
Research Article
Keyframe Extraction Algorithm for Continuous Sign-Language
Videos Using Angular Displacement and Sequence Check Metrics

M. S. Aiswarya and R. Arockia Xavier Annie

Department of Computer Science and Engineering, Anna University, Chennai, India

Correspondence should be addressed to M. S. Aiswarya; aiswarya.smadhavan@gmail.com

Received 5 June 2023; Revised 8 December 2023; Accepted 19 December 2023; Published 10 January 2024

Academic Editor: Riccardo Ortale

Copyright © 2024 M. S. Aiswarya and R. Arockia Xavier Annie. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Dynamic signs in the sentence form are conveyed in continuous sign-language videos. A series of frames are used to depict a single
sign or a phrase in sign videos. Most of these frames are noninformational and they hardly efect on sign recognition. By removing
them from the frameset, the recognition algorithm will only need to input a minimal number of frames for each sign.Tis reduces
the time and spatial complexity of such systems. Te algorithm deals with the challenge of identifying tiny motion frames such as
tapping, stroking, and caressing as keyframes on continuous sign-language videos with a high reduction ratio and accuracy. Te
proposed method maintains the continuity of sign motion instead of isolating signs, unlike previous studies. It also supports the
scalability and stability of the dataset.Te algorithmmeasures angular displacements between adjacent frames to identify potential
keyframes. Ten, noninformational frames are discarded using the sequence check technique. Pheonix14, a German continuous
sign-language benchmark dataset, has been reduced to 74.9% with an accuracy of 83.1%, and American sign language (ASL)
How2Sign is reduced to 76.9% with 84.2% accuracy. A low word error rate (WER) is also achieved on the Phoenix14 dataset.

1. Introduction

Sign language, a visual language, is used by the majority of
hard-to-hear people. Both static and dynamic gestures are
used to represent words and phrases in sign language.
Continuous sign language (CSL) is a collection of sign ex-
pressions that can be expressed as a sequence of motions in
both space and time. Te continuous sign language recog-
nition and translation (CSLRT) task aims to bridge the gap
between sign and spoken language by recognizing a series of
continuous gestures and translating them into natural
language expressions. One sign sentence can contain
100–250 frames (approximately 9 words), depending on the
frame rate of the recording device. All these frames are not
required for sign interpretation to be performed. Transition
frames and noninformative frames can be removed from the
frameset, leaving about 1–5 key frames per word. Te most
informative frames in CSL are keyframes, which contain
extensive sign gesture and motion information.Tis method
reduces storage and execution overheads. With a proper

keyframe set, neural models can extract spatial and temporal
features more precisely. With applications in felds such as
action detection [1], video summarization [2], educational
video summarization [3], video segmentation [4, 5], and
video copyright protection [6], keyframe extraction from
videos is one of the thoroughly investigated topics that keep
the scientifc community interested. Keyframe extraction
from sign language videos is considered challenging as we
have no indicators to identify the start and end frames of
signs in the video and need to identify small motions that
may be a part of a sign. Most of the existing keyframe ex-
traction methods are not suitable for sign language video
representation, as they do not meet requirements such as
multielement identifcation, minor motion detection, con-
tinuity, scalability, and stability.

1.1. Keyframe. Keyframe extraction can be defned as if
a video F is represented as a set of frames, F: {f1, f2, . . . ‥fn},
where n is the total number of frames in F.
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Te keyframe set is then represented by K such that
K ⊂ F and abstractly represents the original video with
a frameset of length m less than n.

Te following is a representation of the keyframe ex-
traction algorithm.

Let H be a keyframe extraction algorithm, then key-
frame elements Km can be defned as follows:

H(F) � Km, 1≤m< n,

K � Km ∈ F | K � Km∀K ∈ F ,
(1)

where K is the reduced video.
Te efciency of the algorithm H depends on the re-

duction rate it attained and the accuracy by which the sign
can be recognised. Te reduction rate can be expressed as
follows:

R � 1 −
Keyframecount

Originalframecount

� 1 −
m

n
.

(2)

Let K= K1, K2, . . . , Kp  be a keyframe sign sequence
and S= S1, S2, . . . , Sq  be the ground truth sign frames on
a video F of size r frames, then the accuracy is the proportion
at which the frame is correctly recognised against the ground
truth.

A �
n(K∩ S) + n(F − K)

n(K∩ S) + n(F − K) + n(S − K)
, (3)

where n() gives the total number of frames in the set. Te
concept of keyframe extraction is depicted in Figures 1 and
2.Te sign language representation of the word “LIEB” from
the Pheonix4 dataset [7] is illustrated in Figure 1. Te
keyframes for the same word can be thought of as in
Figure 2(a), with two frames handling gesture structure and
motion. A graphical depiction of the word “LIEB” based on
the signwriting [8] technique taken into consideration for
evaluation is shown in Figure 2(b). It is noteworthy that the
word with 14 frame length may be reduced to a two-frame
representation, which also acts as the keyframe and properly
communicates the sign word concept.

Te lack of distinct word breaks and continuous gesture
transitions make keyframe extraction from CSL video
challenging. Te gesture position, orientation, and direction
of movements must be considered while fnding keyframes
or in eliminating uninformational frames. Minor and sub-
stantial variations in hand forms, motions, positions, non-
manual elements, context, and the signer speed all provide
challenges to the keyframe extraction process.

Noninformational frames and informational frames are
two instances of frames in CSL videos. Te suggested
method aims to fnd a set of keyframes that accurately and
efciently refect the maximum sign information from
a continuous sign-language video with a good reduction
rate. Te orientation information contained in sign words
must also be preserved for a sign to be correctly recognized.

By integrating all keyframes, an abstract of a specifc sign can
be obtained. Te motivation for the use of continuous sign-
language keyframes is strong since it reduces processing time
and storage requirements for representation learningmodels
and other related computer vision tasks.

Te various keyframe extraction paradigms utilized in
video-related computer vision tasks are cluster methods
[9, 10], motion energy-based methods [11], sequence
methods [12–16], and machine learning methods [17, 18].
Diferent sequential approaches and machine learning
methods are the most acceptable techniques used in key-
frame extraction from continuous sign-language videos.

Keyframe extraction strategies employed in motion
analysis, video summarising, or compression cannot directly
enhance CSL videos. Te spatial, temporal, and directional
characteristics of gesture frames in CSL must be evaluated to
determine whether they are informative. Certain signs difer
solely in the direction of motion of the sign elements. So, the
direction of motion is an important information in the sign
to fully interpret the link between movements and hence the
gesture. Tis is the frst time the concept of gesture orien-
tation has been examined on the keyframe extraction task.

A majority of current sign language key extraction re-
search focuses on dynamic gesture videos (word level), with
a few attempts using continuous sign language (sentence
level) with the hand as the region of interest [19, 20], leaving
the nonmanual elements unresolved. A combination of
image entropy and density clustering is used to obtain the
keyframes for the hand gesture video in [21]. Minor motions
and motion directions cannot be taken into account by this
method due to its static threshold value. Te method is,
therefore, inefective for CSL videos. Te research [22]
identifes signifcant frames and treats each gesture as
a separate, isolated gesture using a gradient-based key frame
extraction technique. Te direction of motion continuity
and minute motions are left unresolved. Most sequential
approaches use static thresholds such as in [20, 23], which
make it difcult to record small, repetitive movements.
Specifcally, tapping or rubbing does not propagate data over
successive frames, preventing static thresholds from dis-
tinguishing movements between such frames. Solutions
based on threshold values like entropy or sampling do not
address scalability or signer independence [14, 24].

Tis work handled these sign gestures efectively and
consistently throughout the huge dataset, which had never
been studied before. Te proposed work ofers an in-
teresting, simple, and efcient approach for extracting
successive keyframes from CSL video, which may be fed into
a CSLR system for speedy decision, while taking into account
hurdles and faws in earlier works. Te following contri-
butions make up this work:

(1) Tis study proposes a new approach for choosing
keyframes from continuous sign video, which sig-
nifcantly reduces computation overhead in time and
space dimension

(2) Angular displacement metric is used to evaluate the
motion between the frames
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(3) Te decision of keyframe selection is based on the
whole frame; thus, all sign elements are considered

(4) A sequence check metric and frame pixel diference
with an adaptive threshold are used to reduce fra-
meset from candidate keyframe set

(5) To analyse and visualise the suggested technique, this
work utilise the sign representation method,
SignWriting [8].

(6) WER is calculated in conjunction with existing sign
language recognition systems to analyse perfor-
mance of the reduced dataset.

Te remaining sections are organized as follows. Section
2 reviews keyframe extraction techniques used in sign
language recognition systems. Te proposed FSC2 (frame
sequence count check) keyframe extraction algorithm is
described in Section 3. Te experimental results are pre-
sented in Section 4. Lastly, a summary of the proposed work
and some suggestions for further research are presented.

1.2. Related Work. Tis section discusses the keyframe ex-
traction techniques that were employed in prior research of
sign language recognition tasks.

Keyframe extraction utilising time-varying parameter
detection was proposed by [25].Tey used statistical analysis
of variables such as position, posture, orientation, and
motion to detect discontinuities in frames considering only
the major motion elements. In [26], fewer gesture motions
such as preparation motion and unnecessary movement
between sign phrases were deleted using fuzzy partitioning
and state automata. For fltering uninformative frames, the
authors of [27, 28] employed a gradient-based keyframe
extraction method. In [29], the authors randomly sampled
10–50 keyframes from each video and translated directly the
sign video representations to spoken language. A method for
extracting keyframes in a trajectory density curve using
a sliding window is proposed in [19]. In [30], an online low-
rank approximation of sign videos to choose keyframes is
employed. A method for locating video frames representing

single signs in a one-hand fnger alphabet is provided in [20],
which uses a combination of object tracking and visual
attention. In [31], the angular and distance metric of a 3D
trajectory skeleton is used for keyframe detection.

Te ARSS approach for optimal sampling and alignment
of RGB and depth input is proposed in [32], and a relatively
complete keyframe set of the video is acquired. In [33], a new
sample approach called keyframe-centred clips (KCCs)
sampling was given, with the goal of selecting a specifc
number of frames to describe the entire sign language video.
In comparison to other sampling methods, KCC has greater
recognition performance. To improve keyframe-centred
clips (KCCs) sampling, a new method termed optimised
keyframe-centred clip (OptimKCC) sampling was proposed
in [14] to optimise the KCC sampling using the DTW
distance. In all of the preceding studies, signs are considered
as isolated.

Te authors proposed two types of distances in [34],
interkeyframe distances and model set distances. Te sum
of the distances to other keyframes and the average dis-
tances from the model set are used to pick the set of
keyframes K. In [35], Zernike’s moments were used to
detect the keyframe in a dynamic gesture video clip. A
keyframe is one in which Zernike’s moments’ (ZMs) dif-
ference between neighbouring frames is greater than
a value (value is set to 50). In [36], a random sampling
method is applied. A sequence technique based on the
statistical of elements such as colour, picture diference,
and weighted frames is proposed in [13] to detect key-
frames from dynamic sign-language videos. Edge detection
and discrete wavelet transform are used in [37] to extract
keyframes. A hybrid clustering approach is provided in [38]
and two sets of keyframes are obtained; the spliced original
keyframe picture represents the spatial dimension feature,
and the optical fow keyframe image represents the time
dimension feature. Te author of [24] proposed the median
of entropy of mean frames (MME) approach for keyframe
extraction, which uses the mean of consecutive k frames of
video data with a sliding window of size k/2 to select the
frame that satisfes the median entropy value.

Figure 1: Sign representation of the word “LIEB” without frame reduction (initial transition frames also included).

(a) (b)

Figure 2: Keyframes representation of the word “LIEB” and the representation of the sign word “LIEB” using signwriting format. (a)
Keyframe representation of the word “LIEB.” (b) “LIEB” signwriting format.
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Temethodology used in [39] considers multievaluation
factors to select critical frames from raw videos. For creating
high-quality video clips, essential frames are chosen based
on their hand height, handmovements, and frame blurriness
levels. In [40], the parameter used for sampling the key-
frames was hand coordinates. In [41], the author proposed
a clip summary approach to choose the important video
clips. In [42], the author used DTW for keyframe extraction.

In comparison to other computer vision tasks that use
keyframe extraction such as video summarising and com-
pression, there are few works on keyframe extraction of sign
language videos, and it remains a challenging research
subject for researchers. Te majority of the work is focused
on the word level or small phrase extraction which comes
under isolated sign. For its complexity, there is very little
literature in the realm of continuous sign-language videos. A
continuous sign-language sentence stream can have over 250
frames, with a few keyframes functioning as representative
frames and the rest as transitional or noninformational
frames. Due to the little variation between two consecutive
frames and the long length of the input, the demand for
modelling temporal sequence of signs at the sentence level is
rather stringent.

Te majority of early techniques used threshold settings
that varied depending on the dataset, which reduced stability
and scalability. Repetitive signs and signs with little mo-
mentum are disregarded, which results in information loss.
Most early research treats the principal hand structure as
a single region of interest that is retrieved using a segmen-
tation method in order to condense the gesture space. In
addition, each sign phrase’s beginning and ending frames
were manually chosen and continuous signs were trans-
formed into isolated frames to control the motion. When
designing an algorithm for a continuous sign video challenge
that heavily relies on continuous data, such restrictions must
be minimized.

Tis work proposes a keyframe extraction algorithm for
handling the signifcant difculty of keyframe extraction in
CSL videos based on the diference in angular displacement
of pixels between frames and a sequence check metric.

2. Proposed Method

2.1. FrameSequenceCountCheck (FSC2)KeyframeExtraction
Algorithm. Te FSC2 keyframe extraction algorithm is
designed in simple and statistical steps to keep it light weight
and efective. Te proposed FSC2 keyframe extraction ar-
chitecture is shown in Figure 3. Te FSC2 algorithm has
three phases of execution; motion analysis, wrapper, and
reduction. Motion analysis uses the Gunnar Farnebäck
optical fow algorithm [43] to obtain optical fow data be-
tween two nearby neighbouring frames.Tese data are fed to
wrapper where the α value is calculated, which are the mean
of the angular displacement obtained from optical fow data.
Te frames are then arranged in two boxes depending on the
α value by the selector and weighed which form the can-
didate key. Te sequencer receives these frames and counts
how many of each one can be found in an order and updates
the weights depending on the sequence. Te frames are

sequence checked inside the reducer and then they are re-
duced using the s-reduction algorithm. S-reduction counts
the number of sequences. For a sequence of 3, if the middle
element has a positive α value, it is kept and the other frames
are discarded; otherwise, the middle element is discarded. In
the case of a count of 2 and one is from a box with a negative
α value, it will be rejected; otherwise, both will be kept. If the
sequence is greater than 3, then the mean pixel diference is
used as the threshold and is reduced. Te output is a col-
lection of keyframes which form the abstract of signs in CSL
videos.

Te FSC2 keyframe extraction algorithm evaluates
a second-order frame diference by employing a two-frame
optical fow calculator (Gunnar Farnebäck) as the frst order
diference and two successive optical fow diferences as the
second-order diference. In order to analyse the motion on
frames, the algorithm relates to the subsequent three frames.
Tis information allows the algorithm to represent the
motion of three subsequent frames, which aids in capturing
minute interframe motions.

2.2. Motion Analysis. By obtaining two consecutive frames,
the optical fow algorithm calculates the motion of each pixel
in a frame. Te Gunnar Farnebäck optical fow method was
employed for this study to determine the optical fow in-
formation between two successive sign frames.

2.2.1. Gunnar Farnebäck Optical Flow. Gunnar Farnebäck
[43] is a two-frame motion estimation algorithm developed
to produce dense optical fow results. Te algorithm is
broken down into four steps. Optical fow is determined by
quadratic polynomials representing the local neighbour-
hood of an image in the frst step. Tese quadratic poly-
nomials are used in the second stage to generate a new signal
from a global displacement. Te following step involves
equating quadratic polynomials to calculate global dis-
placements. Te coefcient is then calculated by using
a weighted least squares estimate of the pixel.

Te Gunnar Farnebäck two-frame method was chosen
for this study because it can be used to examine each in-
dividual pixel displacement between subsequent frames and
depends on the notion that sign language frames have a lot of
small motion embedded in neighbouring frames.

Te mathematical representation of the algorithm is as
follows.

Image intensity model with quadratic function for the
frst frame at pixel location x can be represented as

f1(x) � x
T
Ax + b

T
1 x + c1, (4)

where A is a symmetric matrix, b is a vector, and c is a scalar.
Coefcients are obtained by ftting the weighted least squares
to the intensity values in the neighbourhood. For the second
frame with global displacement d,

f2(x) � f1(x − d)

� (x − d)
T
A(x − d) + b1

T
(x − d) + c1.

(5)
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On expanding and substituting,

f2(x) � x
T
Ax + b

T
2 x + c2,

b2 � b1 − 2Ad.
(6)

Displacement equation becomes

d � −
1
2
A

− 1
b2 − b1(  � A

− 1∆b. (7)

Further reading can be found in the paper [43].

2.3.Wrapper. TeGunnar Farnebäck optical fow algorithm
generates an optical fow vector for each pixel that lies
between two adjacent frames. By using polarization, an-
gular displacement, A

→
, is calculated from the vector data.

Te next step is to determine the diference in angular
displacement between adjacent pairs of fow data, which
corresponds to the angular displacement between three
successive frames as shown in equation (8). Te parameter
utilised for frst level candidate keyframe selection, α, is
then derived as the mean of the angular displacement
diference of the fow data and is represented in equation
(9). Tis process discards a small number of frames.

A
→

� Ai

�→
− A

→
i−1, (8)

α � mean(A
→

). (9)

Tus, the wrapper selects candidate keyframes that may be
part of the keyframe set.Te selector and sequencer are the two
components that determine the rating for the frames. Te
selector checks the α value, distributes the frames into ap-
propriate boxes, and assigns each frame aweight based on it. Let
fw � wg be the weight assigned to frames in box with α> 0 and
fw � wl be the weight assigned to the other.Tis work assumes
greater priority to frames in box with α> 0, i.e., wg >wl.

Te sequencer uses these weighted frames to determine
the sequence check, or the number of frames that follow each
other, and divides them into three boxes, designated S1, S2,
and S3. Boxes S1, S2, and S3 have score value(s) 2, 3, and 4,
respectively. Frames with sequence number two are kept in

S1, frames with sequence number three are kept in S2, and
frames with sequence number greater than three are kept in
S3. Single frames without any adjacent frames are discarded
in this step as any abrupt change in motion is considered
uninformational.

For example, consider the scenario that a box contains
f1, f4, f5, f6, f7, f10, f11, f12, f20, f21  set of frames.
Ten, frame f1 is discarded, frames f4, f5, f6, f7  are put
in S3 box (for all counts > 3, s is set to 4), frames
f10, f11, f12  are placed in S2 box, and f20, f21  will get S1
box. Ten, each frame’s weight in each box is updated in
accordance with equation (9).

fw � fw ∗ s. (10)

Tese weighted frames are what make up the candidate
keyframes. In this way, the wrapper initially reduces frames.
Ten, the frames are combined and sent to the reduction
procedure.

2.4. Reduction. Upon receiving the candidate keyframes, the
reduction unit starts the reduction process. S-reduction and
P-reduction are performed based on the sequence count and
pixel diference. Te approach is based on the assumption
that a signifcant number of information frames is kept in the
box with α > zero.

2.4.1. S-Reduction. Tere are two types of reductions in-
volved in S-reduction or sequence-check reduction.Te frst
step to determining potential keyframes is to count the
continuous frame sequence in the candidate set. For se-
quence count two, if any one of the frame is from box2, that
frame is discarded; otherwise, both frames are kept. From
the set fi, fi+1, fi+2  with sequence count 3, if the frames
∈box1, then fi+1 is discarded; otherwise, fi, fi+2  are dis-
carded. Frames with a sequence count greater than three is
sent for P-reduction.

2.4.2. P-Reduction. A key frame is chosen by comparing pixel
diferences between succeeding frames to an adaptable
threshold.Temean pixel diference of the current sequence set

Tn

MOTION
ANALYSIS

WRAPPER SELECTOR SEQUENCER
REDUCTION

Tm

T1

m<n

α-Generator α>0

Yes

No

w1

w2

S1

S2

S3

fs * w.
S -REDUCTION

P -REDUCTION

T1

Tn-1

Figure 3: Architecture diagram of frame sequence count check (FSC2) keyframe extraction algorithm.
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is used to determine adaptive thresholds. Te fnal output will
be the key frameset that represents the sign video abstractly.
Te algorithmic representation of FSC2 keyframe extraction is
given in Algorithm 1. It takes in the frame sequence from the
sign video and output the keyframe set K. fi represents the
frame index and fw represents the frame weight.

Te number of frames for a given sign is chosen by the
FSC2 algorithmwith no reference to any specifc parameters.
Each sign’s motion dictates how many keyframes the FSC2
algorithm selects for it. Te choice of keyframes for small
signs is one or two. If a sign moves a lot, the algorithm will
select more keyframes to identify it.

3. Experimental Results and Analysis

Two datasets were tested using the FSC2 keyframe extraction
algorithm, the RWTH-PHOENIX-Weather 2014 dataset [7]
and the How2Sign dataset [44]. RWTH-PHOENIX-
Weather 2014 includes German sign language weather data
captured at 210× 260 pixels per frame at 25 frames per
second. Extracting the keyframe in an exact way is an im-
portant research perspective since the dataset serves as the
baseline for all the current sign language research studies.
Tere are more than 80 hours of sign language videos
recorded in parallel by 11 signers in How2Sign, a multi-
modal and multiview continuous American sign language
dataset. Te backgrounds of both datasets are static. Tree
sentences of varying length and signer are taken from
datasets for analysis and visualization. Table 1 details the
sentences used for evaluation and analysis. Two sentences
are from the Phoenix4 dataset and one is from the How2Sign
dataset.

Figure 4 demonstrates the output achieved for the 176
frames recording “LIEB ZUSCHAUER ABEND WINTER
GESTERN loc-NORD SCHOTTLAND loc-REGION
UEBERSCHWEMMUNG AMERIKA IX” and the corre-
sponding sign writing notation for each word.Te suggested
approach reduces the frameset 176 frames to 48 frames, and
the fgure shows that all informational frames are efectively
captured while the directional information is preserved. Te
sign for the word “LIEB” is well captured as a rubbing
gesture as notated in signwriting. Te “WINTER” gesture is
a modest forward and backward motion of both hands
which is also captured well with a low frame count.

3.1. Analysis of the α Value. Te α value is the diference
between two consecutive angular displacement data obtained
from Gunnar Farnebäck optical fow algorithm. In Figure 5,
a trace of the α over the ground truth frames from the original
video for the sentences in Table 1 is depicted. Sentences with
varying word lengths and signers and fnger signs are taken at
random from the datasets. Estimation of the ground truth is
done manually. Te αground-truth mapping chart illustrates
that most signs appear at α> 0.Tus, this study, by prioritizing
box1, is capable of identifying the informational frames of
signs. As can be seen from Figure 6, the α value can capture
both small and large displacements in a sign and beneft
wrapper and reduction algorithms.

3.2. Experimental Setup. Te procedure is divided into two
sections. Te main contribution is the generation of key-
frames from continuous sign-language videos. An AMD
Ryzen 5000 series CPU system is used for this study. Python
3.10 was used to create the algorithm. Google Colab is
utilised for training and testing in the second task, which
involves sign language recognition.

3.3. Performance Analysis. Tree metrics have been used to
evaluate the efectiveness of the proposed algorithm:

(1) Reduction rate (R)
(2) Accuracy (A)
(3) Word error rate (WER)

Table 2 shows the obtained reduction rate and accuracy
for two datasets when applied on diferent keyframe ex-
traction methods. As the value implies, FSC2 performs well
on both datasets, capturing themajority of signifcant frames
while eliminating unimportant frames.

In Figure 6, the accuracy chart is presented for diferent
sentences. Te keyframes obtained from the FSC2 keyframe
extraction algorithm is traced across ground-truth sign
frames. A Venn diagram is plotted for the same in Figure 7 to
demonstrate the reduction and the accuracy rate. It is
demonstrated in Table 3 that the approach is scalable and
stable by providing the representation across diferent
sentences, signers, and sentence lengths.

From the fgures, it is evident that the FSC2 keyframe
extraction algorithm efciently captures almost all the major
and minor gestures in the continuous sign video. WER is
evaluated by giving the reduced frameset to two recognition
systems. Tis work chooses SAN [45] and VAC [46] as
recognition systems and the obtained results are shown in
Table 4. SAN [45] is a transformer-based architecture and
with some data augmentation, the network is able to attain
better WER when trained with keyframes. VAC [46] uses an
iterative training scheme on the CNN framework. Both SAN
and VAC are trained and tested with diferent datasets
obtained from methods such as pixel diference, gradient-
based approach, Zernik’s moment, and the FSC2 algorithm.
Te outcomes demonstrate that the proposed algorithm
efciently collects information frames while eliminating
transitional frames that can be efcient on both global as well
as local receptive felds. Figure 8, shows the percentage
variance of the WER value obtained after keyframe ex-
traction based on Table 4. Te fndings indicate that com-
pared to the previous methods, the FSC2 keyframe
extraction reduces WER more successfully. As compared to
other algorithms, the proposed algorithm reduces the WER
relative to the baseline.

3.4. Computational Complexity. Te computational com-
plexity of neural network models is commonly assessed
using train time complexity, run time complexity, and space
complexity. Using the FSC2 keyframe extraction algorithm,
the computational complexity can be reduced by a factor of
m, where m is the new size of the dataset.
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3.4.1. Space Complexity. Space complexity can be
assessed by the amount of space required to store the
model input.

Worse case space complexity�O(n), where n� total
number of frames without reduction; average or best case
space complexity�O(m), where m� total number of key-
frames after reduction, m< n

Table 2 shows that the algorithm can reach a reduction
rate of approximately 75%. As a result, the space complexity
is decreased from n to m, which is a 75% reduction and
a cost-efective solution.

3.4.2. Time Complexity. Time complexity can be estimated
as the train time complexity or run time complexity, when
the keyframe set is fed as input to the neural network model.

Worse case time complexity�O(n), where n� total
number of frames without reduction. Average or Best case
time complexity�O(m), where m� total number of key-
frames after reduction, m< n

Because the number of input frames is 75% less than in
the original dataset, train and run time complexity can be
reduced by 75%, allowing the network to extract and learn
features faster.

Input: F: set of all frames in a CSL video
Output: K: set of all keyframes
foreach frame f ∈ F do
fow⟵Gunnar_FarnebäckOpticalFlow (f1, f2)

foreach element in fow do
A⟵ polarze (flow1, flow2)

CK⟵Call Wrapper (A)
K⟵Call Reduction (CK)

end
end
Function Wrapper (A):
α⟵mean (Ai − Ai+1)//selector
ifα> 0, thenBox1⟵fi, fiw

⟵wg;
else Box2⟵fi, fiw

⟵wl;
//sequencer
for each f ∈ boxes, do

Findsequencecount, s
if (s �� 2), then S1⟵ffw⟵fw ∗ s1;
else if (s �� 3), then S2⟵ffw⟵fw ∗ s2;
else if (s> 3), then S3⟵ffw⟵fw ∗ s3;

end
CK⟵ S1 ∪ S2 ∪ S3
return CK
End Function

Function Reduction (CK):
//Find the sequence count, s
//S-reduction
if s� � 2, then

if f1 orfi+1 ∈ Box2, then
CK⟵CK − f ∈ Box2;

end
if s� � 3, then

if f1, fi+1, fi+2 ∈ Box1, then
CK⟵CK − fi+1;

else CK⟵CK − fi − fi+2;
end
if s> 3 then

//P-reduction
for all frames f ∈ sequence, do

pd ⟵ subtract (fi, fi+1)

end
β⟵mean(pd)

if pdi,i+1 < β, then CK⟵CK − fi;
end
return CK

End Function

ALGORITHM 1: FSC2: frame sequence count check.
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3.5. Scalability and Stability. Scalability refers to the capacity
of keyframe extraction methods to run on various kinds of
datasets captured under a variety of circumstances and yield
exact results. Te scalability of keyframe extraction tech-
niques can be impacted by variables including data in-
dependence, signer independence, and phrase or word
length. Te FSC2 keyframe extraction algorithm can be used
to reduce any sign language dataset, regardless of the type of
sign language or the frame rate of the video and thus data
independent and scalable. Table 2 shows the reduction rate
and accuracy obtained using two datasets. Both the design

statistics and the lack of a threshold value lend credence to
this beneft. On four distinct signs executed by three distinct
signers, the algorithm ofers the best and most precise re-
duction, as shown in Table 3. Te signs “MORGEN,”
“GESTERN,” “LIEB,” and “KNIFE” are taken into consid-
eration for analysis, and it is discovered that the signs are
accurately reduced when performed by various signers. It
was, therefore, determined to be accurate and stable, re-
gardless of the signer and language.Te word length on 5670
videos in the Pheonix4 dataset is less than 9 words, on
average. Te How2Sign dataset includes fnger signing as

LIEB ZUSCHAUER ABEND

WINTER GESTERN

NORD LOC SCOTTLAND

REGION UBERSCHWEMMUNG AMERIKA

Figure 4: Te FSC2 keyframe extraction algorithm: generated keyframes. Te sentence “LIEB ZUSCHAUER ABENDWINTER GESTERN
loc-NORD SCHOTTLAND loc-REGION UEBERSCHWEMMUNG AMERIKA” was condensed from 176 frames to 48 keyframes. Te
signwriting rendition is shown beneath each word.

Table 1: Te following sentences were taken for the purpose of analysis and visualization.

Sn. Sentence FC Dataset
1 “WOCHENENDE TATSAECHLICH FREIZEIT WOCHENENDE PASSEN” 69 Phoenix4

2 “LIEB ZUSCHAUER ABEND WINTER GESTERN loc-NORD SCHOTTLAND
loc-REGION UEBERSCHWEMMUNG AMERIKA IX” 176 Phoenix4

3 “HELLO AGAIN THIS IS OSCAR MORENO WITH MORENO CUSTOM
HOME” 104 How2Sign

FC indicates the number of frames a sentence has in its video representation.
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Figure 5: Te graphical representation of the relation between the α value and the ground truth sign frames for the sentences in Table 1. (a)
Ground truth-α mapping: sentence 1. (b) Ground truth-α mapping: sentence 2. (c) Ground truth-α mapping: sentence 3.
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Figure 6: Continued.
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Figure 6: A comparison of the ground truth frames and the keyframes produced by the FSC2 algorithm for the sign videos in Table 1. (a)
Ground truth-keyframe mapping to show accuracy for sentence 1. (b) Ground truth-keyframe mapping to show accuracy for sentence 2. (c)
Ground truth-keyframe mapping to show accuracy for sentence 3.

Table 2: Performance analysis of the FSC2 keyframe extraction algorithm and existing algorithms in terms of the reduction rate and
accuracy on Pheonix4 and How2Sign datasets.

Dataset S n Method m R (%) A (%)

Pheonix4 (train) 5670 798629

Pixel diference [13] 203650 74.5 67.3
Gradient based [27] 214032 73.2 66.4
Zernik’s moment [35] 492754 38.3 70.4

Sampling [29] 238790 70.1 60.3
FSC2 (proposed) 206823 74. 83. 

How2Sign (test) 32 101793

Pixel diference [13] 30233 70.3 69.7
Gradient based [27] 35322 65.3 70.1

Zernike’s moment [35] 60974 40.1 74.4
Sampling [29] 28400 72.1 67.3

FSC2 (proposed) 24995 75.4 84.2
S denotes the total input video, n denotes the total frame count before reduction,m denotes the keyframe count after reduction, R is the reduction rate, and A
is the average accuracy. Te highlighted values shows that the FSC2 algorithm gives a higher reduction rate and accuracy.
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well as long and short sentences. Without using any addi-
tional parameters, the FSC2 keyframe extraction algorithm
efectively extracts all categories accurately and efciently.

3.6. Comparison of the FSC2 Keyframe Extraction Algorithm
across Various Approaches. Table 5 compares the FSC2
keyframe extraction method with a few benchmark key-
frame extraction techniques. Stability (S) examines the
ability to extract a keyframe for the same sign done by

a diferent signer in a consistent manner.Te static threshold
(T) parameter checks the use of any static threshold value for
keyframe selection. Scalability measures the data in-
dependency (DI) and the application of an algorithm to
diferent datasets without any changes and is tested to ensure
that it can work with multisigner, multilanguage, and var-
iable length data. Direction or continuity (C) of sign is also
an important element in sign recognition. So, keyframes
must also contain directional information. By using tran-
sition frames, continuous signs were prevented from

ACCURACY-REDUCTION VENN DIAGRAM S1 ACCURACY-REDUCTION VENN DIAGRAM S2 ACCURACY-REDUCTION VENN DIAGRAM S3

KEYFRAMES GROUND TRUTH FRAME KEYFRAMES GROUND TRUTH FRAME KEYFRAMES GROUND TRUTH FRAME

9 11 26 21 28 69 8 25 53

Figure 7: Venn diagram showing the algorithm’s accuracy and the reduction rate for three videos.

Table 3: Te stability of the algorithm is assessed by comparing the number of keyframes extracted, done by diferent signers on four sign
words from Pheonix14 and How2Sign datasets.

Signs SignWriting m N Signer ID

MORGEN
8 3 Signer 1
9 3 Signer 3
8 3 Signer 8

GESTERN
4 2 Signer 1
4 2 Signer 4
4 2 Signer 8

LIEB
3 2 Signer 4
3 2 Signer 5
3 2 Signer 7

KNIFE
3 2 Signer 1
4 2 Signer 2
3 2 Signer 3

m denotes the number of frames in the original video and n denotes the number of frames in the reduced set.

Table 4: A comparison of the WER metrics obtained by diferent systems on sign language recognition tasks.

Methods dev Test
Deep sign [47] 38.3 38.8
SubUNets [48] 40.8 40.7
SF-Net [49] 35.6 34.9
SAN [45] 29 29.7
SAN [45] + Zernike’s moment [35] 38.1 38.2
SAN [45] + pixel diference [13] 40.1 40.2
SAN [45] + gradient based [27] 42.7 43.2
SAN+FSC2 (proposed) 28.6 28.8
VAC [46] 21.2 22.3
VAC [46] + Zernike’s moment [35] 28.1 28.2
VAC [46] + pixel diference [13] 32.1 33.2
VAC [46] + gradient based [27] 31.7 31.8
VAC+FSC2 (proposed) 20.8 2 .9
Tested on the RWTH-PHOENIX-weather 2014 dataset. A lowerWER value is better.Te highlighted value suggests that FSC2 performs well when integrated
with existing systems.
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becoming isolated signs. A qualitative analysis of the key-
frame extraction algorithms can be found in Table 5. Te
analysis shows that the algorithm successfully meets the
abovementioned three signifcant qualities when extracting
keyframes from CSL videos.

4. Ablation Study

4.1. Changing the αCriteria. Temain notion of FSC2 is that
keyframes may be identifed at α> 0. A study is carried out
with α< 0. When compared to the previous notion, the
obtained result is less precise. Tere was inadequate simi-
larity between ground truth and keyframes. Figure 9 shows
the results for the parameters extracted with keyframe count
m, reduction rate R, and accuracy A with two values of α
when applied to three sentences. Te keyframe count and

reduction rate are depicted by bars, while the accuracy is
represented by a line. Figure 9 shows that the choice of α >0
gives a better results.

4.2. Motion Analysis Using the Lucas–Kanade Method.
Te Gunnar Farnebäck algorithm is replaced by the
Lucas–Kanade method, and the results demonstrate that the
GF algorithm is superior to the LKmethodology because the
GF algorithm can capture motion between two successive
frames and captures all motions in the signs. Figure 10 shows
the performance of both optical fow algorithms when ap-
plied on three sentences. Accuracy is represented by the line
chart and it is clear that Gunnar Farnebäck gives a better
value as it can capture the small motions between two
frames.
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Figure 8: Percentage variation of WER was calculated for four key extraction algorithms based on Table 4. SAN and VAC systems are given
new dataset with maximum accuracy obtained and WER is calculated. Te percentage variance in WER is shown in each case.

Table 5: Comparison of the FSC2 keyframe extraction algorithm with other algorithms on parameters.

Methods T DI S C
Pixel diference [13] ✓ × × ×

DTW [42] ✓ × × ×

Gradient based [27] ✓ × × ×

Sampling [29, 33] ✓ × × ×

Sampling +DTW [14] ✓ × × ×

Clip summary [41] × × × ×

Zernik’s moment [35] ✓ × × ×

MME [24] ✓ × × ×

Hand features [39] ✓ × × ×

Edge detection +DTW [37] ✓ × × ×

Hybrid cluster [38] × × × ×

FSC2 keyframe extraction (proposed) × ✓ ✓ ✓
T: static threshold dependency, DI: data independency, S: stability, and C: continuity.
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Ablation study on α value
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Figure 9: Ablation study on the FSC2 algorithm by altering the α value.
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Figure 10: Comparison study of the Gunnar Farnebäck optical fow algorithm and the Lucas–Karnade method when applied to FSC2 on
three sentences. Metric considered are the Keyframe count, reduction rate, and accuracy.
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4.3. Changing the Sequence Value. For keyframe extraction,
the FSC2 algorithm examines three sequence values, i.e., 2, 3,
and more than 3 to capture both long and short signs. Te
sequence values are altered in various orders in order to
catch the important frames. Te outcome fell short of the
standard set by FSC2 in the reduction rate and accuracy.

 . Conclusion

Te proposed FSC2 keyframe extraction method is de-
veloped to extract keyframes from a video of continuous
signs. As a result of the extraction process, every in-
formational frame was successfully extracted and also
achieved a high reduction rate. Tis enables researchers to
complete CSL-related tasks in less time, with less sophisti-
cated computational hardware and with less storage. In
contrast to previous works, the algorithm extracts gesture
information from videos while maintaining factors such as
continuity and motion direction. Despite the computa-
tionally expensive nature of optical fow techniques, FSC2
keyframe extraction is efcient for both long and short sign
sequences in terms of accuracy and stability. With statistical
methods on optical fow data that function on all basic
hardware, the algorithm design is kept simple. Te results
showed that the suggested strategy produced highly com-
petitive outcomes when compared to the state-of-the-art
approaches. Tus, the algorithm solves six major problems
related to keyframe extraction from CSL videos such as
stability, scalability, preserving direction information,
detecting small and repeated movements in sign, low in-
formation loss with great accuracy, and good reduction rate.
An evaluation of the algorithm’s performance is conducted
on existing systems to ensure that it performs the task ef-
fciently. All datasets included in this study have static
backgrounds. Te angular displacement and optical fow
data are impacted by background object movement. As
a result, the motion estimate employed in the FSC2 approach
cannot precisely determine the sign when the background is
changing. Terefore, the proposed algorithm performs
poorly compared to how it does with static data. Additional
investigation about real-time sign language with diferent
static backgrounds is necessary.

Data Availability

Te data used to support the fndings of this study are
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