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Syslog is a critical data source for analyzing system problems. Converting unstructured log entries into structured log data is
necessary for efective log analysis. However, existing log parsing methods demonstrate promising accuracy on limited datasets,
but their generalizability and precision are uncertain when applied to diverse log data. Enhancements in these areas are necessary.
Tis paper proposes an online log parsing method called DLLog, which is based on deep learning and has the longest common
subsequence. DLLog utilizes the GRU neural network to mine template words and applies the longest common subsequence to
parse log entries in real-time. In the ofine stage, DLLog combines multiple log features to accurately extract the template words,
creating a log template set to assist online log parsing. In the online stage, DLLog parses log entries by calculating the matching
degree between the real-time log entry and the log template in the log template set. Tis method also supports the incremental
update of the log template set to handle new log entries generated by systems. We summarized the previous works and validated
DLLog using real log data collected from 16 systems. Te results demonstrate that DLLog achieves high parsing accuracy,
universality, and adaptability.

1. Introduction

Log data serves as a valuable and reliable source for oper-
ations staf to monitor systems, detect abnormalities, and
locate faults [1]. Log data, easily obtainable from systems,
contains a wealth of information, including system status,
performance, and resource usage. However, log data is in-
herently unstructured, while most system analysis tasks
require structured data as input [2–4]. Terefore, parsing
unstructured log data into structured data becomes essential
[5, 6]. Tis paper aims to develop a log parsing method
characterized by high accuracy, universality, and adapt-
ability. Te goal is to enable the accurate extraction of log
templates from log data without manual intervention.

Traditional log parsing methods require considerable
human resources and time. Moreover, as system scale and
complexity increase, data volume expands rapidly. Impor-
tantly, developers have not established a unifed standard for
log format, making traditional manual log parsing methods
impractical. Static code-based parsing methods exhibit high
limitations [7–9] because obtaining system source code

during the parsing process is challenging. While frequent
pattern mining-based log parsing methods demonstrate
competitive parsing efciency, they struggle to match rare
logs with low frequency to any log template, resulting in
suboptimal parsing results [10–12]. Clustering-based log
parsing methods often sufer from low parsing accuracy due
to their simplistic parsing patterns (e.g., dividing log groups
based on word frequency or diferent word types) [2, 13–15].
In comparison to static code or frequent pattern mining-
based methods, clustering methods have slower parsing
speeds and require numerous iterations.

Current log parsing methods often exhibit limitations in
terms of parsing accuracy and universality. While a specifc
log parsing method may demonstrate high detection ac-
curacy for a particular dataset, it frequently struggles to
maintain comparable accuracy when applied to a broader
range of datasets. It is imperative for log parsing methods to
incorporate incremental update capabilities, as systems
undergo sporadic updates or optimizations postdeployment,
resulting in the generation of new log data that needs to be
matched with novel log templates. Log parsing methods
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lacking incremental update functionality require substantial
computational resources to build a new parsing model.
Undoubtedly, a log parsing method with the ability to
update its model during the parsing process is of paramount
importance.

To address these challenges, we propose an online log
parsing method called DLLog, based on GRU neural net-
works and the longest common subsequence. Our method
outperforms existing approaches by accurately mining log
template words using multiple log features, thus achieving
high universality. Prior to template matching, DLLog pre-
classifes log templates to reduce incorrect template
matching time.Moreover, our method supports log template
set updates to accommodate new log data generated by the
system.

DLLog parses logs by utilizing the structural, frequency,
and association features of logs entries. It combines ofine
log template word mining and online log parsing to en-
hance the universality and parsing accuracy of DLLog for
large-scale log datasets. In the ofine mining stage, DLLog
initially employs common regular expressions to clean and
remove obvious parameter words from the logs. Ten, it
transforms the log entry into a sequence of word fre-
quencies based on log word frequency and log structural
feature. Subsequently, DLLog employs a GRU neural
network to identify potential relationships between log
words and extract log template words based on these re-
lationships. Due to log sequences including the log
structural feature, log template words from rare logs are
more easily and accurately mined by DLLog. Finally, log
entries with the same log template words are categorized
into the same log group. Each log group corresponds to
a log template. Diferent log templates form a pre-classifed
log template set based on the log structural feature. Tis
process does not require manual intervention. Besides, this
grouping pattern can efectively avoid the problem that rare
logs cannot match any log template.

During the online parsing stage, DLLog processes logs by
calculating the matching degree, defned as the length of the
longest common subsequence between real-time log entries
and the existing log template set. Based on the matching
results, DLLog determines whether to update the log tem-
plate set. By adopting incremental updates to the log tem-
plate set, DLLog eliminates the need for retraining models,
ensuring the efcient operation of log parsing methods and
enhancing the method’s universality when applied to large-
scale log datasets. Tis paper evaluates DLLog on several
extensive log datasets, demonstrating its success in achieving
high parsing accuracy, universality, and adaptability.

Te primary contributions of this paper are summarized
as follows:

(i) Tis paper introduces an ofine log template word
mining approach that utilizes a GRU neural net-
work to extract log template words and partition log
data into distinct log groups.

(ii) Tis paper proposes an online log parsing method
that leverages the longest common subsequence,
enabling updates to the log template set to

accommodate newly generated log data from the
system.

(iii) We conducted comprehensive experiments and
evaluations on various large-scale log datasets,
demonstrating the superior performance of DLLog
in terms of accuracy, universality, and adaptability.

Te rest of this paper is organized as follows: Section 2
presents the related work of log parsing. Section 3 presents
the basic structure of log data. Section 4 presents the detailed
design of DLLog. Section 5 evaluates the performance of
DLLog through experiments. Finally, Section 6 presents the
fnal remarks.

2. Related Work

System logs are invaluable data resources extensively utilized
in system operation and maintenance, fault analysis and
detection, and various practical applications [16–19]. Since
log messages typically consist of semi-structured text strings,
log parsing is essential for converting unstructured logs into
structured data [20]. Log parsing preserves the essence of log
entries, removes parameter words, and minimizes log entry
dimensions, making it easier to map diverse unstructured
logs to standard log templates. We have categorized and
summarized recent research in log parsing into the following
categories.

2.1. Static Code-Based Log Parsing Methods. Liang et al. [8]
introduced an MTS-DCGAN log parsing method based on
source code analysis. Tis approach involves querying class
names, call relationships, and object names associated with
system behaviors. By traversing the syntax tree, log templates
are constructed. Kabinna et al. [21] proposed the Cox
models, which follow similar principles as the MTS-
DCGAN, identifying format strings in the code to create log
parsing templates. While these methods accurately generate
log templates, they are dependent on access to system source
code, limiting their applicability to closed-source systems.

2.2. Heuristic-Based Log Parsing Methods. He et al. [22]
developed Drain, a log parsing method that utilizes parsing
trees. Drain constructs parsing trees and then compares
variances between log entries and log event groups within
the parsing tree for log parsing purposes. While Drain
provides high parsing accuracy, its versatility is limited and,
and it requires domain-specifc knowledge.

Zhang et al. [23] presented the FT-tree method for log
parsing, which creates a log template tree by analyzing log
words and their combinations.Te process involves pruning
the log template tree by removing branches that do not
satisfy certain constraints. Consequently, all log words along
the path from the root node to any leaf node in the pruned
log template tree constitute a log template. However,
a drawback of this method is its tendency to overlook in-
frequent log templates, potentially leading to reduced
parsing accuracy.
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2.3. Clustering-Based Log Parsing Methods. Sedki et al. [10]
proposed the unifed log parsing tool, which identifes
frequent phrases in log data to form frequent candidate
itemsets. Tese itemsets are then clustered to generate class
clusters along with their corresponding templates. Fu et al.
[13] proposed the LKE method, a log parsing technique
based on K-means clustering. LKE extracts log templates
from initial log groups obtained by segmenting clusters
using cluster midpoints and parameter distances. However,
due to log data imbalance, clustering-based methods might
misclassify low-frequency log template words as parameter
words, leading to lower parsing accuracy.

2.4. Other Log Parsing Methods. Makanju et al. [24] pro-
posed the iterative partition log mining (IPLoM) method,
which employs iterative partitioning to categorize log entries
into distinct groups. IPLoM further refnes partitions based
on log identifers and location information to extract log
templates for each log group. AEL [25] employs a clone
detection method for log parsing, assuming signifcant text
similarity among log entries within the same log event. AEL
employs the “Adjust” step to consolidate similar log exe-
cution events and resolve all log templates. Du and Li [26]
presented Spell, an online log parsing method based on the
longest common subsequence, which updates and maintains
the longest common subsequence library (LCSMap) of log
event sequences.

3. Log Structure Overview

System logs are unstructured data stored as free text, re-
cording various events, states, errors, or interaction be-
haviors generated by systems or components. Typically,
there is no unifed standard for defning log entry formats
and syntax structures across diferent systems. Each log
entry consists of a constant part and a variable part. Te
constant part, also referred to as the log template, comprises
fxed plain text information generated by the printout code,
containing semantic information in the form of log template
words. Te variable part, including dynamic parameter
information such as IP addresses, port numbers, and fle
names, changes with log events. Te words that make up the
variable parts are referred to as log parameter words and
generally lack valuable semantic information. Although the
formats of log data vary greatly among diferent systems,
these log data typically include the following important
components: timestamp, log level, components, and log
events.

(1) Timestamp: Te time when the system generated the
log entry.

(2) Log level: Also known as log type, it indicates the
severity of log events (such as info, error, and warn).

(3) Component: Te name of the component (software
module or server) that generates log events.

(4) Log event: Describe the system interaction event
information under specifc time and environment.
Generally, a log entry contains only one log event.

In log data, the log event serves as the core of each log
entry. Log parsing extracts the constant part (common
feld) of log events to create a log template representing
each log entry. Table 1 displays log samples from eight
diferent types of original log data, including distributed
systems, supercomputer systems, operating systems, and
mobile systems.

We take the HDFS log entry (081109 203521 146 INFO
dfs. DataNode$Packet Responder: Received block
blk_7503483334202473044 of size 233217 from/10.251.
71.16) as an example. Te log event part is generated by
the system printout code “LOG.info (“Received
block” + block + “size” + block. getNumBytes() + “from” +
inAddr).” Te fxed parts are “Received block,” “of size,”
and “from,” which remain unchanged regardless of the
event object. Simultaneously, these words also constitute
the log template for the log event. Table 2 displays the
classifcation results of the aforementioned original log
entry based on Timestamp, Log level, Component name,
and Log events. Tis table also presents the Log template
words, Parameter words, and Log template.

In HDFS log data format Table 2, the symbol “∗”denotes
a placeholder. In fact, a log template can be used to represent
multiple log entries. Figure 1 provides twelve examples of
HDFS raw log data.

In these examples, the log template “Received block∗ of
size∗ from∗”can also represent the second log entry (081109
205412 832 INFO dfs. DataNode$PacketResponder: Re-
ceived block blk_-5704899712662113150 of size 67108864
from / 10.251.91.229). Each log entry in log data can be
characterized by only one log template, but one log template
can represent multiple log entries. Table 3 displays the
corresponding log templates for all log data examples in
Figure 1.

As shown in Table 3, we can convert 12 diferent types of
unstructured log entries into 5 types of structured data by
transforming log data into log templates. Indeed, a log tem-
plate is a standardized format for representing a group of
original log entries. Log entries with the same log template
represent the same type of log events. In essence, the core of log
parsing lies in converting each log entry into a specifc log
template. During log parsing, a parser must explicitly distin-
guish between the constant and variable parts of the log event,
extract the constant log part (log template words) to compose
the log template, and then use the log template to represent the
log entry, thereby completing the log data parsing task.

4. DLLog Architecture and Overview

Tis section will provide a detailed overview of the proposed
online log parsing method, DLLog, which is based on GRU
deep learning and has the longest common subsequence.Te
fundamental concept behind DLLog is that log templates
typically consist of the longest combinations of frequently
occurring words. DLLog comprises three main modules: log
data vectorization, ofine log template word mining, and
online log parsing. Figure 2 illustrates the framework of the
DLLog. Table 4 illustrates notations with their explanatory
terms of Te DLLog.
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Table 1: Sample of raw log data.

Category Name Log data

Distributed system

HDFS 081109 203521 146 INFO dfs. DataNode$Packet responder: received block
blk_7503483334202473044 of size 233217 from/10.251.71.16

Hadoop
2015-10-18 18:01:53,713 INFO [main] org. Apache. Hadoop.

mapreduce.v2.app.rm.RMContainerAllocator: maxContainerCapability:
<memory: 8192, vCores: 32>

Spark 17/06/09 20:10:45 INFO executor.Executor: running task 2.0 in stage 0.0(TID2)

OpenStack
Nova-compute.log.1.2017-05-16_13:55:31 2017-05-16 00:00:04.500 2931 INFO
nova.compute.manager [req-3ea4052c-895d-4b64-9e2d-04d64c4d94ab - - - - -]
[instance: b9000564-fela-409b-b8cc-1e88b294cd1d] VM started (lifecycle event)

Supercomputer system BGL
- 1134748483 2005.12.16 R60-M1-N7-C:J17-U01

2005-12-16-07.54.43.245870R60-M1-N7-C:J17-U01 RAS KERNEL INFO total of 20
ddr error(s) detected and corrected over 22070 seconds

Operating system
Windows 2016-09-28 04:30:31, info CBS SQM: queued 0 fle(s) for upload with pattern: C: \

windows\ servicing\ sqm\∗ _all.sqm, fags: 0× 6

Linux Jul 27 14:41:58 combo kernel: PCI: PCI BIOS revision 2.10 entry at 0xfc0ce, last
bus� 1

Mobile system Android 03-17 16:16:07.635 1702 1820 D DisplayPowerController: animating brightness:
target� 38, rate� 200

Table 2: HDFS log data format.

Timestamp 081109 203521 146
Log level INFO
Component name dfs. DataNode$PacketResponder
Log event Received block blk_7503483334202473044 of size 233217 from/10.251.71.16
Log template words “Received,” “block,” “of,” “size,” “from”
Parameter words “blk_7503483334202473044,” “233217,” “/10.251.71.16”
Log template Received block ∗ of size ∗ from ∗

081109 203521 146 INFO dfs.DataNode$PacketResponder: Received block blk_7503483334202473044 of size 233217 from
/10.251.71.16
081109 205412 832 INFO dfs.DataNode$PacketResponder: Received block blk_-5704899712662113150 of size 67108864 from
/10.251.91.229
081110 092459 8650 INFO dfs.DataNode$DataXceiver: 10.250.9.207:50010 Served block blk_4355450627202483068 to/10.250.9.207
081110 092815 8872 INFO dfs.DataNode$DataXceiver: 10.250.6.191:50010 Served block blk_5952254363678329024 to/10.250.6.191
081110 093020 8827 WARN dfs.DataNode$DataXceiver: 10.251.70.211:50010:Got exception while serving blk_-66793317148508522
to/10.251.203.246:
081110 093643 13 INFO dfs.DataBlockScanner: Verifcation succeeded for blk_9188832735514090334
081110 093831 8571 INFO dfs.DataNode$DataXceiver: 10.251.106.10:50010 Served block blk_2273334621242106674 to/10.251.106.10
081110 094019 8808 WARN dfs.DataNode$DataXceiver: 10.251.125.193:50010:Got exception while serving blk_3790492230047189408
to/10.251.199.159:
081110 094657 7835 INFO dfs.DataNode$DataXceiver: 10.251.107.50:50010 Served block blk_-2285729896739318683 to/10.251.70.5
081110 103026 34 INFO dfs.FSNamesystem: BLOCK* NameSystem.delete: bk_-1233005817943453613 is added to invalidSet of
10.251.75.49:50010
081110 103027 34 INFO dfs.FSNamesystem: BLOCK * NameSystem.delete: blk_166171721314010075 is added to invalidSet of
10.251.30.85:50010
081110 103027 34 INFO dfs.FSNamesystem: BLOCK* NameSystem.delete: blk_3362838757940877177 is added to invalidSet of
10.250.5.161:50010

Figure 1: HDFS raw log data.

Table 3: HDFS log data template.

Template no. Data size
1 Received block ∗ of size ∗ from ∗
2 ∗∗Got exception while serving ∗ to ∗
3 ∗∗Served block ∗ to ∗
4 BLOCK ∗ NameSystem.delete: ∗is added to invalidSet of ∗∗
5 Verifcation succeeded for ∗

4 International Journal of Intelligent Systems



4.1. Ofine Log Template Word Mining. Te solid arrow in
Figure 2 illustrates DLLog’s ofine log template wordmining
process. Tis module initially scans and cleans the entire log
dataset. It counts the frequency of each word that makes up
the log level, component name, and log event. Using this
frequency information, we construct a log word frequency
table. DLLog vectorizes each log entry based on the word
frequency ID in the word frequency table, converting the log
entry into a vector to create the log word frequency se-
quence. During the training stage, the GRU neural networks
are employed to learn the relationships between log words,
enabling DLLog to extract log template words from log
sequences based on the learned associations. Finally, DLLog
categorizes log entries into diferent log groups depending
on whether the log template words are identical. Each log
group’s log entries share the same log template, and the log
templates from diferent log groups constitute the set of log
templates.

4.2. Online Log Parsing. Te dashed arrow in Figure 2 il-
lustrates the online parsing process of the DLLog. Unlike
ofine log template word mining, the log sequence in online
log parsing does not require sorting based on word fre-
quency. Each real-time log entry only needs to undergo
a cleaning process before being input into the log vectori-
zation module to generate a sequence of log word fre-
quencies. Ten, DLLog calculates the matching degree
between the current log sequence and the log template
within the existing log template set. By comparing the
matching degree with the predefned threshold, DLLog
determines whether the parsing is successful or if the log
template set needs updating.

4.3. Log Vectorization. We defne the log dataset as
L � < log1, log2, . . . , logn >, where logi represents a log
entry, and we defne the log event set

E � < event1, event2, . . . , eventn >, where eventi represents
a log event. Let W � <word1,word2, . . . ,wordn > be the set
of words constituting the log event. Tese words are also
referred to as tokens. If the log wordi appears frequently
(that is, it has a high-frequency), then wordi has a high
probability of being a log template word;We defne the set of
log templates as M � < tem1, tem2, . . . , temn >, where temi

represents a log template composed of multiple log template
words wordi, arranged in a specifc manner. It should be
noted that each log template temi in the log template set M

corresponds to multiple log entries, and a log entry can only
be represented by one log template.

Log vectorization is the frst step in the DLLog. Its
objective is to convert unstructured log entries into vec-
torized sequences, which are then used for ofine log
template word mining and online log parsing. Te process
for vectorizing log entries consists of three steps:

(1) Te frst step is to scan the entire log dataset, break
down the log into words, and employ regular ex-
pressions to flter obvious log parameter words
(such as IP address and fle path) with a fxed
format. Tis log vectorization process in Section 4.1
processes log datasets using the log data fltering
rules provided by the FT-tree [23], spell [26] and
drain [22], which is widely adopted in the Log
parsing domain.

(2) Te second step is to count the frequency of log
words. In this step, the module fully considers the
structural and frequency features of the log. Te
frequency is derived from the statistics of log level
word (Flevel), log component word (Fcomponent) and
log event word (Fword). Next, we categorize the
frequency information by the word type, sort it in
descending order, and store in the word frequency
table, denoted as F, which is defned as
F � Flevel ∪Fcomponent ∪Fword. Each word is assigned
a unique word frequency ID. Within the word
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Figure 2: Te architecture of DLLog.
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frequency table F, the ID s corresponding to the
Flevel are positioned at the beginning of the frequency
table, followed by Fcomponent in the middle, and Fword
at the end. Figure 3 provides a structure sample of the
word frequency table F.
We use the HDFS original log dataset in Figure 1 as
an example to further illustrate the process of cre-
ating the word frequency table F. Tis log dataset
includes two log levels: “INFO” and “WARN.”
Terefore, the word frequency sorting result for log
levels can be expressed as Flevel � < (1: INFO:

10), (2: WARN: 2)>. Similarly, the frequency

sorting results for the four log components can be
expressed as Fcomponent � < (3: dfs.DataNode
DataXceiver. Te processing of Fword follows the
same procedure as Fcomponent.
Te fnal word frequency table F corresponding to
the log dataset can be expressed as F �

< (1: INFO: 10), . . . , (25: blk − 3362838757940877
177: 1)>. In the table F, each row is represented as
a triple (ID: Word: Frequency), where the frst unit
represents the word frequency ID, the second unit is
the word itself, and the third unit is the frequency
(the number of times the words appear in the
dataset). By categorizing log words into Flevel,
Fcomponent and Fword, this method helps prevent the
incorrect categorization of low-frequency log tem-
plate words as log parameter words, mitigating issues
arising from unbalanced log data features.

(3) Te third step is to replace log words with word
frequency IDs, constructing the log word (token)
frequency sequence in ascending order.

It is important to note that the online log entry vecto-
rization process only requires the frst and third steps. Since
the word frequency table F has already been constructed, we
simply need to follow step (1) to clean the online log entry. If
a log word appears in the real-time log but is not present in
the word frequency table F, we incrementally update the
word frequency table F with the newly encountered log
word. Ten, according to the word frequency table F, we
construct the cleaned log data into a log word sequence.
Figure 4 illustrates the example of log vectorization.

4.4. Ofine Log TemplateWordMining. Ofine log template
word mining aims to create an accurate log template set.
During the log vectorization module, DLLog converts each
log entry into a sequence of log word frequencies based on
the log structural features and log frequency features. In the
ofine log template word mining module, DLLog learns the
relationship between log words through GRU neural net-
work. It determines whether words are log parameter words
or log template words, enabling the accurate extraction of
log templates.

Te core method of ofine log template word mining is
GRU neural network [27]. GRU neural network is a well-
known variant of recurrent neural network (RNN) and was
introduced by Cho et al. [27]. It has found wide application
in various felds, including text classifcation [28, 29], ma-
chine translation [30], emotion analysis [31].

Compared with LSTM neural network, the GRU neural
network has a forgetting and updating mechanism, both of
which excel at tracking long-term dependencies. Tese
mechanisms address the challenge of gradient vanishing or
exploding that often occurs in recurrent neural networks
duringmultiple propagations. Unlike LSTMneural network,
the GRU neural network simplifes the internal network
structure, resulting in more efcient state information up-
dates. Te internal structure of GRU unit is depicted in
Figure 5.

Table 4: Notations with their explanatory terms.

Notation Defnition
L Log dataset
E Log event set
W Words set
M Log template set
Flevel Log level word
Fword Log event word
ID Word frequency ID

LSTM Long short term memory
rt Reset gate
ht Hidden state
σ Activation functions
⊕ Addition
Wu Weight value
h Size of the sliding window
yi Actual label
k Number of categories
P Probability distribution of output
ρ Probability threshold
temtotal Log template set
temlength Optimal template length
new logs Temporary log set
Li Matching degree
newtem New log template
logi Log entry
eventi Log event
wordi Log word
temi Log template
Fcomponent Log component word
F Word frequency table
GRU Gated recurrent unit
xt Input
ut Renewal gate
ht Candidate hidden state
tanh Activation functions
⊗ Point multiplication
WR Weight value
Sh Log token subsequence
pi Probability value
N Number of total samples
pi Log word probability
temi Log template i
best Optimal matching degree
w Number
Temsame Special log template set
LCS(S, temi) Longest common subsequence
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In Figure 5, xt represents input at time t (current time),
rt ∈ [0, 1] is the reset gate, ut ∈ [0, 1] is the update gate, ht is
the hidden state of the current GRU unit, ht−1 is the hidden
state from the previous GRU unit, ht is the candidate hidden
state. σ And tanh are activation functions, ⊕ represents
addition and ⊗ represents point multiplication.

Each GRU block in a GRU neural network consists of an
update gate and a reset gate.Te reset gate determines which
part of the information in the hidden state is “forgotten,”
while the update gate decides howmuch of the current input
information is incorporated and temporarily stored in the
hidden state ht. Te formulas for reset gate, update gate, and
hidden state are as follows:

ut � σ Wu · ht−1, xt (  (1)

rt � σ Wr · ht−1, xt (  (2)

ht � tanh W · rt ∗ ht−1 , xt(  (3)

ht � 1 − ut( ∗ ht−1 + ut ∗ ht
(4)

where, Wu, WR, and W represent the weight value. When
ut � 1, it means retaining the state from the past time to the
current state. When ut � 0, it signifes forgetting the past
status information.

ID Log word Word frequency

1 200
2 100
3
4

50
150

… … …
20 7
21 200

… … …

n 1

Flevel

Fcomponent

Fword

levelword1
levelword2
levelword3

componentword1

componentword20

word21

wordn

Figure 3: Structured log word frequency table.

log1: log entry1
log2: log entry2
log3: log entry3
log4: log entry4
log5: log entry5

……

[1 2 5 22 11 9……]
[1 2 5 9 15 22……]
[1 2 5 5 11 25……]
[1 2 6 6 11 23……]
[1 2 3 5 11 19……]
[1 2 5 6 7 9 11……]

……

Vectorization

Figure 4: Example of log vectorization.

1-

σ σ tanh

ht–1
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rt ut ht

~

ht

Figure 5: Te internal structure of GRU unit.
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4.4.1. Training Stage of DLLog. Te DLLog log template
word mining model employs a two-layer GRU neural net-
work. Compared with a single-layer GRU neural network,
the two-layer GRU neural network exhibits superior
learning and generalization capabilities, making it better at
preserving long-term dependencies within sequences. Te
log template word mining model based on the GRU neural
network consists of four layers: the word embedding layer,
the GRU neural network layer, the fully connected layer, and
softmax layer. Figure 6 illustrates the network structure of
the DLLog log template word mining model.

We input a log token subsequence of length h (where h

represents the size of the sliding window) Sh � <
st−h, . . . , st−2, st−1 > into the model, where ∀si ∈ F. First, the
log token subsequence st is passed through the word vec-
torization layer, which maps each token to a computation-
ally recognizable vector. Tese word vectors then serve as
input to the frst layer of the GRU neural network. Both the
frst and second layers of the GRU neural network comprise
h GRU units, matching the length of the input data.

In each GRU cell, the input consists of the hidden state
ht−1 from the previous time step and the external input data
at the current time step. Te currently embedded word
vector and hidden state ht−1 are both weighted in the update
gate using their respective weights. Te result of this
weighted sum, obtained using formula (1), is then passed
through a sigmoid activation function to calculate the fnal
value of the update gate. Te input for the reset gate is
identical to that of the update gate, with both being mul-
tiplied by their corresponding weights. Formula (2) is ap-
plied to calculate the value of the reset gate. Te reset gate
determines how much information from the previous
hidden state will be updated to the current candidate hidden
state ht, while the update gate decides how much in-
formation from the previous hidden state will be updated to
the current hidden state ht. Te candidate hidden state ht

and the hidden state ht are computed using formulas (3) and
(4), respectively. Subsequently, the retained information
(hidden state ht) is passed to the next GRU unit.

For the double-layer GRU neural network, each GRU
unit in the second layer corresponds to a GRU unit in the
frst layer. Te hidden state produced by each GRU unit in
the frst layer serves as the input for the connected GRU unit
in the second layer. Finally, the fully connected layer and
softmax function are employed to transform the fnal hidden
state of the second-layer GRU neural network into a prob-
ability distribution for predicting the next log word. During
the training phase, the model utilizes the cross-entropy as
the loss function and employs stochastic gradient descent
(SGD) to iteratively update the weight parameters. Te
calculation formula for the cross-entropy loss function is
given by

L � −
1
N



N

1


k

i�1
yi log pi(  (5)

where yi represents the actual label, pi is the probability
value, k is the number of categories (the number of words in
the word frequency table F), and N is the total number of
samples.

4.4.2. Log Template Word Mining Stage. In the log template
word mining stage, the input method for log data remains
the same as in the training phase. Te input consists of a log
token subsequence Sh � < st−h, . . . , st−2, st−1 >, where h is the
size of the sliding window, and ∀si ∈ F. Te output of model
is a probability distribution denoted as P � (p1,

p2, . . . , pn−1, pn), which includes the probabilities associated
with all words in the word frequency list F. Assuming that pi

represents the probability corresponding to the target log
word st, we use pi to indirectly indicate the association
between st and input sequence Sh � < st−h, . . . , st−2, st−1 >. If
st exhibits a strong association with the input sequence, it is
determined to be a log template word; otherwise, it is the log
parameter word. Figure 7 illustrates the sample log template
mining process.

In fact, the fnal output of the model can be considered
a binary classifcation problem. Based on prior experience,
the target log word following an input sequence is not
unique. Terefore, it is essential to manually set an ap-
propriate probability threshold ρ when mining log template
words. If the probability value of the target word exceeds the
threshold ρ, the target word is considered to have a strong
correlation with the input sequence, and it it is identifed as
a log template word. Conversely, Conversely, if the prob-
ability of the target word is below the threshold ρ, it is
categorized as a log parameter word. To prevent mistakenly
identifying log parameters as log template words, the ex-
traction of template words for that sequence is halted when
any target word in the sequence is identifed as a parameter
word (the frst occurrence of a log parameter word within
the sequence). Subsequently, processing continues with the
next log word sequence until the entire log data has been
processed.

After extracting the log template words corresponding to
each log entry, the log entries should be divided into dif-
ferent log groups based on the log level, component name,
and log template words. Log entries within each log group
share the same log template words. For each log group,
a data structure named “temi”is created to store the cor-
responding log template of that log group. A data structure
named temtotal is initialized as empty, which will store the
fnal log template set, and Temtotal � tem1 ∪
tem2 ∪ . . . ∪ temn. Figure 8 illustrates the sample structure
of the log template set.

4.5. Online Log Parsing Module. In the online log parsing
stage, when a new log entry logi arrives, DLLog frst cleans,
divides the original log entry and vectorizes to construct the
log word frequency sequence Si. Tis process has been
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described in Section 4.1. Ten, DLLog compares the current
log word frequency sequence Si with the log templates in
Temtotal to determine whether Si matches any existing log
template temi, or if it should create a new log template to

extend the log template set Temtotal. Tis section utilizes the
longest common subsequence (LCS) to calculate the
matching degree. Algorithm 1 shows the pseudo-code for
online log parsing.
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Figure 6: Structural of deep GRU network model.
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For a given current log word frequency sequence S, the
frst step is to search for log templates in the existing log
template set Temtotal with the same log type and component
name as the current log word frequency sequence S. Tese
matched log templates form a new set, Temsame. Ten, we
calculate the matching degree between each log template in
Temsame and the current log word frequency sequence S

using the longest common subsequence (LCS) method
[32–34]. Te matching degree is determined by the length of
the longest common subsequence. For instance, if there are
three log templates (tem1, tem2, and tem3) in Temsame that
share the same log type and component name as the current
log word sequence. Te matching degrees between the
current log word sequence and these log templates are
denoted as L1, L2, and L3, which are calculated using the
LCS(S, temi).

Te second step is to fnd the log template with the
highest matching degree corresponding to the current log
word frequency sequence S. If these log templates (tem1,
tem2, and tem3) share the same matching degree with the
current sequence S, the system selects the log template with
the shortest length as the corresponding log template. It is
important to note that the matching degree, denoted as
LCS(S, temi), between the selected log template and the
current log word sequence S should be greater than or equal
to half the length of the current log word sequence and half
the length of the selected log template. If, for any reason, the
log template set Temtotal cannot produce a match for the
current log word sequence S, a new log template must be
generated and added into the log template set Temtotal. If it is
impossible to generate a new template based on the existing
data, the current log word sequence S is stored in the
temporary log set new logs.

In each case, the examples are as follows:

(i) If the matching degree are ordered as
L1 >L3 >L2, the system chooses L1 for the
further processing.

(ii) If L1 ≥ |S|/2, and L1 ≥ |tem1|/2, |S| is the length of
the log word sequence and |tem1| is the length of the
log template tem1, then the log template tem1 is the
fnal log template corresponding to the log word
sequence S.

(iii) If L1 < |S|/2, or L1 < |tem1|/2, then a new template
must be created for the current log word sequence S.

(iv) If L1 � L3 >L2, and L1 � L3 ≥ |S|/2, L1 ≥
|tem1|/2, L3 ≥ |tem3|/2, DLLog selects the log
template with the minimum length as the fnal log
template corresponding to the log word sequence S

by comparing the lengths of log templates
(|tem1|and|tem3|).

Te third step is to update the log template set.
According to reference [23], when the system begins gen-
erating new types of system log entries, it often generates
a substantial amount of log data of these new types within
a single day. Tese log data typically contain numerous
diferent parameter words. Consequently, new templates can
be directly extracted by computing the longest common
subsequence of these new types of logs. Te pseudo-code of
the log template set update algorithm is presented in
Algorithm 2.

For the current log word sequence S, which fails to match
any log template within the log template set Temtotal, it
becomes necessary to calculate the longest common sub-
sequence between S and each log entry in the temporary log

Input: log word frequency sequence S and log template set Temtotal
Output: log template

(1) Initialize optimal matching degree best � 0, optimal template length temlength � 0 and number w � 0
(2) Initialize temporary log set new logs
(3) Go through all log templates in Temtotal with the same loglevel and componentname as S to form the log template set Temsame
(4) for temi in Temsame do
(5) Li � |LCS(S, temi)|

(6) if (best<Li) or (best��Li and |temi|< h) then
(7) best � Li

(8) temlengh � |temi|

(9) w � i

(10) end if
(11) end for
(12) if (best< |S|/2) or (best< |temw|/2) then
(13) newtem, Temtotal � updatelogtem(S,Temtotal, new logs)//Call the log template set update function
(14) if newtem��NULL then

return NULL
(15) else

return newtem
(16) end if
(17) else

return temw

(18) end if

ALGORITHM 1: Algorithm of online log parsing.
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set newlogs. Subsequently, the optimal longest common
subsequence is selected as the new log template. Similarly,
this new template needs to be longer than or equal to half the
length of both the current log word sequence and the se-
lected log entry from newlogs. Once this condition is met, the
log template can be added to the log template set Temtotal,
thereby updating the set. Te next time a new type of log
entry of the same kind appears, the frst two steps can be
employed to match the log template.

5. Evaluation

Tis section frst introduces the hardware and software
environment, the experimental log dataset, and the evalu-
ation metrics. Finally, specifc experimental results are
presented to demonstrate the superiority of DLLog.

5.1. Experimental Setting

5.1.1. Experimental Dataset. Te log datasets used in this
section consist of 16 real-world log datasets published by the
LogPai team (https://github.com/logpai). In the LogHub
data repository, these log data come from diferent systems,
including distributed systems (HDFS, Hadoop, Spark,
ZooKeeper, and OpenStack), supercomputers (BGL, HPC,
and Tunderbird), operating system (Windows, Linux, and
Mac), mobile system (Android, HealthApp), server appli-
cations (Apache, OpenSSH) and standalone software
(Proxifer). LogHub log dataset can not only be used to
measure the accuracy of log parsingmethods but also test the
robustness and efciency of parsing methods. Tese datasets
have been widely employed in similar research endeavors
[15, 22, 26, 35]. Table 5 provides detailed information about
these log datasets.

For each log dataset, Zhu et al. [11] sampled it and
manually marked the log template of each log entry. In all
experiments in this section, these markers were used as the
basic factual basis for evaluation.

5.1.2. Evaluation Index. In the feld of log parsing, parsing
methods are typically evaluated using the Parsing Accuracy
(PA) metric, as defned in reference [11]. PA is calculated as
the ratio of correctly parsed log messages to the total number
of log messages. Each log message corresponds to a specifc
log template, and logmessages sharing the same log template
are grouped into the same cluster, representing a particular
type of log message. When assessing the correctness of
parsed log messages, it is considered correct only when the
log template corresponding to the log message is correctly
divided into the log template cluster. In comparison to the
evaluation metric (the RandIndex) used in prior studies
[35–37], PA is considered a more rigorous measure.

5.1.3. Environment and Implementation. We have imple-
mented the methods proposed in this chapter using the
open-source Python machine learning library, PyTorch. All
experiments were conducted in a consistent experimental
environment using Python 3.8 with PyTorch 1.7.0. Te
hardware platform utilized for the experiments featured an
AMD Ryzen 5 3600 6-core processor running at 3.6GHz, an
NVIDIA GTX1660 GPU, 128GB of memory, and the
Windows 10 64 bit operating system. We constructed our
model based on the above environment. Specifcally, during
the ofine training process and the log template mining
process, it runs on a GPU to accelerate model training. Te
DLLog online parsing phase runs on a CPU to allow for a fair
comparison with other log parsing methods.

Input: log word frequency sequence S, log template set Temtotal, and temporary log set new logs
Output: new log template and new log template set

(1) Initialize optimal matching value best � 0, optimal matching length temlength � 0 and number w � 0
(2) for NSi in new logs do
(3) if (S.level�� NSi.level) and (S.compoent�� NSi.compoent) then
(4) Li � |LCS(S, NSi)|

(5) if (best<Li) or (best��Li and temlengh> |LCS(S, NSi)|) then
(6) best � Li

(7) temlengh � |LCS(S, NSi)|

(8) w � i

(9) end if
(10) end if
(11) end for
(12) if (best< |S|/2) or (best< |NSw|/2) then
(13) Add S to new logs//Add the log word sequence to the temporary log set

return NULL
(14) else
(15) newtem� LCS(S, NSw)

(16) Add LCS(S, NSw) to Temtotal//Add a new log template to the log template set
return newtem, Temtotal

(17) end if

ALGORITHM 2: Algorithm of log template set update.
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Te number of training epochs is set to 300, the hidden
dimensions of the GRU model are 64, and the number of
layers is 2. In the Log Template Word Mining stage, the
sliding window size, h, is set to 3, and the probability
threshold, ρ, is set to 0.63. Te learning rate is set to 0.001.

5.2. Accuracy Evaluation. In our experiments, we aimed to
select state-of-the-art log parsing methods as comparison
baselines. However, due to the unavailability of the source code
for some methods [38, 39], such as Uniparser [38], we
attempted to reproduce it for further experiments. Un-
fortunately, the parsing results of the reproducedmodel did not
yield satisfactory outcomes on certain datasets. Consequently,
to assess the accuracy of DLLog, we compared it with fve
baseline log parsing methods: Drain [22], Spell [26], Nulog
[40], IPLoM [24], Logram [41], and Brain [42]. Drain is a tree-
based log parsing method, Spell is a log parsing method based
on the longest common subsequence, Nulog is a log parsing
method based on a deep self-supervised learning model,
IPLoM is a log parsing method based on iterative partition,
Logram is a log parsing method based on the N-Gram sta-
tistical language model, and Brain is a rule-based log parsing
method, specifcally utilizing the longest common pattern. Te
6 log parsingmethods have been introduced in detail in Section
2. Te comparison results of parsing accuracy are shown in
Table 6. We set the best comparison result to bold.

As depicted in Table 6, DLLog achieves the best parsing
accuracy in 7 out of the 16 log datasets, with an impressive
average parsing accuracy of 0.891. Compared to state-of-
the-art log parsing methods, the highest average parsing
accuracy demonstrates the superiority of DLLog. DLLog also
achieved high parsing accuracy scores on datasets where the
optimal parsing accuracy was not attained. DLLog’s average
parsing accuracy is approximately 4% higher than Brain and
Drain. In comparison to the relatively lower accuracy of the
Logram method, DLLog’s average parsing accuracy is 11%
higher. However, we also observed that due to diferent rules
in generating logs for various log systems, no log parsing
method can achieve optimal parsing accuracy on all datasets.

Nearly every parsing method can achieve satisfactory
parsing results for log datasets with simpler structures, such
as HDFS and Apache log datasets; some methods even
achieve the optimal parsing accuracy of 1. For log datasets
with more complex structures, like HealthApp and HPC log
datasets, the accuracy of each parsing method decreases to
varying degrees. However, DLLog still attains the highest
parsing accuracy on both datasets. Te Spell method, which
relies solely on the longest common subsequence for log
parsing, achieves accuracies of 0.654 for HPC and 0.787 for
BGL datasets. But DLLog based on deep learning and the
longest common subsequence achieves accuracies of 0.996
for HPC and 0.988 for BGL datasets. Tis suggests that
DLLog can efectively aid the model in parsing logs and
enhance log parsing accuracy by fully utilizing the structural,
frequency, and associative features of logs.

5.3. Versatility Evaluation. Experiment 2 evaluated the
versatility of each log parsing method. Te purpose is to
verify whether the proposed method can widely support
diferent log data types. Detailed statistics are given in Ta-
ble 7, including the median (Median), minimum (Min.),
standard deviation (STD), and interQuartile Range (IQR).
Figure 9 shows the boxplot of the accuracy distribution for
each log parsing method. For each box in Figure 9, the line
from bottom to top represents the minimum observation
value (Lower bound), the lower quartile (Q1), the median
(Q2), the upper quartile (Q3), and the maximum observa-
tion value (upper bound). Te length of each box represents
the interQuartile Range of the corresponding log parsing
method.

From Table 7 and Figure 9, it is clear that DLLog has the
smallest InterQuartile Range of 0.186, and DLLog has the
smallest standard deviation of 0.143, which is 2.0%, 11.1%,
17.8%, 7.7%, 21.8%, and 14.8% lower than Drain, Spell,
Nulog, IPLoM, Logram, and Brain. Tis indicates that
DLLog has the highest versatility and stability compared
with other log parsing methods. Te average parsing ac-
curacy of Drain, Nulog, and Brain is basically the same, but

Table 5: Summary of datasets.

Dataset Dataset size Logs Log templates Explanations
HDFS 1.47GB 11,175,629 30 Distributed system logs
Hadoop 48.61MB 394,308 298 Distributed system logs
Spark 2.75GB 33,236,604 456 Distributed system logs
OpenStack 60.01MB 207,820 51 Distributed system logs
ZooKeeper 9.95MB 74,380 95 Distributed system logs
BGL 708.76MB 4,747,963 619 Supercomputer logs
HPC 32.00MB 433,489 104 Supercomputer logs
Tunderbird 29.60GB 211,212,192 4,040 Supercomputer logs
Linux 2.25MB 25,567 488 Operating system logs
Mac 16.09MB 117,283 2,214 Operating system logs
Windows 26.09GB 114,608,388 4,833 Operating system logs
OpenSSH 70.02MB 655,146 62 Service application logs
Apache 4.90MB 56,481 44 Service application logs
Android 3.38GB 30,348,042 76,923 Mobile system logs
HealthApp 22.44MB 253,395 220 Mobile system logs
Proxifer 2.42MB 21,329 9 Standalone software logs
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Drain is better than Nulog and Brain in terms of stability. In
contrast, the versatility of Logram log parsingmethods needs
to be improved. Overall, DLLog is superior to the other fve
comparison methods in accuracy and versatility.

5.4. Efciency Evaluation. Due to the system producing
a large amount of log data in real-time, the online parsing
efciency of log parsing methods must also be considered.
Experiment 3 verifes the running time spent by the fve
methods to parse all HDFS and BGL log entries (2.16G in

total). Te experimental results are shown in Figure 10, the
ordinate represents the parsing time, and the abscissa
represents the size of log data volume.

As illustrated in Figure 10, DLLog exhibits a linear
growth trend with the increase of log data in both log
datasets. Parsing the BGL log dataset takes more time for
each log parsing method compared to the HDFS log dataset,
as the HDFS log dataset has 30 templates while the BGL log
dataset has 619 templates (20 times more than the HDFS log
dataset). Logram demonstrates the fastest parsing speed

Table 6: Accuracy comparison of parsing results.

Dataset Drain Spell Nulog IPLoM Logram Brain DLLog
HDFS 0.998 1 0.998 1 0.981 0.997 1
Hadoop 0.948 0.778 0.954 0.954 0.965 0.915 0.  2
Spark 0.920 0.905 0.927 0.920 0.903 0.  7 0.995
ZooKeeper 0.967 0.964 0.  0 0.955 0.725 0.987 0.979
OpenStack 0.733 0.764 0.989 0.871 0.545 1 0.831
BGL 0.963 0.787 0.954 0.939 0.788 0.978 0. 88
HPC 0.887 0.654 0.912 0.824 0.824 0.727 0.  6
Tunderbird 0.955 0.844 0.912 0.663 0.761 0. 71 0.783
Windows 0.  7 0.989 0.990 0.567 0.957 0.718 0.992
Linux 0.6 0 0.605 0.468 0.672 0.461 0.480 0.672
Mac 0.787 0.757 0.826 0.673 0.673 0. 52 0.856
Android 0.911 0. 1 0.822 0.712 0.848 0.817 0.905
HealthApp 0.780 0.639 0.876 0.822 0.822 0.875 0.  0
Apache 1 1 1 1 1 1 1
OpenSSH 0.788 0.554 0.603 0.802 0.553 0.81 0.751
Proxifer 0.526 0.527 0.515 0.515 0.504 0.526 0.527
Average 0.865 0.792 0.858 0.806 0.783 0.859 0.8 1
Te bold values represent the best comparison result.

Table 7: Comparison of detailed accuracy results.

Drain Spell Nulog IPLoM Logram Brain DLLog
Median 0.865 0.792 0.858 0.806 0.783 0.859 0.8 1
Min 0.526 0.527 0.468 0.515 0.461 0.480 0.527
STD 0.146 0.161 0.174 0.155 0.183 0.168 0.143
IQR 0.201 0.295 0.189 0.274 0.343 0.220 0.186
Te bold values represent the best comparison result.
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Figure 9: Boxplot comparison of accuracy distribution.
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when the dataset size is less than 100MB. Tis is because
Logram, based on n-gram, calculates frequencies simply by
counting, which saves a signifcant amount of time com-
pared to other parsing methods based on complex rules. We
found that Nulog has the slowest parsing speed because
throughout the entire parsing process, Nulog, based on deep
learning models, continuously needs to retrain the model for
parsing.

Although DLLog also requires training deep learning
models, it is only used during the initial ofine parsing stage
(with a data size of 0.3M). In the online log parsing stage,
DLLog pre-classifes log templates before template matching
to compare the similarity of newly arrived logs with existing
log templates. Tus, for similarity comparison, only
a comparison between the newly arrived log and log tem-
plates that meet specifc categories is required. Tis strategy
signifcantly reduces template matching time. While DLLog
does not achieve the optimal parsing speed compared to the
6 parsing methods, its parsing speed remains within an
acceptable range, and it attains the highest parsing accuracy
and the best versatility.

5.5. Incremental Update Evaluation. Te maintenance and
upgrade of systems result in the generation of new log data.
Terefore, it is crucial to consider the performance of log
parsing methods when dealing with newly emerging log
types. Experiment 4 evaluated the update capabilities of 7
parsing methods on the HDFS and Android datasets, chosen
due to their volumes and the availability of ground truths for
such evaluations. We used an initial data volume of 2 K
(approximately 0.3M) for each dataset for model training.
Subsequently, we processed the trained model with data

volumes of 1M, 10M, 100M, 500M, and 1000M for each
dataset. With the increase in the number of logs, new log
types may emerge. For instance, the 2 k HDFS logs are
generated from 14 log templates, while the 1000MB HDFS
dataset contains 29 log templates. An excellent log parser
should exhibit stable accuracy when introducing new logs
accurately parsing new log types. Te experimental results
are shown in Figure 11, the ordinate represents the parsing
accuracy, and the abscissa represents the size of log data
volume.

We can observe that, with the increase in volume and the
introduction of new types of log data, DLLog demonstrates
optimal stability, indicating its efective handling of new log
types. However, it’s worth noting that the parsing perfor-
mance of all log parsing methods on the HDFS dataset
surpasses that on the Android dataset. Tis diference can be
attributed to the signifcantly larger number of log templates
in the Android dataset, making parsing more complex.
DLLog’s exceptional incremental update capability, derived
from the combination of deep neural networks and the
longest common subsequence, enables it to efectively
process new log types. Consequently, even with an increase
in log data volume, the decline in parsing accuracy is not
signifcant.

5.6. Ablation Experiment. In the process of constructing the
log word frequency sequence, we conducted ablation ex-
periments using two sequences: one sorted according to our
method and the other unsorted, to verify the efectiveness of
our approach. We conducted a comparative experiment
between DLLog based on LSTM and DLLog based on GRU.
Te experimental results are illustrated in Table 8.
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Figure 10: Comparison of log parsing time. (a) HDFS. (b) BGL.
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As depicted in Table 8, DLLog is signifcantly infuenced
by whether the log word frequency sequence is sorted.
DLLog based on the sorted log word frequency sequence
exhibits an average parsing accuracy that is 39% higher than
the unsorted version. Moreover, substantial improvements
are observed on each dataset, such as Tunderbird, Linux,
etc. Tis is attributed to the presence of numerous templates
and variable parameter words in these datasets, making the
sorting of the log word frequency sequence more impactful
on DLLog’s training. We processed the sequence of
word frequencies transformed based on the frequency
table F in ascending order, leveraging the characteristics

of high-frequency templates appearing more frequently and
the construction method of the frequency table. Tis ar-
rangement ensures that high-frequency template words
form a “fxed” combination, with dynamic parameters fol-
lowing, allowing the GRU neural network to accurately learn
the log pattern combinations.

On most datasets, the parsing accuracy of DLLog based
on GRU is similar to that based on LSTM, but there is
a signifcant diference in parsing accuracy on OpenSSH and
Linux. We believe that in the majority of cases, the classi-
fcations of the two are consistent. Only in a few log se-
quences are the classifcations by LSTM and GRU are
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Figure 11: Group accuracy on diferent volumes of logs. (a) HDFS. (b) Android.

Table 8: Ablation experiment comparison of parsing results.

Dataset DLLog DLLog_Unsort DLLog_LSTM
HDFS 1 0.546 1
Hadoop 0.  2 0.563 0.981
Spark 0.  5 0.545 0.983
ZooKeeper 0.979 0.563 0. 87
OpenStack 0.831 0.471 0.831
BGL 0. 88 0.735 0.988
HPC 0.  6 0.323 0.996
Tunderbird 0.783 0.357 0.783
Windows 0.992 0.655 0.  7
Linux 0.672 0.243 0.672
Mac 0.856 0.478 0.845
Android 0.905 0.493 0. 61
HealthApp 0.  0 0.592 0.905
Apache 1 0.582 1
OpenSSH 0.751 0.518 0.619
Proxifer 0.527 0.387 0.527
Average 0.8 1 0.502 0.872
Te bold values represent the best comparison result.
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diferent, leading to some inaccuracies in log grouping.
Moreover, these log groups constitute a signifcant portion,
resulting in a substantial diference in parsing accuracy
between the two, according to the formula for grouping
accuracy calculation. We attribute the diference in parsing
accuracy between GRU and LSTM to the fact that GRU, as
a simplifed variant of LSTM, predicts more accurately in
short sequence datasets, and logs are a type of short sequence
data. Conversely, for longer log sequence data, LSTM per-
forms slightly better than GRU.

6. Conclusions

In this paper, we proposed DLLog, an online log parsing
method for accurately and incrementally parsing templates
without the need for domain-specifc knowledge. DLLog
leverages the GRU neural network for ofine template word
mining and leverages the longest common subsequence for
parsing log entries in real-time. By utilizing multiple log
entry features, DLLog can autonomously extract template
words, eliminating the requirement for manual intervention
and enhancing its versatility in parsing unstructured log
data. Additionally, DLLog supports incremental updates of
the log template set, making it adaptable to newly generated
log entries in evolving systems. We conducted a compre-
hensive evaluation of the DLLog parsing method onmultiple
extensive log datasets, and the experimental results un-
equivocally demonstrated its remarkable accuracy, univer-
sality, and adaptability when parsing large-scale log data. In
our future research endeavors, we intend to incorporate
location information and character features of log words to
assist the log parsing method in distinguishing between log
parameter words and log template words. Tis endeavor
aims to further enhance the precision and efectiveness of
DLLog.
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based edit distance for automatic log parsing: implementation
and reproducibility notes,” in Reproducible Research in Pat-
tern Recognition: 4th International Workshop, RRPR 2022,
Montreal, Canada, August 21, 2022, Revised Selected Papers,
pp. 43–50, Springer-Verlag, Berlin, Germany, 2023.

16 International Journal of Intelligent Systems

https://www.usenix.org/cfdr/


[16] C. Zhang, X. Wang, H. Zhang et al., “Layerlog: log sequence
anomaly detection based on hierarchical semantics,” Applied
Soft Computing, vol. 132, Article ID 109860, 2023.

[17] R. Tian, Z. Diao, H. Jiang, and G. Xie, “Logdac: a universal
efcient parser-based log compression approach,” in Pro-
ceedings of the ICC 2022-IEEE International Conference on
Communications, pp. 3679–3684, Seoul, Korea, May 2022.

[18] A. Namavar Jahromi, S. Hashemi, A. Dehghantanha et al.,
“An improved two-hidden-layer extreme learning machine
for malware hunting,” Computers and Security, vol. 89, Article
ID 101655, 2020.

[19] A. Javed, P. Burnap, and O. Rana, “Prediction of drive-by
download attacks on twitter,” Information Processing and
Management, vol. 56, no. 3, pp. 1133–1145, 2019.

[20] H. Guo, S. Yuan, and X. Wu, “Logbert: log anomaly detection
via bert,” in Proceedings of the 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Shenzhen,
China, July 2021.

[21] S. Kabinna, C. P. Bezemer, W. Shang, M. D. Syer, and
A. E. Hassan, “Examining the stability of logging statements,”
Empirical Software Engineering, vol. 23, no. 1, pp. 290–333,
2018.

[22] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: an online log
parsing approach with fxed depth tree,” in Proceedings of the
2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40, Honolulu, HI, USA, June 2017.

[23] S. Zhang, W. Meng, J. Bu et al., “Syslog processing for switch
failure diagnosis and prediction in datacenter networks,” in
Proceedings of the 2017 IEEE/ACM 25th International Sym-
posium on Quality of Service (IWQoS), pp. 1–10, Vilanova i la
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