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In this paper, the vibration suppression and trajectory tracking control of a fexible joint manipulator (FJM) based on particle
swarm optimization (PSO) and fxed-time nonsingular terminal sliding mode control (NTSMC) are studied. Firstly, in order to
suppress the residual vibration of the FJM, an optimal trajectory planning method based on higher-order trajectory planning
(HOTP) and the PSO algorithm is proposed. Ten, to ensure that the FJM can track the optimized trajectory without being
afected by the initial value of the trajectory, a novel fxed-time NTSMC scheme is proposed. Compared with the cubic spline
trajectory, the proposed HOTP is smoother and can more accurately suppress the residual vibration of the FJM. By combining the
HOTP with the PSO algorithm, the vibration amplitude of FJM can be suppressed to around 0.002mm. Unlike fnite-time
NTSMC, the rate of convergence of the proposed fxed-time NTSMC does not depend on the initial value of FJM’s joint trajectory.
Especially when the initial value of the trajectory is large, the FJM can still quickly track the optimal trajectory within 0 to 1 s.
Finally, the efectiveness of this method is verifed through simulation and comparison.

1. Introduction

Flexible manipulators are widely used in aerospace, in-
telligent medical devices, and other felds because of their
light weight, low energy consumption, and high fexibility
[1–3]. In the work of the space station, the light, heavy, and
high-precision the FJM can assist astronauts in completing
some space missions. For example, satellite launch and
recovery, space station assembly, and maintenance [4, 5].
However, due to the infuence of fexible joints, the FJM has
some residual vibration in the working process of the FJM,
which seriously afects the positioning accuracy and working
efciency of the FJM [6, 7]. Terefore, studying FJM’s vi-
bration suppression and stability control is very important.

At present, numerous researchers have designed various
trajectory plans for the FJM to eliminate residual vibration.
Under the condition of continuous speed and acceleration of
FJM’s joints, diferent trajectories were designed, and the
parameters involved in the trajectories were optimized to

achieve the purpose of vibration reduction [8, 9]. Common
joint trajectory planning includes cubic spline trajectory
[10–12], the S-type trajectory [13–16], the composite tra-
jectory, and other trajectories [17–20]. In [10], a cubic spline
function was used to plan the FJM’s joint, and then the PSO
algorithm was used to fnd the optimal trajectory with the
least amount of vibration. In [13], when the car moves
according to the S-shaped trajectory, in order to suppress the
unexpected load swing generated, a mechanism to prevent
swing has been added to the S-shaped trajectory.Trough an
iterative learning strategy, the trajectory was continuously
adjusted to ensure accurate positioning of the car. In [14],
a bidirectional motion trajectory was designed for a fexible
system with two degrees of freedom. A genetic algorithm
was used to connect the forward trajectory with the reverse
trajectory under the condition of satisfying the trajectory,
thereby suppressing residual vibration in the system. In [17],
An online trajectory correction scheme was designed for
rigid, fexible robotic arms to plan the trajectory of the arm.
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By adjusting the trajectory parameters to obtain the con-
straint conditions of the trajectory, the vibration suppression
efect was achieved. In addition, for more complex fexible
systems, due to the inherent characteristics of the system, it
will generate certain vibrations. It is best to design trajec-
tories with relatively few parameters on the basis of meeting
the conditions, which are easy to apply in engineering. High-
order interpolation trajectories can not only meet the
constraint conditions of trajectories but also obtain accurate
vibration optimization objective functions during the der-
ivation process of vibration targets, which can more accu-
rately suppress small vibrations and provide convenience for
trajectory optimization.

In recent years, intelligent algorithms have been widely
used in trajectory planning in various felds, especially in the
feld of fexible manipulators. Genetic algorithms [21], im-
mune algorithms [22], neural network algorithms [23],
chaotic algorithms [24], and ant colony algorithms [25] are
considered the most common intelligent algorithms, all of
which have their own characteristics and advantages and
play an important role in solving diferent types of problems.
In addition, deep learning technology has shown great
potential in the control and optimization of robotic arms. It
not only enhances the efciency of robotic arm control but
also enables more advanced autonomous decision-making
and operation in unknown environments. For example, in
[26], researchers applied a deep reinforcement learning
strategy to satellites with ultra-long wings, developing an
efective active control scheme to address vibration issues
caused by external disturbances and self-rotation. Tis en-
sures the normal operation and longevity of the satellites. In
[27], by employing the Coronavirus-inspired Group Im-
mune Optimization (CHIO) method, the vibration con-
troller gains of a fexible robotic arm were successfully
optimized. In [28], the decision tree algorithmwas employed
to implement a parameter-tuned open-loop vibration
control method for a multi-link fexible robotic arm,
achieving efective suppression of residual and transient
vibrations in control applications. In [29], a fuzzy neural
network algorithm for PSO algorithm training was designed
to solve the path planning problems of intelligent driving
vehicles. Te algorithm had a fast convergence speed and
simple calculations. In order to address the issue of mete-
orological obstacles encountered by unmanned aerial ve-
hicles during fight, they proposed a weather perception path
planning method based on an enhanced intelligent water
droplet algorithm in [30]. Tis method can ensure the fight
safety of unmanned aerial vehicles. In [31], a new strategy
combining neural network algorithms with discrete cen-
tralized planning was proposed for the complete coverage
trajectory planning of autonomous underwater vehicles. In
addition, the vibration frequencies of the robotic arm can be
studied through various modeling techniques. In [32], the
exploration of vibration frequencies in three diferent ma-
terial robotic arms was conducted. Te modeling techniques
that align with the vibration frequencies are identifed
through the analysis of experimental data. Intelligent al-
gorithms and deep learning technology have signifcantly

enhanced the performance of robotic arms in control, vi-
bration suppression, and path planning. Tese technologies
enable the robotic arms to make precise and efcient au-
tonomous decisions in unknown environments and fne-
tune control strategies through simulation training, efec-
tively reducing vibrations and enhancing adaptability.

On the basis of the optimal trajectory, in order to enable
FJM’s joints to quickly track the planned optimal trajectory,
many scholars have used diferent control methods to solve
this problem [33–35]. At present, the tracking control
methods mainly include PID control [36–38], adaptive
control [39, 40], and SMC [41–50]. SMC exhibits robustness
and can efectively manage system uncertainty and external
disturbances. However, in practical applications, the pres-
ence of nonlinear terms or parameter uncertainties in the
control law leads to inherent jitter problems. Factors such as
rapid switching of control modes, high-frequency oscilla-
tions, and sensitivity to control parameter errors contribute
to this jitter [51]. Terefore, in practical applications, it is
necessary to comprehensively consider these factors and
adopt enhanced sliding mode control methods to mitigate or
eliminate the impact of jitter, such as surpassing sliding
mode control or continuous sliding mode control, in order
to reduce system chatter. In [52], a model-based chatter-free
sliding mode control algorithm was proposed to address the
energy conversion issues in underground coal gasifcation
processes. In [53], a robust nonlinear hybrid control method
was employed to enhance the robustness of the multi-input
multi-output, separately excited DC motor speed control
system, thereby efectively addressing the chattering
problem.

Especially in the feld of robotics, SMC has received
widespread attention for its ability to accurately control the
position and posture of robots. In [35], this paper proposes
a fractional-order SMC scheme for trajectory tracking
control of Delta parallel robots. In [39], a novel adaptive
barrier function integral terminal sliding mode controller
has been designed for a quadcopter drone to solve its tra-
jectory tracking problem. In [50], a continuous terminal
SMC algorithm is proposed to enhance the robustness of
servo motor systems. For the FJR system, due to factors such
as strong coupling and uncertainty, as well as the presence of
fexible components, certain vibrations may occur, making it
difcult to achieve precise control. SMC is usually used for
tracking control to enhance the robustness of the system. In
[54], a terminal SMC was designed to ensure the conver-
gence of the system in fnite time. In [55, 56], for high-order
uncertain systems, the use of observer and SMC joint control
provides system robustness. However, when the initial value
of the trajectory is large, the methods [54, 55] have a slow
convergence speed and asymptotic stability, which may lead
to slow trajectory tracking and afect the residual vibration of
the FJM further. Recently, fxed-time SMC has been used for
the tracking control of the FJM [40, 50]. Rsetam et al. have
profciently applied fxed-time SMC to FJM systems and
achieved good control results [54–56]. Fixed-time SMC has
a bounded convergence time and is independent of the
initial state. Terefore, this paper designs a fxed-time
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NTSMC that is not only independent of the initial trajectory
value but also has faster tracking speed and smaller residual
vibration for the FJM.

In conclusion, this paper proposes a vibration sup-
pression control scheme that combines the HOTP and PSO
algorithm. Firstly, based on the constraints of trajectory
planning, HOTP trajectory was designed. Ten, a mathe-
matical model for residual vibration of the proposed tra-
jectory planning function is theoretically derived, and the
optimization objective function is obtained. Secondly, the
PSO algorithm optimization objective function is used to
achieve the efect of vibration suppression. Finally, in order
to achieve FJM’s joint tracking of the optimal trajectory, this
paper designs a fxed-time NTSMC to control the trajectory.
Tis method has the following advantages:

(1) Compared with the cubic spline trajectory in [10],
this paper designs a HOTP that can not onlymeet the
boundary conditions of joint angle, velocity, and
acceleration but also make the trajectory smoother.

(2) Te combination of the HOTP trajectory and the
PSO algorithm solves the complex optimization
problem in the trajectory planning of the FJM and
efectively suppresses the vibration of the FJM.

(3) Unlike the asymptotic stability control schemes
presented in [41, 42], the proposed NTSMC ensures
fxed-time convergence of the tracking error, rather
than fxed-time convergence to the sliding mode
surface. In addition, fxed-time NTSMC can achieve
higher convergence time precision and smaller initial
control peaks.

Te remaining content of this paper is arranged as
follows: In Section 2, the necessary preliminary preparations
for studying FJM are introduced, laying the foundation for
vibration suppression and tracking control in the following
text. Tis section mainly introduces the required assump-
tions, lemmas, the FJMmodel, and the research objectives of
this article. Section 3 is the main body of this paper, which
introduces the vibration suppression trajectory planning and
tracking control based on the PSO algorithm to minimize
the residual vibration of FJM. Firstly, we use HOTP
trajectory to plan FJM and theoretically derive vibration
optimization objectives. Ten, optimize using the PSO al-
gorithm. Finally, a controller was designed to track the
optimal trajectory of FJM’s joints, thereby increasing the
stability of FJM. Section 4 is the simulation results section,
which verifes the feasibility of the proposed method. Section
5 provides a summary of this article and describes the
limitations of the research method.

2. Problem Description

Tis article has the following assumptions:

Assumption 1. For FJM system, the elastic efect is
equivalent to that of a linear spring, with the elastic co-
efcient value of the linear spring serving as the joint’s

stifness value. By understanding the joint stifness values,
it is possible to design practical vibration suppression
measures to reduce vibrations caused by elasticity. Tis
assumption is crucial for minimizing vibration in-
terference in high-precision and high-performance
applications.

Assumption 2. Do not consider the interference of other
factors on the motor during rotation, and consider the
motor rotor as a whole. Tis makes control strategies easier
to comprehend and implement, reduces complexity in the
control system, and enhances real-time control
performance.

Assumption 3. Te and Ts are the fxed-time parameters and
Ts >Te > 0. Te choice of Te and Ts directly infuences the
stability of the system. Ensuring that Te is greater than Ts,
and Ts is greater than zero which contributes to maintaining
the stability of the system and preventing the occurrence of
unstable behavior, especially in precision-critical applica-
tions with stringent control requirements.

Te research object of this paper is the FJM. Te system
is mainly composed of the motor device, the deceleration
device, the fexible joint device, and the load of FJM’s arm.
Te system model of the FJM is shown in Figure 1. Te
meanings of the parameters in the FJM dynamic model are
illustrated in Table 1.

Tis paper assumes that the joints of the FJM are linear
springs. Ten, dynamic modeling of the FJM is carried out
using the Lagrange equation, and the following dynamic
equation can be established [42].

Jl€η + K(η − ϑ) � − Mgl sin η,

Jm
€ϑ + K(ϑ − η) � τm.

⎧⎨

⎩ (1)

To facilitate the design of trajectory planning functions
and tracking controllers, we defne x1 � η, x2 � _η, x3 � ϑ,
x4 � _ϑ, therefore, equation (1) is written as the following
state equation:

_x1 � x2,

_x2 �
K

Jl

x3 − x1( 􏼁 −
Mgl

Jl

sinx1,

_x3 � x4,

_x4 �
τm

Jm

+
d

Jm

−
K

Jm

x3 − x1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Assuming that the desired trajectory of the motor
planning of the FJM is 􏽥ϑ, the trajectory error of the motor
can be expressed as

e1 � 􏽥ϑ − ϑ. (3)

Te residual vibration error of the motor and joint of the
FJM can be expressed as
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E � η − ϑ. (4)

Ten, we defne _e1 � e2, u � − (τm/Jm), φ � (K/Jm)

(􏽥ϑ − e1 − x1) +
􏽥€ϑ, the motor trajectory error equation of the

FJM can be defned as

_e1 � e2,

_e2 �
€􏽥ϑ − _x4 � u + φ.

⎧⎪⎨

⎪⎩
(5)

2.1. Fixed-Time Stability. Considering the following error
state equations:

_e1 � e2,

_e2 � f(x) + u,

⎧⎨

⎩ (6)

where e1 and e2 are the control errors of the system, f(x)

represents a nonlinear function, u is the control input of the
system.

Defnition 4. Finite-time stability
For system (6), if there is a fnite time Tf(e1(0), e2(0))

that causes ∀t≥Tf(e1i(0), e2i(0)): e1i � e2i � 0, then system
(6) is fnite-time stable.

Defnition 5. Fixed-time stability
For system (6), if there is a fnite time Tf(e1(0), e2(0))

that causes ∀t≥Tf(e1i(0), e2i(0)): e1i � e2i � 0, and if there
is a fxed constant Tmax that causes |Tf(e1i(0),

e2i(0))|≤Tmax, then system (6) is fxed-time stable.

Lemma 6 (see [38]). Considering the following dynamic
system:

_L � n, (7)

where L ∈ R denotes the system state and n denotes the control
input and is designed as

n � n1 � −
π

2Tsμ
Sig(L)

1− μ
+ Sig(L)

1+μ
􏼐 􏼑, (8)

where Sig(·) is a sigmoid function and
Sig(·) � (1/(1 + exp(·))). Ts is the fxed-time parameter and
0< μ< 1, then L � 0 is fxed-time stable with the fxed-time
Ts, and x converges to zero at time tf

L(t) � 0, if t≥ tf, (9)

tf �
2Ts

π
arctan x(0)

α􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

tf ≤Ts.

(10)

Proof. Defning a Lyapunov function as

V � L
2
. (11)

Taking the derivative of t on both sides of equation (11)
yields.

_V � 2L _L. (12)

Combining equations (8) and (12), we can know

dV

dt
≤ −

π
Tsμ

|L|
2− μ

+|L|
2+μ

􏼐 􏼑

� −
π

Tsμ
V

((2− μ)/2)
+ V

((2+μ)/2)
􏼐 􏼑.

(13)

Furthermore, based on equation (13), we can conclude

dt≤
Tfμ
π

− 1
V

((2− μ)/2)
+ V

((2+μ)/2)
dV. (14)

By integrating both sides of equation (14), the lower limit
of the integration is t � 0, and the upper limit is t � tf, we
can know

tf ≤ 􏽚
V tf( 􏼁

V(0)

Tsμ
π

− 1
V

((2− μ)/2)
+ V

((2+μ)/2)
dV

� −
Tsμ
π

􏽚
V tf( 􏼁

V(0)

V
((2− μ)/2)

1 + V
(μ/2)

dV

� −
Ts

(π/2)
􏽚

V tf( 􏼁

V(0)

1
1 + V

μ dV
(μ/2)

�
Ts

(π/2)
arctan V

(μ/2)
(0)􏼐 􏼑 −

Ts

(π/2)
arctan V

(μ/2)
tf􏼐 􏼑􏼐 􏼑.

(15)

Considering that t � tf is the upper bound for con-
vergence time and V(tf) � 0, if L(0) is bounded, then
equation (16) holds.

tf ≤
Tf

(π/2)
arctan V

α
(0)( 􏼁≤Ts. (16)

□

2.2. Motivation and Objective of Tis Paper

2.2.1. Motivation. We know that the FJM can generate
residual vibration during movement. Currently, vibration
can be suppressed through trajectory planning, but due to
the interaction and complexity of the parameters in the
trajectory, intelligent algorithms are needed to optimize the
parameters in the trajectory. Tis paper designs a vibration
reduction method that combines HOTP and PSO algorithm,

Mgl

K

Jm

Jl

τm

η

ϑ

Figure 1: System model of the FJM.
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which not only solves the problem of complex parameters in
trajectory planning but also achieves the efect of vibration
reduction. On this basis, in order to enable FJM’s joint to
track the optimized trajectory, the control schemes in
[30–35] are all afected by the initial value of the trajectory.
When the initial value of the trajectory is large, the con-
vergence speed of trajectory tracking will signifcantly slow
down.Tis paper will design a fxed-time NTSMC that is not
afected by the initial trajectory and has a faster trajectory
tracking speed.

2.2.2. Objective. Tis paper aims to plan an optimal and
minimum vibration trajectory for FJM using a combination
of HOTP and PSO algorithm methods to plan and suppress
vibration, i.e., E � η − ϑ � 0.Ten, a fxed-time NTSMCwas
designed to track the optimization trajectory, ultimately
causing the control objective e1 � 􏽥ϑ − ϑ to approach zero.

3. Main Result

3.1. Derivation of Residual Vibration Based on the HOTP.
When planning the joints of the FJM, we frst need to clarify
the starting and target points of the trajectory. Ten, dif-
ferent interpolation methods are used to plan the joints.
Finally, a complete joint trajectory can be obtained. In this

section, a variable parameter HOTP function is proposed to
plan the trajectory of the FJM, and the residual vibration
optimization objective function of the FJM is obtained
through theoretical calculation.

Let ω �
����
K/Jl

􏽰
, 􏽥ϑ � ϑ − (Mgl/K)sin η, the joint model in

the dynamic equation of FJM (1) can be transformed into

€η � ω2
(􏽥ϑ − η). (17)

Te design variable parameter HOTP motor track is

ϑ � ηf − η0􏼐 􏼑 􏽘

6

i�0
εi(ϖ)

i
+ η0 +

Mgl

K
sin η, (18)

where ϖ � (t/tf), tf is planning time, εi(i � 0, 2, . . . , 6) is
unknown parameter.

Combining equation (18) and 􏽥ϑ � ϑ − (Mgl/K)sin η, the
motor expected trajectory can be designed as

􏽥ϑ � ηf − η0􏼐 􏼑 􏽘

6

i�0
εi(ϖ)

i
+ η0. (19)

Te angular velocity and angular acceleration of the
trajectory planning motor can be determined by calculating
the derivative of (19):

_􏽥ϑ �
ηf − η0􏼐 􏼑

tf

6ε6(ϖ)
5

+ 5ε5(ϖ)
4

+ 4ε4(ϖ)
3

+ 3ε3(ϖ)
2

+ 2ε2ϖ +
ε1
tf

􏼢 􏼣, (20)

€􏽥ϑ �
ηf − η0􏼐 􏼑

t
2
f

30ε6(ϖ)
4

+ 20ε5(ϖ)
3

+ 12ε4(ϖ)
2

+ 6ε3ϖ +
2ε2
tf

􏼢 􏼣, (21)

Te joint trajectory of FJM must be smooth, continuous,
and meet the initial time (t � 0) and target time (t � tf)

constraints in terms of trajectory, velocity, and acceleration
as follows:

η(t � 0) � η0, η t � tf􏼐 􏼑 � ηf,

_η(t � 0) � 0, _η t � tf􏼐 􏼑 � 0,

€η(t � 0) � 0, €η t � tf􏼐 􏼑 � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

Table 1: Te meaning of parameters in the FJM dynamic model.

Parameters Te meaning of parameters
η Te joint rotation angles of the FJM
ϑ Te motor rotation angles of the FJM
M Te quality of FJM’s end-load
g Te gravitational acceleration of the end-load
l Te distance from the joint of the FJM to the center of mass of the end-load
τm Te control input for the FJM
K Te elastic stifness of the FJM
Jl Te inertia of the joint end
Jm Te inertia of the motor rotor
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Combining equations (19)–(22), we can obtain the
values and relationship expressions of certain parameters of
the variable parameter HOTP as

ε0 � ε1 � ε2 � 0,

ε6 + ε5 + ε4 + ε3 + ε2 + ε1 � 1,

6ε6 + 5ε5 + 4ε4 + 3ε3 + 2ε2 +
ε1
tf

� 0,

30ε6 + 20ε5 + 12ε4 + 6ε3 +
2ε2
tf

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Te relationship between ε0, ε1, tf and ε3, ε4, ε5 can be
determined by solving equation (23):

ε0 � ε2 � 0,

ε3 � 10 − 10ε0 − 10ε1,

ε4 � − 15 + 15ε0 + 15ε1 +
ε1
tf

,

ε5 � 6 − 6ε0 − 6ε1 −
ε1
tf

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Te mathematical model of residual vibration can be
easily solved by normalizing the variable parameter HOTP,
as illustrated in equation (25):

ϑ �
ε6(ϖ)

6
+ ε5(ϖ)

5
+ ε4(ϖ)

4
+ ε3(ϖ)

3
+ ε2(ϖ)

2
+ ε1ϖ + ε0, t≤ tf,

1, t> tf.

⎧⎨

⎩ (25)

Te vibration analysis of FJM during and after move-
ment is as follows.

3.1.1. During Movement 0≤ t≤ tf. Te joint trajectory and
tracking error of FJM during motion can be determined by
substituting equation (25) into dynamic (17)

€η + ω2η � ω2 ε6(ϖ)
6

+ ε5(ϖ)
5

+ ε4(ϖ)
4

+ ε3(ϖ)
3

+ ε2(ϖ)
2

+ ε1ϖ + ε0􏼐 􏼑. (26)

Equation (26) is simplifed to

€η + ω2η � ω2ε6(ϖ)
6

+ ω2ε5(ϖ)
5

+ ω2ε4(ϖ)
4

+ ω2ε3(ϖ)
3

+ ω2ε2(ϖ)
2

+ ω2ε1ϖ + ω2ε0. (27)

Equation (27) is a second-order nonhomogeneous dif-
ferential equation. First, we need to solve the general so-
lution of the homogeneous equation of (27), and the
corresponding homogeneous equation is

€η + ω2η � 0. (28)

Te characteristic equation corresponding to equation
(28) is

λ2 + ω2
� 0. (29)

According to equation (29), the characteristic root of
equation (28) can be solved as

λ1 � ωi,

λ2 � − ωi.
􏼨 (30)

Te characteristic root is a pair of imaginary roots, so the
general solution of the homogeneous equation can be
written as

ηo
� C1 cos(ωt) + C2 sin(ωt). (31)

Ten solve a special solution of equation (27), and let its
special solution be η∗

η∗ � A6t
6

+ A5t
5

+ A4t
4

+ A3t
3

+ A2t
2

+ A1t + A0. (32)

Calculating the frst derivative and the second derivative
of equation (32) as follows:

_η
∗

� 6A6t
5

+ 5A5t
4

+ 4A4t
3

+ 3A3t
2

+ 2A2t + A1,

€η∗ � 30A6t
4

+ 20A5t
3

+ 12A4t
2

+ 6A3t + 2A2.
(33)
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Substituting equations (32) and (33) into (27):

30A6t
4

+ 20A5t
3

+ 12A4t
2

+ 6A3t + 2A2 + ω2

A6t
6

+ A5t
5

+ A4t
4

+ A3t
3

+ A2t
2

+ A1t + A0􏼐 􏼑

� ω2ε6(ϖ)
6

+ ω2ε5(ϖ)
5

+ ω2ε4(ϖ)
4

+ ω2ε3(ϖ)
3

+ ω2ε2(ϖ)
2

+ ω2ε1ϖ + ω2ε0.

(34)

According to the undetermined coefcient method, the
relationship equation of corresponding parameters can be
obtained as

ω2
A6 �

ω2ε6
t
6
f

,

ω2
A5 �

ω2ε5
t
5
f

,

ω2
A4 �

ω2ε4
t
4
f

,

20A5 + ω2
A3 �

ω2ε3
t
3
f

,

12A4 + ω2
A2 �

ω2ε2
t
2
f

,

6A3 + ω2
A1 �

ω2ε1
tf

,

2A2 + ω2
A0 � ω2ε0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

According to (35), we can fnd that the coefcient of the
special solution is

A6 �
ε6
t
6
f

,

A5 �
ε5
t
5
f

,

A4 �
ε4
t
4
f

,

A3 �
ε3
t
3
f

−
20ε5
t
5
fω

2,

A2 �
ε2
t
2
f

−
12ε4
t
4
fω

2,

A1 �
ε1
tf

−
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4 ,

A0 � ε0 −
2ε2

t
2
fω

2 +
24ε4
t
4
fω

4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Terefore, special solution η∗ is

η∗ � ε6ϖ
6

+ ε5ϖ
5

+ ε4ϖ
4

+
ε3
t
3
f

−
20ε5
t
5
fω

2
⎛⎝ ⎞⎠t

3
+

ε2
t
2
f

−
12ε4
t
4
fω

2
⎛⎝ ⎞⎠t

2

+
ε1
tf

−
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4
⎛⎝ ⎞⎠t + ε0 −

2ε2
t
2
fω

2 +
24ε4
t
4
fω

4.

(37)

Te solution of equation (27) is equal to the homoge-
neous general solution plus the nonhomogeneous special
solution as follows:
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η � ηo
+ η∗ � C1 cos(ωt) + C2 sin(ωt)

· ε6ϖ
6

+ ε5ϖ
5

+ ε4ϖ
4

+
ε3
t
3
f

−
20ε5
t
5
fω

2
⎛⎝ ⎞⎠t

3
+

ε2
t
2
f

−
12ε4
t
4
fω

2
⎛⎝ ⎞⎠t

2

+
ε1
tf

−
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4
⎛⎝ ⎞⎠t + ε0 −

2ε2
t
2
fω

2 +
24ε4
t
4
fω

4.

(38)

Because the initial value of the system is
_η(0) � 0, €η(0) � 0, we determine C1, C2 is

C2 � −
ε1

tfω
+

6ε3
t
3
fω

3 −
120ε5
t
5
fω

5 ,

C1 � 2
ε2

t
2
fω

2 −
12ε4
t
4
fω

4
⎛⎝ ⎞⎠.

(39)

Combining (38) and (39), the joint trajectory of the FJM
can be obtained as

η �
2ε2

t
2
fω

2 −
24ε4
t
4
fω

4
⎛⎝ ⎞⎠ cos(ωt) + −

ε1
tfω

+
6ε3

t
3
fω

3 −
120ε5
t
5
fω

5
⎛⎝ ⎞⎠ sin(ωt)

+ ε6ϖ
6

+ ε5ϖ
5

+ ε4ϖ
4

+
ε3
t
3
f

−
20ε5
t
5
fω

2
⎛⎝ ⎞⎠t

3
+

ε2
t
2
f

−
12ε4
t
4
fω

2
⎛⎝ ⎞⎠t

2

+
ε1
tf

−
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4
⎛⎝ ⎞⎠t + ε0 −

2ε2
t
2
fω

2 +
24ε4
t
4
fω

4.

(40)

Terefore, the error of the FJM in the movement process
is

ξη �
2ε2

t
2
fω

2 −
24ε4
t
4
fω

4
⎛⎝ ⎞⎠ cos(ωt) + −

ε1
tfω

+
6ε3

t
3
fω

3 −
120ε5
t
5
fω

5
⎛⎝ ⎞⎠ sin(ωt)

−
20ε5
t
5
fω

2t
3

−
12ε4
t
4
fω

2t
2

+ −
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4
⎛⎝ ⎞⎠t −

2ε2
t
2
fω

2 +
24ε4
t
4
fω

4.

(41)

3.1.2. End of Movement t> tf. Te joint model of the FJM
can be expressed after the movement as follows:

€η � ω2
(1 − η). (42)

Te time of trajectory planning ranges from
tf⟶ t − tf.

Te residual error after the FJMmotion is determined by
the initial values η(t − tf) � ηf, _η(t − tf) � _ηf as

η � ηtf
− 1􏼒 􏼓 cos ω t − tf􏼐 􏼑􏼐 􏼑 +

_ηtf

ω
sin ω t − tf􏼐 􏼑􏼐 􏼑 + 1,

ξη � ηtf
− 1􏼒 􏼓 cos ω t − tf􏼐 􏼑􏼐 􏼑 +

_ηtf

ω
sin ω t − tf􏼐 􏼑􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where ηtf � η(t � tf), _ηtf � _η(t � tf).
According to ηtf � η(t � tf), _ηtf � _η(t � tf), ηtf, and

_ηtf can be calculated by combining equation (43) as
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ηtf �
2ε2

t
2
fω

2 −
24ε4
t
4
fω

4
⎛⎝ ⎞⎠ cos ωtf􏼐 􏼑 + −

ε1
tfω

+
6ε3

t
3
fω

3 −
120ε5
t
5
fω

5
⎛⎝ ⎞⎠ sin ωtf􏼐 􏼑

+ ε5 + ε4 + ε3 + ε2 + ε1 + ε0 −
20ε5
t
2
fω

2 −
12ε4
t
2
fω

2 −
6ε3

t
2
fω

2 +
120ε5
t
4
fω

4 −
2ε2

t
2
fω

2 +
24ε4
t
4
fω

4,

_ηtf � −
2ε2

t
2
fω

2 −
24ε4
t
4
fω

4
⎛⎝ ⎞⎠ω sin(ωt) + −

ε1
tfω

+
6ε3

t
3
fω

3 −
120ε5
t
5
fω

5
⎛⎝ ⎞⎠ω cos(ωt)

+
5ε5
t
5
f

t
4

+
4ε4
t
4
f

t
3

+
3ε3
t
3
f

−
60ε5
t
5
fω

2
⎛⎝ ⎞⎠t

2
+

2ε2
t
2
f

−
24ε4
t
4
fω

2
⎛⎝ ⎞⎠t +

ε1
tf

−
6ε3

t
3
fω

2 +
120ε5
t
5
fω

4 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Te residual vibration amplitude A can be calculated
when combined with equations (44), resulting in the fnal
optimization objective function as

A
2

� ηtf
− 1􏼒 􏼓

2
+

_ηtf

ω
⎛⎝ ⎞⎠

2

�

ε0 + ε1 + ε2 + ε3 + ε4 + ε5 + cos ωtf􏼐 􏼑 2ε2/ω2t2f􏼐 􏼑 − 24ε4/ω4t4f􏼐 􏼑􏼐 􏼑 − sin ωtf􏼐 􏼑

ε1/ωtf􏼐 􏼑 − 6ε3/ω3t3f􏼒 􏼓 + 120ε5/ω5t5f􏼒 􏼓􏼒 􏼓 − 2ε2/ω2t2f􏼐 􏼑 − 6ε3/ω2t2f􏼐 􏼑 + 12ε4/ω2t2f􏼐 􏼑 − 20ε5/ω2t2f􏼐 􏼑 + 24ε4/ω4t4f􏼐 􏼑 + 120ε5/ω4t4f􏼐 􏼑 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+

tf 2ε2/t2f􏼐 􏼑 − 24ε4/ω2t4f􏼐 􏼑􏼐 􏼑 + t2f 3ε3/t3f􏼒 􏼓 − 60ε5/ω2t5f􏼒 􏼓􏼒 􏼓 + ε1/tf􏼐 􏼑 + 4ε4/tf􏼐 􏼑 + 5ε5/tf􏼐 􏼑 − 6ε3/ω2t3f􏼒 􏼓 + 120ε5/ω4t5f􏼒 􏼓

− ω sin ωtf􏼐 􏼑 2ε2/ω2t2f􏼐 􏼑 − 24ε4/ω4t4f􏼐 􏼑􏼐 􏼑 − ω cos ωtf􏼐 􏼑 ε1/ωtf􏼐 􏼑 − 6ε3/ω3t3f􏼒 􏼓 + 120ε5/ω5t5f􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

ω2

(45)

3.2. Optimization of Residual Vibration Based on HOTP and
PSOAlgorithms. In order to suppress the residual vibration
of the FJM, this paper uses the PSO algorithm to optimize
the parameters in the HOTP. First, the PSO algorithm can
solve the parameter coefcient value of HOTP randomly.
Ten, the PSO algorithm searches for the optimal solution
in the random solution through iteration and mainly
evaluates the accuracy of the solution according to its
ftness (the target value to be optimized), which has the
advantages of easy implementation, high accuracy, and fast
convergence.

Step 1. According to the constraint conditions (22), the
relationship between HOTP parameters can be solved using
equation (23), and (24) is converted into matrix equation
form (46) to facilitate parameter observation.

1 1 1

5 4 3

20 12 6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ε5
ε4
ε3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 − ε6
− 6ε6
− 30ε6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (46)

Te relationship between a6 and other parameters can be
resolved by combining (46)

ε0 � ε1 � ε2 � 0,

ε3 � 10 − ε6,

ε4 � − 15 + 3ε6,

ε5 � 6 − 3ε6.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)

Step 2. Research reveals the fnal residual vibration model is
linked to planning time tf and parameter a6, forming a dual
parameter objective optimization problem. Te ultimate
objective optimization function can be expressed as

A � f ε6, tf􏼐 􏼑. (48)

Te PSO algorithm and Simulink are utilized to optimize
the trajectory parameters of FJM, aiming to minimize re-
sidual vibration, as illustrated in Figure 2.

3.3. Design of Fixed-Time Nonsingular Sliding Mode Tracking
Control. On the basis of the optimal trajectory in the pre-
vious section, this section will design a fxed-time sliding
mode controller to enable FJM’s joint to quickly track the
optimal trajectory. Te fxed-time sliding surface of system
(5) can be designed according to Lemma 6 as follows:
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s � e2 −
π

2 Te − Ts( 􏼁α
fe1 + sig e1( 􏼁

1+α
􏼐 􏼑, (49)

where Te and Ts are the fxed-time parameters and
Ts >Te > 0. α satisfes 0< α< 1. Te nonlinear function fe1
can be defned as follows:

fe1
�

− 1 − ln ξ
1 − α − ξ ln ξ

| e1 |
2− αsign e1( 􏼁 +

ξ− 2αξ e1| |

1 − α − ξ ln ξ
e1, | e1 | ≤ ξ

| e1 |
1− αsig e1( 􏼁, | e1 | > ξ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

Equation (50) states that fe1 is diferentiable, and its
derivative is given as

_fe1
�

− 1 − ln ξ
1 − α − ξ ln ξ

(2 − α) | e1 |
1− α

+
ξ− 2α

1 − α − ξ ln ξ
| e1 | ln ξ + 1( 􏼁ξ|e1|

􏼠 􏼡e2, | e1 | ≤ ξ,

(1 − α) | e1 |
− α

e2, | e1 | > ξ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(51)

where ξ ∈ (0, (1/e)) � (0, 0.36) and ξ � α.
According to equation (51), if e1 � 0, _fe1

�

(ξ− 2α/(1 − α − ξ ln ξ))e2. Terefore, it can be concluded that
the function _fe1

is continuous in e1 � 0 and has no non-
singular points. Te curves are shown in Figures 3 and 4.

Te time derivative of (49) can be calculated as

_s � _e2 −
π

2 Te − Ts( 􏼁α
_fe1 +(1 + α) | e1 |

α
e2􏼐 􏼑. (52)

From the error equation and (52), we have

_s � u + φ −
π

2 Te − Ts( 􏼁α
_fe1 +(1 + α) | e1 |

α
e2􏼐 􏼑. (53)

Start
Particle Swarm Optimization

Establishment of optimization
indicators for residual vibration
based on constraint conditions

Determine optimized parameters

Initialize Particle Swarm

Calculate the fitness of each particle

Update pbest and gbest according to fitness,
update particle position and speed

Reaching the
maximum

iteration number

Y

N

Simulink

Optimize parameter values to be
passed to ε6 and tf

The control system model
of FJM

Residual error results

End

A = f (ε6, tf)

vid
k+1 = ωvid

k+1 + c1ξ (pid
k+1 – pid

k) + c2η (pgd
k – pid

k)

xid
k+1 = xid

k + vid
k+1

ε0 = ε1 = ε2 = 0

ε3 = 10 – ε6

ε4 = –15 + 3ε6

ε5 = 6 – 3ε6

Figure 2: Flowchart of PSO algorithm.
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According to the sliding surface (49), the controller of
fxed-time NTSMC can be designed as

u � − φ +
π

2 Te − Ts( 􏼁α
_fe1 + (1 + α) | e1 |

α
e2􏼐 􏼑

−
π

2Tsαs

sig(s)
1+αs + sig(s)

1− αs􏼐 􏼑.

(54)

Theorem 7. For FJM system (5), control scheme (54) can
guarantee that the tracking errors e1 converge to the following
small region in fxed time Ts.

e1 ≤ ξ, if t≥Ts, (55)

then, e1 can arrive at the origin asymptotically. Te proof of
Teorem 7 is provided in Appendix A.

4. Simulation Results

4.1. Residual Vibration Simulation Results of Trajectory
Planning. In this section, the parameters of the FJM’s model
are chosen as K � 120N·m/rad, Jm � 10 kg·m2, Jl � 8kg·m2,
and Mgl � 10N.

Case 1 (Change planning time): Te initial angle of
FJM’s joint is η0 � 10°, the target angle is ηf � 45°, and
the change is tf from 3 s to 5 s. HOTP’s angle, velocity,
and acceleration are shown in Figure 5(a)–5(c).
Case 2 (Change initial angle): the target angle ηf � 45°,
planning time tf � 3, change the initial angle from 0° to
10°, at this time, HOTP’s angle, velocity and acceler-
ation are shown in Figure 6(a)–6(c).
Case 3 (Comparing cubic spline trajectories):Te initial
angle of FJM’s joint is η0 � 0°, the target angle is
ηf � 10°, planning time is tf � 3, Te comparison of
the angle, velocity, and acceleration between the cubic
spline trajectory in reference [10] and the HOTP tra-
jectory is shown in Figures 7(a)–7(c).

Te ideal tracking trajectory of FJM’s joint can be chosen
as follows:

􏽥ϑ � ηf − η0􏼐 􏼑 􏽘

6

i�0
εi(ϖ)

i
+ η0,

ε0 � ε1 � ε2 � 0,

ε3 � 9,

ε4 � − 12,

ε5 � 3,

ε6 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

From Figures 5 and 6, it is evident that under various initial
angles, target angles, and planned times, the HOTP trajectory
exhibits exceptional smoothness and continuity. Further ex-
amination of Figure 7 reveals that the HOTP trajectory
maintains continuity in acceleration, whereas the cubic spline
trajectory shows discontinuities in acceleration. Tese dis-
continuities can cause sudden changes in the forces acting on
a fexible robotic arm, leading to system vibrations. In high-
speed motion control scenarios, these vibrations can negatively
afect the overall performance of the system, severely com-
promising the stability and precision of the machinery.

After verifying the continuity of HTOP, the PSO algo-
rithm is used to optimize HOTP to minimize the residual
vibration of the FJM. Te process of combining the PSO
algorithm with Simulink is as follows:

(1) Optimize vibration target: the objective equation for
optimizing residual vibration of fexible joints is
presented in (45).

(2) Determine the parameter that needs to be optimized:
a6, tf in the high-order interpolation trajectory of
the fexible joint.

(3) Initialize particle swarm: select the maximum inertia
weight ωmax � 0.8, with a minimum value of

Nonlinear function fe1
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Figure 3: Nonlinear function fe1
.

Derivatives of nonlinear functions fe1

f e1
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Figure 4: Derivatives of nonlinear function _fe1
.
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ωmin � 0.4, acceleration constant c1 � c2 � 2, di-
mension d � 2, particle swarm size N � 50, and
randomly generate initial particle swarm values and
velocities.

(4) Calculate the ftness of each particle: combine
equation (45) to calculate the corresponding vibra-
tion amplitude of the initial particle.

(5) Update particle position and velocity: the velocity
represents the displacement of the particle in con-
tinuous iterations, and the ftness value determines
the quality of the solution. During the continuous
iteration of particles towards better features, indi-
vidual extrema and global extrema are constantly
updated. Te update formula is as follows:

v
k+1
id � ωv

k+1
id + c1ξ p

k+1
id − p

k
id􏼐 􏼑 + c2η p

k
gd − p

k
id􏼐 􏼑,

x
k+1
id � x

k
id + v

k+1
id ,

⎧⎪⎨

⎪⎩
(57)

where xid represents the position of the particle, and
i represents any particle in the particle swarm; vid is
the velocity of the above particles at the corre-
sponding position; pid is the optimal position of the
above particles under this condition, and pgd is the
global optimal position under the current
condition.

(6) Return to Simulink model: return the optimized
parameters a6 and tf to the trajectory in Simulink to
obtain the trajectory with the lowest vibration.
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Figure 5: HOTP’s trajectory for changing planning time based on Case 1. (a) HOTP’s angle. (b) HOTP’s velocity. (c) HOTP’s acceleration.
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(7) Run the vibration efect: substitute the optimal
trajectory into the model of the robotic arm, and run
it through Simulink to obtain the fnal vibration
error diagram.

Defne 0< tf < 5. In order to ensure the monotonically
increasing trajectory of the motor within the planned time,
combined with equation (20), it can be deduced that
0≤ ε6 ≤ 1. Parameters from Table 2 are selected for com-
parison with the optimal values. Te simulation results are
shown in Figure 8. Te optimal values of tf and ε6 are
determined through the PSO algorithm. Figure 8(a) shows
that the optimal parameters tf � 2.928 and ε6 � 0.0039761
can be obtained through 3 iterations of the PSO algorithm.
Figure 8(b) can prove that the proposed HTOP can achieve
the optimal vibration suppression efect at tf � 2.928 and

ε6 � 0.0039761. Te results in Figure 8(c) demonstrate that,
based on the cubic spline trajectory, the vibration amplitude
of the FJM reaches approximately 1.8mm. In contrast, the
proposed HOTP trajectory efectively suppresses the vi-
bration to only 0.02mm. Tis signifcant reduction in vi-
bration amplitude highlights the outstanding performance
of the HOTP trajectory in vibration attenuation during
motor operation. Furthermore, the comparison with pa-
rameters from Table 2 further validates the efectiveness of
the proposed approach in achieving optimal motor per-
formance. In summary, the HOTP trajectory proposed in
this paper not only ensures a monotonically increasing
trajectory of the motor within the specifed time but also
minimizes vibration, thereby enhancing the overall stability
and efciency of the motor system.
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Figure 6: HOTP’s trajectory for change initial angle based on Case 2. (a) HOTP’s angle. (b) HOTP’s velocity. (c) HOTP’s acceleration.
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4.2. Simulation Results of Trajectory Tracking Control. To
verify the advantages of the proposed fxed-time NTSMC,
this section compares it with the fnite-time NTSMC in [44].

After optimizing the PSO algorithm vibration in Section 2,
we can obtain the optimal trajectory of the FJM’s joint as
follows:
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Figure 7: Comparison between HOTP trajectory and cubic spline trajectory based on Case 3. (a) Angle of HOTP trajectory and cubic spline
trajectory. (b) Velocity of HOTP trajectory and cubic spline trajectory. (c) Acceleration of HOTP trajectory and cubic spline trajectory.

Table 2: tf and ε6 parameter values.

tf (From small to large) 0.56 1.87 2.928 3.67
ε6 (From large to small) 1 0.05 0.0039761 0.01
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􏽥ϑ � ηf − η0􏼐 􏼑 􏽘

6

i�0
εi

t

tf

􏼠 􏼡

i

+ η0,

ε0 � ε1 � ε2 � 0,

ε3 � 10 − ε6,

ε4 � − 15 + 3ε6,

ε5 � 6 − 3ε6,

ε6 � 4.2146 × 10− 3
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

As described in [44], the sliding surface and controller of
the fnite-time NTSMC scheme are

s � e2 + 􏽚 q1 | e1 |
α1 sgn e1( 􏼁 + q2 | e2 |

α2 sgn e2( 􏼁dt,

u � − φ − q1 | e1 |
α1 sgn e1( 􏼁 − q2 | e2 |

α2 sgn e2( 􏼁 − κ1sgns − κ2s,

(59)

where sgn(s) � 2((1/(1 + exp− ωsi )) − (1/2)), ω � 30.
Te controller parameters for fnite-time NTSMC are set

to
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Figure 8: Optimization simulation of vibration suppression for FJM’s Joint. (a) PSO algorithm optimization iterations. (b) Comparison of
residual vibrations. (c) Comparison of residual vibrations between HOTP’s trajectory and cubic spline trajectory.
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Figure 9: Track tracking control results with η0 � 5°, ηf � 45°, ts � 1s. (a) Motor angle q. (b) Residual vibration E. (c) Position error e1.
(d) Position error e2. (e) Control input u. (f ) Sliding-mode surface s.
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Figure 10: Track tracking control results with η0 � 5°, ηf � 45°, ts � 2s. (a) Motor angle q. (b) Residual vibration E. (c) Position error e1.
(d) Position error e2. (e) Control input u. (f ) Sliding-mode surface s.
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Figure 11: Track tracking control results with η0 � 15°, ηf � 45°, ts � 1s. (a) Motor angle q. (b) Residual vibration E. (c) Position error e1.
(d) Position error e2. (e) Control input u. (f ) Sliding-mode surface s.
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Figure 12: Track tracking control results with η0 � 15°, ηf � 45°, ts � 2s. (a) Motor angle q. (b) Residual vibration E. (c) Position error e1.
(d) Position error e2. (e) Control input u. (f ) Sliding-mode surface s.
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q1 � 70,

q2 � 90,

α1 � 0.2,

α2 � 0.3,

κ1 � 3,

κ2 � 1.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Case 1 (Small initial angle): In this case, consider the
situation where the initial planning angle is small, the
given initial angle is η0 � 5°, the target angle is ηf � 45°.
Meanwhile, consider the impact of Ts on trajectory
tracking under diferent parameters and analyze the
two cases of Ts � 1 and Ts � 2. Te simulation results
are shown in Figures 9 and 10. Te fxed-time NTSMC
parameters are set to α � 0.6, ξ � 0.55, Te � 0.3, and
αs � 0.1. When Ts � 1, the joint trajectory of FJM will
track the optimal trajectory before 1s, From Figure 9(a),
it can be seen that fxed-time NTSMC can track the
optimal trajectory at 0.5 s. From Figures 9(c) and 9(d),
it can be seen that the trajectory error e1 and e2 con-
verges to 0 within 1s. Te sliding surface will be
convergent to 0 within 0.3s. Te residual vibration of
FJM remains consistent with the optimal trajectory
vibration, with a vibration amplitude of 0.5mm.
When Ts � 2, the joint trajectory of FJM will track the
optimal trajectory before 2s. From Figure 10(a), it can
be seen that the fxed-time NTSMC can track the
optimal trajectory at 1.2s, while the vibration of FJM
can still maintain the word 0.5mm. From Figures 10(c)
and 10(d), it can be seen that the trajectory error e1 and
e2 converges to 0 within 2s, and the sliding surface will
converge to 0 at Te � 0.3.
Case 2 (large initial angle): Compared to Case 1, in-
crease the initial angle of the trajectory signifcantly to
η0 � 15°, the target angle is ηf � 45°. Analyze the two
cases of Ts � 1 and Ts � 2. Figures 11 and 12 show the
simulation results of Case 2. When Ts � 1 and Ts � 2, it
can be seen from Figures 11 and 12 that the system
trajectory can still converge to 0 within a fxed time,
unafected by changes in the initial value of the tra-
jectory. However, the fnite time is afected by the initial
value of the system. When the initial trajectory changes
from η0 � 5° to η0 � 15°, the fnite time can only
converge to 0 within 4s. In addition, the vibration
amplitude of FJM will decrease to 0.05mm. Terefore,
this scheme can meet the working requirements of FJM
when the initial trajectory value is large.

5. Conclusion

Vibration suppression and trajectory tracking control of the
FJM based on the PSO algorithm and fxed-time control are
proposed in this paper. Te feasibility of this method has
been verifed through numerical simulation, which indeed
reduces the vibration between the joint trajectory and the
motor trajectory and improves the precise control efect of

FJM. However, because FJM is a strongly coupled system,
the system parameters are too complex, and there are
various interferences during the motion process, which
makes it impossible to completely eliminate the vibration
and can only be optimized as much as possible. Due to the
complexity and high cost of the FJM experimental system,
completion within a short timeframe is challenging. An-
ticipating improved laboratory conditions in the future, we
plan to apply the proposed solution to multi-link robotic
arm systems. Tese arms will fnd widespread application in
production lines, handling complex assembly and pro-
cessing of parts, as well as in intricate minimally invasive
surgeries. We will persistently tackle complex issues in real
systems, including unmodeled complexities, uncertainties,
diverse working environments, and the high computational
demands of real-time algorithms. By applying the solution to
real-world scenarios, we aim to demonstrate the adaptability
and robustness of the approach in future multi-link systems,
laying a foundation for seamless integration of theory and
practical implementation.

Appendix

A. Proof of Theorem 1

Proof

Step 1: A Lyapunov function can be defned as

v �
1
2
s
2
. (A.1)

According to equation (A.1), the time derivative of v

can be calculated as

_v � s_s � − s
π

2Tsαs

Sig(s)
1+αs + Sig(s)

1− αs􏼐 􏼑􏼠 􏼡

� −
π

2Tsαs

v
1+αs( )/2( ) + v

1− αs( )/2( )􏼒 􏼓

(A.2)

Terefore,

v � s � 0, if t �
2Ts

π
arctan |x(0)|

α
( 􏼁, (A.3)

v � s � 0, t≤Ts. (A.4)

Step 2: Combining (A.3) and (49), e2 can be represented
as

e2 � −
π

2 Te − Ts( 􏼁eα
fe1 + sig e1( 􏼁

1+α
􏼐 􏼑. (A.5)

For |e1|≥ ξ, we have

e2 � −
π

2 Te − Ts( 􏼁α
sig e1( 􏼁

1− α
+ sig e1( 􏼁

1+α
􏼐 􏼑, if t≥ εTs,

(A.6)

where ε � (2/π)arctan(|x(0)|α).
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For |e1|< ξ, we have

| e1 | < ξ, if t≥ εTs + c Te − Ts( 􏼁, (A.7)

where c � (2/π)arctan(|x(Ts)|
α).

When ε< c

| e1 | < ξ, if t≥ cTs. (A.8)

And, we have

s � 0, t≥ cTs. (A.9)

Ten, combining (50), (A.5), (A.8), and (A.9), we have

e2 � −
π

2Tsα
− 1 − ln ξ

1 − α − ξ ln ξ
Sig e1( 􏼁

2− α
+

ξ− 2α+ e1| |

1 − α − ξ ln ξ
e1 + Sig e1( 􏼁

1+α⎛⎝ ⎞⎠, if t≥ cTs. (A.10)

A new Lyapunov function is defned as

H �
1
2
e
2
1. (A.11)

Ten, the time derivative of equation (A.11) can be
calculated by considering equation (A.10) as

_H � e1e2 � −
π

2Tsα
− 1 − ln ξ

1 − α − ξ ln ξ
| e1 |

3− α
+

ξ− 2α+ e1| |

1 − α − ξ ln ξ
| e1 |

2
+ | e1 |

2+α⎛⎝ ⎞⎠

� −
π

2Tsα
− 1 − ln ξ

1 − α − ξ ln ξ
| e1 |

3− α
−

π
2Tsα

ξ− 2α+ e1| |

1 − α − ξ ln ξ
| e1 |

2
+ | e1 |

2+α⎛⎝ ⎞⎠.

(A.12)

As ξ ∈ (0, 1/e), α ∈ (0, 1), we have

− 1 − ln ξ
1 − α − ξ ln ξ

> 0, (A.13)

ξ− 2α+ e1| |

1 − α − ξ ln ξ
> 0. (A.14)

Considering (A.8) and ξ ∈ (0, 1/e), we have

ξ e1| | < ξξ , if t≥ cTs. (A.15)

Ten, combining (A.12)–(A.15), we have

_H≤ − ge1H, if t≥ cTs, (A.16)

where the constant ge1 � (ξ− 2α/2(1 − α − ξ ln ξ))ξ > 0.
From (A.16), we have

H≤H cTs( 􏼁e
− ge1 t− cTs( ), if t≥ cTs. (A.17)

Tus, combining |e1|< ξ, if t≥ cTs, we have H(∞) � 0,
the proof is fnished. □
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