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Industrial control systems (ICSs), as critical national infrastructures, are increasingly susceptible to sophisticated security threats.
To address this challenge, our study introduces the CAE-T, a deep convolutional autoencoding transformer network designed for
efcient anomaly detection and real-time fault monitoring in ICS. Te CAE-T utilizes unsupervised deep learning, employing
a convolutional autoencoder for spatial feature extraction from multidimensional time-series data, and combines this with
a transformer architecture to capture long-term temporal dependencies. Te design of the model facilitates rapid training and
inference, while its dual-component approach, utilizing an optimization function based on support vector data description
(SVDD), enhances detection accuracy. Tis integration synergistically combines spatiotemporal feature extraction, signifcantly
improving the robustness and precision of anomaly detection in ICS environments. Te CAE-T model demonstrated notable
performance enhancements across three industrial control system datasets. Notably, the CAE-Tmodel achieved approximately
a 70.8% increase in F1 score and a 9.2% rise in AUC on theWADI dataset. On the SWaTdataset, the model showed improvements
of approximately 2.8% in F1 score and 5% in AUC.Te power system dataset sawmore modest gains, with an approximately 0.1%
uptick in F1 score and a 1% increase in AUC.Tese improvements validate the CAE-Tmodel’s efcacy and robustness in anomaly
detection across various scenarios.

1. Introduction

Industrial control systems (ICSs) are pivotal technologies
that support national critical infrastructure, extensively
utilized in key domains such as military, aerospace, and
energy. As ICSs evolve towards increased openness and
intelligence, the associated security risks become more
prominent [1], particularly given the rise in targeted cyber-
attacks in recent years [2–4]. In this context, efective
anomaly detection techniques that monitor and identify data

deviations in real time to prevent potential malfunctions and
attacks are crucial. Current anomaly detection techniques in
ICS face several challenges.

1.1. Challenges. Firstly, data in industrial control systems
(ICSs) exhibit characteristics that are distinct from those in
traditional information systems. Tese data are often gen-
erated in real-time by multiple sensors distributed across the
entire system, with each sensor capturing diferent aspects,
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leading to high dimensionality and heterogeneity [5–7]. Te
high dimensionality of ICS data, meaning that each data
point contains a vast array of features, poses challenges to
traditional anomaly detection methods [8], which typically
struggle with large feature spaces. Furthermore, the het-
erogeneity of these data indicates that the features originate
from various types of sensors and devices, each providing
vastly diferent information [9]. Tis necessitates that
anomaly detection algorithms understand and process these
diverse data types. Additionally, the temporal dependency
present in ICS data imposes additional demands on anomaly
detection algorithms [10]. Abnormal behaviors may mani-
fest not only in the anomalous readings of a single sensor but
also in the relationships between readings from multiple
sensors [11]. Terefore, it is essential for algorithms to
capture and analyze these complex patterns in time-series
data.

Moreover, in the ICS environment, the efectiveness of
supervised learning methods is limited due to their reliance
on large volumes of accurately labeled data [12]. Te rarity of
abnormal events and the complexity of labeling tasks result in
a shortage of anomalous samples in datasets, posing a sig-
nifcant challenge to learning algorithms that rely on labeled
data [13]. Furthermore, the infrequency of abnormal events in
ICS often leads to class imbalance issues, which further limits
the efectiveness of supervised learning methods [14]. While
semisupervised learning methods rely less on labeled data,
they still encounter challenges in addressing the high di-
mensionality, heterogeneity, and temporal dependencies of
ICS data. Tese methods frequently struggle to accurately
represent the full spectrum of ICS data behaviors, particularly
in depicting complex normal operation modes [15].

1.2. Solution Strategy. Given these challenges, unsupervised
anomaly detection has emerged as a more suitable approach
in the ICS environment. Unlike supervised methods, un-
supervised techniques do not rely on labeled data, making
them well-suited to the reality of scarce and often unbalanced
labeled data in ICS. Unsupervised methods, capable of
learning from unlabeled data, are particularly adept at han-
dling the unique complexities of ICS data, which include high
dimensionality, heterogeneity, and temporal dependency.
Although reconstruction-based techniques such as the con-
volutional autoencoder (CAE) [16] and denoising autoen-
coder (DAE) [17] have been employed, they often
overgeneralize by ftting both normal and abnormal inputs.
Recurrent models such as RNN [18] and LSTM [19] face
challenges in capturing long-term trends due to their ar-
chitecture and tend to have slow run times. Furthermore, two-
step methodologies, commonly employed in time-series
anomaly detection [20–22], may lead to suboptimal perfor-
mance when training separate models for diferent tasks.

1.3.TeNovelty of the ProposedApproach. Addressing these
limitations, this paper proposes a novel unsupervised
learning strategy for anomaly detection in ICS. Tis
strategy aims to develop an efective unsupervised deep
learning technique for detecting anomalies in multidi-
mensional time-series data, termed the deep convolu-
tional autoencoder-transformer (CAE-T) network, to
address the aforementioned challenges. Te CAE-T
network comprises two subnetworks: a convolutional
representation learning network and a temporal in-
formation extraction network. Compared to existing
methods, this approach employs a deep convolutional
autoencoder as the spatial semantic extraction module,
combined with a transformer model with positional
encoding for prediction. By utilizing the transformer
model, the detection speed is accelerated compared to
recurrent methods, as inference can be parallelized on
GPUs. Additionally, the transformer model has the added
advantage of accurately encoding large sequences, with
its training and inference time being largely unafected by
sequence length.

1.4. Contribution

(1) Tis paper proposes a novel anomaly detection
model that leverages spatiotemporal dependencies.
Te model accounts for the spatial and temporal
characteristics of the data, encompassing the re-
lationships between diferent sensors’ readings at
a specifc time (spatial) and the evolution of these
relationships over time (temporal). Specifcally, the
model uses convolutional neural networks to ef-
ciently extract these spatiotemporal features and
integrates them with a transformer-based module to
capture the time-varying relationships among mul-
tiple sensor data. Tis approach not only facilitates
robust modeling of normal patterns but also en-
hances the detection of abnormal events in com-
parison to real-time sensor data.

(2) Te paper introduces an enhanced optimization
function based on support vector data description
(SVDD). Tis SVDD-based function improves the
model’s discriminative ability, thereby enhancing
anomaly detection performance across multiple
datasets.

(3) Te paper introduces an integrated loss function that
incorporates spatiotemporal information of the data
for end-to-end model training. Tis approach takes
into account both the spatial relationships between
diferent sensors’ readings and their temporal evo-
lution, leading to enhanced anomaly detection
performance.

2 International Journal of Intelligent Systems



1.5. Organization. Te remainder of this paper is organized
as follows: Section 2 provides an overview of related work.
Section 3 outlines how the CAE-T model works for mul-
tivariate anomaly detection and diagnosis. Section 4 shows
the performance evaluation of the proposed method. Section
5 shows the fnal summary and outlook.

2. Related Work

Anomaly detection techniques in industrial control systems
(ICS) encounter unique challenges, primarily arising from
the high dimensionality, heterogeneity, and complexity of
time-series data. Tese characteristics render traditional
anomaly detection methods less efective in the context of
ICS. Tis paper examines the applicability and limitations of
unsupervised anomaly detection techniques in addressing
specifc challenges inherent in the ICS environment. Tis
section initially introduces traditional anomaly detection
methods and then discusses the advantages and limitations
of deep learning-based anomaly detection approaches in
tackling these challenges.

2.1. Traditional Anomaly Detection. In ICS datasets, tradi-
tional anomaly detection methods encounter several chal-
lenges. Tese methods, typically designed for static and
single data sources, struggle with the high dimensionality
and heterogeneous nature of multisensor ICS data. For
example, reconstruction-based methods such as autoen-
coders, while capable of constructing normal models from
high-dimensional data, may incur increased reconstruction
errors when applied to complex ICS data. Clustering analysis
techniques, including GMM [23], k-means, and KDE [24],
can handle heterogeneous data but might struggle to capture
the temporal dynamics in the constantly changing ICS
environment. Learning-based methods, such as SVM [25]
and SVDD [26], face challenges in accurately distinguishing
between normal and abnormal data in complex datasets.

For time-series data, models, such as AR and ARIMA
[27], widely used in various domains, have limited appli-
cability in ICS. Tese models face challenges such as high
computational costs and limited capability in handling long-
term trends, especially in multisensor multivariate time
series data.

2.2.DeepLearning-BasedAnomalyDetection. Tediscussion
of reconstruction models, predictive models, and combi-
natorial models in deep learning-based anomaly detection is
crucial for understanding their suitability in addressing the
unique challenges of ICS.

2.2.1. Reconstruction Models. Reconstruction models strive
to minimize reconstruction errors using various approaches.
Autoencoders, widely used in anomaly detection, are
designed to reconstruct given inputs. Trained exclusively on
normal data, these models identify anomalies through sig-
nifcant reconstruction errors. LSTM autoencoder models
detect anomalies by learning temporal features of input time

series and utilizing reconstruction errors. Although efective
for time-series data, these models’ performance in detecting
anomalies in multidimensional time series diminishes due to
a lack of spatial correlation consideration. CAE [22] captures
two-dimensional (2D) image structures and anomalies by
transforming data into an image format. Audibert et al. [28]
employed adversarial training between two networks for
efective anomaly detection in time-series data. DAGMM
[29] integrates deep autoencoders with Gaussian mixture
models, using unsupervised learning to acquire low-
dimensional representations of input data and identify
anomalies by comparing new samples with the learned
distribution.

2.2.2. Predictive Models. Te predictive model is a widely
used tool in anomaly detection. Its basic idea is to predict
future output values and to compare the predicted values
with the actual values. If the predicted value deviates sig-
nifcantly from the actual value, the data point is considered
as an anomaly. Commonly used prediction models include
a variety of architectures: RNNs and LSTMs, which excel at
capturing temporal dependencies, and CNNs, adept at
processing spatial structures in data such as images or
videos. Recently, transformer-based models have been
employed for their ability to capture long-range de-
pendencies in data. For instance, Erba et al. [30] utilized
LSTM to predict values for subsequent time periods and
detect anomalies by minimizing the mean square error
between predicted and actual values. Li et al. [31] recently
employed transformer models to capture temporal de-
pendencies and patterns within the data. By integrating
a transformer encoder-decoder architecture with a pre-
diction branch, this approach reconstructs and predicts
future values of the time series. Anomalies are detected by
comparing the reconstruction and prediction errors, thus
identifying deviations from normal behavior. Additionally,
there are anomaly detection models based on generative
adversarial networks (MAD-GAN) [32], which use the
predictive power of GAN generators to detect anomalies and
distinguish between false and real data. Te continued de-
velopment of these models is expected to play a signifcant
role in the future of anomaly detection.

2.2.3. Combinatorial Models. In addition to single models,
combinatorial models are increasingly gaining attention in
the feld of unsupervised anomaly detection. Su et al. [29]
utilize a deep autoencoder architecture in combination with
an RNN to capture temporal dependencies and complex
patterns in data. Tey employ a reconstruction-based ap-
proach in which the model is trained to accurately re-
construct normal data. Anomalies are identifed based on
reconstruction errors, with larger errors indicating de-
viations from normal behavior. Tis algorithm provides
a versatile and efective solution for detecting anomalies in
diverse and dynamic time series data, making it suitable for
a range of anomaly detection applications. Conversely, Ullah
et al. [33] proposed a composite model employing a single
encoder LSTM and multiple decoder LSTMs to perform
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tasks like reconstructing input sequences and predicting
future sequences. In certain studies, the ConvLSTM model
has been utilized within the composite LSTM model as an
intermediary unit between the reconstruction and pre-
diction branches. Currently, this composite model is used
for feature extraction from video data for action recognition
tasks. Additionally, other researchers [22] have proposed
a convolutional neural network-based model for multivar-
iate deep spatiotemporal anomaly detection (CAE-M). Tis
model employs a convolutional architecture to capture
spatial-temporal variations, featuring a network structure
with an encoder and two decoder branches for recon-
structing past sequences and predicting future sequences,
respectively.

In this study, we introduce a deep learning combinatorial
model that synergistically combines reconstruction and
prediction strategies. Utilizing transformers to capture
temporal dependencies and CNNs for spatial feature ex-
traction, our model ofers a comprehensive approach to
anomaly detection. A key feature of our model is the in-
tegration of a unique optimization function, signifcantly
enhancing the precision and robustness of anomaly de-
tection. Comparative evaluations indicate that our meth-
odology surpasses existing combinatorial models,
particularly in capturing intricate spatiotemporal patterns,
accommodating high-dimensional data, and enhancing the
accuracy and resilience of anomaly detection.

3. Method

3.1. Notation. In this paper, we consider multisensor time
series data, which contains a multisensor time series
X � x1, x2, . . . , xn􏼈 􏼉. As shown in Figure 1, we now defne
the two problems in anomaly detection and diagnosis. (a)
Unsupervised anomaly detection and diagnosis in multi-
variate time series data. (b) Discerning distinctive system
signature matrices between normal and abnormal states.

(a) In unsupervised anomaly detection and diagnosis,
normal data is used for training. During testing, we
compute an anomaly score for each data window. By
comparing these scores against a predetermined
threshold value (T), we are able to identify windows
exhibiting anomalies, thereby signifying their pres-
ence within the local time range.

(b) We convert system signature data from the super-
visory control and data acquisition (SCADA) system
into an N × L matrix W with N representing the
number of sensors and L representing the sliding
window length. Tis approach, referenced in prior
work [22], efectively retains local temporal in-
formation of the multidimensional sensors. Trough
this transformation, we convert the original data into
a fxed-length sliding window sequence for sub-
sequent processing.

3.2. Overview. Te CAE-T framework shown in Figure 2
comprises two key components: the convolutional repre-
sentation learning network (CRLN) and the temporal

information extraction network (TIEN), playing a central
role in capturing spatiotemporal dependencies. Te CRLN
utilizes an advanced deep convolutional autoencoder spe-
cifcally designed to transform complex multidimensional
temporal data into a compact, low-dimensional represen-
tation. Tis transformation process not only simplifes the
data but also focuses on preserving and emphasizing the rich
semantic and temporal information in the data. Te com-
plexity of the CRLN lies in its ability to recognize and encode
subtle variations in temporal data.Te temporal information
extraction network (TIEN), as another key component, aims
to utilize the convolutional representation provided by the
CRLN. TIEN enhances the framework’s understanding and
analysis of the dynamics of time series by combining the
temporal features encoded by the CRLN with additional
contextual data in a complex manner. Te design focus of
TIEN is to capture subtle variations in time and to integrate
them with the output of the CRLN to comprehensively
interpret spatial and temporal patterns. Subsequently, TIEN
introduces an innovative dual-input mechanism that pro-
cesses both the convolutional representation from the CRLN
and the original data simultaneously. Tis mechanism sig-
nifcantly enhances the model’s efciency and accuracy in
capturing spatiotemporal information, allowing TIEN to
more deeply understand and analyze the dynamics of time
series. Specifcally, this dual-input mechanism enables TIEN
to utilize not only the advanced temporal features provided
by the CRLN but also to directly process the raw data, of-
fering a more comprehensive data perspective. Trough this
design, the CAE-Tframework more efectively identifes and
processes complex and subtle spatiotemporal dependencies
in multidimensional temporal data.

Tese two components together form a synergistic
mechanism of the model. Te advanced encoding capabil-
ities of the CRLN combined with the dynamic temporal
analysis of TIEN enable the CAE-T framework to capture,
interpret, and understand the complex spatiotemporal de-
pendencies in multisensor time series signals. Tis enhanced
capability ensures that the model not only recognizes pat-
terns and anomalies with higher accuracy but also gains deep
insights into the latent structure of the temporal data. Te
innovation of CAE-T is signifcant in two aspects: frst, the
integration of the penalty term from the SVDD algorithm.
Tis measure aims to prevent the autoencoder from over-
ftting and to avoid similar treatment of normal and
anomalous data, thereby improving anomaly detection
performance. Secondly, before the data enters TIEN, the
convolutional representation learned by the encoder un-
dergoes a linear transformation, inspired by the transformer
encoder, decoder, and position encoder, aimed at enhancing
the extraction of temporal information. Our approach en-
hances the anomaly detection of multidimensional temporal
data and accelerates the training process for extracting
temporal information, thanks to its synergistic efect with
the convolutional autoencoder. We adopted a composite
model to capture the spatiotemporal dependencies in
multisensor time series signals. Furthermore, to simplify the
end-to-end training process, we introduced a weighted
comprehensive objective function. During the inference
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process, the model computes the loss function within the
composite framework to accurately detect anomalies, ef-
fectively addressing multidimensional temporal data’s
anomaly detection challenges.

3.3. Convolutional Representation Learning Network. In the
convolutional representation learning network, a fusion
mechanism is used to integrate multiple variable signals.Te
process comprises two key components: (1) feature ex-
traction from multivariate signals using a convolutional
autoencoder and (2) calculating the reconstruction error,
typically using mean squared error (MSE). Reconstruction
loss quantifes the similarity between the reconstructed and

original inputs, thereby providing a measure of the re-
construction’s fdelity. To mitigate the risk of over-
generalization by the convolutional autoencoder when
processing anomalous inputs, this paper proposes a spe-
cialized loss function. Tis method efectively captures the
potential spatial semantic representation of the input signal,
while reducing the likelihood of the autoencoder overftting
to anomalous data.

3.3.1. Convolutional Autoencoder Networks.
Autoencoders, a type of artifcial neural network, are
designed to learn efcient encodings of input data, typically
used for data dimension reduction. Specifcally, an
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autoencoder is trained to replicate its input at its output.Te
network can be seen as comprising two parts: an encoder
function that converts input data into a compressed rep-
resentation and a decoder function that reverts this repre-
sentation to its original form. Te central concept is to learn
a representation (encoding) for the data, aimed at di-
mensionality reduction, which is more compact than the
original data yet retains sufcient information for minimal-
loss reconstruction of the original data.

In our work, a deep convolutional autoencoder is uti-
lized to extract low-dimensional features from the input
matrix W ∈ RN×L, where N represents the N-dimensional
time series input and L the time window length.

As depicted in (1), the encoder maps the input matrix W
to a hidden representation Zf by applying multiple con-
volutional and pooling layers. Each convolutional layer is
followed by a maximum pooling layer, which reduces the
dimensions of the corresponding layers. Te maximum
pooling layer selects the highest value within each region of
the feature map, thus generating an output feature map with
reduced dimensions, determined by the size of the pooling
kernel. Conversely, the decoder, as shown in (2), performs
reverse mapping, transforming the hidden representation Zf
back into the original input space, thus resulting in a re-
construction. Tis process involves expanding the compact
representation into a wider reconstruction matrix using
transposed convolutional layers, which increase the layers’
width and height, functioning similarly to convolutional
layers but in reverse. Te discrepancy between the original
input vector W and the reconstructed vector, termed the
reconstruction loss Lrec, is typically quantifed using the

mean square error (MSE), as depicted in (3). Te MSE
measures the distance between the reconstructed data W9

and the original input W, thus indicating the re-
construction’s efectiveness.

Zf � Encode(W), (1)

W′ � Decode Zf( 􏼁, (2)

Lrec � W − W′
����

����
2
2. (3)

3.3.2. Deep SVDD for Anomaly Detection. Distinguishing
between normal and abnormal data during anomaly de-
tection with autoencoders can be challenging.Tis challenge
arises due to the autoencoder’s tendency to overft, noise in
the training data, and redundancy in large-scale datasets.
Such issues hinder the autoencoder’s feature extraction
capabilities, thereby compromising the model’s robustness.
Tis paper discusses the deep SVDD method, which en-
hances the optimization function by adding a penalty term
to the original loss. Te training process of deep SVDD
consists of two stages. Te frst stage involves pretraining the
autoencoder to initialize network parameters and to learn
implicit data features. In the second stage, the network is
trained using an objective function tailored for anomaly
detection, which aims to maximize diferences between data
representations. Te anomaly detection objective function is
presented in (4).

min
R,w

R
2

+
1
vn

􏽘

n

i�1
max 0, ϕ xi; w( 􏼁 − c

����
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ι����
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(4)

where ϕ denotes a neural network with l hidden layers and
the weight parameter w � w1, w2, w3, . . . , wι􏼈 􏼉, wι represents
the lth layer network parameter, ι ∈ 1, 2, . . . , l{ }, xi denotes
the ith training data, n represents the total number of training
samples, R> 0 denotes the radius of the hypersphere, and
]∈ (0, 1] is a hyperparameter. λ is a regularization hyper-
parameter controlling the trade-of between the network’s
complexity and its performance on the training data. A
higher value of λ penalizes more complex models, aiding in
the prevention of overftting by maintaining smaller weights.
Tis objective function’s hallmark is its ability to identify the
smallest hypersphere that encapsulates the majority of
normal data representations while excluding most anoma-
lous data points. Minimizing the hypersphere’s volume
corresponds to minimizing the objective function. A penalty
is assigned to data points falling outside the hypersphere and
activated only when a data point’s distance from the centroid
exceeds the radius R. Tis design enhances the network’s
sensitivity to the boundaries between normal and anomalous
data, thereby improving anomaly detection. In this study,
a convolutional autoencoder is used to map the feature space

to the SVDD space, with the representation’s position rel-
ative to the hypersphere incorporated as part of the loss
function, as detailed in (5).

Lsvdd � R
2

+
1
vn

􏽘

n

i�1
max 0, Zf − c

����
����
2
2 − R􏼚 􏼛. (5)

3.4. Temporal Information Extraction Network. Based on
existing research as demonstrated in reference [22], our
temporal information extraction network (TIEN) introduces
its key innovation—a dual-input system.Tis system combines
convolutional representation and direct raw data input,
a unique approach that endows TIEN with the ability to utilize
both the deep semantics and temporal insights of multidi-
mensional temporal data extracted by CRLN’s convolutional
representation and to process raw data for immediate data
insights. By integrating dual inputs, the system’s depth of data
understanding is signifcantly enhanced, enabling it to manage
spatiotemporal information and detect subtle anomalies in raw
data, in addition to handling advanced abstract features.
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Tis blended input technique stands out by integrating
deep learning’s robust feature extraction capabilities with
acute perception of raw data. Convolutional representation,
for instance, captures extensive dependencies and complex
patterns in time series data, while raw data input is crucial
for identifying rapid or minor changes within specifc time
windows. Trough this, TIEN achieves a more compre-
hensive data analysis, increasing the precision and speed of
anomaly detection in multidimensional time data.

TIEN also adopts distinct strategies for the two input
types. It uses high-level semantic information from con-
volutional representation for broad anomaly pattern anal-
ysis, while concentrating on local features and immediate
anomaly detection when processing raw data. Tis balanced
approach renders TIEN more fexible and efective in
navigating complex spatiotemporal data.

In the subsequent sections, we will delve deeper into how
TIEN’s innovative dual-input mechanism is powered by
cutting-edge deep learning technologies, showcasing its
practical benefts and strengths in real-world time series
anomaly detection scenarios.

Te transformer, a deep learning model, is extensively
used in tasks such as natural language processing and visual
processing. Inspired by the literature [31], the transformer
has been restructured to be applicable for temporal anomaly
detection tasks. To achieve this, the transformer’s structure
was adapted and optimized accordingly. Initially, a con-
volutional layer was introduced as a preprocessing step for
windowed data to capture local features of time series data.
Subsequently, in the transformer’s encoder section, im-
provedmodules, including position encoding, were added to
better cater to time series data. Tis integration of position
encoding and the transformer model enables the efective
capturing of dependencies and key features within time
series data. Additionally, the inclusion of the temporal
anomaly score calculation as part of the loss function op-
timizes the model’s performance in temporal anomaly de-
tection tasks. Figure 2 illustrates the extraction of temporal
information and the calculation of the temporal
anomaly score.

Te following section details how the transformer
functions. First, the scaled dot product attention involving
three matrices Q (query), K (key), and V (value) is defned.

Attention(Q, K, V) � softmax
QK

T

��
m

√􏼠 􏼡V. (6)

In this context, the softmax function forms a convex
combination of weights for the median of V, enabling the
compression of the matrix V into smaller representative
embedding. Tis simplifes the inference of downstream
neural network operations. Unlike traditional attention
operations, scaled dot product attention scales the weights
by

��
m

√
to reduce weight variance, thereby stabilizing

training. For the input matrices Q, K, and V, Qi, Ki, and Vi

are obtained by initially passing them through h feedforward
layers, where i ∈ 1, 2, . . . , h{ }. Te scaled dot product at-
tention is then applied as follows for the multiheaded self-
attention calculation:

MultiHeadAtt(Q, K, V) � Concat H1, . . . , Hh( 􏼁, (7)

Hi � Attention Qi, Ki, Vi( 􏼁. (8)

In our time series anomaly detection model, the mul-
tihead attention mechanism enables the model to simulta-
neously focus on various patterns and trends from diferent
representational subspaces at diferent positions. Tis is
crucial for identifying anomalous patterns in time series
data, as anomalies may manifest as unusual relationships
between multiple sensor readings or abnormal behaviors
within specifc time windows. Additionally, the position
encoding plays a central role in our transformer model,
providing the model with positional information about each
time point in the sequence. Given the nature of time series
data, the temporal positional information of each data point
is particularly important for understanding the dynamic
changes of the entire sequence. Position encoding integrates
the positional information of each time point into its cor-
responding feature representation, enabling the model to
capture temporal dependencies and long-term relationships,
which is crucial for accurately identifying anomalous pat-
terns in time series. Te implementation formula for po-
sition encoding is as follows:

PE(pos,2i) � sin
pos

100002i/dmodel
􏼠 􏼡, (9)

PE(pos,2i+1) � sin
pos

100002i/dmodel
􏼠 􏼡. (10)

In this context, “pos” represents the position index in the
time series, “dmodel” represents the data dimensions, and “2i”
and “2i + 1” denote diferent dimensions. Te model utilizes
sine and cosine waveforms to diferentiate between various
time points. Our model comprises a transformer encoder,
a window encoder, and a position encoder, as illustrated in
Figure 2. Te model’s inference process is divided into two
stages. First, to scale the input and balance the efects be-
tween diferent dimensions, the window data and feature
representation are paired as input to derive a focus score F.
Te focus score F is broadcast to match the dimensions ofW,
followed by appropriate zero padding and splicing. Te data
is then position-encoded and used as input to the encoder
denoted as I1. Te transformer encoder then performs the
following operations:

I
1
1 � MultiHeadAtt I1, I1, I1( 􏼁 (11)

I
2
1 � LayerNorm I1 + I

1
1􏼐 􏼑, (12)

I
3
1 � FeedFword I

2
1􏼐 􏼑, (13)

I
4
1 � LayerNorm I1 + I

3
1􏼐 􏼑. (14)

Here, MultiHeadAtt (I1, I1, I1) denotes the multiheaded
self-attention operation of the input matrix I1, and “+”
denotes matrix addition. Tese operations utilize the input
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time series window and the full series to generate attention
weights, capturing the temporal trend in the input series.
Tese operations enable the model to infer multiple time
series windows in parallel, as the neural network does not
rely on the output of previous timestamps at each time-
stamp, signifcantly improving the training time of the
proposed method. In the window encoder, position
encoding is applied to the input windowW to obtain I2. Te
self-attention in the window encoder is modifed to mask
data from subsequent positions. Tis modifcation prevents
the decoder from accessing data points for future time-
stamps during training, as all data W and F are provided
simultaneously for parallel training. Te window encoder
then performs the following operations:

I
1
2 � Mask MultiHeadAtt I2, I2, I2( 􏼁( 􏼁, (15)

I
2
2 � LayerNorm I2 + I

1
2􏼐 􏼑, (16)

I
3
2 � MultiHeadAtt I

4
1, I

4
1, I

2
2􏼐 􏼑, (17)

I
4
2 � LayerNorm I

2
2 + I

3
2􏼐 􏼑. (18)

When the window encoder performs the attention op-
eration, the complete sequence I41 is used as the value and
key, while the encoded input window serves as the query
matrix. Window input masking is applied here to hide the
window sequence for future timestamps within the same
input batch. As the model receives the complete input se-
quence up to the t timestamp, it can encapsulate and exploit
a larger context, as opposed to the limited context in the
previous literature. Finally, the same decoder as the encoder
is used, with Sigmoid activation to generate outputs in the
range [0, 1], matching the normalized input window W.
Tus, the temporal information extraction network utilizes
inputs F and W to generate the output O.

I
1
3 � FeedForward I

3
2􏼐 􏼑, (19)

O � Sigmoid I
1
3􏼐 􏼑, (20)

Lpre � W − O‖ ‖
2
2. (21)

3.5. LossFunction. As the models are trained separately, they
are susceptible to becoming trapped in local optimum so-
lutions. Terefore, an end-to-end hybrid model is proposed,
which was achieved by minimizing the composite objective
function. Te CAE-T loss function comprises three com-
ponents: a mean square error (reconstruction error) term,
a maximum mean diference (regularization) term, and
a prediction error term for nonlinear prediction tasks. Te
loss function is constructed in the following manner:

loss � λ1Lrec + λ2Lsvdd + λ3Lpre. (22)

Te parameters λ1, λ2, and λ3 govern various aspects of
the model, including the infuence of the transformer
anomaly score (λ1), the weighting of the support vector data
description (SVDD) enhancement λ2), and the weighting of
temporal anomaly signifcance (λ3). Te mean squared error
term is primarily used to evaluate the model’s ability to
reconstruct input data, which is a key factor in anomaly
detection. Te SVDD term, by providing an additional
regularization constraint, helps the model better diferen-
tiate between normal and abnormal data, preventing
overftting. Meanwhile, the prediction error term focuses on
performance in nonlinear prediction tasks, enabling the
model to efectively identify anomalous patterns in time
series. Te collaborative work of these three components
allows the CAE-Tmodel to handle anomaly detection tasks
in multidimensional time data more comprehensively and
efectively.

3.6. Inference. During the inference phase, the trained
model is utilized to calculate the anomaly score and dis-
tinguish between normal and anomalous samples by setting
a threshold. Te anomaly score calculation, as represented
by (17), comprises three elements: the reconstruction error,
the distance of the representation vector Zf, and the pre-
diction error. By combining these errors, more abnormal
judgment factors are incorporated, thus enhancing the
ability to distinguish between normal and abnormal
samples.

For threshold calculation, the POT (peak over threshold)
method [34], an application of the extreme value theory for
estimating extreme value distributions above a certain
threshold, was used. Initially, an appropriate threshold is
chosen, followed by the extraction of extreme observations
above that threshold and the modeling of these extreme
events. By estimating the parameters of the extreme value
distribution, an estimate of the threshold is obtained.

Tis integrated approach is crucial in anomaly detection
as it enables the full utilization of multiple error metrics,
yielding more accurate anomaly scores. Concurrently, the
use of the POT method renders the determination of the
threshold value more scientifc and reliable. Trough this
well-designed abnormality detection mechanism, the dif-
ferences between normal and abnormal samples are iden-
tifed more efectively, playing a crucial role in practical
applications.

Anomaly score � Lrec + Lsvdd + Lpre. (23)

4. Experiment

In this section, we demonstrate the CAE-T model for
anomaly detection experiments on a real industrial control
dataset to evaluate the performance of the model for
anomaly detection in industrial control systems, and
compare it with other popular anomaly detection algorithms
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to demonstrate the superiority of the model. In addition, to
verify the efectiveness of the proposed improvement
method, ablation experiments are conducted in this paper to
compare and analyze the performance of the model in
anomaly detection before and after the improvement, re-
spectively. Te results of these experiments can further
validate the feasibility and efectiveness of our proposed
CAE-T model and its improved method in practical
applications.

4.1. Dataset. Experiments are carried out on three data-
sets, each derived from real industrial control scenarios.
Te SWaT (https://itrust.sutd.edu.sg/itrust-labs_datasets/
dataset_info/#swat) dataset [35] uses real-time data from
a modern water treatment plant, undergoing various
attacks throughout the water treatment process, including
types like single-point single-stage and multipoint single-
stage types. Te WADI (https://itrust.sutd.edu.sg/itrust-
labs_datasets/dataset_info/#wadi) dataset [36] captures
data from 123 sensors and actuators, showcasing the
diferent states of the water treatment and distribution.
Power System) (https://www.ece.uah.edu/%7Ethm000
9/icsdatasets/binaryAllNaturalPlusNormalVsAttacks.7z)
dataset [37] provides operational data from power plants,
aiding research in energy systems.

Tis paper evaluates CAE-T by implementing anomaly
detection on the above datasets using the CAE-Tmodel and
juxtaposing it with other advanced algorithms. In this
anomaly detection implementation, there’s a marked dis-
parity in the ratio of normal to abnormal samples, with fewer
abnormal samples making the data more unbalanced.
Training uses normal samples, while testing uses a blend of
untrained normal and abnormal samples. Te dataset details
during training and testing are in Table 1.

4.2. Comparison Algorithm. To extensively evaluate the
performance of the proposed CAE-Tmethod, we compare it
with several deep anomaly detection methods. Table 2 shows
some descriptions of the compared algorithms:

4.3. Implementation Details. In this study, we introduce the
CAE-Tmodel, characterized by an encoder comprising three
convolutional pooling layers and a decoder formed by
corresponding inverse convolutional pooling layers. Te
detailed parameter settings are meticulously documented in
Table 3. Additionally, we explored a variety of deep learning
models for comparative analysis:

(i) MAD_GAN: based on generative adversarial
networks, this model features a three-layer fully
connected network, utilizing LeakyReLU and
Sigmoid activation functions.

(ii) MSCRED: integrates CNN and ConvLSTM layers,
aiming to capture the spatiotemporal de-
pendencies in time series data.

(iii) USAD: uses a dual autoencoder structure for
anomaly detection, using ReLU activation func-
tions between layers.

(iv) OmniAnomaly: merges variational autoencoders
with GRU, focusing on complex time series
modeling.

(v) LSTM_AD: utilizes a two-layer LSTM network
structure to capture temporal dependencies, out-
putting anomaly scores via a Sigmoid function.

(vi) TranAD: implements a Transformer architecture
for time series anomaly detection, including po-
sitional encoding and transformer encoder-
decoder.

(vii) CAE_M: A convolutional autoencoder designed
for multivariate time series, characterized by fea-
ture extraction and data reconstruction using
Sigmoid functions.

(viii) DAGMM: combines autoencoders with Gaussian
Mixture Models for high-dimensional data
anomaly detection, adopting Tanh and Sigmoid
activation functions.

During the training phase, all models used the Adam
optimizer with an initial learning rate of 0.01 and a meta
learning rate of 0.02, adjusted through a step scheduler with
a step size of 0.5. Common hyperparameter settings in-
cluded: training epochs of 20, window size of 5 (adjusted
according to the dataset dimensions for CAE_M, TranAD,
and MSCRED), one layer of transformer encoders, two
layers of feed-forward units in encoders, 64 hidden units,
and a dropout rate of 0.1. Given the class imbalance in the
datasets, as detailed in Table 1, precision, recall, and F1
scores were adopted as evaluation metrics. Te data was
partitioned into training and testing sets at a 6 : 4 ratio,
consistent with the methodologies in existing research [31],
ensuring the training set contained only normal samples and
did not overlap with the test set containing abnormal
samples. Tis separation is crucial for unbiased hyper-
parameter tuning and the calculation of anomaly detection
thresholds.

4.4. Evaluation Metrics. Before delving into the results, it is
crucial to comprehend the evaluation metrics used in this
study. Te performance of our proposed method and other
deep learning-based anomaly detection methods is assessed
using the following metrics:

Precision: precisionmeasures the proportion of correctly
predicted positive observations out of the total predicted
positives. Mathematically, it is represented as

P �
TP

TP + FP
. (24)

Recall: recall calculates the proportion of actual positives
that are correctly identifed. It is given by

R �
TP

TP + FN
. (25)
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F1 Score: the F1 Score is the harmonic mean of precision
and recall, providing a balance between the two. It is
computed as

F1 � 2 ×
P × R

P + R
. (26)

AUC (area under the curve): For anomaly detection, the
roc_auc_score function from the scikit-learn (sklearn) li-
brary was utilized to compute the AUC. Tis metric acts as
an indicator of the model’s ability to distinguish anomalies
from normal instances. To calculate the AUC, true labels and
predicted anomaly scores are provided as inputs to the
roc_auc_score function. Te function then generates the
ROC curve and calculates the AUC by numerically in-
tegrating the area beneath it. A higher AUC value indicates
superior anomaly detection performance, demonstrating
better discrimination between anomalies and normal data
points.

4.5. Results andAnalysis. Tis section presents an exhaustive
evaluation of the CAE-T model’s performance across three
distinct datasets, as detailed in Table 4. Utilizing key metrics,
including precision (P), recall (R), F1 score, and the area
under the receiver operating characteristic curve (AUC), the
analysis provides critical insights:

On the SWaT dataset, the CAE-T model outperforms
eight other evaluated methodologies, achieving a precision
of 0.9764 and a recall of 0.9923. Conversely, the USAD
model exhibits the lowest AUC score at 0.9472, indicating
signifcant potential for improvement in its anomaly de-
tection approach. Reconstruction-based methodologies,
including DAGMM, MSCRED, and USAD, are notably
afected by noisy data, which could lead to erroneous
identifcation of anomalous inputs as normal. Time-series
predictive methods, such as LSTM-AD and OmniAnomaly,
show limited performance due to inadequate accounting for
the data’s spatial attributes. Integrated approaches like
TranAD, MSCRED, and CAE-M experience suboptimal
convergence due to their phased training, resulting in
moderate outcomes.

Te complexity of the WADI dataset presents signifcant
challenges to most models, as refected in generally lower F1
scores. However, CAE-M (F1: 0.4119) and OmniAnomaly
(F1: 0.4260) demonstrate superior performance, attributable
to their efective dimensionality reduction and analysis of
feature interrelationships. Conversely, models like TranAD,
which overlook interfeature correlations, show subpar
efcacy.

In the context of the power system dataset, characterized
by a higher proportion of anomalies and simpler, less noisy
patterns, and most algorithms perform admirably. Methods

underpinned by convolutional neural networks, including
CAE-M, MSCRED, and OmniAnomaly, demonstrate con-
siderable efcacy. However, predictive models, namely,
TranAD (F1, 0.4524) and LSTM-AD (F1, 0.6584), display
a defciency in capturing spatial interrelations within
multidimensional data.

Tese observations underscore that although the CAE-T
model shows promising results, there is still room for im-
provement, especially when dealing with highly complex
and noisy datasets. Future research eforts will focus on
enhancing themodel’s robustness and adaptability in diverse
industrial control system settings, particularly in refning
data preprocessing procedures and strengthening the
model’s ability to understand intricate data features.

4.6. Efectiveness Evaluation. Expanding on the insights
from Section 4.5, this section further explores the CAE-T
model’s efectiveness through an in-depth evaluation. Ini-
tially, an ablation study (Section 4.6.1) is performed to
analyze the impact of individual components within the
CAE-Tmodel. Tis assessment is crucial for understanding
each element’s contribution to themodel’s overall efcacy, as
demonstrated by the results in Section 4.5. Following this,
a training set sensitivity analysis (Section 4.6.2) and a pa-
rameter sensitivity analysis (Section 4.6.3) are conducted.
Tese analyses further highlight the model’s adaptability and
robustness in various operational scenarios.

4.6.1. Ablation Study Design. In this study, several variants
of the CAE-T model were systematically assessed, each in-
corporating specifc technological enhancements. We eval-
uated three primary versions: CAE T(Rec+Svdd), which
exclusively integrated the support vector data description
(SVDD) as an enhancement; CAE T(Rec+Pre), solely amal-
gamating the transformer-based anomaly score; and the
comprehensive CAE-Tmodel, which combined both SVDD
and the transformer-based anomaly score enhancements.
Detailed experimental results are presented in Table 5 and
Figures 3 and 4.

In our ablation study, diferent variants of the CAE-T
model exhibited signifcant performance variations across
three datasets, owing to complex technical reasons. Te
model’s underlying architecture was meticulously opti-
mized, particularly for high-dimensional and time-series
data anomaly detection, enabling the CAE-T to sharply
diferentiate between normal and anomalous patterns. For
instance, on the SWaT dataset, the CAE-T model achieved
a precision of 0.9260 and an AUC of 0.9483. Te in-
corporation of SVDD in CAE T(Rec+Svdd) led to marked
improvements in F1 score and AUC, reaching 0.9805 and
0.9680, respectively, highlighting SVDD’s critical role in

Table 1: Te datasets in this paper during training and testing.

Dataset Train Test Anomalies (%) Dimensions Permissions
SWaT 496800 449919 11.98 51 Public
WADI 1048571 172801 5.99 123 Public
Power system 22706 55662 71 129 Public
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Table 3: Te parameters set during the training process.

Parameters Values
λ1 0.1
λ2 1e− 5
λ3 5e− 5
Window size 128
Batch size 256
Epochs 20
Learning rate 0.0001

Table 4: Te precision, recall, and F1 score and AUC score of baselines and our proposed method.

Model
SWaT WADI Power system

P R F1 AUC P R F1 AUC P R F1 AUC
LSTM-AD 0.9255 0.9952 0.9591 0.9480 0.0138 0.6623 0.0271 0.4986 0.2352 0.5186 0.6584 0.4698
USAD 0.9245 0.9952 0.9686 0.9472 0.1579 0.8295 0.2653 0.8625 0.9208 0.8154 0.8649 0.8941
MSCRED 0.9255 0.9952 0.9591 0.9479 0.1307 0.8943 0.1331 0.8461 0.9211 0.8154 0.8650 0.8942
MADGAN 0.9247 0.9952 0.9586 0.9473 0.0952 0.6541 0.1662 0.7536 0.9220 0.8154 0.8654 0.8943
DAGMM 0.9253 0.9952 0.9590 0.9478 0.0756 0.9971 0.1412 0.8563 0.9211 0.8154 0.8652 0.8943
OmniAnomaly 0.9235 0.9952 0.9580 0.9465 0.3158 0.6541 0.4260 0.8198 0.9225 0.8154 0.8646 0.8945
CAE-M 0.9260 0.9952 0.9594 0.9483 0.2621 0.7918 0.4119 0.8788 0.9208 0.9208 0.8649 0.8941
TranAD 0.9293 0.9952 0.9611 0.9510 0.2660 0.8295 0.4029 0.8877 0.9914 0.2931 0.4524 0.6460
Ours 0. 764 0.9923 0. 878 0.  83 0.6477 0.8295 0.7274 0. 6 4 0.9215 0.8154 0.865 0. 032
Bold values indicate the model’s highest score for the corresponding metric.

Table 5: Te precision, recall, and F1 score and AUC score from variants.

Model
SWaT WADI Power system

P R F1 AUC P R F1 AUC P R F1 AUC
CAE TRec 0.9260 0.9952 0.9594 0.9483 0.1653 0.5614 0.2554 0.7472 0.9208 0.9208 0.8649 0.8941
CAE T(Rec+Svdd) 0.9271 0.9941 0.9805 0.9680 0.2648 0.9801 0.2756 0.8452 0.9234 0.8154 0.8661 0.8946
CAE T(Rec+Pre) 0.9762 0.9997 0.9878 0.9671 0.2407 0.9999 0.3881 0.9627 0.9478 0.8154 0.8765 0.8890
CAE T 0.9764 0.9923 0.9877 0.  83 0.6477 0.8295 0.7274 0. 6 4 0.9215 0.8154 0.8659 0. 032
Bold values indicate the model’s highest score for the corresponding metric.

Normal Data

Latent Variable 1 Latent Variable 1

La
te

nt
 V

ar
ia

bl
e 2

La
te

nt
 V

ar
ia

bl
e 2

Anomaly Data

20

0

–20

–40

–60

–80

–100

20

0

–20

–40

–60

–80

–100

–50 0 50 100 150 –50 0 50 100 150

Normal Normal
Anomaly

(a)
Figure 3: Continued.

12 International Journal of Intelligent Systems



enhancing the model’s ability to identify anomalies. As il-
lustrated in Figure 3, the integration of SVDD signifcantly
improved the representation of data features, defning a clear
boundary for normal data in the high-dimensional feature
space and efectively distinguishing anomalous points from
normal ones.

On the other hand, the inclusion of the transformer-
based anomaly score in CAE T(Rec+Pre) resulted in a sub-
stantial increase in recall to 0.9997 while maintaining a high
AUC of 0.9671, underscoring the importance of time-series
analysis in predicting and identifying anomalous behaviors.
Te full CAE-T model, combining both SVDD and the
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Figure 3: Visualization of representation: (a) visualization of representation before loss improvement and (b) visualization of representation
after loss improvement.
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Figure 4: Ablation experiments. (a) Overall performance evaluation. (b) Efectiveness evaluation.
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transformer score, achieved peak performance in F1 score
and AUC at 0.9877 and 0.9983, respectively, further vali-
dating the theory that the synergistic efect of these com-
ponents signifcantly enhances anomaly detection
capabilities.

On the WADI dataset, the complete CAE-T model ex-
celled with its ability to handle complex data structures,
achieving the highest F1 score of 0.7274 and an AUC of
0.9694, reafrming its efectiveness in recognizing complex
patterns. On the power system dataset, the CAE-T model
demonstrated its excellent adaptability to diferent data
distributions with an AUC of 0.9032, highlighting its strong
capability in processing diverse data.

In conclusion, the technological enhancements of the
CAE-T model not only exhibited outstanding performance
on individual metrics but also demonstrated robustness and
adaptability across multiple datasets, establishing its po-
tential as an efective tool for anomaly detection in industrial
control systems.

4.6.2. Training Set Size Sensitivity. Tis section evaluates the
CAE-T model’s sensitivity to training set size through an
extensive analysis of Figure 5 data, focusing on F1 scores,
AUC values, and training times for various models using the
WADI dataset. Te analysis aims to explore how diferent
proportions of training data afect model performance and
why the CAE-Tmodel remains stable in varied training data
environments.

Signifcant performance variations were noted across
diferent training data proportions among the models, with
the CAE-T model’s performance standing out. Te CAE-T
model consistently showed superior AUC and a clear ad-
vantage in F1 scores across all data proportions. Tis fnding
highlights the efcacy of the CAE-T model in handling
training data of varying sizes.

In contrast, models like LSTM-AD and MAD_GAN
experienced declining F1 and AUC values with increasing
training data proportions, indicating challenges in handling
complex relationships in larger datasets. However, models
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such as CAE-M and TranAD showed improved detection
performance with larger training sets, demonstrating their
ability to utilize more data to reveal complex patterns and
enhance detection efciency.

Regarding training time, the TranADmodel signifcantly
reduced its duration, benefting from fully utilizing the
transformer model. Te transformer network in our tem-
poral information extraction network achieved faster
training speeds compared to the LSTM network in the CAE-
M model. Tese results suggest that the CAE-Tmodel excels

not only in performance metrics but also in training ef-
ciency, which is crucial for handling large datasets and
complex data relationships.

We further explored the CAE-T model’s ability to
maintain stable performance across various training set
sizes, likely due to its architectural strengths that enhance
data generalization, regardless of volume. Moreover, our
implementation potentially avoids overftting, often a cause
of performance degradation in other models with increased
training set sizes. Investigating these aspects can provide
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valuable insights into why the CAE-T model maintains
consistent performance and what factors lead to the decline
in performance of other models.

4.6.3. Parameters Sensitivity. In this research section, we
conducted a sensitivity analysis of key parameters λ1, λ2, and
λ3 in our anomaly detection model. Tese parameters are
crucial, regulating diferent model aspects: λ1 infuences the
reconstruction error (Rec), λ2 controls the weight of the
support vector data description (SVDD), and λ3 relates to
the anomaly scoring of the transformer.

We conducted experiments using the SWaT dataset,
following parameter confgurations detailed in Table 3, in-
cluding window size, batch size, training epochs, and
learning rate. Our objective was to analyze each parameter’s
specifc impact on model performance and identify the
optimal settings. We adjusted λ1 (0.1 to 1), λ2, and λ3 (5e-5
to 1e-5) values, ensuring the other two parameters remained
at optimal AUC values for accurate and reliable results. As
illustrated in Figure 6, the experiments revealed that the
model exhibits optimal anomaly detection performance with
λ1 set to 0.1, λ2 to 1e-5, and λ3 to 5e-5.

Furthermore, we conducted a detailed convergence
analysis of the model’s reconstruction error, SVDD regu-
larization term, and transformer-based prediction error
term on three datasets. As shown in Figure 7, each type of
loss function exhibited a stable convergence trend as the
number of training iterations increased. Tis not only
demonstrates the stability of the design of the objective
function but also clearly shows that each parameter has
a signifcant positive impact on model performance, which
has been validated across diferent datasets.

Tese convergence results directly prove the optimizing
role of our objective function in anomaly detection tasks
with multidimensional time-series data.Tey provide strong
evidence for the application of the model in complex sce-
narios and confrm the wide applicability of our chosen
parameters. Tis further supports the efectiveness of our
choices inmodel parameter optimization and ofers practical
grounds for adjusting and optimizing the model in similar
industrial applications in the future.

In summary, through these supplementary experiments
and analyses, we have gained a more comprehensive un-
derstanding of the impact of model parameters on perfor-
mance and have obtained clear guidance for the further
development and refned optimization of our model.

5. Conclusion and Future Work

Tis research introduces the CAE-Tmodel, a novel anomaly
detection framework based on transformer architecture,
designed specifcally for multivariate time series data. Fea-
turing an encoder-decoder architecture, the CAE-T model
efciently trains and robustly identifes various anomaly
patterns in complex datasets. While excelling in anomaly
detection for multivariate time series data, the model shows
potential for improvement in detection speed and data

dependency. In particular, compared to the TranAD model,
the CAE-T needs further structural optimization for more
efective real-time or near-real-time anomaly detection
applications [38].

Currently, the CAE-T model faces challenges in accu-
rately localizing anomalies to specifc sensors in complex
industrial environments, particularly amid signal in-
terference or obstruction. To overcome this challenge, we
aim to integrate advanced collaborative detection and lo-
calization techniques, improving the model’s ability to
pinpoint anomalies accurately at the sensor level [39, 40].
Applying these techniques will lead to more precise device
localization in challenging signal conditions and enhance
real-time monitoring and anomaly detection in large sensor
networks.

Future work involves integrating various transformer
models, like Linformer [41], to bolster the CAE-T model’s
generalization across diverse temporal patterns. Addition-
ally, we plan to explore advanced feature extraction tech-
nologies to enhance anomaly detection in limited data
scenarios.

In summary, our research is dedicated to signifcantly
enhancing the CAE-T model’s performance, generalization
capacity, and operational efciency. Tis enhancement will
improve the adaptability and robustness of anomaly de-
tection systems in cybersecurity and industrial applications.
Our goal is to broaden the CAE-Tmodel’s application across
various practical scenarios, signifcantly contributing to
anomaly detection [42–47].

Data Availability
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