 using the TS heuristic
(12) P′ ←P′ ∪ o1, o2􏼈 􏼉

(13) end while
(14) P←P′
(15) g←g + 1
(16) end while
(17) return Best solution s∗ from P

ALGORITHM 1: Genetic algorithm (GA) for 3D-MOSB-ODRPP.

8 International Journal of Intelligent Systems



(7) Te ftness function is then designed to evaluate the
quality of each individual Ci in the population as

fitness Ci( 􏼁 � L
up

Ci( 􏼁 · W
up

Ci( 􏼁 · H
up

Ci( 􏼁, (24)

where Lup(Ci), Wup(Ci), and Hup(Ci) represent the
maximum length, width, and height of the packing
solution obtained by following the search path
encoded in chromosome Ci, and the objective is to
minimize the ftness value.

(8) Te roulette wheel selection is applied to select
individuals with high ftness values to form a new
population P′. In each iteration, the individuals in
the current population P are sorted by their ftness

values. Te individual with the minimum ftness
value is selected with a probability of (0.5)1, the
second minimum with a probability of (0.5)2, and
so on, until a new population P′ with the same size
as P is formed.

(9) Based on the crossover probability pc, we randomly
selected two chromosomes Ci and Cj from the
population P′. A crossover point k ∈ 1, 2, . . . , g − 1
is randomly chosen and the gene segments are ex-
changed after the crossover point between Ci and Cj

to generate two ofspring chromosomes Ci
′ and Cj

′.
Ci andCj in the population are then replaced withCi

′

and Cj
′. Te crossover process is shown in Figure 3.

Require: population size N, crossover probability pc, mutation probability pm, maximum number of generations Gmax, and
neighborhood size k

Ensure: best solution s∗

(1) Initialize population P with N randomly generated individuals
(2) for each individual s in P do
(3) Evaluate the ftness of s using the Gurobi solver
(4) s′ ← LocalNeighborhoodSearch(s, k)
(5) s∗ ← Gurobi (s′)
(6) Update s with s∗ in P

(7) end for
(8) g← 0
(9) while g<Gmax do
(10) P′ ←∅
(11) while |P′|<N do
(12) Select parents p1 andp2 from P using the selection operator
(13) o1, o2← Crossover (p1, p2) with probability pc

(14) o1← Mutate (o1) with probability pm

(15) o2← Mutate (o2) with probability pm

(16) for each ofspring o in o1, o2 do
(17) Evaluate the ftness of o using the Gurobi solver
(18) o′ ← LocalNeighborhoodSearch(o, k)
(19) o∗ ← Gurobi (o′)
(20) Update o with o∗ in P′
(21) end for
(22) P′ ←P′ ∪ o1, o2􏼈 􏼉

(23) end while
(24) P←P′
(25) g←g + 1
(26) end while
(27) return Best solution s∗ from P

ALGORITHM 2: Local neighborhood search genetic algorithm (LNSGA) for 3D-MOSB-ODRPP.

Table 4: Lower neighborhood search for open dimensions 1-step range taking the case.

Number Increments in length,
width, and height Variable neighborhood values

1 (−1, 0, 0) (Lup − 1, Wup, Hup)

2 (0, −1, 0) (Lup, Wup − 1, Hup)

3 (0, 0, −1) (Lup, Wup, Hup − 1)

4 (−1, −1, 0) (Lup − 1, Wup − 1, Hup)

5 (0, −1, −1) (Lup, Wup − 1, Hup − 1)

6 (−1, 0, −1) (Lup − 1, Wup, Hup − 1)

7 (−1, −1, −1) (Lup − 1, Wup − 1, Hup − 1)
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(10) Based on the mutation probability pm, we randomly
selected a chromosome Ci from the population P′.
Amutation point k ∈ 1, 2, . . . , g is randomly chosen
and the gene at position k is replaced with a ran-
domly selected value from 1, 2, . . . , 7 to generate
a new chromosome Ci

′. Ci is then replaced with Ci
′ in

the population. Te mutation process is shown in
Figure 4.

(11) Steps 7 through 10 are repeated until the maximum
number of iterations EPOCH is reached. To further
enhance performance, the Gurobi solver is invoked
after each local neighborhood search to perform
global optimization on the current solution s. Te
Gurobi solver is an exact method that solves the 3D
packing problem to obtain the global optimal so-
lution s∗ based on s. By combining local neigh-
borhood search with the Gurobi solver, the LNSGA
algorithm achieves an organic integration of global
exploration and local search, enabling it to escape
from the local optima and obtain high-quality
global optimal solutions.

3.3. Computational Experiment

3.3.1. Dataset Design. Te data required for the current
experiment includes item size information and order data
information.

(1) Item Information.
Te SKU of an item represents the smallest pack-
aging unit of storage items and serves as an essential
information for order items. Diferent items have
varying sizes and SKU dimensions. Tis study sets
the upper and lower limits, along with the change
step, for each item’ SKU’s length, width, and height,
as shown in Table 6. Accordingly, there are ten
possible values for each dimension of the item SKU,
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Figure 2: Schematic of a g-step search line in the lower neighborhood.

6 2 7 5 3 7 3 6 2……

5 4 1 2 4 5 6 2 3……

original chromosome 1

original chromosome 2

6 2 7 5

3 7 3 6 2……5 4 1 2

4 5 6 2 3……

new chromosome 1

new chromosome 2

Cross operation

Figure 3: Chromosome crossover operations.

3 6 2 7 3 2 1 4 1……original chromosome 3

3 6 2 7 7 2 1 4 1……new chromosome 3

Figure 4: Chromosome mutation operations.

Table 5: Neighborhood search fetches experienced sequentially by the open dimension.

Search nodes Variable
neighborhood increment

Open-size node cumulative
fetch

5 (0, −1, −1) (Lup, Wup − 1, Hup − 1)

2 (0, −1, 0) (Lup, Wup − 2, Hup − 1)

3 (0, 0, −1) (Lup, Wup − 2, Hup − 2)

5 (0, −1, −1) (Lup, Wup − 3, Hup − 3)

3 (0, 0, −1) (Lup, Wup − 3, Hup − 4)
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resulting in 1000 diferent SKU combinations when
considering the variations across all three di-
mensions. Tus, 1000 unique item sizes form the
basis for generating item order information.

(2) Multiscale order dataset.
From the generated 1000 types of items, 2 to 6 items
are randomly selected as the item information for an
order. For example, when dealing with an order
consisting of 4 items, its schematic diagram is shown
in Figure 5. In order to conduct computational
experiments with diferent order quantities, two sets
of cases with diferent scales of order quantities are
randomly selected, totaling 24 scenarios for the
experiments. Each scenario includes orders of
varying quantities, and all orders in each scenario are
required to be packed into packaging boxes of the
same size and model.

3.3.2. Algorithm’s Hyperparameter Settings. Tis study
conducted computational experiments on six sets of small-
scale test cases to determine the fnal hyperparameter values
for the LNSGA algorithm. Two of these test cases exhibited
relatively unique order item quantities and sizes, resulting in
identical optimal ftness values under diferent parameter
settings. Although such instances were relatively infrequent,
the careful analysis revealed that when data scales were small
or the problems were relatively simple, any combination of
hyperparameters could easily attain the optimal solution.
Alternatively, in specifc scenarios, all combinations of
hyperparameters could readily converge to the same local
optimum, resulting in identical optimal solution values
across all hyperparameter combinations.

It is worth noting that among the experimental results of
the six test cases, the fnal values of the hyper-
parameterspopulation size (GROUP) and the number of
algorithm iterations (EPOCH) were consistent, 35 and 10,
respectively. However, there were multiple possible values
for the hyperparameters pc (crossover probability) and pm
(mutation probability). Te pc values were 0.4, 0.65, and 0.9,
while the pm values were 0.1, 0.2, and 0.3. Considering that
pc and pm represent the population’s crossover probability
and mutation probability, respectively, larger values of pc
and pm within the allowed range indicate more active
crossover and mutation in the population, thus increasing
the likelihood of fnding solutions with higher optimization.
Terefore, the fnal values of pc and pm were determined to
be 0.9 and 0.3, respectively.

Te hyperparameters to be determined include the
GROUP, the EPOCH, the pc, and the pm. Te upper and
lower limits for each hyperparameter search, along with the

number of variation steps, are shown in Table 7. Te com-
putational process of the three test cases with two orders each
in the small-scale example serves as the reference basis for
determining the hyperparameters. As shown in Table 7, the
optimal parameter combination for the four hyperparameter
test cases is GROUP=35, EPOCH=10, pc = 0.4, 0.65, or 0.9,
and pm=0.1, 0.2, or 0.3. Te optimal results for the three test
cases under diferent parameter combinations and compu-
tation times are illustrated in Figure 6.Te fnal chosen values
for the hyperparameter combination are GROUP=35,
EPOCH=10, pc = 0.9, and pm=0.3 to ensure that the ftness
function value converges stably to the optimal state.

4. Calculation Results and Analysis

4.1. Comparative Experiments with Gurobi

(1) Computational experiments for small-scale orders.
To substantiate the efcacy of the lower neigh-
borhood search genetic algorithm (LNSGA) for
the three-dimensional multiorder single-box
open-dimension rectangular packing problem
(3D-MOSB-ODRPP), we conducted a series of
experiments focusing on small-scale order cases.
Tese cases, comprising 2–8 orders, were selected
to provide a controlled environment for assessing
the algorithm’s performance. Te determined
hyperparameters for the LNSGA, as outlined in
Figure 6, were utilized to compute these test cases
within the generated dataset.
Table 8 provides a comprehensive overview of the
solutions obtained from both LNSGA and Gurobi,
including the container dimensions (L, W, andH),
the objective values, and the computational time
required to reach these solutions. To evaluate the
performance of LNSGA, we calculated the per-
centage gap (GAP) between the objective values
achieved by LNSGA and the optimal values de-
termined by Gurobi.

Table 6: Order item SKU size generation information.

Lower limit Upper limit Variation of
the step size

Length 21 30 1
Width 11 20 1
Height 1 10 1
Total number of SKUs 1000

Z L

H

W

X

Y

Figure 5: Boxing schematic for orders.

International Journal of Intelligent Systems 11



Experimental results show that in small-sample in-
stances requiring rapid decision-making, LNSGA
demonstrates a good balance between solution
quality and computational resources. Specifcally,
without imposing a time limit, the LNSGA algorithm
performs signifcantly better than the Gurobi solver,
achieving optimal values in the frst three test cases.
Despite some deviation from the optimal values as
the number of orders increases (with a maximum
GAP value of 17.5% for LNSGA), it still exhibits
considerable advantages over Gurobi (with a maxi-
mum GAP value of 72.81%).

(2) Computational experiments for large-scale orders.
Based on the same hyperparameter settings, the
LNSGA algorithm is used to compute test cases with
large-scale order quantities in the generated dataset
(for large-scale order cases, refer to cases with 12 to
18 orders). Te results are compared with the cases
solved directly using the Gurobi solver, as shown in
Table 9.
Under the same computation time for each test case,
the proposed LNSGA algorithm in this paper ach-
ieves signifcant optimization improvements over
the Gurobi solver, with the highest optimization level
being 71.59% and the average being 50.16%. In ad-
dition, it can be seen from Table 8 that as the order
quantity scale increases, the CPU computation time
also increases accordingly.

4.2. Comparative Experiments with GA. In the previous
section, we compared the performance gap between the
commercial solver Gurobi and the proposed LNSGA algo-
rithm. However, despite the signifcant advantages of the
LNSGA algorithm in terms of both runtime and optimi-
zation accuracy over Gurobi, more is needed to demonstrate
that the LNSGA algorithm is optimal for solving 3D-MOSB-
ODRPP. Terefore, to validate the necessity of our modi-
fcations to the GA, this section will introduce comparative
experiments between GA and LNSGA.

Although LNSGA and GA have the same iteration limit
(EPOCH), LNSGA demonstrates faster computational
speed than GA. Tis can be attributed to several factors as
follows:

(1) Te GA algorithm does not invoke the Gurobi solver
for obtaining packing solutions. Instead, it employs
a heuristic algorithm based on the three-space strategy.
Te three-space strategy requires maintaining a list of
spaces and calculating the splitting and merging of
spaces, which is relatively time-consuming.

(2) Te basic neighborhood searchmechanism in GA can
lead to the inefcient search of the packing box di-
mensions. Te packing method needs to be recal-
culated when larger or smaller packing box
dimensions are explored. Excessively large or small
packing box dimensions require more time to cal-
culate the splitting and merging of spaces, resulting in
increased time for updating the space list.

Table 7: Parameter setting of the genetic algorithm.

Lower limit
of change

Upper limit
of change

Variation of
the step
size

Optimal solution
parameter set

Final parameter
selection

Group 20 50 3 35 35
EPOCH 10 100 3 10 10
pc 0.4 0.9 3 0.4, 0.65, 0.9 0.9
pm 0.1 0.3 3 0.1, 0.2, 0.3 0.3
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Figure 6: Hyperparameter settings to calculate experimental results.
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(3) In complex scenarios involving space splitting and
merging, the computation time for calculating the item
packing solution also increases to a certain extent.

On the other hand, LNSGA incorporates a targeted
lower neighborhood search mechanism, which efciently
explores the packing box dimensions by adjusting the length,
width, and height within a specifc range. Tis targeted
search reduces the occurrence of excessively large or small
packing box dimensions, thereby avoiding unnecessary
calculations of space splitting and merging. Moreover,
LNSGA utilizes the Gurobi solver to obtain globally optimal
packing solutions for each lower neighborhood search,
further enhancing its computational efciency. Terefore,
the GA’s reliance on the three-space strategy and its basic
neighborhood search mechanism leads to slower compu-
tational speed than LNSGA. Te targeted lower neighbor-
hood search and integration of the Gurobi solver in LNSGA
contribute to its faster performance.

(1) Computational experiments for small-scale orders.

In this section, we conducted experiments with small-
scale order data to compare the performance of the
LNSGA algorithm with the genetic algorithm (GA)
and the variable neighborhood search (VNS) algo-
rithm. Te experimental results, as shown in Table 10,
demonstrate the LNSGA algorithm’s superiority in
terms of solution quality and computational efciency.
From the perspective of the objective value, which
represents the volume of the packing box
(L × W × H), the LNSGA algorithm consistently
outperformed the GA and VNS algorithms in all 12
test cases. Compared to the GA, the LNSGA algo-
rithm achieved a signifcant improvement in the
target function, ranging from 34.05% to 71.93%. On
average, the LNSGA algorithm obtained an objective
value of 6179, which is 7.38% lower than the GA’s
average of 6671 and 9.69% lower than the VNS’s
average of 6842. Tis indicates that the LNSGA al-
gorithm can fnd more compact packing solutions,
thereby minimizing the required box volume.

Regarding computation time, the LNSGA algorithm
exhibited remarkable efciency compared to the GA
and VNS algorithms. Across all test cases, the
LNSGA algorithm reduced the runtime by more
than 50% compared to the GA.As the number of
orders increased from 2 to 8, the computation time
of the GA algorithm showed a signifcant upward
trend, ranging from 60 seconds to approximately
450 seconds. In contrast, the computation time of the
LNSGA algorithm increased more gradually,
reaching a maximum of around 168 seconds for the
test case with eight orders. On average, the LNSGA
algorithm had a computation time of 85.74 seconds,
which is 58.38% faster than the GA’s average of
206.08 seconds.

Compared to the VNS algorithm, the LNSGA al-
gorithm demonstrated comparable computation
times for smaller test cases with 2–4 orders. How-
ever, as the number of orders increased to 6 and 8,
the LNSGA algorithm maintained its computational
efciency, while the VNS algorithm’s computation
time increased more rapidly. Despite the slightly
higher average computation time of the LNSGA
algorithm (85.74 seconds) compared to the VNS
algorithm (50.72 seconds), the LNSGA algorithm
achieved signifcantly better objective values, justi-
fying the marginal increase in computation time.

(2) Computational experiments for large-scale orders.
In this section, we mainly compared the performance
of GA and LNSGAwithmore orders.Te comparison
results are shown in Table 11. From the perspective of
the objective value, the LNSGA algorithm achieved
better packing solutions than the GA algorithm in all
cases. Although the average improvement in the
target function value was not as signifcant as in the
small-scale cases, the quality of solutions obtained by
LNSGA still exhibited a signifcant advantage. In
terms of computation time, the LNSGA algorithm
also outperformed the GA algorithm, reducing the
runtime by approximately 50%. As the number of

Table 9: Case results for large-scale order sizes (comparison with Gurobi).

Number Number of
orders

Gurobi LNSGA
CPU time

(s)

Optimization of
LNSGA over
Gurobi (%)Solution (L, W, H)

Objective value:
(L, W, H)

Solution (L, W, H)
Objective value:

(L, W, H)

1 12 (57, 20, 20) 22800 (89, 20, 10) 17800 228.92 21.93
2 12 (32, 30, 22) 21120 (30, 20, 10) 6000 202.35 71.59
3 12 (30, 28, 24) 20160 (30, 20, 10) 6000 244.26 70.24
4 14 (32, 28, 25) 22400 (56, 20, 10) 11200 293.26 50.00
5 14 (30, 28, 24) 20160 (30, 20, 10) 6000 293.41 70.24
6 14 (30, 30, 21) 18900 (30, 20, 10) 6000 254.57 68.25
7 16 (31, 27, 23) 19251 (30, 20, 10) 6000 257.23 68.83
8 16 (44, 30, 18) 23760 (55, 20, 10) 11000 320.07 53.70
9 16 (36, 30, 20) 21600 (37, 20, 10) 7400 376.72 65.74
10 18 (30, 30, 20) 18000 (88, 20, 10) 17600 386.37 2.22
11 18 (30, 27, 23) 18630 (78, 20, 10) 15600 316.59 16.26
12 18 (32, 29, 20) 18560 (53, 20, 10) 10600 356.51 42.89

Average — 20445 — 10100 294.19 50.16
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orders in the test cases increased, the computation
time of the GA algorithm showed an upward trend,
while the growth of computation time for the LNSGA
algorithm was more gradual. Tis once again vali-
dated the computational efciency advantage of the
LNSGA algorithm when dealing with large-scale
complex orders.
Tus, the LNSGA algorithm obtained superior
packing solutions by introducing lower neighbor-
hood search while ensuring computational ef-
ciency. Even in complex environments with many
orders, integrating genetic algorithm and local
search in LNSGA still demonstrated signifcant
efectiveness.

5. Conclusions and Prospects

5.1. Conclusion. In this paper, we introduced a novel met-
aheuristic approach to address the multiorder open-
dimension 3D rectangular packing problem (3D-MOSB-

ODRPP), a complex challenge exacerbated by the rapid
growth of e-commerce. Te proposed algorithm, a hybrid of
a genetic algorithm and the Gurobi solver, efectively
manages the complexity of the problem by combining global
exploration and local optimization. Te algorithm is
underpinned by a mathematical model that accurately
represents the multiorder open-dimension packing scenario
and an enhanced genetic algorithm incorporating a lower
neighborhood search strategy.

Extensive comparative experiments validate the efec-
tiveness of the proposed approach. Te LNSGA algorithm
consistently outperforms the commercial solver Gurobi and
the traditional genetic algorithm (GA) regarding both so-
lution quality and computational efciency. For small-scale
instances, the LNSGA algorithm achieves optimal values in
most test cases, with minimal deviation from the optimal
values as the number of orders increases. For large-scale
instances, the LNSGA algorithm demonstrates signifcant
optimization improvements over Gurobi, with an average
improvement of 50.16%. Compared to the GA, the LNSGA

Table 11: Case results for larger-scale order sizes (comparison with GA).

Number Number of
orders

GA LNSGA

Solution (L, W, H)
Objective value:

(L, W, H)

CPU time
(s) Solution (L, W, H)

Objective value:
(L, W, H)

CPU time
(s)

1 2 (84, 22, 10) 18480 566.97 (89, 20, 10) 17800 228.92
2 2 (31, 21, 10) 6510 479.96 (30, 20, 10) 6000 202.35
3 2 (30, 20, 10) 6000 577.57 (30, 20, 10) 6000 244.26
4 4 (50, 20, 10) 10000 684.31 (56, 20, 10) 11200 293.26
5 4 (31, 20, 10) 6200 679.49 (30, 20, 10) 6000 293.41
6 4 (30, 20, 10) 6000 571.58 (30, 20, 10) 6000 254.57
7 6 (25, 30, 10) 7500 657.76 (30, 20, 10) 6000 257.23
8 6 (49, 20, 10) 9800 834.24 (55, 20, 10) 11000 320.07
9 6 (34, 23, 10) 7820 1012.27 (37, 20, 10) 7400 376.72
10 8 (88, 20, 10) 17600 937.61 (88, 20, 10) 17600 386.37
11 8 (78, 20, 10) 15600 703.22 (78, 20, 10) 15600 316.59
12 8 (45, 23, 10) 10350 903.98 (53, 20, 10) 10600 356.51

Average — 10155 717.41 — 10100 294.19

Table 10: Case results for small-scale order sizes (comparison with VNS and GA).

Number Number of
orders

GA VNS LNSGA

Solution
(L, W, H)

Objective
value: LWH

CPU
time (s)

Solution
(L, W, H)

Objective
value:

L × W × H

CPU
time
(s)

Solution
(L, W, H)

Objective
value:

L × W × H

CPU
time (s)

1 2 (8, 26, 29) 6032 60.76 (9, 25, 29) 6525 24.61 (8, 20, 29) 4640 25.53
2 2 (9, 22, 30) 5940 92.58 (10, 21, 31) 6510 29.92 (9, 19, 30) 5130 36.72
3 2 (7, 28, 30) 5880 43.83 (8, 27, 30) 6480 28.25 (7, 18, 30) 3780 21.7
4 4 (10, 21, 30) 6300 157.01 (10, 20, 29) 5800 49.96 (10, 20, 30) 6000 68.1
5 4 (9, 20, 30) 5400 190.5 (10, 21, 29) 6090 25.43 (9, 20, 30) 5400 81.93
6 4 (10, 20, 30) 6000 167.44 (10, 20, 30) 6000 52.53 (10, 20, 30) 6000 72.96
7 6 (10, 20, 30) 6000 198.16 (10, 20, 31) 6200 64.82 (10, 20, 30) 6000 89.98
8 6 (10, 28, 30) 8400 283.27 (10, 22, 32) 7040 58.74 (10, 20, 37) 7400 107.78
9 6 (10, 20, 30) 6000 296.28 (11, 20, 29) 6380 78.4 (10, 20, 30) 6000 107.88
10 8 (10, 20, 31) 6200 444.52 (12, 20, 30) 7200 66.49 (10, 20, 32) 6400 168.41
11 8 (10, 20, 52) 10400 264.08 (13, 19, 55) 11495 61.54 (10, 20, 57) 11400 120.61
12 8 (10, 25, 30) 7500 274.55 (11, 20, 29) 6380 67.91 (10, 20, 30) 6000 127.33

Average — 6671 206.08 — 6842 50.72 — 6179 85.74
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algorithm achieves a signifcant improvement in the ob-
jective function, ranging from 34.05% to 71.93%, while
reducing the runtime by more than 50%.

Te superior performance of the LNSGA algorithm can
be attributed to its efective integration of the lower
neighborhood search mechanism and the Gurobi solver.
Te targeted lower neighborhood search efciently explores
the packing box dimensions, avoiding unnecessary calcu-
lations and enhancing computational efciency. Te
Gurobi solver, invoked after each local neighborhood
search, ensures globally optimal packing solutions. Tis
hybrid approach achieves an organic integration of global
exploration and local search, enabling the algorithm to
escape from local optima and obtain high-quality global
optimal solutions.

Tus, combining a genetic algorithm with the Gurobi
solver and incorporating a lower neighborhood search
strategy, the proposed metaheuristic approach demon-
strates signifcant efectiveness in tackling the complex 3D-
MOSB-ODRPP. Te approach addresses the current
complex scenarios in e-commerce warehousing and sets
a foundation for future research in the feld of 3D packing
optimization.

5.2. Management Insights. Te fndings of this study ofer
valuable insights for managers in e-commerce ware-
housing and logistics operations. Te proposed meta-
heuristic approach provides an efective tool for optimizing
the packing process, enabling managers to make informed
decisions that maximize space utilization and minimize
logistics costs.

First, the multiorder open-dimension packing model
allows managers to simultaneously consider the varying
requirements of diferent orders. By optimizing the packing
of multiple orders into a single, size-adjustable container,
managers can improve order consolidation and reduce the
number of containers required, leading to signifcant cost
savings in transportation and storage.

Second, the lower neighborhood search strategy in-
corporated in the enhanced genetic algorithm ofers
a practical approach for managers to explore optimal
packing confgurations. By adjusting the container’s length,
width, and height within a specifc range, managers can
identify the most suitable container dimensions that balance
the demands of diferent orders while maximizing space
utilization.

Tird, integrating the Gurobi solver with the mathe-
matical approach ensures that the packing solutions ob-
tained are globally optimal. Tis gives managers confdence
that the recommended packing confgurations are the best
possible solutions, considering all relevant constraints and
objectives.

Furthermore, the comparative experiments demonstrate
the superior performance of the LNSGA algorithm over
traditional methods, such as the commercial solver Gurobi
and the pure genetic algorithm. Managers can leverage these
fndings to justify adopting the proposed approach in their
operations, as it signifcantly improves both solution quality
and computational efciency.

5.3. Limitations and Future Work. While the proposed
metaheuristic approach efectively addresses the 3D-MOSB-
ODRPP, several limitations warrant attention in future
research.

Primarily, the study focuses on rectangular items and
containers, simplifying real-world packing scenarios. Future
research could enhance the approach to handle irregular
shapes and additional constraints.

In addition, computational experiments use randomly
generated datasets, limiting real-world applicability. Future
work should validate performance using real-world e-
commerce data to assess scalability and robustness.

Furthermore, extending the approach to dynamic and
online packing scenarios is essential for real-time operations,
necessitating adaptive algorithms.

Integrating sustainability considerations, such as mini-
mizing environmental impact, is a promising avenue for
future research, enhancing the social responsibility of
packing optimization.

Lastly, exploring applications beyond e-commerce, such
as manufacturing and logistics, could leverage the
approach’s versatility to solve optimization challenges in
diverse industries.
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