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Optimal scheduling of microgrids (MGs) is a crucial component of smart grid optimization, playing a vital role in minimizing
energy consumption and environmental degradation. However, existing methods tend to consider only a single optimization and
do not consider the multiobjective optimization problem of MGs in a comprehensive and integrated way. Tis study proposes
a comprehensive multiobjective optimal scheduling methodology for renewable energy MGs, incorporating demand-side
management (DSM) considerations. Initially, a DSM multiobjective optimization model is formulated, focusing on the load
shifting of controllable devices within the MG to refne the electricity consumption structure. Tis model contemplates the
renewable energy consumption of the MG, customer electricity purchase costs, and load smoothness. Subsequently, a multi-
objective optimization model for grid-connected MGs, encompassing wind and photovoltaic power generation, is constructed
with the dual objectives of economic and environmental optimization for the MG. Ultimately, a multimodal multiobjective
optimization algorithm, amalgamating a local convergence index and an environment selection strategy, is proposed to solve the
model. Te experimental results show that compared with other methods, the proposed method in this paper can reduce the
integrated cost by 32.6% and 38.9% in summer and 19.4% and 40.2% in winter.Tis stands out as a unique contribution in the feld
of MG optimization, as it integrates DSM considerations into a multiobjective optimization model. Tis methodology achieves
a balance between minimizing energy consumption and environmental degradation while also enhancing economic efciency.

1. Introduction

In the contemporary era, the exhaustion of conventional
energy sources, such as coal, is escalating, engendering
a mounting energy crisis [1]. Concurrently, there is a rapid
economic development, technological advancement in
power plants, and a steady surge in electricity consumption
among Chinese residents [2]. Te power grid’s role extends
beyond merely supplying electricity to households; it en-
compasses ensuring the quality, safety, and reliability of
power transmission. Nonetheless, the grid is aficted by
numerous defciencies requiring rectifcation. In remote and
thinly populated regions, long-distance power generation is
impractical, infating transportation costs and squandering
resources. Although constructing new power plants in these
areas could remedy the issue, the prolonged construction

duration and exorbitant costs render this solution
unfeasible.

Coal predominates as the principal power generation
source, yet coal reserves are progressively diminishing year
by year [3]. Hence, integrating new green energy sources and
seamlessly connecting their power generation networks to
the larger grid could efectively address the high-power
consumption dilemma in remote residential areas [4]. An
of-grid hybrid solar PV/fuel cell power system is designed
and optimized for a desert residential community,
employing an integrated modeling, simulation, and opti-
mization approach. Te study investigates the impact of
temperature and dust on solar PV panels, with the goal of
increasing renewable energy penetration, reducing green-
house gas emissions, and minimizing energy costs [5]. To
mitigate the energy defciency, researchers have shifted their
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focus towards cleaner, greener energy alternatives. In-
vestigating these energy sources renders our energy gen-
eration technology more cost-efective and reliable,
culminating in the inception of distributed generation (DG)
in this societal context [6].

In recent years, the DG concept has gained widespread
recognition, ofering unique benefts, such as fexible in-
stallation, high reliability, and superior energy efciency.
Te system is strategically situated near the distribution grid
or load (typically below 30MW) to bolster the larger grid’s
economic operation. However, several unresolved chal-
lenges plague the DG system, the most pivotal being its
uncontrollability relative to the grid [7]. Te excessive
consumption induced by a single microsource connected to
the grid hinders the full-fedged development of DG. Ad-
ditionally, the DG system may induce voltage and frequency
fuctuations in the grid during connection, deteriorating
power quality and compromising the grid’s security and
reliability [8]. To address these issues comprehensively, the
MG concept was proposed, enabling DG to maximize its
advantages and potential in integrating large-scale DG
power sources into the grid. MGs amalgamate DG power
supplies, energy storage apparatuses, energy conversion
devices, loads, protection mechanisms, and detection in-
struments into a compact power generation and distribution
system. Tis architecture facilitates autonomous control,
self-protection, and self-management. Te MG can function
autonomously as a module interconnected with the larger
grid, denoted as grid-connected operation, or independently
as a self-contained entity, referred to as islanded operation
[9]. Within the MG, each internal device is meticulously
confgured to furnish power to the MG’s minor loads and
judiciously modulate the internal voltage frequency and
power to ascertain the unimpeded functioning of the MG’s
internal components. Conversely, the MG’s external seg-
ment is governed as a discrete system by the expansive grid
distribution. Te advent of MGs smoothes the grid’s de-
velopment, compensates for traditional DG’s limitations,
and stipulates superior benchmarks and prerequisites for
actualizing smart grid infrastructure [10].

Te advent of MGs facilitates resolving the discord
between distributed energy and the grid while optimizing
the merits of DG and rectifying traditional DG’s short-
comings. MG’s optimal scheduling allows for the strategic
management of DG power outputs and the regulation of
transmission power between theMG and the main grid.Tis
orchestration is designed to achieve multiple goals, in-
cluding cost and emissions reduction, as well as enhanced
reliability and generation efciency [11]. To optimize MG
operation and fully harness its benefts, it is imperative to
conduct thorough research on its optimal control strategies.

For MG optimization dilemmas, employing multi-
objective models renders the system more holistic and ef-
fcacious [12]. Numerous studies have been undertaken to
address MGs’ multiobjective optimization challenges. To
preserve the environment, demand response models [13]
have been devised to furnish potential infrastructures that
concurrently enhance efciency and reduce energy con-
sumption. Some researchers have implemented the

distributed gradient algorithm (DGA) to tackle the dis-
tributed sum optimization (DSO) problem [14]. With ar-
tifcial intelligence’s evolution, a plethora of intelligent
algorithms have emerged. Zhang et al. [15] proposed
a multiobjective freworks algorithm (MOFWA) to opti-
mally address the multimobile charging planning problem.
Younes et al. [16] employed an artifcial bee colony (ABC)
algorithm to ascertain the optimal confguration results for
the MG system’s total operating cost. Zhu et al. [17] pro-
posed a multiobjective gray wolf optimization algorithm
(GWO) based on the multiobjective GrayWolf optimization
algorithm (MOGWO). Nevertheless, these algorithms have
high computational complexity and scalability issues, which
are crucial for their implementation in the real world, es-
pecially in large-scale MG systems. Vosoogh et al. [18]
formulated an optimal probability model for MG energy
management, considering multifactor uncertainty using the
2m point estimation method. Al-Tameemi et al. [19]
combined the GWO and particle swarm optimization (PSO)
algorithms to determine the optimal size and pollution
minimization optimization results for diferent system
components. Ghiasi [20] employed multiobjective particle
swarm optimization in an intelligent approach. Tis ap-
proach conducted a thorough analysis of the new structure
of alternating current (AC) and direct current (DC) systems.
Subsequently, it determined the capacity and optimal design
of hybrid renewable energy sources in smart microgrid
(MG). Some researchers proposed and implemented an
improved multiobjective diferential evolution (IMODE)
optimization algorithm for generation scheduling in smart
MG systems while considering economics and emissions as
competing issues [21]. Tese studies rely heavily on simu-
lations or theoretical models. Te absence of real-world
validation or case studies diminishes the practical applica-
bility of the proposed algorithms and their relevance to
actual MG systems. Some other researchers presented an
enhanced control strategy for renewable energy resources
connected to the grid through voltage-sourced converters
(VSCs) in MGs [22]. However, these studies do not ade-
quately address the dynamic nature of MGs, such as varying
energy demand patterns, fuctuating renewable energy
sources, and real-time operational changes.

Globally, MG development is advancing towards matu-
rity, with exceptionally developed MGs established in Europe
and the United States. Europe, the pioneer in proposing
“smart power networks,” steers its research endeavors toward
energy, environmental conservation, and sustainable devel-
opment [23]. Tese investigations encompass control, anal-
ysis, optimization, forecasting, multi-MG systems, and MGs’
economic dispatch [24]. For instance, the National Technical
University of Athens (NTUA) MG is primarily engineered to
scrutinize MG control strategies, mode switching operations,
energy scheduling based on economic considerations, and the
analysis and optimization of multilayered control structures
for MGs. Te Demotec MG cluster control framework, de-
vised by the University of Kassel’s Institute of Photovoltaic in
Germany, comprises multiple sub-MG network systems [25].
Tis structure allows comprehensive reconfguration and
optimization of the entire MG. It facilitates seamless
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transitions between multiple subgrid networks and islanding
modes. Additionally, it assesses the impact of load fuctua-
tions on grid stability by incorporating or excluding diverse
load bursts [26]. Te Labein MG in Spain’s Basque Country
concentrates on scheduling tactics and communication
protocols for multiple MGs, centralized and decentralized
control strategies for nonislanded operations, and tarif
trading in a novel electricity market under MGs [27]. Lastly,
the CESI MG in Milan, Italy, was investigated by integrating
diverse generation devices and energy storage mechanisms,
while optimizing the network’s communication topology to
actualize optimal MG control and conduct comprehensive
power quality analysis by leveraging multiple communication
methods [28].

Te abovementioned algorithms used in the existing
model solution are relatively single, which may result in the
lack of global search and optimization ability in integrated
energy system energy optimization and management. Te
lack of global or local optimal solutions in practical appli-
cations may lead to a lack of overall understanding of the
problem by decision makers, resulting in unnecessary dif-
fculties or economic losses. Most of the multiobjective
optimization algorithms only focus on obtaining as many
global optimal solutions as possible but neglect the search for
local optimal solutions. However, the research on this kind
of problem is still relatively limited and the research on this
kind of problem is still in the early stage.

Tis paper studies how to optimize the control of MG
power load under the condition of maintaining the safe and
stable operation of MG system, so as to maximize the
economic and environmental benefts of MG. To augment
the new energy consumption of MG and thereby enhance its
operational efciency, this study initially constructs a DSM
multiobjective optimization model grounded in smart grid
principles to refne the load structure. Subsequently,
a multiobjective optimal dispatching model for renewable
energy MG is developed, focusing on economic and envi-
ronmental protection objectives. Ultimately, a multimodal
multiobjective optimization algorithm is employed to as-
certain global and local optimal solution sets to resolve the
model. Te proposed MG dispatching model’s efcacy is
corroborated through simulation analysis in a representative
MG scenario.

Te key features and main contributions of the multi-
modal multiobjective optimization algorithm are as follows:

(1) DSM integration: our algorithm incorporates DSM
principles, aligning it with the smart grid paradigm.
Tis integration enables the refnement of load
structures and enhances energy consumption
efciency.

(2) Multiobjective optimization: the algorithm is
designed to address both economic and environ-
mental objectives, acknowledging the need to bal-
ance economic efciency and environmental
protection in MG operations.

(3) Global and local optimal solutions: our algorithm is
equipped to determine global and local optimal

solution sets. Tis feature enhances the robustness of
the optimization process, ensuring a comprehensive
exploration of potential solutions.

Tis paper consists of six main parts. Section 1 is the
introduction, Section 2 is the demand-side management
multiobjective optimization model, Section 3 is the new
energy MG economic environment optimization dispatch
model, Section 4 is the multimodal multiobjective optimi-
zation solution model based on local convergence index,
Section 5 is the result analysis and discussion, and Section 6
is the conclusion.

2. Demand-Side Management Multiobjective
Optimization Model

Tis paper adopts the DSM strategy based on load shifting of
controllable power equipment in MG to achieve optimal
control of MG power consumption load. Te DSM multi-
objective optimization model is established with the ob-
jectives of improving the new energy consumption, reducing
the cost of electricity purchase by customers smoothing the
load, and taking the electricity demand of multiple con-
trollable devices as the constraints.

2.1. Objective Functions

2.1.1. Objective Function 1: Maximizing New Energy
Consumption. Te access of demand-side controllable
equipment is controlled with the optimization objective of
improving new energy consumption.When wind power and
photovoltaic power generation are insufcient, the electricity
consumption load is reduced, and when power generation is
sufcient, the load is increased. Tis can improve the
suitability of MG load and new energy generation. Te
optimization objective function F1 is shown as follows:

F1 �
1

􏽐
τ
n�1 min((UL(n)/R(n)), 1)

, (1)

where τ is the total number of time intervals divided by 1 d;
UL(n) is the actual customer load at moment n; and R(n) is
the sum of the predicted power output of the scenery at
moment n. From (1), it can be seen that the higher the
utilization rate of new energy the smaller the value of F1.

2.1.2. Objective Function 2: Load Management for Cost
Reduction. Te DSM strategy reduces the access to
electricity-using equipment in the peak period and increases
the access to electricity-using equipment in the low period.
Tis can reduce the cost of electricity for customers and
smooth the electricity load curve.Te optimization objective
function F2 is shown as follows:

F2 � 􏽘
τ

n�1
UL(n) · u(n), (2)

where u(n) is the price of electricity at moment n.
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2.1.3. Objective Function 3: Ensuring Load Stability.
Since the electricity price is high in the peak period and low
in the trough period, F2 will lead to a decrease in electricity
consumption in the peak period and an increase in electricity
consumption in the trough period. In order to prevent peak-
valley interchange, using the load peak-valley diference as
the objective function can ensure the smoothness of the
electricity consumption load. Te optimization objective
function F3 is shown as follows:

F3 � max(UL) − min(UL). (3)

Te actual user load UL(n) at moment n in the 3 ob-
jective functions consists of uncontrollable and controllable
loads, and its mathematical expression is as follows:

UL(n) � FL(n) + CL(n) − DL(n), (4)

CL(n) � 􏽘
L

l�1
􏽘

n−1

s�n−wl

Tlsn · Ul1

+ 􏽘
T

l�1
􏽘

dl−1

z�1
􏽘

n−z−1

s�n−z−wl

Tls(n−z) · Ul(z+1),

(5)

DL(n) � 􏽘
L

l�1
􏽘

n+wl

s�n+1
Tls · Ul1

+ 􏽘
T

l�1
􏽘

dl−1

z�1
􏽘

n−z+wl

s�n−z+1
Tl(n−z)s · Ul(z+1),

(6)

where FL(n) is the load forecast at moment n; CL(n) is the
controllable load connected at moment n; and DL(n) is the
controllable load transferred out at moment n. L is the type
of controllable equipment and wl is the maximum transfer
time of the l-th controllable equipment. Tlsn is the amount of
equipment of the l-th controllable equipment transferred
from moment s to moment n. Tlns is the amount of
equipment of the l-th controllable equipment transferred
from moment n to moment s. Tls(n−z) is the amount of
equipment of the l-th controllable equipment transferred
from moment s to moment (n − z). Tl(n−z)s is the number of
devices of the l-th controllable device transferred from
moment (n − z) to moment s. Ul1 is the load of the l-th
controllable device at the start moment. Ul(z+1) is the load of
the l-th controllable device at the (z+ l) moment. dl is the
time of the required load of the l-th controllable device.

2.2. Constraint Conditions. Considering the actual load
shifting situation and the limitation of the power demand of
controllable devices, the DSM multiobjective optimization
problem described needs to satisfy the following constraints.

2.2.1. Constraint Condition 1: Nonnegative Device Shifting.
Te number of controllable devices shifted at any moment is
nonnegative.

Tls ⩾ 0. (7)

2.2.2. Constraint Condition 2: Device Quantity Limit.
Te number of controllable devices does not exceed the total
number.

􏽘

L

l�1
Tlsn ⩽TC(s), (8)

where NC(s) is the total number of controllable devices with
power demand at the moment s.

2.2.3. Constraint Condition 3: Minimum Connection Time.
Each controllable device is connected for more than the
required time to disconnect.

Ul(n−z+1) � 0, ∀(n − z + 1)> dl, (9)

where Ul(n−z+1) is the load of the l-th controllable equipment
at the moment of (n − z+1).

2.2.4. Constraint Condition 4: Device Shifting Sequence.
Controllable equipment loads can only be moved forward in
time, adhering to a specifc sequence, and the transfer du-
ration must not exceed the predetermined limit.

Tlsn � 0, ∀s> n, (10)

Tln � 0, ∀(n − s)>wl. (11)

Under the constraints of equations (7)–(11), the
min F1, F2, F3􏼈 􏼉 problem is solved with the number of ac-
cesses of controllable devices at each moment in 1 d as the
decision variable. Tis yields the real load profle that sat-
isfes the desired target with the participation of user-side
controllable devices and the accesses of controllable devices
within the MG at diferent moments in 1 d.

3. New Energy MG Economic Environment
Optimization Dispatch Model

Tis paper establishes a new energy MG model as shown in
Figure 1, includes wind turbine (WT), photovoltaic (PV),
diesel generator (DE), microturbine (MT), batteries (BAT),
and controllable loads. Te MG is connected to the grid
through a main isolator and can purchase power from the
grid whenMG capacity is insufcient.Te dispatch model of
this MG is developed with the optimization objectives of
economy and environmental friendliness.

3.1. Objective Functions

3.1.1. Objective Function 1: Economic Efciency Objective.
To improve the economic efciency of station MG opera-
tion, the economic objective of station MG dispatch is
expressed by the operating cost Copt of station MG. It in-
cludes the fuel cost of traditional distributed power sources,
the operation and maintenance cost of distributed power
sources and energy storage systems, and the cost of station
area MGs interacting with the larger grid through contact
lines.Tis paper optimizes the decision variables, such as the
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output power of distributed power sources and the charging/
discharging power of the energy storage system, to minimize
Copt. Te optimization objective Copt is expressed as follows:

Copt � 􏽘
N

n�1
􏽘

Ta

x�1
Cfuel,y(n) + Com,y(n)􏼐 􏼑 + Cgrid(n)⎛⎝ ⎞⎠, (12)

where Ta is the number of DGs in the MG and N is the total
number of time intervals divided by 1 d. Cfuel,y(n) is the fuel
cost of the y-th DG at moment n. Com,y(n) is the operation
and maintenance cost of the y-th DG at moment n. Cgrid (n)

is the cost of the MG’s interaction with the larger grid at
moment n.

Te fuel cost of the MG is specifcally expressed as
follows:

Cfuel,y(n) � CMTf,y(n) + CDEf ,y(n),

CMTf � C
1

LHV

UMT

ηMT
,

ηMT � 0.0753
UMT

65
􏼒 􏼓

3
− 0.3095

UMT

65
􏼒 􏼓

2

+ 0.4174
UMT

65
􏼒 􏼓 + 0.1068,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDEf � α + βUDE + cU
2
DE,

(13)

where CMTf is the fuel cost of MT; C is the unit price of
natural gas. LHV is the low heating value of natural gas. UMT
is the output power of MT. ηMT is the output efciency of
MT; CDEf is the fuel cost of DE; and UDE is the output power
of DE. α, β, c are the fuel cost coefcients of DE.

Te O&M cost of power equipment in MG is usually
related to the output power of power equipment, and the
calculation formula is shown in equations (14) and (15).

Com,y(n) � ζyUDG,y(n), (14)

Com � 􏽘
N

n�1
􏽘

Ta

y�1
Com,y(n), (15)

where ζy is the operation and maintenance cost factor of the
y-th DG. UDG,y(n) is the output power of the jth DG at
time n.

MG operates in the grid-connected state and purchases
power from the larger grid when the generation unit is
under-generated, and the interaction cost at this time is as
follows:

Cgrid (n) � Cbuy (n)Ugrid (n), (16)

where Cbuy (n) is the price of electricity purchased by the
MG from the larger grid at moment n. Ugrid (n) is the power
of interaction between the MG and the larger grid at
moment n.

3.1.2. Objective Function 2: Environmental Objective. Te
treatment cost Cplut of the total amount of polluting gases
emitted by the new energy MG is used as the environ-
mental cost to make it as small as possible. Tis paper
considers the coefcients of pollutant gases emitted by
various sources and optimizes the decision variables to
minimize Cplut . Te optimization objective Cplut is
expressed as follows:

Other distributed
generation

Photovoltaic
power

Wind power

DC
AC

DC
AC

DC
AC Distribution

network

AC bus

DC
AC

Load Load

Energy
storage

Controllable
equipment

Figure 1: Schematic diagram of MG composition.
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Cplut � 􏽘

N

n�1
􏽘

Te

r�1
ζr 􏽘

Ta

j�1
eDG,y,rUDG,y(n)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ 􏽘
N

n�1
􏽘

Te

r�1
ζr eBAT,rUBAT(n)􏼐 􏼑⎛⎝ ⎞⎠

+ 􏽘
N

n�1
􏽘

Te

r�1
ζr egrid,rUgrid(n)􏼐 􏼑⎛⎝ ⎞⎠,

(17)

where Te is the pollutant gas type. eDG,y,r, eBAT,r, and egrid,r

are the coefcients of the y-th DG, energy storage system,
and the r-th pollutant gas emitted from the large grid, re-
spectively. UBAT(n) is the output power of the energy
storage system at moment n. Ugrid (n) is the output power of
the large grid at moment n. ζr is the treatment cost co-
efcient of the r-th pollutant gas.

3.2. Constraint Conditions

3.2.1. Constraint Condition 1: Tidal Current Constraint.

􏽘

Ta

y�1
UDG,y(n) + UBAT(n) + ugrid(n) + Unew (n) � ULoad(n), (18)

where Unew(n) and ULoad (n) are the new energy generation
power and total load of users at time n, respectively.

3.2.2. Constraint Condition 2: Power Constraint of DG and
Large Grid Output.

U
min
DG,y ⩽UDG,y(n)⩽U

max
DG,y, (19)

U
min
grid ⩽Ugrid (n)⩽U

max
grid , (20)

where Umin
DG,y and Umax

DG,y are the lower and upper limits of the
output of the y-th DG, respectively. Umin

grid and Umax
grid are

the lower and upper limits of the output of the large grid,
respectively.

3.2.3. Constraint Condition 3: Climbing Constraint of DG
and Large Grid Output

ΔUdn
DG,y ⩽UDG,y(n) − UDG,y(n − 1)⩽ΔUup

DG,y, (21)

ΔUdn
grid ⩽Ugrid (n) − Ugrid (n − 1)⩽ΔUup

grid , (22)

where ΔUdn
DG,y and ΔUup

DG,y are the downhill and uphill
constraints of the y-th DG, respectively. ΔUdn

grid and ΔUup
grid

are the downhill and uphill constraints of the large grid,
respectively.UDG,y(n − 1) is the output power of the y-th DG
at the moment n − 1. Ugrid (n − 1) is the output power of the
large grid at the moment t-1.

3.2.4. Constraint Condition 4: Energy Storage System Op-
eration Constraint

E
min
BAT ⩽EBAT(n)⩽E

max
BAT,

ηchUch(n)⩽ min U
max
ch , E

max
BAT − EBAT(n − 1)( 􏼁,

EBAT(n − 1) − E
min
BAT ⩽

Pdch(n)

ηdch
⩽P

max
dch ,

􏽘

N

n�1
ηchUch(n) � 􏽘

N

n�1

Udch(n)

ηdch
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where EBAT(n), Emin
BAT, and Emax

BAT are the lower and upper
limits of energy storage capacity and energy storage capacity
at moment n, respectively. Uch(n) and Udch(n) are the
charging and discharging power at moment n, respectively.
Umax

ch and Umax
dccx are the maximum values of charging and

discharging power, respectively. ηch and ηdch are the
charging and discharging efciency of the energy storage
system, respectively.

3.2.5. Constraint Condition 5: Rotating Standby Constraint

􏽘

Ta

j�1
R
up
y (n) + R

up
grid(n) + EBAT(n) − E

min
BAT ⩾R

up
sys(n),

R
up
y (n) � max U

max
DG,y − UDG,j(n),ΔUup

DG,y􏼐 􏼑,

R
up
grid(n) � max U

max
grid − Ugrid(n),ΔUup

grid􏼒 􏼓,

􏽘

Ta

y�1
R
dn
y (n) + R

dn
grid(n) + E

max
BAT − EBAT(n)⩾R

dn
sys(n),

R
dn
y (n) � max UDG,y(n) − U

min
DG,y,ΔUdn

DG,y􏼐 􏼑,

R
dn
grid(n) � max Ugrid(n) − U

min
grid,ΔUdn

grid􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where Rup
y (n) and Rdn

y (n) are the climbing capacity available
from the y-th DG at time n. R

up
grid (n) and Rdn

grid (n) are the
climbing capacity available from the large grid. Rup

sys(n) and
Rdn
sys(n) are the positive rotating standby demand and

negative rotating standby demand of the system at time t,
respectively.

Under the constraints of equations (19)–(25), the
multiobjective optimization problem of min Copt , Cplut􏽮 􏽯,
which is the mathematical model of MG dispatch. Te
optimization includes variables at each MG 1 d time
period: output power of distributed sources, energy
storage system charging/discharging power, and power
purchased from the larger grid by MG. Te fow diagram
of new energy MG scheduling with DSM in this paper is
shown in Figure 2.

6 International Journal of Intelligent Systems



4. Multimodal Multiobjective Optimization
Solution Model Based on the Local
Convergence Index

Many engineering applications in the real-world often re-
quire the consideration of multiple optimization objectives.
Usually, the diferent objectives are mutually constrained
and can only be traded of to obtain a satisfactory solution
for the decision maker. Multiobjective optimization prob-
lems (MOPs) can be represented as follows:

minO(i) � o1(i), o2(i), · · · , ow(i)􏼈 􏼉,

s. n. i � i1, i2, · · · , it( 􏼁 ∈ Ω,
(25)

where Ω is the feasible domain of the problem and ow(i) is
the i-th objective function value of the decision vector.
Unlike a single-objective optimization problem with a single
global optimum, in a multiobjective optimization problem,
there are multiple nondominated solutions, which are called
Pareto optimal solution sets. Te solution iG dominates the
solution iH when and only when

∀x ∈ 1, 2, · · · , w, ox iG( 􏼁≤ ox iH( 􏼁,

∃y ∈ 1, 2, · · · , w, oy iG( 􏼁< oy iH( 􏼁.

⎧⎨

⎩ (26)

In general, multiobjective evolutionary algorithms (MOEAs)
give a set of mutually exclusive solution sets, called Pareto
solution set (PS). Also, the mapping of PS on the objective
space is called Pareto optimal front (PF).

4.1. Local Convergence Metrics. Traditional MOEAs focus
more on the convergence of the solution set, so most algo-
rithms choose convergence as the frst criterion for the se-
lection of ofspring individuals.Te multimodal multiobjective
optimization algorithms designed based on traditionalMOEAs

are taken into account of the diversity of decision spaces and
therefore can obtain more equivalent PSs. However, traditional
algorithms tend to focus only on obtaining global PSs, thus
discarding the search for local PSs. In order to enhance the
search capability of the algorithm for local PS, a local con-
vergence index is proposed by referring to the meta-adaptation
value proposed in the SPEA2 algorithm [29]. Tis paper
emphasizes local Pareto optimal solutions and provides
guidance for selecting parent individuals by calculating a local
convergence index Xx

LC for each solution. For the solution ix,
the local convergence index is calculated as follows:

X
x
LC � 􏽘

y∈Tx

SyDy,x,
(27)

where Mx denotes the number of neighboring solutions of
solution ix. Dy,x ∈ 0, 1{ }, where Dy,x � 1 denotes the solu-
tion ixPareto-dominated solution. When Xx

LC � 0, it means
that solution ix is not dominated by any of its neighboring
solutions, that is, solution ix is locally Pareto optimal. Sx

denotes the number of times that solution ix Pareto dom-
inates its neighboring solutions. Te larger the value of Sx,
the better the relative performance of solution ix. Te
specifc calculation procedure is as follows:

Sx � 􏽘
y∈Tx

Dx,y.
(28)

Figure 3 shows a schematic diagram of the calculation of
the local convergence metric proposed in this paper. Unlike
the SPEA2 algorithm, the meta-adaptation value needs to be
compared with all the individuals in the population. In the
calculation of the local convergence index, individuals are
only compared with their own neighboring solutions to
improve the convergence of the local optimal solution.
Specifcally, for solution G in the decision space, it is in the
local PS (circle region). In traditional MOEAs, solutions G

DSM optimization

DSM input (scenery output forecast,
load forecast, time-of-use tarif,

negative control equipment demand)

Set up DSM multi-
objective optimization

model M1

Solve the
model

M1

Optimized load curve

MG optimized dispatch parameters
(wind photovoltaic diesel storage

network operating cost parameters
and pollutant emission parameters)

Set up MG economic
environment multi-

objective optimization
model M2

Solve the
model

M2

MG optimized dispatch

Generation unit day-ahead
output dispatch

Figure 2: MG scheduling model framework.

International Journal of Intelligent Systems 7



and H, located in the global PS (where point C is situated),
are dominated by C, leading to their exclusion from the
evolutionary process. In the calculation of the local conver-
gence index, solutionG is compared with its own neighboring
solutions (in the current schematic, only solution H is
a neighbor) in the calculation of the dominance relation. In
this case, solutionG is a nondominated solution, which can be
retained and successfully proceed to the next evolution. Te
concept of neighbors is used in the calculation of the local
convergence index, and the defnition of neighboring solu-
tions in the decision space is subjective and requires the
introduction of parameters. In this paper, two solutions ix and
iy are called neighbors when and only when their Euclidean
distance is less than Q. Te calculation is as follows:

Q �
1
2

􏽙

D

d�1
i
max
d − i

min
d􏼐 􏼑⎞⎠

(1/D)

,⎛⎜⎝ (29)

where D denotes the number of decision variables. imax
d and

imin
d represent the maximum and minimum values of the d-
th decision variable, respectively.

4.2.Algorithmic Framework. Based on the local convergence
indicator, a multimodal multiobjective evolutionary algo-
rithm (MMEA based on local convergence indicator,

XLC-MMEA) is proposed in this paper. Te algorithmic
framework of XLC-MMEA is represented by algorithm 1. Like
most MOEAs, XLC-MMEA consists of the following steps:
population initialization, mating selection, ofspring genera-
tion, and environment selection. Te study introduces a local
convergence index to identify global and local Pareto solu-
tions. Tis index is employed as a binary competition cri-
terion in selecting parent individuals, accelerating the
algorithm’s convergence and enhancing local exploration
capability. Specifcally, two solutions are randomly selected
from the current population and their local convergence
index values are compared. If their local convergence metrics
are the same, the one with the smaller crowding distance is
selected. Tis process will be repeated until N individuals are
selected. After that, the selected parent individuals will
generate progeny using SBX and polynomial mutation (PM).
Figure 4 shows the fow diagram of algorithm 1.

4.3. Environment Selection Strategy. In this paper, a new
environment selection strategy is designed for the search
problem of local PS. Te environment selection strategy
utilizes the crowding distance as a second criterion, con-
sidering both the decision space and target space. It helps in
selecting individuals that contribute to a uniformly dis-
tributed solution set. In this section, the ILC-based envi-
ronment selection strategy is discussed in detail, and the
basic idea is represented by algorithm 2 (see Figure 5).

XLC-MMEA uses the crowding distance as a second
criterion to select individuals in the population. In general,
traditional MOEAs focus more on the uniformity of the
solution set distribution in the target space, while the
proposed algorithm focuses more on the uniformity of the
decision space. Tis can be illustrated by the distribution of
the target space and decision space in Figure 6.

Te left portion of Figure 6 illustrates that the solution is
optimally dispersed across the decision space, albeit sub-
optimally dispersed in the objective space, aligning with
conventional multimodal evolutionary algorithms
(MMEAs). Conversely, the central part of Figure 6 indicates
that the solution is inadequately distributed in the decision
space but is optimally distributed in the objective space,
mirroring traditional multiobjective evolutionary algo-
rithms (MOEAs). Te quintessential state for solution dis-
tribution, depicted on the right side of Figure 6, entails the
solution being optimally dispersed in both the decision and
objective spaces. To realize this objective, an enhanced
method for computing the population crowding distance is
delineated hereinafter.

CDx �
M − 1

􏽐
M
y�1,y≠x 1/ iy − ix

�����

�����􏼒 􏼓

+
M − 1

􏽐
M
y�1,y≠x 1/ o iy􏼐 􏼑 − o ix( 􏼁

�����

�����􏼒 􏼓

,
(30)

where ‖iy − ix‖ denotes the Euclidean distance between ix
and iy. o(ix) represents the normalized value of the target
vector corresponding to the solution ix. Before the

calculation, the values of ix and iy need to be normalized.
Te new crowded distance considers the solution set’s rel-
ative positions in both target and decision spaces, ensuring

Decision space

H

G

C

C´

G´
H´

Target space

Figure 3: Schematic diagram of local convergence index.
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Input: maximum number of function
evaluations TFE, population size T

Step 1: Initialize the population Pop

Step 2: Calculate the local convergence index XLC
and crowding distance CD of the population, which

are used to select the parent individuals.

Step 3: Select parent by convergence index and
crowding distance using binary competition.

Step 4: Crossover variation generates
ofspring tPop.

Step 5: Generate a new population Pop
by environmental selection

Step 6: Update the current function
evaluation count: FE = FE + T ;

Step 7: If FE < TFE, then skip to Step 2
and continue the run.

Output: optimal solution set Pop.

Figure 4: Framework diagram of the XLC-MMEA algorithm.

 

 

 

 

 

Input: population Pop, ofspring
population tPop, population size T.

1) Merge the current population Pop with the
ofspring tPop to form a new population jointP

2) Compute the local convergence XLC
of the merged population using equation (29)

3) Select the local Pareto-optimal solution
localPop, i.e., the individuals with XLC < 1;

4) Te number of localPop is
greater than or equal to T

No

Yes

5) Calculate the crowding degree
CD of the population localPop .

6) Sort the population localPop in descending
order according to CD, and select the top T
individuals to form a new population Pop.

Sort the jointP in ascending order according to
the local convergence XLC, select the frst T

individuals to form a new population

7) Calculate the local convergence index XLC
and the population crowding CD of the new

population Pop.

Output: new population Pop , local convergence
index value XLC , population crowding distance

CD.

Figure 5: Flowchart of environment selection strategy.
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a more uniform distribution across both. In addition, in
order to better balance the diferences between the two
spaces, the algorithm uses a uniform normalization strategy
for the vectors in both spaces.

5. Result Analysis and Discussion

In the experiments, a typical MG structure is used in this
paper. Tis MG structure includes elements, such as wind
turbines, photovoltaic generation, and controllable loads.
Te specifcation of this test network includes the capacity,
initial state, connection mode, and power consumption
requirements of each element in the MG.

5.1. Comparative Analysis of Diferent Dispatching Cases.
To validate the models and methods delineated in this paper,
three MG dispatching scenarios are conceptualized, utilizing
a typical MG structure as the research arithmetic: (1) de-
velopment of an MG dispatching model without accounting
for DSM; (2) formulation of a DSM optimization model to
optimize the load with the aim of minimizing the customer’s
electricity procurement cost, followed by the construction of
an MG dispatching model; and (3) formulation of a DSM
multiobjective optimization model, followed by the devel-
opment of an MG dispatching model, and resolving the
model utilizing a multimodal multiobjective optimization
algorithm.

Te study incorporates the load under diferent sce-
narios: without DSM optimization, with DSM single-
objective optimization, and with DSM multiobjective op-
timization, into the MG economic environment dispatching
model to provide a detailed analysis. Te utilization of new
energy output is visually represented in Figure 7. As dis-
cernible from Figure 7, the utilization rate of new energy
output is diminished in the absence of DSM optimization
owing to the discord between the timing and magnitude of
new energy output and load demand. Owing to the

substantial quantity of “abandoned wind and light,” the
traditional DG output and the aggregate amount of elec-
tricity procured by the MG from the grid are considerably
elevated. Te economic implications are signifcant, as the
MG incurs higher costs in procuring electricity from the grid
and relies more heavily on conventional energy sources.Tis
translates into increased operational costs and potentially
higher greenhouse gas emissions due to greater dependence
on nonrenewable energy. Introducing single-objective DSM
optimization brings about substantial improvements in MG
performance. Te introduction of single-objective DSM
optimization can signifcantly improve MG performance by
introducing DSM multiobjective optimization for both
economic and environmental goals. Tis plan makes more
efcient use of energy and reduces costs, while signifcantly
reducing carbon emissions and environmental impact. With
the help of DSM, MG is able to utilize new energy sources
more efciently and reduce its reliance on conventional
power generation, thereby reducing carbon emissions and
environmental impact.

5.2. Comparative Analysis of Diferent Algorithms. In this
section, the load data of a typical daytime in summer and
winter in a region are selected to test the MG economic
environmental dispatch model. Literature [30], literature
[31], and the proposed algorithm are used to solve the
model. Te operating cost, power purchase cost, environ-
mental cost, and single-day integrated cost of the MG are
compared, and the calculation results of the three algorithms
are shown in Table 1. Te integrated energy satisfaction, PV
consumption rate, and electricity autonomy rate of the
system at the optimal solution are also analyzed, and various
indicators are shown in Figure 8.

In Table 1, the optimization results for the MG economic
environmental dispatch model during a typical summer and
winter day are presented. Te proposed algorithm consis-
tently outperforms literature [30] and literature [31] in terms

Decision space Decision space Decision space

Target space Target space Target space

Figure 6: Uniformity of the distribution of the target space and decision space.
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Figure 7: Continued.
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Figure 7: New energy utilization. (a) No DSM optimization. (b) DSM single-objective optimization. (c) DSM multiobjective optimization.
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Figure 8: Performance index evaluation of MG scheduling model. (a) Summer. (b) Winter.

Table 1: Objective function optimization of the integrated energy system.

Category Literature [30] Literature [31] Proposed

Summer

Operating cost 5104.6 5994.2 4168.2
Power purchase cost 7151.4 5887.4 4586.7
Environmental cost 33.2 49.1 52.4

Single day integrated cost 5089.5 5332.3 3839.2

Winter

Operating cost 3211.9 4286.3 2974.5
Power purchase cost 4830.2 4340.4 3300.3
Environmental cost 78.8 93.1 101.7

Single day integrated cost 3277.6 3849.5 2745.9
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of integrated cost, showcasing its efectiveness. During
summer, the integrated cost achieved by the proposed al-
gorithm is notably 32.6% and 38.9% lower than literature
[30] and literature [31], respectively. In winter, the reduction
is even more pronounced, with a 19.4% and 40.2% im-
provement over literature [30] and literature [31]. While the
operating and power purchase costs decrease signifcantly,
there is a slight increase in environmental cost. Tis tradeof
is crucial for achieving a balance between economic ef-
ciency and environmental sustainability.

Figure 8 provides a comprehensive evaluation of the MG
scheduling model’s performance. Te proposed algorithm
achieves a higher integrated energy satisfaction of load users
(0.97 and 0.95 for the two typical days), indicating an ef-
fcient utilization of available energy resources. Moreover,
the average PV consumption rate of the proposed algorithm
is 23% and 49.6%, which is signifcantly higher than liter-
ature [30] and literature [31], demonstrating the algorithm’s
efcacy in harnessing solar energy. Te electricity autonomy
rates are 0.36 and 0.52. Although only slightly better, it
signifes the system’s ability to operate independently. Tese
results afrm that the proposed algorithm not only mini-
mizes costs but also enhances the satisfaction of energy
demand while maintaining environmental benefts.

Tree algorithms are used simultaneously to optimally
solve the MG economic environment dispatch model at two
typical day times under the same operating conditions. Te
maximum number of iterations in the algorithm is 200, and
the search population is 30 (see Figure 9). From Figure 9, it
can be seen that in summer and winter time, the algorithm of
this paper has fewer computational results than the literature
[30] and literature [31], and the number of iterations used to
converge to the optimal solution is the least. In summer, the
proposed algorithm achieves the optimal solution at the 90th
iteration, while the algorithms in literature [30] and liter-
ature [31] only fnd the local optimal solution in the whole

process. In winter, the proposed algorithm achieves the
optimal solution at the 15th iteration, and the algorithm in
literature [31] falls into the local optimal solution at the 6th
generation until the end of the solving process. Te algo-
rithm of literature [30] keeps jumping from the local so-
lution to a better local solution but does not fnd the optimal
solution. Te convergence accuracy, solution speed, and
global search capability of the algorithm in this paper show
obvious superiority.

Te experimental results depicted in Figure 9 underscore
the superior convergence efciency and accuracy of the
proposed algorithm in comparison to literature [30] and
literature [31]. In both summer and winter scenarios, the
algorithm of this paper demonstrates a notable reduction in
computational iterations required to reach the optimal so-
lution. During summer, the algorithm achieves global op-
timality at the 90th iteration, while the algorithms in
literature [30] and literature [31] only fnd the local optimal
solution in the whole process. It stands in stark contrast to
the local optima found in literatures [30, 31]. In winter, the
proposed algorithm converges to the optimal solution at the
15th iteration, outperforming literature [31], which remains
trapped in a local optimum. Te algorithm of literature [30]
keeps jumping from the local solution to a better local
solution but does not fnd the optimal solution. Te pro-
posed algorithm’s advantages include high convergence
accuracy, swift solution speed, and superior global search
capability.Tese characteristics make it a robust and efcient
tool for optimizing microgrid operations, especially in dy-
namic and time-sensitive scenarios, afrming its practical
applicability in real-world energy management.

Figure 10 visually displays the curves of all algorithms on
problems with PS. As can be seen from Figure 10, the
proposed method is able to fnd both global and local PSs of
the problem, and the obtained PF distribution is more
uniform.Tis is because the method introduces a new way of
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Figure 9: Convergence curves of the 3 algorithms. (a) Summer optimal solution. (b) Winter optimal solution.
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calculating population crowding, which can better balance
the uniformity of the distribution in the target space and the
decision space.

5.3. Sensitivity Analysis of Local Convergence Index. Te
algorithms are compared with the current state-of-the-art
algorithms (literature [32], literature [33], and literature
[34]) in terms of F1 for diferent XLC values.Te comparison
results are shown in Figure 11.

From Figure 11, it can be seen that when the XLC value is
small, the F1 value of this paper’s algorithm at diferent
values is higher than the other compared algorithms.
Moreover, the selection of diferent XLC values for this
paper’s algorithm has less impact on the algorithm’s de-
tection results. Te results from the sensitivity analysis
clearly indicate the robustness and adaptability of the
proposed algorithm across diverse operating conditions.

6. Conclusion

In this study, a multiobjective optimization methodology for
a new energy MG incorporating DSM is devised, with
a focus on the primary objectives of minimizing the

operational cost of the MG system and reducing the envi-
ronmental impact. Initially, a DSM optimization model is
developed, emphasizing load shifting in controllable devices
while considering the utilization rate of new energy, elec-
tricity procurement costs for customers, and load leveling.
Subsequently, an MG scheduling model is formulated to
incorporate both economic and environmental protection
objectives. Eventually, the experimental conclusions are as
follows: (1) quantitative analysis: the comparative experi-
mental results of diferent scheduling cases prove that the
DSM multiobjective optimization in this paper can save
economic costs more efectively and at the same time greatly
reduce carbon emissions and the impact on the environ-
ment. (2) Qualitative analysis: in the summer, the proposed
algorithm achieves an integrated cost that is 32.6% and
38.9% lower than that of literature [30] and literature [31],
respectively. In the winter, the proposed algorithm achieves
integrated costs 19.4% and 40.2% lower than literature [30]
and literature [31], respectively. Moreover, our multimodal
multiobjective optimization solution model, based on the
local convergence index, is a fexible framework that can be
fne-tuned to address the specifc needs and constraints of
diferentMGs or regions.Te local convergence index allows
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Figure 10: Performance of diferent algorithms on global and local problems. (a) Literature [30]. (b) Literature [31]. (c) Proposed.
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us to efciently fnd global and local Pareto optimal solu-
tions, making it easier to tailor our methodology to diverse
scenarios.

However, the methodology in this paper may not take
into account all types of controllable devices and their
diferent characteristics. Adaptive control strategies that can
be adaptively tuned to the specifc characteristics and re-
quirements of newly introduced devices will be further
investigated in the future to ensure wider applicability.
Furthermore, due to its complexity, it is challenging to
implement the algorithm in real-world MGs. In particular,
external factors, such as numerous controllable devices,
diferent load profles, and weather need to be taken into
account. Future research will customize the algorithm for
diferent real-world MG scenarios so that it can be seam-
lessly integrated into multiple environments.
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