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In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable
economic and political changes.Tis study introduces theMeta-TFSTL framework, an innovative neural model that integratesMeta-
Learning Enhanced Trade Forecasting with efcient multicommodity STL decomposition to adeptly navigate the complexities of
forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual
elements, identifying a potential 10-month economic cycle through the Ljung–Box test. Te model employs a dual-channel
spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing
spatial and temporal graphs leveraging correlationmatrices and graph embeddings and introducing fused attention andmultitasking
strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning
and fne-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research
signifcantly advances the precision and efciency of trade forecasting in a volatile global economic scenario.

1. Introduction

Understanding the dynamics of global trade is paramount,
as it interlinks with worldwide economic growth. Un-
foreseen economic or political shocks, such as the recent
COVID-19 pandemic, can profoundly afect international
trade. For instance, in the frst half of 2020, China experi-
enced a 6.3% decrease in total import and export value,
compared to the previous year, due to pandemic-related
disruptions (National Development and Reform Commis-
sion). Conficts between countries, like Russia and Ukraine,
also lead to economic disturbances, including infation and
reduced demand. Tese occurrences underline the signif-
cance of trade in economic growth and the necessity for
accurate analysis and forecasting of foreign trade to mitigate
potential adverse impacts on global economics.

Forecasting trade is inherently complex due to its sus-
ceptibility to unpredictable political and economic events

and the multifaceted nature of trading various commodities.
Moreover, trade data are typically presented on a monthly
basis, which means that the data volume is limited. Con-
sequently, utilizing conventional deep learning techniques
on these data often leads to overftting. Nevertheless, ac-
curate forecasting is crucial for both businesses and poli-
cymakers, as it aids inmaking informed decisions tomitigate
adverse impacts on the global economy.

Historically, trade forecasting has employed tradi-
tional statistical techniques, such as ARIMA and fuzzy
time series [1]. However, there has been a discernible shift
towards machine learning and deep learning models [2],
known for their enhanced accuracy in capturing complex
data patterns.

Te incorporation of deep learning has marked sub-
stantial advancements in time series forecasting [3–5].
Models like the Long- and Short-term Time series network
(LSTNet) [6] have proven efective in multivariate time
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series forecasting, ranging from solar plant energy outputs to
trafc congestion predictions.

Recent explorations into spatiotemporal sequence
forecasting ofer promising avenues for trade forecasting.
Treating import and export trades as nodes in spatiotem-
poral tasks and utilizing deep learning models like Con-
volutional Long Short-Term Memory (ConvLSTM),
Spatiotemporal Graph Convolutional Networks (STGCNs),
and Graph WaveNet [7–9] can possibly enhance trade
prediction accuracy. Techniques such as Spatiotemporal
Graph to Sequence (STG2Seq) [10] may further contribute
to this evolving feld, emphasizing the importance of con-
tinued research and development to adapt to the dynamic
nature of global trade.

From these perspectives, we propose a neural model
integratingMeta-Learning Enhanced Trade Forecasting with
efcient multicommodity STL decomposition (Meta-
TFSTL), which leverages the Transformer architecture and
STL (Seasonal and Trend decomposition using Loess) de-
composition, coupled with a dual-channel graph embedding
with Meta-Learning. Te structure of Meta-TFSTL is il-
lustrated in Figure 1.Temain contributions of this work are
as follows:

(1) Novel Trade Forecasting Neural Network. We develop
a novel neural network that leverages the Trans-
former architecture and STL decomposition to
capture intricate relationships and dependencies
among various commodities and enhance the
model’s generalization ability.

(2) Construction of Temporal and Spatial Graphs. We
construct commodity spatial and temporal graphs
based on Spearman correlation coefcients and
temporal features, respectively, and employ graph
embedding methods to capture the nodes’ position
and association and obtain high-dimensional rep-
resentation vectors.

(3) Time Series Interpretability with Attention. We use
the self-attention mechanism of the Transformer
architecture to capture drastic changes in the sea-
sonal and trend components of the trade data, crucial
for identifying sudden events and enhancing the
interpretability of the time series neural network.

(4) Meta-Learning for Enhanced Generalization. We
integrate meta-learning techniques in response to
the limited volume of monthly import and export
data, aiming to enhance the model’s profciency in
extracting insights from smaller datasets. Specif-
cally, we adopt few-shot learning, a facet of meta-
learning, to train our model such that it efectively
generalizes to previously unseen datasets after
minimal exposure to training examples.

(5) Meta Knowledge Adaptation in Import and Export
Forecasting through Meta-Learning. Building on
the hypothesis that import and export value series
can inform predictions for each other, we employ
meta-learning to pretrain on one domain (either
import or export) and subsequently fne-tune on

the other. Te enhanced performance achieved
through this meta knowledge adaptation ap-
proach, as compared to direct training on the
target domain, reafrms the existence of shared
knowledge between imports and exports. Tis
demonstrates the efcacy of meta-learning in
harnessing this shared knowledge for improved
forecasting accuracy.

(6) Advanced Performance relative to State of the Art.
Our model, Meta-TFSTL, outperforms advanced
models on trade datasets (import and export),
achieving lower Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). Tis results in more ac-
curate trade forecasting, highlighting its practical
superiority.

2. Related Work

2.1. Traditional Trade Forecasting. Trade forecasting plays
a pivotal role in economic analysis and policymaking, of-
fering insights into future trade trends and patterns. Over
the years, numerous studies have assessed and compared
various forecasting methods for predicting trade exports,
imports, or both. Tese methods span from conventional
statistical techniques such as autoregressive integrated
moving average (ARIMA), fuzzy time series, and support
vector regression (SVR), to more sophisticated approaches
incorporating machine learning and deep learning tech-
nologies [11–13].

Classic time series models like the autoregressive in-
tegrated moving average (ARIMA) have been widely
adopted for trade forecasting [14–16]. Research by Hasin
et al. [17] and Farooqi [18] demonstrated ARIMA’s efcacy
in trade prediction. However, Fattah et al. [19] highlighted
ARIMA’s challenges, including its requirement for a large
number of observations. Despite its capabilities, the exclu-
sive use of ARIMA has declined due to its limitations in
addressing modern data complexities.

Fuzzy time series models have also emerged as an al-
ternative for trade forecasting. Wong et al. [20] assessed the
performance of multivariate fuzzy time series models
against traditional time series models for forecasting Tai-
wan’s exports. Teir fndings suggested that fuzzy time
series models could surpass ARIMA in short-term fore-
casting, although ARIMA was more adept for long-term
predictions. Wang [21] conducted a similar comparison,
concluding that fuzzy time series models ofered superior
accuracy for short-term forecasting but were limited in
long-term projections. Wong et al. [22] demonstrated the
efectiveness of fuzzy time series models in forecasting
Taiwan’s export volumes, showing more accurate pre-
dictions than ARIMA.

While fuzzy time series models excel in short-term
forecasting, they struggle with long-term trends. In con-
trast, Support Vector Regression (SVR) outperforms both
traditional and fuzzy models, especially with complex,
nonlinear datasets. Guanghui [23] found SVR superior to
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ARIMA in demand forecasting. Studies by Lu and Wang
[24] and Wu [25] emphasized SVR’s accuracy in product
demand predictions. Kuo and Li [26] enhanced SVR’s
performance by integrating it with various algorithms.
However, SVR requires careful parameter tuning and can be
computationally intensive.

Multivariate time series models, such as ARIMAX, are
favored in trade forecasting for their ability to incorporate
multiple variables [27–29]. Despite their prevalence, these
models assume linear relationships and can be compu-
tationally demanding. Conversely, recent studies have
shown machine learning models outperforming tradi-
tional time series methods in trade forecasting [30–32].
Tese models excel with complex, nonlinear data but
necessitate extensive training data and parameter tuning.
Teir efectiveness largely depends on the quality of
feature extraction.

2.2. Deep Learning in Trade Forecasting. Recent research has
delved into the potential of deep learning for trade fore-
casting, attributed to its capacity for automatic feature ex-
traction and high representation ability [33–35]. Lloret et al.
[3] introduced models based on CNN and ED-RNN, both
outperforming traditional methods in forecasting dis-
aggregated freight fows. Similarly, Shen et al. [4] utilized an
LSTM network for predicting trade volumes of 23 countries,
demonstrating its superiority over conventional statistical
models.

In the broader domain of time series forecasting, which
includes trade forecasting, there has been a shift towards
leveraging advanced deep learning models to improve
predictive accuracy. For instance, Qin et al. [36] introduced
the Dual-Stage Attention-Based Recurrent Neural Network
(DA-RNN) in 2017, designed to enhance the efectiveness
and interpretability of time series predictions. Subsequently,
Lai et al. [6] proposed the Long- and Short-term Time series
network (LSTNet) in 2018, a framework aimed at tackling
the challenges associated with multivariate time series
forecasting, crucial for predictions in various sectors such as
solar plant energy output and trafc congestion. Following
this, Oreshkin et al. [37] developed N-BEATS in 2019, a deep
neural architecture specifcally for univariate time series
point forecasting. More recently, in 2021, Lim et al. [5]
proposed the Temporal Fusion Transformer (TFT), an

innovative attention-based architecture for multihorizon
forecasting, combining high performance with
interpretability.

2.3. Spatiotemporal Sequence Forecasting. As the feld of
forecasting evolves and the complexity of data patterns in-
creases, spatiotemporal sequence forecasting has become in-
creasingly important. Li et al. [38] proposed a model that
combines Graph Convolutional Networks (GCNs) with Re-
current Neural Networks (RNNs) to capture spatial and
temporal dependencies, respectively. Yu et al. [8] introduced
STGCN, utilizing graph convolutional flters and 1D con-
volutional neural networks. Wu et al. [9] proposed Graph
WaveNet, incorporating a WaveNet-based architecture and
GCN with attention mechanisms. Zhang et al. [39] developed
deep spatiotemporal residual networks for citywide crowd fow
prediction. Seo et al. [40] introduced structured sequence
modeling with graph convolutional recurrent networks. Zheng
et al. [41] presented a spatiotemporal sequence prediction
model for large-scale trafc data using deep learning ap-
proaches. Nevavuori et al. [42] employed spatiotemporal deep
learning architectures with UAV data for crop yield prediction,
achieving promising results with a 3D-CNN architecture.

2.4. Optimization-BasedMeta-Learning in Trade Forecasting.
Meta-learning, or “learning to learn,” has emerged as
a powerful paradigm for training models to quickly adapt to
new tasks with minimal data. In trade forecasting, where data
patterns can vary signifcantly, meta-learning ofers a robust
solution. Te Model-Agnostic Meta-Learning (MAML) al-
gorithm [43] is a pioneering method in this domain, designed
to be model-agnostic and applicable to any model trained
with gradient descent. Reptile [44] and Amortized Neural
Inference for Learning (ANIL) [45] further extend this
concept, ofering scalable and efcient solutions.

To the best of our knowledge, meta-learning is yet to be
extensively applied in the domain of import and export
forecasting. Tis situation presents a dual-edged scenario:
a challenge, due to the unique complexities of trade data
infuenced by myriad global factors, and an opportunity,
given meta-learning’s adaptability to new tasks with sparse
data. Te unexplored application of meta-learning in this
area holds signifcant promise, suggesting that its integration
could revolutionize trade forecasting by tapping into the vast
potential of emerging markets and new product categories.
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Ŷ

Yfˆ

Yf
tr

ˆ

Yf
s

ˆ

Ytr
ˆ

xtrˆ

LLtrend

Figure 1: Te architecture of the proposed Meta-TFSTL. FC: fully connected layer. In ANIL, the model’s feature-extracting backbone
remains static (Regular Optimization), while the output head undergoes gradient descent updates (Meta-Learning-Based Optimization).
Tis ensures stable foundational representations while allowing rapid task-specifc adaptations.
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Despite progress, trade prediction faces several chal-
lenges. Firstly, the heterogeneous nature of commodities and
their susceptibility to unforeseen events complicate accurate
forecasting. Secondly, most works in trade forecasting have
not utilized spatiotemporal forecasting, thus missing out on
capturing potentially crucial dependencies and relationships
in the data. Tirdly, many trade forecasting scenarios sufer
from limited data availability, especially for emerging
markets or niche commodities. Tese challenges underscore
the continuous need for innovation and methodological
refnement to improve forecasting accuracy. In response to
these challenges, we propose Meta-TFSTL, a novel spatio-
temporal sequence forecasting neural network with Meta-
Learning designed to capture intricate relationships and
dependencies among various commodities, enhance model
generalization, and provide more accurate and timely
guidance for trade forecasting.

3. Preliminaries

3.1. ProblemDefnition. For the Meta-TFSTL model used to
predict trade values, let xi

t ∈ R
C, C � 1 represent the trade

value of the ith commodity (imported or exported) at time
step t, and Xt � [x1

t , . . . , xi
t, . . . , xN

t ]T ∈ RN×C represent the
trade values of N commodities (imported or exported) at
time step t, denoted simply as Xt ∈ RN, and in the following
derivation, C will be omitted. Given the historical trade data
X � X1, . . . , XT1

  ∈ RT1×N, the purpose of trade prediction
is to predict the trade values of all commodities in the next
T2 time steps, namely, Y � Y(T1+1), . . . , Y(T1+T2)  ∈ RT2×N,
and its ground truth is denoted by X′ � X(T1+1),

. . . , X(T1+T2)} ∈ RT2×N.

3.2. Self-Attention Mechanism. Te self-attention mecha-
nism is a widely employed attention technique that allows
each token in a sequence to gather information from all
other tokens. Te inputs are represented by queries, keys,
and values, each with dimension d. Te mechanism com-
putes the dot products between the query and all keys, scales
down each product by

��
d

√
, and applies a softmax function to

obtain the weights for the values:

Attention(Q, K, V) � softmax
QWQK

T
WK��

d
√⎛⎝ ⎞⎠VWV, (1)

where WQ, WK, and WV are the learnable projection pa-
rameters and Attention(·) denotes the self-attention
operation.

3.3. STL Decomposition. STL decomposition, i.e., Seasonal
and Trend decomposition using Loess [46], is a renowned
technique for breaking down a time series into seasonal,
trend, and residual components. Te seasonal component
identifes regular patterns recurring at fxed intervals, the
trend component depicts the long-term direction, and the
residual component captures random fuctuations that re-
main after extracting the seasonal and trend components.

Te STL decomposition process includes two iterative
phases: an internal cycle and an external cycle. Te internal
cycle, aimed at ftting the trend and determining the seasonal
component, involves six steps:

(1) Remove the Trend. Calculate a detrended series
yv − T(k)

v . Initially, T(0)
v � 0.

(2) Smooth Cycle-Subseries. Apply Loess to each point in
the seasonal cycle, denoted as C(k+1)

v .
(3) Apply Low-Pass Filter. Two moving average flters

and a Loess smoother are used, resulting in L(k+1)
v .

(4) Detrend Smoothed Cycle-Subseries. Compute
S(k+1)

v � C(k+1)
v − L(k+1)

v .
(5) Remove Seasonality. Process yv − S(k+1)

v .
(6) Smooth the Trend. Apply Loess to the deseasonalized

series to obtain T(k+1)
v .

3.4. Optimization-Based Meta-Learning and ANIL. Tis
section introduces Optimization-Based Meta-Learning
(OBML) through the Almost-No-Inner-Loop (ANIL) al-
gorithm [45], a streamlined variant of MAML. Adhering to
the setup in Subsection 3.1, we consider N training tasks,
each corresponding to N commodities, with n sample-label
pairs denoted as Xi, Yi 

N
i�1. Typically, a query-support split

is employed during training.
ANIL minimizes the loss over θ � θ<L, w  as follows:

min
θ

LANIL(θ) ≔ 
i∈[N]

l ϕ⊤θ<L Xi( w
∗
i , Yi( 

s.t. w
∗
i � InnerLoop w, ϕ⊤θ<L Xi( , Yi, τ, λ( .

(2)

Tis equation delineates the standard inner-loop opti-
mization in OBML, involving τ steps of gradient descent on
the loss l(ϕ⊤θ<L(Xi)w, Yi) with a learning rate λ.

Lin et al. [47] empirically showed that maintaining w

static during training does not compromise ANIL’s per-
formance, suggesting that optimizing w in the outer loop is
nonessential. Hence, ANIL’s training objective, excluding
the outer-loop optimization of w, becomes

min
θ<L

LANIL(θ) ≔ 
i∈[N]

l ϕ⊤θ<L Xi( w
∗
i , Yi( . (3)

4. Methodology

4.1.OverallNetworkArchitecture. According to Figure 1, the
historical trade data X ∈ RT1×N are initially processed
through a time series decomposition layer, employing STL
decomposition to separate the data into trend
(Xtr ∈ RT1×N), seasonal (Xs ∈ RT1×N), and residual
(Xr ∈ RT1×N) components. Tis decomposition facilitates
the nuanced capture of long-term patterns, periodic fuc-
tuations, and sudden events within the trend and seasonal
components, respectively. It also enables the verifcation of
the completeness of information extraction by examining
the residual component. To enable further processing, Xtr

and Xs are linearly transformed into a higher dimensional
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space RT1×N×D through fully connected layers, ensuring
a richer representation for subsequent layers.

Te integration of STL decomposition signifcantly in-
fuences the model’s architecture by ofering a structured
approach to manage diferent aspects of the time series data.
Te trend componentXtatt

tr ∈ R
T1×N×D, which captures long-

term patterns, is fed into a time attention module to em-
phasize global dependencies over time. Meanwhile, the
seasonal component Xconv

s ∈ R
T1×N×D, refecting periodic

fuctuations, is processed through a time convolution
module to capture local and cyclic patterns. Tis dual-
channel approach ensures a comprehensive representation
of time series patterns.

Subsequently, both trend and seasonal components are
integrated with graph information through the Full Graph
Attention module. Tis step captures the intricate re-
lationships and dependencies among various commodities
over time, underscoring the STL decomposition’s role in
enriching the model’s input and enhancing its predictive
capabilities. Te outputs from this module,
X

fgat
tr ,Xfgat

s ∈ R
T1×N×D, incorporate both time series and

graph-based features.
Finally, in the Dual-channel Multitasking decoder, the

predictors yield Y
f

tr,
Y

f

s ∈ R
T2×N×D, which are aggregated

through Adaptive Event Fusion interaction to capture the
latent representation of dual-scale temporal patterns,
resulting in Y

f
∈ RT2×N×D. Te fnal prediction Y∈ RT2×N

is obtained through linear transformation.

4.2. Time Series Decomposition Layer. Given the dynamic
nature of global trade, our model’s architecture is precisely
engineered to adeptly respond to sudden economic shifts or
political events that may impact trade patterns. Trough the
application of STL decomposition, the model disentangles
the input data X into trend (Xtr), seasonal (Xs), and re-
sidual (Xr) components, as shown in the following
equation:

X � Xtr + Xs + Xr. (4)

Te trend component is tasked with capturing long-term
changes, whereas the seasonal component addresses cyclical
fuctuations. In instances where sudden events occur within
a specifc cycle, such anomalies trigger the temporal at-
tention module, which focuses on the trend component, to
detect deviations from established patterns. Concurrently,
the variability in the seasonal component increases,
refecting the immediate efects of these events on trade
dynamics. Tis nuanced response is further refned in the
subsequent Full Graph Attention module, which captures
anomalies by leveraging the interconnectedness and de-
pendencies across various commodities and timeframes.

Tis dual-channel processing, combining trend stability
with seasonal variability, renders the model particularly
sensitive to abrupt economic or political occurrences. Te
focus of the temporal attention module on the trend
component ensures that long-term shifts are accurately
detected, while the increased variability in the seasonal

component signals short-term disruptions. Te Full Graph
Attention module enhances this mechanism by providing
a broader context, allowing for an even more nuanced
understanding and response to sudden changes.

Tus, the model supports rapid adaptation to such
changes, ensuring its forecasting capabilities remain robust
and responsive in the ever-changing landscape of global
trade. Tis strategic design underscores our model’s readi-
ness to navigate the complexities of trade forecasting amidst
economic variability and unforeseen events.

4.3. Dual-Channel Spatiotemporal Encoder. Te dual-
channel Spatiotemporal encoder, as shown in Figure 2,
represents an innovative approach to trade forecasting,
addressing the complexities of trade data through a com-
prehensive model. Te “dual-channel” aspect of the encoder
is designed to separately model the trend and seasonal
components derived from STL decomposition, allowing for
a nuanced understanding and representation of both long-
term trends and cyclical patterns within trade data. Tis
separation ensures that each component’s unique charac-
teristics are accurately captured and utilized for forecasting.

Moreover, the “Spatiotemporal” nature of the encoder
incorporates both time slots with Struc2Vec graph em-
bedding and a temporal attention mechanism, along with
dilated causal convolution. Tis integration enables the
model to capture not just the temporal correlations present
within the trade data but also the spatial relationships be-
tween diferent commodities or markets. By embedding time
slots and employing graph embedding techniques, the en-
coder enriches the model’s input with both global and local
patterns, signifcantly enhancing its forecasting capability.

Incorporating spatial and temporal graphs into the
encoder addresses the limitations of previous single-method
approaches, which may not fully capture the intricate de-
pendencies and dynamics present in complex trade data.Te
dual-channel Spatiotemporal encoder’s design philosophy is
rooted in the need for a more robust and fexible modeling
technique that can adeptly navigate the multifaceted nature
of global trade, thereby ofering a substantial improvement
over traditional forecasting models.

4.3.1. Dual-Channel Temporal Pattern Recognition.
Unlike previous works that employed single methods such as
LSTM to model complex temporal patterns in entangled
fnancial sequences, our approach utilizes both temporal
convolutional layer and temporal attention to capture the
temporal correlations of trend and seasonal components.

Te trend component (Xtr), embodying long-term
patterns, is adeptly captured using temporal attention af-
ter being decomposed by the Time Series Decomposition
layer via STL decomposition, as illustrated in Figure 2. Tis
process considers global relationships across the entire se-
ries, thereby efectively capturing the overall trend. Con-
versely, the seasonal component (Xs), representing short-
term patterns and specifc events, is best modeled using
temporal convolutional layers that focus on local patterns.
Tese layers operate on the decomposed seasonal
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component, accurately capturing seasonal patterns and
sudden events. Tis combination leverages the strengths of
both methods, enabling comprehensive and accurate fore-
casting of entangled fnancial sequences. Te distinct pro-
cessing of Xtr and Xs components through the dual-channel
Spatiotemporal encoder ensures a nuanced approach to
modeling the intricate dynamics of trade data.

Te temporal convolutional layer employed in this study
is a one-dimensional convolution that slides over the input
by skipping values at specifc strides, as illustrated in Fig-
ure 2.Teoretically, given a one-dimensional sequence input
x ∈ RT and a flter f ∈ RJ, the temporal convolution op-
eration between x and f at time step t is defned as

x⋆f(t) � 

J

j�0
f(j) · x(t − c × j), (5)

where c is the dilation factor.Te temporal convolution layer
for the seasonal component is represented by

X
conv
s � ReLU Θ⋆Xs + b( , (6)

where Θ and b are learnable parameters and ReLU(·) de-
notes the rectifed linear unit. Moreover, we apply masked
self-attention to the temporal dimension of the trend
component. Tis approach is motivated by the trend
component’s inherent stability, allowing it to clearly rep-
resent long-term trends:

X
tatt
tr � Concat ta1, . . . , tan, . . . , taN( ,

where tan � Attention X
n
tr, X

n
tr, X

n
tr( .

(7)

4.3.2. Global Spatial Feature Extraction. As depicted in the
Graph Construction module of Figure 2, for spatial corre-
lation of commodity series, we initially considered adopting
the vanilla Graph Attention Network (GAT) to dynamically
calculate weights between connected nodes. However, the
spatial receptive feld of the vanilla GAT is limited to im-
mediate neighbors. Tus, we utilized the full GAT to dy-
namically capture global spatial dependence by performing
self-attention on the spatial dimension of Xconv

s and Xtatt
tr .

Tis approach enables the model to understand and leverage
the complex spatial relationships within the trade data,
enhancing its predictive capability by incorporating
a broader context of intercommodity infuences.

X
fgat

� Concat sa1, . . . , sat, . . . , saT1
 ,

where sat � Attention Xt, Xt, Xt( .
(8)

4.3.3. Temporal Graph Construction. Following the strate-
gies outlined in the Graph Construction module of Figure 2,
given the periodic fuctuations in commodity value se-
quences, with each monthly timestamp t acting as a unit of
time in the dataset, we adopt the time-slot method inspired
by Yuan et al. [48] to represent timestamps, simplifying the
model to focus on quarterly cycles. With Δt set as one
quarter, we construct a directed temporal graph of size 4 ×

3 � 12 to represent the three months in each quarter. Te
time graph is embedded into the feature space using the
Struc2Vec graph embedding technique, obtaining the high-
dimensional temporal graph embedding ρtem ∈ RT×d, which
is then replicated N times to ρtem′ ∈ RT×N×d.
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Figure 2: Architecture of the Dual-channel Spatiotemporal Encoder showcasing the integration of temporal attention mechanism, dilated
causal convolution, and Struc2Vec graph embedding to capture both the temporal correlations and spatial relationships in trade data. Te
encoder efectively processes and integrates trend and seasonal components decomposed via STL, facilitating accurate trade forecasting by
leveraging global and local patterns.
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4.3.4. Spatial Graph Construction. For computing the spatial
correlation graph of import and export commodity value
series, we calculate the Spearman correlation coefcient
from the value series data of N commodities, forming an
adjacency matrix that represents the correlation between
commodities. Using the Struc2Vec algorithm, the vector
representation of each node (commodity) is updated iter-
atively, capturing structural information and neighboring
infuence. Te fnal high-dimensional commodity associa-
tion graph embedding ρspa ∈ RN×d is replicated T times,
resulting in ρspa′ ∈ RT×N×d.

Finally, our full graph attention can be formulated as

X � X + ρspa′ + ρtem′ . (9)

Tis equation combines raw trade data (X) with spatial
(ρspa′) and temporal (ρtem′) graph embeddings, enhancing
the model’s ability to capture spatial dependencies and
temporal dynamics in trade data. By incorporating these
embeddings, the model benefts from a richer representation
that can take into account the interactions of commodities
over time and space. Tis integrated approach enriches the
model’s inputs by taking advantage of the nuanced re-
lationships and changing patterns inherent in global trade,
thereby enhancing the model’s generalization capabilities
and its adaptability to complex trade data scenarios.

4.4. Dual-Channel Multitasking Decoder. To transform the
representation encoded by the dual-channel encoder into
future representations for multistep import and export
commodity value series prediction, this study employs
a predictor (i.e., a fully connected layer) on the time di-
mension ofXgat

tr andXgat
s ∈ R

T1×N×d. Trough the predictor,
future representations of the trend and seasonal compo-
nents, Y

f

tr and Y
f

s ∈ R
T2×N×d, are obtained. Subsequently,

fusion attention and multitasking supervision merge the
information of trend and seasonal components, acquiring
knowledge through the supervision of the trend component.

In the specifc frequency decoder, we predict the future
of the trend and seasonal components outputted by the dual-
channel encoder using a predictor. Te trend and seasonal
information are integrated through fusion attention and
multitasking supervision.

Te trend component, generally more stable and less
volatile than the seasonal component, provides a reliable
basis for model training, helping stabilize the training
process. Moreover, the trend, embodying the persistent and
stable global patterns in the data, plays a crucial role in
overall predictions. While the seasonal component is pivotal
for capturing short-term fuctuations and sudden events, its
inherent uncertainty and volatility make it less reliable for
overall predictions. Terefore, by prioritizing the supervi-
sion of the trend component, the model can extract more
valuable and reliable information for long-term predictions,
crucial for decision making in many practical applications.

4.4.1. Decomposed Temporal Feature Fusion. Te goal is not
merely to predict the trend and seasonal components but to
forecast the future trade value series based on these com-
ponents and other factors. We propose a fusion attention
mechanism, as illustrated in Figure 1, which integrates the
representations of the trend and seasonal components,
denoted by Y

f

tr and Y
f

s , into the future trade value sequence
Y

f ∈ RT2×N×d. Tis mechanism captures future internal
dependencies by considering the trend component as the
query, extracting useful long-term and short-term in-
formation from both the trend and seasonal components
within two temporal attentions. Te fusion attention
mechanism is expressed as follows:

Y
f

� Concat fa1, . . . , fan, . . . , faN( ,

wherefan � Attention Y
fn

tr , Y
fn

tr , Y
fn

tr  + Attention Y
fn

tr , Y
fn

s , Y
fn

s .
(10)

4.4.2. Multitasking and Loss Function. During the training
process, a fully connected layer is employed to convert the
future representation of trade value sequences, denoted as
Y

f
, into the predicted values Y. Te model utilizes L1 loss

for supervision. By leveraging knowledge from the more
stable trend component, the model efectively enhances its
capability to learn the long-term trends of the commodity
value sequence, thus improving performance. Consequently,
the optimization objective ofMeta-TFSTL is to minimize the
loss function shown in the following equation:

L � 

T1+T2

t�T1+1


N

n�1
|y

n
t − y

n
t | + |y

n
trt

− y
n
trt

| . (11)

Tis loss function computes the L1 distance loss between
the predicted and actual values for each timestep t and each
node n, where yn

t represents the actual value, and yn
t denotes

the predicted value for each commodity in the subsequent
months. Moreover, yn

trt
signifes the real trend component,

and yn
trt

its predicted counterpart. Minimizing this loss
function enables the model to better ft the future trends in
value, thereby enhancing model performance.

4.5. Meta-Learning Framework for Trade Forecasting.
Faced with a new commodity or a shift in economic con-
ditions, Meta-TFSTL applies its meta-learned knowledge for
initial predictions, demonstrating the model’s quick
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adaptability by fne-tuning on a limited dataset specifc to the
new context. Tis adaptation mechanism is crucial for
maintaining high forecasting accuracy in the dynamic and
unpredictable domain of global trade, emphasizing our
approach’s efectiveness in navigating evolving market
trends and economic shifts.

In trade forecasting, a taskTi is defned as the prediction
of trade values under specifc economic conditions. Each
task comprises a support set Si for training and a query set
Qi for testing, illustrating the model’s readiness for various
forecasting scenarios. For task Ti, the support set Si in-
cludes n pairs of historical trade data and corresponding
trade values, represented as Xs

i ,Y
s
i , where Xs

i ∈ R
T1×N

and Ys
i ∈ R

T2×N.
Te meta-learning framework categorizes model pa-

rameters into two groups: θ<L, the parameters of all layers
except the last, termed Backbone parameters, and w, the last
layer or task-specifc head parameters, termed Output pa-
rameters. Te main objective is to optimize θ<L across
multiple tasks, allowing w to be rapidly adjusted for each
specifc task Ti.

Te adaptation process for task Ti is as follows:

w
∗
i � w − α∇wLTi

Si; θ
<L

, w , (12)

where α is the learning rate for the inner-loop optimization
andLTi

(Si; θ
<L, w) is the loss computed on the support set

Si for task Ti using the current model parameters.
After adjusting w to w∗i for task Ti, the model’s per-

formance on the query setQi informs the update of θ<L based
on overall task performance:

θ<L∗ � θ<L − β∇θ<L 
i

LTi
Qi; θ
<L

, w
∗
i , (13)

where β is the learning rate for outer-loop optimization and
LTi

(Qi; θ
<L, w∗i ) is the loss on the query set Qi for task Ti,

using the adapted parameters w∗i .
Tis iterative two-phase optimization process—adjust-

ing w for each task followed by updating θ<L based on
aggregated task performance—enables Meta-TFSTL to ac-
quire generalized parameters θ<L∗, facilitating rapid adap-
tation to new tasks.Tis capability signifcantly enhances the
model’s forecasting accuracy, especially for new commod-
ities or changing economic conditions.

5. Experiments

5.1. Dataset. Tis study utilizes the monthly trade value
series of imported and exported commodity from China
between January 2005 and January 2023, sourced from
Global Trade Flow (https://gtf.sinoimex.com). Te trade
values are tallied once a month and are denominated in US
dollars. Tis dataset encompasses all of China’s trade
commodities in recent years. Based on the 2022 customs
duty specifcations, inspection and quarantine codes set by
China Customs, and the globally accepted HS8 codes, this
study categorizes the commodities into 13 major classes for
both imports and exports. Te commodities and their re-
spective abbreviations are presented in Table 1.

In this study, we use the values of imported (or exported)
commodities from the frst 10 time steps to predict the values
in the subsequent 2 time steps. Tese datasets are then
chronologically split into training (70%), validation (20%),
and test (10%) sets. Performance of all methods is evaluated
using three standard metrics, namely, MAE, RMSE,
and MAPE.

5.2. Experimental Settings

5.2.1. Baselines. In this paper, we benchmark the perfor-
mance of our proposed Meta-TFSTL model against a com-
prehensive suite of established baseline models. Tese
baselines span from traditional statistical methods to the
latest neural network architectures in time series forecasting.
Our selection includes a total of 11 models, providing
a broad overview of the feld’s evolution and current state of
the art. Here is a brief overview of each model, including
their publication year to highlight recent advancements:

(1) LastValuePredictor: a basic forecasting method
using the most recent observation to predict future
values. Tis approach serves as a simple baseline for
comparison.

(2) ARIMA [49] (1976): a well-established statistical
method for time series forecasting, known for its
efectiveness in capturing linear relationships and
trends.

(3) VAR [50] (1980): a model that captures linear in-
terdependencies among multiple time series, widely
used in econometrics and fnancial analysis.

(4) Bagging [51] (1996): an ensemble technique that
improves the stability and accuracy of machine
learning algorithms by combining multiple models.

(5) LSTM [52] (1997): a recurrent neural network ar-
chitecture designed to learn long-term de-
pendencies, marking a signifcant advancement in
sequence modeling.

(6) GRU [53] (2014): an efcient variant of LSTM with
fewer parameters, making it faster and simpler
while retaining the capability to capture temporal
dependencies.

(7) DeepAR [54] (2020): a probabilistic forecasting
model that leverages deep learning for uncertainty
estimation, representing a recent trend towards
more adaptable and nuanced forecasting methods.

(8) DeepVAR [54] (2020): an extension of the VAR
model that incorporates deep learning techniques
for enhanced multivariate time series forecasting.
While not associated with a specifc publication
year, it is part of the recent push to integrate deep
learning into traditional forecasting models.

(9) N-Beats [37] (2019): a purely neural network-based
model for time series forecasting that uses a stack of
feed-forward networks, showcasing the increasing
trend towards deep learning in the feld.
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(10) N-Hits [55] (2021): a recent hierarchical neural
forecasting model that emphasizes the model’s
capacity for time series interpolation and extrap-
olation, refecting the ongoing innovation in neural
network architectures for forecasting.

(11) TFT [5] (2021): a model that combines the temporal
structure of time series data with the Transformer
architecture, exemplifying the latest advancements
in applying attention mechanisms to forecasting
problems.

Tis diverse set of baselines, especially including models
from the last three years (DeepAR, DeepVAR, N-Hits, and
TFT), ensures that our comparison covers a wide spectrum
of time series forecasting methodologies, from classical
approaches to cutting-edge neural network models.

5.2.2. Experimental Settings. In this work, we implemented
the Meta-TFSTL model using the PyTorch framework and
trained it using the Adam optimizer for a total of 1000 it-
erations, each iteration including 5 adaptations. Within the
Meta-TFSTL model, the number of heads e in the attention
mechanism was set to 1, with an initial dimension de of 128.
Additionally, the number of layers L in the spatiotemporal
encoder was set to 2. To capture cyclical time dependencies,
we employed dilated causal convolution layers with a kernel
size of J � 2. Te initial learning rate was set to 0.001, ad-
justed with a decay rate of 0.1. Dropout was also in-
corporated, with a dropout rate of 0.2, to mitigate the risk of
overftting in the model.

5.2.3. Training Environment. In this study, we utilized
a computer equipped with two V100 GPUs and a Hygon C86
7380 32-core Processor CPU as our training environment.
Each GPU boasts 32GB of available memory, ofering robust
parallel computing capabilities to expedite the training of
deep learning models.

5.3. Results. Tis study conducted experiments to in-
vestigate the Meta-TFSTL model, addressing the following
six research questions:

RQ1. How should the periodicity and robustness of the
STL time series decomposition be chosen and
determined?
RQ2. How are the support set and query set selected
and determined for the meta-learning algorithmANIL?
RQ3. Does Meta-TFSTL outperform the baseline
models, and what role does meta-learning play in
enhancing the model’s performance?
RQ4. How do diferent components of Meta-TFSTL
(e.g., sequence decomposition methods and graph
embeddings) impact its performance?
RQ5. How do hyperparameters infuence the perfor-
mance of Meta-TFSTL?
RQ6. Is our proposed Meta-TFSTL more efcient than
baseline models?

5.3.1. Determination of Periodicity and Robustness in STL
Decomposition (RQ1)

(1) Periodically Determined. STL time series decomposition
dissects a time series into seasonal components Xs, trend
components Xtr, and residual components Xr. As men-
tioned earlier in Subsection 4.2, our focus in this inquiry is
chiefy on the residual component, which captures the
random fuctuations in the series that are not explained by its
trend or seasonality.

To identify the dominant cycle in import (or export)
value series, we examined periods ranging from 2 to 50.
Using the STL decomposition, we tested the residuals for
each period with a ten-order lag in the Ljung–Box test. A
period was considered suitable if all series residuals showed
white noise characteristics, indicating that the seasonal and
trend components have efectively captured most of the
series information.

After contrasting the test outcomes across varying pe-
riods, it was observed that the residuals for all product series
distinctly passed the Ljung–Box test when the period was set
to 10months (i.e., period� 10).Tis period can be construed
as the typical cyclicity for import (or export) value series.Te
results of the lagged ten-order Ljung–Box test under this

Table 1: Abbreviations for imported and exported commodity.

Imported commodity Abbreviation Exported commodity Abbreviation
Unwrought copper and copper materials Cu Other agricultural products Agri
Natural gas NG Electrical equipment EE
Metal ores and concentrates Metal Other Other
Automatic data processing equipment and its parts ADPE Electrical appliances EA
Integrated circuits IC Refned oil RO
Grain Grain Plastic products PP
Other agricultural products Agri Furniture and its parts FP
Coal and lignite Coal Steel Steel
Other Other Clothing, accessories, and textile Textile
Pulp, paper, and paper products Pulp Automatic data processing equipment and its parts ADPEP
Automobiles and parts Auto Grain Grain
Primary shaped plastic Plastic Integrated circuit IC
Crude oil Crude Automobiles and parts Auto
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period for all the import/export product value series are
delineated in Table 2.

From the perspective of national development and
openness, trade series for commodities not only exhibit clear
periodicity but also show an upward trend over time,
refecting the impact of globalization and economic growth
on trade activities. In this context, STL becomes particularly
important as it can precisely decompose economic time
series into periodic and trend components, thus showing
good adaptability to trade data [56].

Applying STL decomposition to all import commodities,
as shown in Figure 3, and selecting a period of 10months for
analysis, we can not only clearly see the long-term growth
patterns in the trend components of each commodity but
also observe the regularity of periodic fuctuations. Tis
identifcation of periodicity not only validates the accuracy
of the chosen period length but also provides key prior
knowledge for the construction of prediction models based
on temporal attention. Particularly, the regular fuctuations
observed in the seasonal components provide clear guidance
for temporal convolutional layers in capturing periodic
changes, ensuring that the model can efectively adapt to and
recognize the periodic features in time series data.

Observing Figure 3, we can identify periods where the
seasonal components exhibit noticeable shifts from previous
trends, denoted as “Signifcant Regimes” (highlighted in
purple in the fgure).Tis observation aligns with our further
analysis of the seasonal components in STL decomposition,
emphasizing the model’s ability to discern substantial
market fuctuations during specifc periods. For instance, the
rise in Natural Gas (NG) imports in 2021 refects China’s
energy demand and policies to reduce air pollution by
shifting from coal to cleaner energy sources (US Energy
Information Administration). Similarly, the increase in
Metal Ores and Concentrates (Metal) imports from March
2020 onwards aligns with China’s economic recovery eforts
and infrastructure projects post-COVID-19 (Reuters (2021)
“China 2020 iron ore imports hit record on robust post-virus
demand”). Te growth in Grain imports from January 2020
is attributed to securing food supplies amid global un-
certainties (World Grain (2020) “China imports record
amount of grains in 2020”), while the spike in Coal and
Lignite (Coal) imports by July 2020 corresponds to the
demand for energy as the economy recovered (Reuters
(2020) “China’s July coal imports surge on heatwaves, power
use”). Te volatility in Automobile and parts (Auto) imports
between July 2017 and June 2021 could be due to domestic
demand shifts, tarif adjustments, and global supply dis-
ruptions, particularly due to the pandemic and trade ten-
sions (U.S. Department of Commerce “China—Automotive
Industry”). Te initial decline and subsequent rapid increase
in Crude Oil (Crude) imports from January 2020 refect
global oil price fuctuations, strategic reserves re-
plenishment, and support for domestic recovery (Reuters
(2021) “China 2020 crude oil imports surge to record on
buying binge”). Tese periods of signifcant changes in
commodities imports underscore the STL decomposition’s
efectiveness in capturing the dynamics of the market,
providing valuable insights for the model’s attention

mechanisms to focus on and learn from these key market
changes.

Terefore, the application of STL decomposition in the
analysis of multicommodity trade data showcases its su-
periority in revealing and utilizing the seasonal, trend, and
random fuctuation components in time series data.Tis not
only provides a solid foundation for subsequent model
design and prediction but also ofers a new perspective and
method for understanding complex market behaviors.

(2) Comparative Analysis of Robust and Nonrobust STL De-
composition. STL time series decomposition primarily follows
two distinct methods: Robust and Nonrobust decomposition.
Te Robust decomposition showcases enhanced robustness
when dealing with data containing outliers or anomalies.
Leveraging weighted algorithms, such as Local Weighted
Regression (LOWESS), robust decomposition minimizes the
impact of anomalies on the decomposition results. In con-
trast, the Nonrobust decomposition, relying on simple av-
eraging, is more susceptible to outliers and can be adversely
infuenced by anomalous values. For a particular commodity
series, the trend, seasonal, and residual components from
both robust and nonrobust decompositions are illustrated in
Figure 4 (with a period of 10, focusing on the imported Cu as
an exemplary commodity).

From Figure 4, it can be discerned that the trend
component from the robust decomposition is smoother,
illustrating its insensitivity to anomalies. Conversely, the
nonrobust decomposition’s trend component exhibits more
pronounced local fuctuations, which contradict the trend
component’s role in capturing overall tendencies. Exam-
ining the seasonal component, the robust decomposition’s
seasonal fuctuations appear more pronounced. Tis can be
primarily attributed to the reduced fuctuations captured by
the robust decomposition’s trend component. As a result,
sudden events or transient information might be in-
corporated into the seasonal features. Consequently, the
seasonal component absorbs more volatility, refecting
sudden incidents in trade, aligning with the designed role of
the seasonal component to detect periodic and abrupt
events.

Upon careful observation and interpretation, the Robust
STL decomposition emerges as the more suitable method. Its
trend component aptly captures the overall tendencies
without being hindered by transient information, while the

Table 2: Ljung–Box test results.

Lag order lb_stat lb_pvalue
1 7.61 5.80e− 03
2 10.29 5.83e− 03
3 10.82 1.28e− 02
4 17.20 1.77e− 03
5 26.50 7.13e− 05
6 27.02 1.43e− 04
7 27.21 3.05e− 04
8 30.47 1.75e− 04
9 32.73 1.49e− 04
10 94.10 8.20e− 16
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seasonal component profciently identifes periodic fuctu-
ations and unexpected occurrences.

5.3.2. Determination of Support and Query Sets in the Meta-
Learning Algorithm ANIL (RQ2). From a meta-knowledge
adaptation perspective, our aim is for the model to adapt to
more complex scenarios. Terefore, we designate the more
intricate situations as the query set [43]. Te advantage of

enhancing generalization through meta-learning is evident
in that training a model on a known data distribution
(support set) can yield favorable results on an unknown data
distribution (query set). Temporally speaking, the fore-
casting process often encompasses periods that are relatively
straightforward to predict, as well as more challenging in-
tervals. Te overall performance can be adversely afected by
these harder-to-predict time spans, leading to suboptimal
model outcomes. To address this challenge, we strategically
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Figure 3: STL decomposition analysis across multiple commodities showcasing the identifed 10-month cyclicality and the distinct upward
trends, reinforcing STL’s adaptability in capturing economic series characteristics.
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design our approach to leverage the strengths of meta-
learning.

Adopting this approach for meta-learning modeling
more efectively captures the intricate characteristics of the
data. Initially, we employ the ARIMA algorithm to model all
commodities in import and export, computing the monthly
MAPE for each commodity. A subset of the results is il-
lustrated in Figure 5.

We systematically computed the monthly MAPE be-
tween the predicted and actual values for all imported and
exported commodities. Additionally, we derived the av-
erage MAPE across all commodities. By aggregating in-
stances where the monthly MAPE exceeded the average
MAPE for each commodity, a cumulative count was
established, as illustrated in Figure 6. Tis metric serves as
an indicator, highlighting specifc months that are in-
herently more challenging to forecast compared to others.
From this analysis, it is clear that the ARIMA forecasts for
import and export commodity values are more accurate
from April to September, with fewer instances where
monthly MAPE exceeds average MAPE. Conversely, the
months from January to March and October to December
present greater forecasting challenges, likely infuenced by
global events such as New Year, Chinese Lunar New Year,
and Christmas, which can disrupt trade patterns. Given
these insights, we designate April to September as the
support set and the remaining months as the query set for
Meta-Learning.

5.3.3. Performance Comparison and Meta Knowledge
Adaptation (RQ3)

(1) Performance Comparison. From Tables 3 and 4, both the
TFSTL and Fine-Tuned Meta-TFSTL models excel in pre-
dicting import and export value series. Notably, the Fine-
Tuned Meta-TFSTL surpasses TFSTL, demonstrating ef-
fective knowledge adaptation through fne-tuning.

For imported commodity value series, traditional models
such as LastValuePredictor, ARIMA, and VAR tend to have
higher error rates, with VAR underperforming signifcantly.
Tis discrepancy may stem from the series’ inherent non-
linearities and a lack of manually engineered features.
Machine learning models show reliable results, with Bagging
being noteworthy. Deep learning models generally perform
comparably, but N-Beats edges ahead, potentially due to its
sequence decomposition approach. Tis subtly reafrms the
robustness of our STL-based decomposition in TFSTL and
Meta-TFSTL.

Predicting the exported commodity value series, tradi-
tional models show varied results, with VAR’s performance
being notably poor. Among deep learning models, while
diferences are minimal, N-Beats holds a slight edge, reaf-
frming its efcacy in such prediction tasks.

(2) Meta Knowledge Adaptation. Building on the premise
that the Meta-TFSTL model leverages the predictability of
certain months to establish foundational understanding of
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Figure 4: STL robust and unrobust decomposition of the value sequence of imported commodity Cu.
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import trends and subsequently fne-tunes this knowledge
with the more challenging months, we further explored its
adaptability.

Shen et al. [4] posited the potential of leveraging eco-
nomic formulas to predict export data using import data and
vice versa, achieving commendable results. Tis highlighted
plausible knowledge adaptation between import and export
data, suggesting that reusing such knowledge could enhance
prediction accuracy. To empirically validate this hypothesis,
we adopted a meta-learning approach in our study to
harness this knowledge adaptation.

Building on this foundation, our experiments with the
Meta-TFSTL model for both import and export predictions
were designed to strategically utilize training and validation
sets from one domain and fne-tune on the validation set of
the other. Specifcally, for import predictions, we trained on
the export dataset and fne-tuned using the import valida-
tion set, achieving a performance boost with a nearly 2
percentage point reduction inMAPE over the TFSTLmodel.
Conversely, for export predictions, the model was initially
trained on the import dataset and fne-tuned with the export
validation set, resulting in a signifcant improvement with
a reduction of nearly 5 percentage points in MAPE com-
pared to the TFSTL model. Tis approach not only validated
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dataset (comprising the training, validation, and test sets). Te blue bars depict the MAPE values for specifc months, clearly highlighting
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Table 3: Performance comparison of various models for imported
commodity value series.

Model MAE
(×109)

RMSE
(×109) MAPE

LastValuePredictor 3.01 5.25 0.2011
ARIMA 2.71 3.23 0.1921
VAR 10.18 11.79 0.6878
Bagging 2.97 2.39 0.1555
LSTM 2.31 3.70 0.1874
GRU 3.02 5.10 0.2272
DeepAR 2.62 4.38 0.2020
DeepVAR 2.96 5.26 0.2063
N-Beats 2.04 3.54 0.1705
N-Hits 1.94 3.43 0.1641
TFT 2.07 3.80 0.1628
TFSTL 1.77 3.15 0.1263
Meta-TFSTL (fne-tuning)  .47 2.97 0. 074
Bold: best; underline: second best; italics: best in baseline.

Table 4: Performance comparison of various models for exported
commodity value series.

Model MAE
(×109)

RMSE
(×109) MAPE

LastValuePredictor 3.50 7.36 0.1854
ARIMA 2.64 5.29 0.1811
VAR 7.15 8.13 0.3802
Bagging 3.63 5.14 0.1983
LSTM 3.70 7.18 0.2064
GRU 3.82 8.15 0.2344
DeepAR 3.00 6.60 0.2210
DeepVAR 2.65 5.96 0.2185
N-Beats 2.92 6.08 0.1763
N-Hits 3.04 6.77 0.1804
TFT 2.76 4.89 0.1781
TFSTL 2.01 4.55 0.1512
Meta-TFSTL (fne-tuning)  .78 3.64 0. 023
Bold: best; underline: second best; italics: best in baseline.
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Shen et al.’s fndings but also underscored the efcacy of
knowledge adaptation between import and export data
domains using the Meta-TFSTL framework.

In conclusion, Meta-TFSTL distinguishes itself as a su-
perior model in forecasting the value of imports and exports
of commodities when compared to other models, attributed
to its ability to

(1) Extract and model the trend and seasonal compo-
nents separately using a dual-channel encoder.

(2) Utilize an integration of attention mechanisms and
multilevel supervision for efective information
merging.

(3) Incorporate positional encoding through time
graphs and commodity association graphs for cap-
turing global dependencies.

(4) Enhance generalization capabilities for few-shot
learning scenarios like monthly data through
meta-learning.

(5) Facilitate knowledge adaptation between import and
export datasets, optimizing adaptability for accurate
predictions.

Te superior prediction performance for imported
commodities over exported ones may refect the relative
stability of domestic demand infuencing imports, the
steadying impact of long-term tarifs and trade agreements,
and the more exhaustive data acquisition for imports due to
mandatory customs checks.

5.3.4. Ablation Study (RQ4). To investigate the efectiveness
of various components of Meta-TFSTL, we compared it with
six distinct variants:

(1) Meta-TFX11 (Trade Forecasting via X-11-De-
composition-based Networks): this variant uses the
classical X-11 decomposition method [57] for ana-
lyzing and adjusting seasonal fuctuations in the
trade value series.

(2) Meta-TFVMD (Trade Forecasting via Variational
Mode Decomposition-based Networks): this model
employs Variational Mode Decomposition (VMD)
[58] for decomposing the trade value series into a set
of intrinsic mode functions.

(3) Meta-TFWavelet (Trade Forecasting via Wavelet-
Decomposition-based Networks): this variant em-
ploys the Discrete Wavelet Transform (DWT) [59]
instead of STL for decomposing the trade value
series.

(4) w/o G: a version of Meta-TFSTL without both spatial
and temporal graphs.

(5) w/o D: a version of Meta-TFSTL without the time
series decomposition layer.

(6) w/o F: a version of Meta-TFSTL where fusion at-
tention is replaced with additive operations.

Te ablation study results, presented in Tables 5 and 6,
are organized into two distinct sections to evaluate the

efectiveness of diferent components within the Meta-
TFSTL framework. Te upper section of each table, above
the line, comprises variants that employ alternative de-
composition methods, including classical X-11 de-
composition, Variational Mode Decomposition (VMD), and
Discrete Wavelet Transform (DWT). Te lower section
assesses models from which key components have been
removed, such as spatial and temporal graphs, the time series
decomposition layer, or the fusion attention mechanism.
Tis structured comparison highlights the integral role of
these components, with the complete Meta-TFSTL model
outperforming all its variants on import and export fore-
casting tasks, thereby underscoring the composite model’s
robustness and efciency.

Te ablation study reveals that while the Meta-TFX11
and Meta-TFVMD variants ofer innovative approaches by
employing X-11 decomposition and Variational Mode
Decomposition (VMD), respectively, they do not match the
performance of the full Meta-TFSTL model. Te Meta-
TFX11 variant, despite utilizing the classical X-11 de-
composition method for adjusting seasonal fuctuations,
may not be as efective in capturing the nonlinear and
complex patterns present in trade value series, leading to its
lower performance. Similarly, the Meta-TFVMD variant,
while adept at decomposing the trade value series into in-
trinsic mode functions, might oversimplify the intricate
economic trends and seasonal dynamics, which are crucial
for accurate forecasting. Tis simplifcation could be the
reason for its suboptimal results compared to Meta-TFSTL.
Furthermore, the Meta-TFWavelet variant signifcantly
underperforms relative to Meta-TFSTL, likely due to the
reduction in time step post-Discrete Wavelet Transform
(DWT) and the potential loss of series information during
inverse fltering for upsampling. Additionally, wavelet de-
composition may not aptly capture economic trends and
seasonal fuctuations as efectively as STL, contributing to
TFWavelet’s inferior performance.

Te “-G,” “-F,” and “-DF” models do not perform as well
as the Meta-TFSTL model, likely due to the absence of graph
embedding information, replacement of fusion attention,
and omission of the disentangling fow layer. Tese com-
ponents are crucial for the model’s capability in information
integration, complex pattern modeling, and relationship
extraction, underscoring their importance within the model.

5.3.5. Parameter Sensitivity Analysis (RQ5). Figure 7 pres-
ents the results of a parameter sensitivity analysis for
merchandise import and export value sequences. Te top
row of three graphs relates to the import merchandise’s
model hyperparameter variations, while the bottom row
pertains to the export merchandise. For the import model,
the hidden layer size and batch size were varied within
a search space of [32, 64, 128, 256], while for the export
model, the search space was extended to [32, 64, 128, 256,
512]. Te import model achieves minimum prediction error
with both hidden layer size and batch size set at 64, sug-
gesting that further increases may lead to overftting and
decreased predictive performance. Conversely, the optimal
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outcome for the export model is achieved with a hidden layer
size of 256 and a batch size of 128, indicating a higher
predictive complexity for exports. Additionally, the per-
formance of Meta-TFSTL improves with an increasing
number of layers, stabilizing at a count of 2.

5.3.6. Model Scalability and Computation Cost (RQ6)

(1) Model Scalability. Te scalability of neural network
models is a crucial factor in their applicability to time series
forecasting, particularly as the volume of data available for

Table 5: Ablation study results for imports.

Model MAE (×109) RMSE (×109) MAPE
Meta-TFX11 2.36 3.95 0.1652
Meta-TFVMD 2.17 2.62 0.1561
Meta-TFWavelet 2.25 3.85 0.1417
Meta-TFSTL-w/o G 2.11 3.79 0.1266
Meta-TFSTL-w/o D 2.13 4.05 0.1469
Meta-TFSTL-w/o F 2.29 4.33 0.1348
Meta-TFSTL  .47 2.97 0. 074
Te bold value indicates best result.

Table 6: Ablation study results for exports.

Model MAE (×109) RMSE (×109) MAPE
Meta-TFX11 2.50 4.42 0.1713
Meta-TFVMD 2.41 4.39 0.1681
Meta-TFWavelet 4.86 11.89 0.1781
Meta-TFSTL-w/o G 4.94 14.65 0.1512
Meta-TFSTL-w/o D 7.45 19.39 0.2290
Meta-TFSTL-w/o F 2.43 6.06 0.1836
Meta-TFSTL  .78 3.64 0. 023
Te bold value indicates best result.

1.5

1.6

1.7

1.8

1.9

M
A

E

1.50

1.55

1.60

M
A

E

1.6

1.8

2.0

M
A

E

1.75

2.00

2.25

2.50

2.75

M
A

E

1.75

2.00

2.25

2.50

2.75

M
A

E

1.8

2.0

2.2

2.4

M
A

E

0.10

0.12

0.14

0.16
M

A
PE

0.10

0.15

0.20

0.25

M
A

PE

0.10

0.12

0.14

0.16

0.18

M
A

PE

0.110

0.115

0.120

0.125

M
A

PE

0.10

0.15

0.20

0.25
M

A
PE

0.11

0.12

0.13

0.14

0.15

M
A

PE

64 128 25632
Hidden Layer Size

2 3 41
Layers Number

64 128 25632
Batch Size

128 256 51232
Hidden Layer Size

2 3 41
Layers Number

64 128 25632
Batch Size

1e9 1e9 1e9

1e9 1e9 1e9

MAE
MAPE

MAE
MAPE

MAE
MAPE

MAE
MAPE

MAE
MAPE

MAE
MAPE

Figure 7: Hyperparameter study on import and export commodity value prediction: the blue and red lines represent the MAE and MAPE
results on the test set, respectively.

International Journal of Intelligent Systems 15



training increases. Tis study presents an empirical evalu-
ation of the scalability of several advanced neural network
models, including Meta-TFSTL, TFT, N-Hits, N-Beats, and
DeepVAR, across varying dataset sizes from 20% to 100% in
10% increments. Our analysis, leveraging Mean Absolute
Percentage Error (MAPE) as the performancemetric, reveals
Meta-TFSTL’s consistent superiority in scalability and
predictive accuracy across all evaluated dataset sizes
(Figure 8).

Our analysis, leveraging MAPE as the performance
metric, reveals Meta-TFSTL’s consistent superiority in
scalability and predictive accuracy across all evaluated
dataset sizes. Starting with a MAPE of 14.86% at 20% dataset
size, Meta-TFSTL exhibits a notable performance im-
provement, achieving a MAPE of 10.13% at full dataset
utilization. Tis contrasts with other models, which, despite

showing improvements, do not match the efciency and
accuracy of Meta-TFSTL, highlighting its robustness and
efectiveness in leveraging larger data volumes for enhanced
forecasting accuracy.

(2) Computation Cost. Te results from Figure 9 highlight
a signifcant disparity in computational costs, manifesting
through both speed and parameter count. Conventional
RNN architectures, like LSTM and GRU, display moderate
speeds with subpar performance. Teir relatively smaller
parameter count makes them computationally lightweight
and simpler in design. On the other hand, models like
DeepAR and DeepVAR seem to prioritize model intricacy
with a more compact parameter footprint. However, their
elevated MAE suggests potential compromises in their
performance.
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Figure 8: Comparative scalability analysis of neural network models for time series forecasting, highlighting Meta-TFSTL’s superior
performance.
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Te N-Beats model showcases a notably high parameter
count, hinting at a complex model architecture. Tis
complexity, however, does not necessarily translate to su-
perior performance as its MAE is middling. Te N-Hits and
TFT models strike a balance between speed, performance,
and parameter count.

Interestingly, the Meta-TFSTL model emerges as
a frontrunner in terms of performance, boasting the lowest
MAE. With its highly parallelized design and transformer-
based architecture, it achieves the fastest speed among the
models, despite its substantial parameter tally. Such a design
choice is justifable in applications where precision is

paramount, even if it means increased computational
overhead within a given timeframe.

5.4. Enhancing Trade Forecasting through Meta Knowledge
Adaptation: AMeta-TFSTLCase Study. Tables 3 and 4 have
already highlighted the superior performance of Meta-
TFSTL in comparison to baseline models. Delving into the
predictive accuracy on the test set, incorporating Meta
Knowledge Adaptation, the Meta-TFSTL model further
cements its position by elevating forecasting precision for
a wide array of commodities. Tis advancement is
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signifcantly noticeable in both import and export sectors,
as illustrated in Figures 10 and 11, with the model
achieving exceptionally low MAPEs for commodities such
as Cu (7.07%) and Agri (6.07%) in imports, and OAP
(3.82%) and PP (4.99%) in exports, highlighting its pre-
dictive accuracy.

Te model’s robustness is particularly noteworthy in its
adept handling of commodities known for their market
volatility, such as Coal and Textile in exports, withMAPEs of
13.21% and 23.22%, respectively. Tis showcases Meta-
TFSTL’s capability to navigate and forecast within the un-
predictable commodity markets efectively, where its
adaptability and analytical prowess are paramount.

Te essence of the Meta-TFSTLmodel’s success lies in its
innovative adaptation of knowledge between import and
export data, leveraging inherent patterns to enhance pre-
dictions. Tis adaptability is key, demonstrating the model’s
superior analytical capabilities and consistent performance
over baseline models in volatile market conditions.

Tis nuanced approach not only confrms the model’s
supremacy but also underscores the critical role of knowl-
edge adaptation in forecasting market trends accurately.
Trough meta-learning, Meta-TFSTL delivers dependable
forecasts, crucial for strategic decision making, thus
underscoring its indispensable value in commodities
trading.
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6. Discussion

While our Meta-TFSTL model demonstrates promising
results in forecasting trade values, its practical applica-
bility in real-world scenarios entails navigating a com-
plex landscape of data availability, model interpretability,
and adaptability to sudden market changes. Below, we
detail the model’s real-world applicability and delineate
pivotal challenges alongside prospective enhancements.

6.1. Real-World Applicability of the Model

(1) Data Availability and Quality. Te performance of
Meta-TFSTL heavily relies on access to accurate,
detailed, and current trade data. Challenges such as
delays in data collection, inconsistencies across in-
ternational trade databases, and restrictive data
policies can hinder model efectiveness. Enhancing
collaborations with global trade organizations and
exploring alternative data sources, like satellite im-
agery, could improve data quality and enrich model
inputs.

(2) Model Interpretability. Te ability to interpret model
predictions is crucial for trade policy and economic
decision making. Despite its accuracy, the complex
architecture of Meta-TFSTL may not be easily un-
derstandable, emphasizing the need to incorporate
Explainable Artifcial Intelligence (XAI) techniques
to clarify the model’s predictive processes and build
trust among stakeholders.

(3) Adaptability to Market Fluctuations. Te dynamic
nature of global trade, infuenced by geopolitical,
economic, and policy changes, requires a model that
can quickly adapt. Integrating live economic in-
dicators and sentiment analysis could enhanceMeta-
TFSTL’s responsiveness, allowing for timely model
updates in response to changing global trends.

6.2. Challenges and Prospective Developments

(1) Bilateral Trade Dynamics. Te model might not fully
capture the complexities of bilateral trade agree-
ments and policies. Developing a more nuanced
approach that considers tarif negotiations, trade
barriers, and bilateral agreements could ofer
a deeper understanding of global trade fows.

(2) Market Scalability. While Meta-TFSTL shows
promising results for China’s trade data, extending
its applicability to diverse economic systems and
trade regulations worldwide is challenging. Future
research should aim to test and adapt the model
across diferent global markets to achieve broad
applicability and scalability.

Conclusively, Meta-TFSTL represents a signifcant ad-
vance in trade forecasting. However, to fully realize its
practical utility, it is essential to address these challenges
through focused improvements, leveraging interdisciplinary

collaboration and innovation to enhance the model’s real-
world applicability and inform strategic trade policy and
economic planning.

7. Conclusion

In this study, we introduced Meta-TFSTL, a novel neural
model that integrates Meta-Learning Enhanced Trade
Forecasting with efcient multicommodity STL de-
composition. Empirical evaluations demonstrated Meta-
TFSTL’s superiority over baseline models, ofering signif-
cant improvements in forecasting accuracy with the added
benefts of swift computational efciency. Trough strategic
application of STL decomposition, dual-channel spatio-
temporal encoding, and innovative use of Struc2Vec graph
embedding for spatial graphs and temporal graphs con-
struction, Meta-TFSTL successfully merges insights from
trend and seasonal components. Tis is further augmented
by the adoption of fused attention and multisupervision
strategies during the decoding phase. Incorporating meta-
learning and fne-tuning methodologies, we have established
a framework for efective knowledge adaptation between
import and export trade predictions, leveraging the shared
insights across these domains. Looking ahead, we plan to
introduce more complex methodologies to enhance the
model’s capabilities, ensuring that Meta-TFSTL continues to
set benchmarks in trade forecasting accuracy and compu-
tational efciency.
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