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Federated learning (FL) has shown promise in smart industries as a means of training machine-learning models while preserving
privacy. However, it contradicts FL’s low communication latency requirement to rely on the cloud to transmit information with data
owners inmodel training tasks. Furthermore, data ownersmay not be willing to contribute their resources for free. To address this, we
propose a single contract to dual contract approach to incentivize bothmodel owners andworkers to participate in FL-basedmachine
learning tasks. Te single-contract incentivizes model owners to contribute their model parameters, and the dual contract in-
centivizes workers to use their latest data to participate in the training task. Te latest data draw out the trade-of between data
quantity and data update frequency. Performance evaluation shows that our dual contract satisfes diferent preferences for data
quantity and update frequency, and validates that the proposed incentive mechanism is incentive compatible and fexible.

1. Introduction

In recent years, the rise of the Industrial Internet of Tings
(IIoT) [1] and relevant intelligent technologies such as deep
learning (DL) [2] algorithms have ushered in innovative
changes and development opportunities for smart in-
dustries. Consequently, the deployment of the IIoT is be-
coming increasingly popular for various applications, e.g.,
smart grid [3], logistics [4], and healthcare [5].

IIoT integrates various technologies to digitally trans-
form manufacturing and service operations. In 2020, Liu
et al. [6] proposed a novel tracker based on response region
reliability with edge computing, which achieved accurate
and fast tracking with high reliability in IIoT applications.
Ten, considering security concerns while bringing com-
puting power to the edge of industrial systems, Houda et al.
[7] designed a novel MEC-based framework to secure IIoT
applications using FL. Feng et al. [8] proposed a trustworthy
self-healing scheme based on blockchain and digital twin
and implemented trustworthy self-healing in the edge AI-
enabled IIoTenvironment. Recently, IIoT has become a core
component of smart applications, which can capture various

valuable events and objects. Rahman et al. [9] proposed an
AI-enabled IIoT to automate event management in smart
cities. Farahani and Monsef [10] combined multiparty
technologies, privacy-enhancing techniques, and AI to
further facilitate the industrial data economy and innovation
process.

DL algorithms require substantial amounts of data to
outperform traditional methods in model training. Fur-
thermore, restricted by regulations such as the General Data
Protection Regulation (GDPR) [11], they are also reluctant
to share data. Federated learning (FL) [12] as an emerging
technology came into being in IIoT, where diferent model
owners collaborate by sharing their gradients instead of raw
data, thereby preserving privacy. FL is a technique that can
train statistical models using data distributed over remote
devices or siloed data centers while keeping data localized
and preserving privacy. By leveraging the diversity and
heterogeneity of data from diferent parties, FL can train
a model that has more generalization ability and adapt-
ability, thus improving the model’s performance and re-
liability. Additionally, the hierarchical computing
architecture [13] has been proposed to enhance data
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transmission efciency between the cloud and the terminal.
In the hierarchical computing architecture, edge devices
transmit data to the cloud through the nearest edge node,
thereby reducing the number of communications for global
aggregation and updates between terminal devices and re-
mote cloud servers, energy consumption during commu-
nication, and latency.

Traditionally, FL research usually involves the model
owner issuing model training tasks to workers and moti-
vating them to participate through a single contract, i.e., the
user contribution in the contract is related to only one
independent variable. Workers only collect information
when requested, and their contributions are only relevant to
the data quantity. However, in many real-time tasks, service
latency may be unbearable, requiring frequent data caching
and updates to maintain data freshness. Tis trade-of be-
tween data quantity and data update frequency is under-
explored. For example, disaster prediction in the mining
industry relies on up-to-date information to prevent safety
hazards [14].

In addition, when a model owner manages the trade-of
between data quantity and data update frequency, it can
create an incentive mismatch with the worker. For example,
the model owner may prefer a large data quantity to ensure
optimal model performance, but the collection expense such
as energy consumption incurred in data collection and data
storage in caching may be prohibitive for the worker. So,
a uniform reward allocation may not result in optimal utility
for both parties, as the model owner may lack information
about the worker’s unit cost of data collection.

Terefore, we propose an FL-based hierarchical in-
centive mechanism that utilizes a single contract to dual
contract task-aware model. Our mechanism utilizes a single
contract to incentivize model owners to collect gradients and
a dual contract to motivate workers to perform both data
collection and updates. We design the dual contract to
fexibly adjust the diferent preferences of requesters re-
garding data quantity and update frequency. When data
quantity is more important, the contract can be designed to
motivate workers to collect more data. When data update
frequency is more important, the contract can be designed to
encourage more frequent updates. Trough the self-
revealing mechanism of contract theory, workers and
model owners can maximize their utility by choosing the
contract that best suits their needs. Te contributions of this
paper can be summarized as follows:

(i) We propose a new approach for federated learning
that addresses the challenges of data quality in the
context of edge computing. Specifcally, we use
a single contract to dual contract structure that
enables a three-way collaboration between model
owners, workers, and requesters. Tis approach
assesses data quality through two diferent aspects:
data quantity and data update frequency.

(ii) We utilize the self-revealing and weighting char-
acteristics of the dual contract-theoretic incentive
mechanism design to incentive worker. Specifcally,
the model owners can adjust the proportion of data

quantity and data update frequency in their dual
contracts according to their preferences of single-
contract requesters. Te self-revealing mechanism
of the contract allows workers to maximize their
benefts when choosing a contract that suits them.
So the approach can justly compensate workers for
the costs associated with data collection and
updating.

(iii) We show that model owners can calibrate to suit the
varying preferences for data quantity and data
update frequency in the dual contract according to
their willingness to participate in the single contract.
Tis fexibility in calibration enables model owners
to strike a balance between maximizing the quality
of the data set and minimizing their own resource
usage and workload, ultimately promoting a more
efective and efcient federated learning process.

Te paper is structured as follows. Section 2 discusses the
related works, Section 3 presents the system model and
problem formulation, Section 4 formulates the contract
design, Section 5 discusses the performance evaluation, and
Section 6 concludes the paper.

2. Related Work

Te percentage of studies involving Industrial Internet of
Tings (IIoT) applications has signifcantly increased in
recent years, including in the areas of smart grids [15] and
supply chains [16]. Te former investigates the use of IIoT to
improve task resilience in the event of accidents, while the
latter explores the potential of IIoT to enhance task ef-
ciency. In particular, the study presented in [17] proposes
a cloud-based solution for detecting patients in their homes.

Te above studies usually assume that machine learning
models are trained in an ideal environment, which is not
always the case. Tus, it is necessary to investigate decen-
tralized learning schemes, such as federated learning (FL),
for industrial applications. FL was designed to enable ef-
cient machine learning among multiple computing nodes
while ensuring data owner privacy and security. In the
context of FL, a privacy-preserving Byzantine-robust fed-
erated learning (PBFL) scheme based on blockchain was
proposed in [18], which achieves convergence and provides
privacy protection on diferent datasets. Additionally,
a compressed and privacy-preserving FL scheme in deep
neural network (DNN) architecture was proposed in [19] to
address the curse of dimensionality in FL.

FL has developed successful applications in various
felds, including autonomous driving car [20] and smart
home [21]. In particular, the study in [22] enabled the FL-
based diferential privacy algorithm to enhance the privacy
level of the feature in smart healthcare. Infuenced by
transmission efciency, the implementation of the data
transmission architecture has changed from the initial
central server to the edge server, which provides edge
computing [23] services locally to meet the demands of real
time, security, and privacy preservation. As such, the study
in [24] proposes a hierarchical edge-cloud framework to
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reduce the system resource requirements and data trans-
mission time, to satisfy efcient storage and rapid response.

However, existing works have primarily focused on user
privacy preservation or efcient problem-solving, rather
than incentive mechanism design. With the popularization
of FL tasks, designing an incentive mechanism to encourage
data owners to participate in FL has become increasingly
important. He et al. [25] propose a game theory-based in-
centive mechanism for collaborative security of FL in an
energy blockchain environment, which can discourage
nodes from taking malicious behaviors in iterative training
of FL. Chen et al. [26] devise a multifactor reward function
based on reputation, model accuracy, and reward rate, which
ensures that data owners with a high reputation and high
model accuracy will receive more rewards. Te study in [27]
selected users with bids and contributions through a reverse
auction mechanism. Reputation was integrated into in-
centives in studies such as [28]. Te study in [29] used deep
reinforcement learning to design a learning-based incentive
mechanism.

Currently, the contract theory approach of FL has been
well explored in the literature. Xu et al. [30] present
a contract-based dynamically federated learning optimized
personal deep learning scheme, which enabled edge devices
to reach a consensus on the optimal weights of personalized
models. Also, the study in [31] designed a multidimensional
contract approach. Te study in [32] jointly considered data
quality and computation efort. Privacy concerns have led to
the emergence of contracts that incorporate privacy cost
considerations, such as in the study presented in [33]. Te
study in [34] designed a two-period incentive mechanism
that allowed for extension to multi-periods. Li et al. [35]
develop a novel incentive-based federated learning frame-
work, where a contract-based reputation mechanism and
a Stackelberg-based interclient incentive mechanism are
incorporated. Chen et al. [36] propose a contract-based
edge-assisted federated learning model-sharing incentive
mechanism, which maximize the EFL model consumers’
proft and ensure the quality of training services. Feng et al.
[37] incorporate local diferential privacy into contract
theory-based private data trading to support personalized
privacy preferences. However, most of these incentive
mechanisms consider worker contribution based on the data
quantity without focusing on data updates in FL.

According to the work of [38], the age of information
(AoI) has been considered in FL tasks, and a hierarchical
incentive mechanism framework has been proposed in [39]
to improve the efciency between cloud and terminal. In this
paper, we propose an FL-based single contract to dual
contract hierarchical incentive mechanism that introduces
a dual contract to solve the worker data multifaceted issue
contribution problem. We model data quantity along with
data update frequency to design incentives that take into
account worker efort and appropriate proft. By adding the
hierarchical framework, we aim to improve the efciency of
the federated learning task.

Table 1 provides a comparison of the prominent features
of this paper’s incentive mechanism with other studies
discussed in this paper.

3. System Model and Problem Formulation

3.1. System Model. Our system model consists of requester,
model owner, and worker. Te requester publishes its model
training task requirements to the model owner through the
corresponding platform and associates with them by the
contract. Te model owner completes the tasks by collecting
relevant gradients from the worker who has signed contracts
with them, and workers train the model on data in response
to tasks. Te specifc details are given in Figure 1.

Our federated learning model is based on a three-tiered
architecture of terminal-to-edge-to-cloud. When uploading
parameters at the terminal, they are not directly transmitted
to the cloud server. Instead, the parameters are frst sub-
jected to edge aggregation on the edge server located at the
network edge and close to the terminal device. Among these,
the edge nodes in the blockchain will select the most rep-
utable ones as the consensus committee to check the gra-
dient parameters uploaded by the edge devices, and a leader
is responsible for collecting qualifed gradient parameters.
Ten, the edge-aggregated parameters are uploaded to the
cloud server for global model aggregation and updating.
When uploading global parameters to the cloud, they are not
directly transmitted to the terminal. Instead, the global
parameters are frst subjected to edge on the edge server
located at the network edge and close to the terminal device.
Subsequently, the global parameters are transmitted from
the edge server to the terminal. Unlike the traditional ter-
minal-to-cloud architecture, our architecture performs edge
aggregation at the edge layer, reducing unnecessary updates
and communications, thereby reducing the number of
communications for global aggregation and updates be-
tween terminals and remote cloud servers, energy con-
sumption during communication and latency. Tis
improves the computational and communication efciency
of the federated learning model.

We assume that the requester initiates a task that in-
volves a set F � 1, . . . , f, . . . , F􏼈 􏼉 of F model owners. As
tasks are initiated, each model owner initiates a task that
involves a set G � 1, . . . , g, . . . , G􏼈 􏼉 of G workers in a syn-
chronous task that spans a fxed duration T, with multiple
instances of model training requests. In this scenario, the
tasks issued by the model owner follow the Poisson process
[38]. Unlike in conventional FL studies where workers
collect data after request arrival, we now consider the

Table 1: Te comparison of the prominent features of this paper’s
incentive mechanism with other studies.

Technique Contribution of users Layered
[25, 26] Stackelberg Data quantity ✕
[27, 28] Auction Data quantity ✕
[29] Reinforce Data quantity ✕
[31] Contract Data quantity ✕
[33] Contract Task expenditure + privacy risk ✕
[34] Contract Data quantity ✕
[36] Contract Data quantity ✓
[38] Contract Data freshness ✕
[39] Contract Data quantity ✓
Our Contract Data quantity + data freshness ✓
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possibility of data caching due to service delays. Workers
periodically update the cached data and proceed to train the
model on the gateway. In a privacy-preserving FL method
adopting diferential privacy encryption, only the model
parameters are sent to their correspondingmodel owners for
aggregation. Te model owners generate a consensus
committee and leader based on their reputation with the
requester and proceed to verify the legal gradient and
perform on-chain operations. Finally, the leader submits the
aggregation gradient to the requester.

3.2. Problem Formulation. In the FL network, the single
contract of the incentive mechanism is comprised of
Z1 � φm: 1≤m≤M􏼈 􏼉, which represents M types of will-
ingness to participate for model owners. Each model owner
type φm can be characterized by a probability mass function

P(φm), where the types are indexed in nondecreasing order
such that 0<φ1 ≤ · · · ≤φm ≤ · · · ≤φM. Similarly, the quality
of gradient contribution is represented by
Z2 � Vm: 1≤m≤M􏼈 􏼉, where the quality of gradient types is
indexed in nondecreasing order such that
0<V1 ≤ · · · ≤Vm ≤ · · · ≤VM. Te model owner type refects
each model owner’s level of willingness to participate and
determines the quality of the collected gradient, whereby
model owners who are more willing to participate collect
higher-quality data. We defne the utility function of the
requester for a model owner with type m as follows:

wm φm( 􏼁 � σ1φm log 1 + Vm( 􏼁 − Rm, (1)

where Rm represents the reward paid by the requester to the
model owner and σ1 is the conversion parameter from
gradient performance to profts. Te function represents the
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Figure 1: System model.
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diminishing returns of gradient quality on model accuracy
and is concave.

Te dual contract of the incentive mechanism has L1 �

cim
: 1≤m≤M􏽮 􏽯 of M unit data collection cost types be-

longing to model owner i. Te worker type cim
can be

characterized by a probability mass function p(cim
), where

the worker types are indexed in a nondecreasing order
0< ci1
≤ · · · ≤ cim

≤ · · · ≤ ciM
. Te data quantity contribution

is denoted as L2 � qim
: 1≤m≤M􏽮 􏽯, where the data quantity

types are indexed in a decreasing order
qi1
≥ · · · ≥ qim

≥ · · · ≥ qiM
> 0. Immediately after, there has

L3 � Qm
cij

: 1≤m≤M􏼚 􏼛 of M data update cost type be-

longing to the unit data collection cost type cij
, where the

data update cost types are indexed in a nondecreasing order
0<Q1

cij

≤ · · · ≤Qm
cij

≤ · · · ≤QM
cij

. Similarly, the data update

frequency is denoted as L4 � ηm
cij

: 1≤m≤M􏼚 􏼛, where the

data update frequency types are indexed in a decreasing
order η1cij

≥ · · · ≥ ηm
cij

≥ · · · ≥ ηM
cij

> 0. Te type of unit data

collection cost refects each worker’s level of data collection
willingness to participate and determines the quantity of
data collected, i.e., workers with lower unit data collection
costs are more willing to collect data.Te cost of data update
is also not the same, leading to diferent data update will-
ingness, i.e., workers with lower data update cost are more
willing to update data.

Te type m cost of data update type belonging to the unit
data collection cost type cij

denoted by Qm
cij

can be expressed
as follows:

Q
m
cij

� cim
+ z

T
+ z

S
􏼐 􏼑qim

, (2)

where zT refers to the energy consumed for unit data
transmission from the IIoT network to the gateway and zS

refers to the energy consumed for unit data caching [40].
Te type m worker utility of data quantity denoted by ρm

can be expressed as follows:

ρm cim
􏼐 􏼑 � σ2 log 1 + 9qm( 􏼁 − rm, (3)

where qm and rm represent the amounts of data used to train
the model and reward from the i model owner of worker m,
respectively. Moreover, σ2 and 9 represent the conversion
parameter from data quantity performance to profts. Te
diminishing returns of data quantity are represented by
a concave function.

Te type m worker utility of data update frequency
denoted by χm can be expressed as follows:

χm Qm( 􏼁 � σ3 sa log 1 + αηm( 􏼁 + sb −
ηm

2

β
+ ϑ􏼠 􏼡􏼠 􏼡 − km,

(4)

where sa and sb refer to the weighted preference for the data
freshness and service delays, respectively. In addition, sa +

sb � 1 and sa, sb ∈ [0, 1]. α represents calibratable system
model parameters that determine the data freshness on

model accuracy. β and ϑ are calibratable system model
parameters that determine the service delays on model
accuracy. σ3 represents the conversion parameter from
update frequency performance to profts. Te data freshness
is ft by a monotonically increasing concave function
showing incremental return decreases with the data update
frequency. Te service delay is ft by a monotonically de-
creasing concave function showing the decline rate of return
decreases with the data update frequency.

In our hierarchical incentive mechanism design, we take
into account the contract formulated by the requester to
obtain an FL-basedmodel from themodel owner. In order to
gather gradients for the relevant data quality, the model
owner has the fexibility to adjust za and zb to accommodate
varying preferences for data quantity and update frequency,
as well as sa and sb to cater to varying preferences for data
freshness and service delays.Tese adjustments are crucial to
incentivize workers to participate in the task.

4. Contract-Theoretic Incentive
Mechanism Design

In this section, the requester incentivizes the model owner to
collect models with a single contract that takes into account
data quality, while the model owner incentivizes workers to
train the model with a dual contract that considers both data
quantity and freshness. We begin by studying the single
contract of a representative model owner and then studying
the dual contract of a representative worker. Ten, we
discuss the conditions for contract feasibility and relax the
constraints to derive the optimal contract.

4.1. SingleContract. For ease of notation, we study one of the
model owners as a representative for now. Te model owner
of type m utility maximize problem is denoted by Um as
follows:

max
Rm,Vm( )

Um � φmRm − CVm, (5)

where Vm refers to the quality of the gradient collected, Rm

refers to the contract rewards from the requester, and C

represents the cost incurred per unit quality of the gradient
collected. In the formulation of contract theory, each model
owner has a bundle Rm, Vm􏼈 􏼉 that maximizes its utility Um.

From (1), the requester utility maximization function
denoted by c1 can be expressed as follows:

c1 � 􏽘

M

m�1
wm φm( 􏼁

� 􏽘
M

m�1
NP φm( 􏼁 σ1φm log 1 + Vm( 􏼁 − Rm( 􏼁,

(6)

where P(φm) refers to the proportion of model owner type
m, 􏽐

M
m�1P(φm) � 1, N refers to the number of model

owners, and Rm refers to the reward to each model owner of
type m for its gradient collection eforts. For ease of ref-
erence, we refer the readers to Table 2 for commonly used
notations.
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To ensure the feasibility of the contract, if and only if
satisfy the following constraints.

Defnition 1 (individual rationality (IR)). Each model owner
participates in the task when they can get the positive utility, i.e.,

Um � φmRm − CVm ≥ 0. (7)

Defnition 2 (incentive compatibility (IC)). Te utility of
each model owner can be maximized if and only if they
choose the contract design for its type, i.e.,

φmRm − CVm ≥φzRz − CVz, m≠ z. (8)

To guarantee a feasible contract, we have to deal with M

IR constraint and M(M − 1) IC constraint to reduce and
relax conditions.

Lemma 3. For any feasible contract, we have Rm ≥Rz if and
only if φm ≥φz, m≠ z, ∀m, z ∈ 1, . . . , M{ }.

Proof. Using the IC constraint in Defnition 2, we frst prove
if φm ≥φz, it follows Rm ≥Rz.

As such, we have

φmRm − CVm ≥φmRz − CVz and

φzRz − CVz ≥φzRm − CVm.
(9)

Ten, we add these two inequalities

φmRm + φzRz ≥φmRz + φzRm. (10)

By swapping left and right, we can obtain

φmRm − φzRm ≥φmRz − φzRz,

Rm φm − φz( 􏼁≥Rz φm − φz( 􏼁.
(11)

When φm − φz ≥ 0, it follows Rm ≥Rz. Likewise, from the
IC constraints, we have

φm Rm − Rz( 􏼁≥φz Rm − Rz( 􏼁. (12)

When Rm ≥Rz ≥ 0, it follows φm ≥φz. Lemma 3 is
proven. □

Lemma 3 implies that model owners with a higher
willingness to participate φ to collect the higher quality of
gradient V, and the more rewards R will be obtained. As
such, the contract bundles are designed such that higher
gradient quality contributed translate to higher rewards. As
such, a feasible contract establishment must have the nec-
essary condition for the following monotonicity conditions.

Theorem 4 (monotonicity). A feasible contract must satisfy
the following conditions:

0≤R1 ≤ · · · ≤Rm ≤ · · · ≤RM,

0≤V1 ≤ · · · ≤Vm ≤ · · · ≤VM.
􏼨 (13)

Next, we further relax the IR and IC constraints. In-
tuitively, the maximum utility model owner incurs the
highest quality of data, i.e., the type M model owner.

Lemma 5 (reduce single-contract IR constraints). If the IR
constraints of model owner type 1 are satisfed, the other IR
constraints will also remain the same.

Proof. According to the IC constraints and conditions
φ1 ≤ · · · ≤φm ≤ · · · ≤φM, we have

φiRi − CVi ≥φiR1 − CV1 ≥φ1R1 − CV1. (14)

As such, if the IR constraint of model owner type 1 is
satisfed, the type m, m ∈ 1, . . . , M{ }, IR constraints are
automatically satisfed. □

Lemma 6 (reduce single-contract IC constraints). Te
constraints can be reduced to local down incentive constraints
(LDIC).

Proof. Consider three model owner types, where
φm−1 ≤φm ≤φm+1. Te two LDICs, i.e., constraints between
type m and type m − 1 model owners, are as follows:

Table 2: Table of commonly used notations.

Notations Description
φ Model owner’s level of willingness
V Model owner gradient quality contribution
C Unit cost of gradient collection
q Worker data quantity contribution
η Worker data update frequency contribution
c Unit cost of data collection
Q Te cost of data update
R Model owner contract reward
r Worker data collect contract reward
k Worker data update contract reward

σ1, σ2, σ3
Model owner conversion parameter from data quality and worker conversion

parameter from data quantity and data update frequency
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φm+1Rm+1 − CVm+1 ≥φm+1Rm − CVm and

φmRm − CVm ≥φmRm−1 − CVm−1.
(15)

It can be obtained from Lemma 3 that when Rm ≥Rz, it
follows φm ≥φz, and we can rewrite LDICs as follows:

φm+1 Rm − Rm−1( 􏼁≥

φm Rm − Rm−1( 􏼁≥C Vm − Vm−1( 􏼁, and

φm+1Rm+1 − CVm+1 ≥

φm+1Rm − CVm ≥φm+1Rm−1 − CVm−1.

(16)

As such, we have

φm+1Rm+1 − CVm+1 ≥φm+1Rm−1 − CVm−1. (17)

As such, if the IC constraint applies to model owners of
type m, it will also apply to model owners of type m − 1. Tis
process can be extended down from type m − 1 to model
owners of type 1, i.e., all LDICs remain the same, so we can
rewrite that as follows:

φm+1Rm+1 − CVm+1 ≥φm+1Rm−1 − CVm−1

≥ · · ·

≥φm+1R1 − CV1.

(18)

We can fnd that if the local upward incentive constraint
(LUIC) holds, all UICs are also satisfed. From the mono-
tonicity condition in Teorem 4, LDIC also implies a local
upward incentive constraint (LUIC) as follows:

φm−1Rm − CVm ≤φm−1Rm−1 − CVm−1. (19)

As such, the IC constraints can be reduced to LDIC
constraints, and it also guarantees that all UIC and DIC
constraints hold.

With the constraints relaxed, we can derive a tractable set
of sufcient conditions for the feasible contract. □

Theorem 7. A feasible contract must meet the following
sufcient conditions:

φ1R1 − CV1 ≥ 0,

φmRm − CVm ≥φm−1Rm−1 − CVm−1.
(20)

From the optimization contract established, we take V as
the only infuencing factor to study gradient collection. As
such, the optimal rewarding scheme can be summarized in
the following theorem.

Theorem 8. For a known set of data quantity V satisfying
0≤V1 ≤ · · · ≤Vm ≤ · · · ≤VM, the optimal reward is given by

R
∗
m �

1
φm

CVm, if m � 1,

Rm−1 −
1
φm

CVm−1 +
1
φm

CVm, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

Proof. We use contradiction to validate this theorem. Tere
exists a RΓ that yields greater proft for the model owner,
meaning that Teorem 7 is incorrect, i.e., c1(RΓ)≥ c1(R∗).
Tis implies there exists at least a t ∈ 1, 2, . . . , M{ } that
satisfes the inequality RΓt ≤R∗t .

According to Lemma 6, we have

R
Γ
t ≥R
Γ
t−1 −

1
φt

CVt−1 +
1
φt

CVt. (22)

From Teorem 7, we also can get

R
Γ
t � R
Γ
t−1 −

1
φt

CVt−1 +
1
φt

CVt. (23)

From (22) and (23), we can deduce that
RΓ1 ≤R∗1 � 1/φ1CV1. Tis violates the IR constraint. Tere-
fore, there does not exist the rewards RΓ in the feasible
contract that yields greater proft for the model owner. □

Substitute (10) into (6), the variable of each data quantity
Vm can be derived by separately optimizing each V∗m as
follows:

V
∗
m � argmax

Vm

P φm( 􏼁 σ1φm log Vm + 1( 􏼁( 􏼁

− 􏽘
M

m�1
P φm( 􏼁

1
φm

CVm + Θm 􏽘

M

d�m+1
P φt( 􏼁⎛⎝ ⎞⎠,

(24)

where Θm � 1/φmCVm − 1/φm+1CVm andΘM � 0. Te de-
rived solutions are feasible when they satisfy the mono-
tonicity constraint. Otherwise, we adopt the “Bunching and
Ironing” algorithm [39] to adjust the solutions iteratively
(see Algorithm 1).

4.2. Dual Contract. For ease of notation, we study one of the
workers as a representative for now. Te worker of type m

data collect and data update frequency utility maximize the
problem denoted by um and λm as follows:

max
rm,qm( )

um � rm − cmqm, (25)

max
km,ηm( )

λm � km − Qmηm, (26)

where rm represents the contract reward from data quantity
and km represents the contract reward from data update
frequency. In the formulation of contract theory, each
worker has a bundles rm, qm􏼈 􏼉 and km, ηm􏼈 􏼉 that, re-
spectively, maximizes its utility um and λm.

From (3) and (4), the model owner utility is expressed as
follows.

For the data quantity performance proft c2,

c2 � 􏽘
M

m�1
ρm cm( 􏼁

� 􏽘
M

m�1
np cm( 􏼁 σ2 log 1 + qm( 􏼁 − rm( 􏼁.

(27)

For the data update frequency performance proft c3,
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c3 � 􏽘
M

m�1
χm Qm( 􏼁

� 􏽘

M

m�1
np Qm( 􏼁 σ3 sa log 1 + αηm( 􏼁 + sb −

ηm
2

β
+ ϑ􏼠 􏼡􏼠 􏼡 − km􏼠 􏼡,

(28)

where n represents the number of the worker participating in
the task and p(ωm) denotes the proportion of m type
worker. In the formula of contract theory, qm represents the
data quantity provided by workers, ηm represents the data
update frequency provided by workers, and the quality of
data is equal to the weighted preference of data quantity and
data update frequency.

Overall, the utility of the worker is denoted by Lm that
can be expressed as follows:

Lm � zaum + zbλm, (29)

where za and zb represent the weighted preference for data
quantity and data update frequency, respectively. In addi-
tion, za + zb � 1 and za, zb ∈ [0, 1].

Also, for the data quantity and data update frequency
contract, each contract must satisfy the following
constraints.

Defnition 9 (individual rationality (IR)). Each worker
participates in the task if and only if its utility is not less than
zero, i.e.,

um � rm − cmqm ≥ 0, (30)

λm � km − Qmηm ≥ 0. (31)

Defnition 10 (incentive compatibility (IC)). Each worker of
type m only chooses contracts designed for its type, not any
other contract to maximize utility, i.e.,

rm − cmqm ≥ rz − czqz, m≠ z, (32)

and

km − Qmηm ≥ kz − Qzηz, m≠ z. (33)

However, this means that we have to deal with 2 M IR
constraints and 2 M(M − 1) IC constraints, both of which
are nonconvex. As such, we continue to reduce and relax the
conditions that guarantee the contract is feasible.

Lemma 11. For any feasible contract, we have if
cm ≤ cz, Qm ≤Qz, it follows qm ≥ qz, ηm ≥ ηz, m≠ z,
∀m, z ∈ 1, . . . , M{ }.

Proof. Using the IC in Defnition 10, we have
rm − cmqm ≥ rz − cmqz and

rz − czqz ≥ rm − czqm.
(34)

Ten, we add these two inequalities
czqm + cmqz ≥ cmqm + czqz. (35)

Tidying it up, we can get
cm − cz( 􏼁 qm − qz( 􏼁≥ 0. (36)

When cm ≤ cz, it follows qm ≥ qz. Likewise, we can prove
if Qm ≤Qz, it follows ηm ≥ ηz in this way. □

Lemma 11 implies that workers with the lower unit data
collection cost c collect the higher data quantities q and the
more reward r. Similarly, workers with the lower cost of data
update Q to update the higher data and more rewards k will
be obtained. As such, the contract bundles are designed such
that higher data quantities and data update frequency
contribute translate to higher rewards. Also, a feasible
contract has the necessary conditions for the following
monotonicity conditions.

Theorem 12 (monotonicity). Te feasible dual contract
must satisfy the following conditions:

q1 ≥ · · · ≥ qm ≥ · · · ≥ qM,

r1 ≥ · · · ≥ rm ≥ · · · ≥ rM,
􏼨 (37)

and
η1 ≥ · · · ≥ ηm ≥ · · · ≥ ηM,

k1 ≥ · · · ≥ km ≥ · · · ≥ kM.
􏼨 (38)

Next, we further relax the IR and IC constraints. In-
tuitively, the maximum utility worker is the worker that
incurs the highest quality of data, i.e., the type M worker.

(1) Initialization: Let V∗m � arg maxVm
Gm(Vm),∀m ∈ 1, . . . , M{ }

(2) while Te set of Vm � V∗m􏼈 􏼉 violates the monotonicity constraint, do
(3) Find an infeasible subsequence V∗i , V∗i+1, . . . , V∗j􏽮 􏽯, where V∗i ≤ · · · ≤V∗j and i< j;
(4) Set V∗l � arg maxV􏽐

j
t�iGt(V),∀ l ∈ i, . . . , j􏼈 􏼉;

(5) end while
(6) Return Te feasible set V∗ � V∗m􏼈 􏼉, m ∈ 1, . . . , M{ }

ALGORITHM 1: “Bunching and Ironing” adjusted algorithm.
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Lemma 13 (reduce dual contract IR constraints). If the IR
constraints of worker type 1 are satisfed, the other IR con-
straints will also remain the same.

Proof. In the data collection stage, according to the IC
constraints in Defnition 10 and conditions
c1 ≥ · · · ≥ cm ≥ · · · ≥ cM, we have

ri − ciqi ≥ r1 − ciq1 ≥ r1 − c1q1. (39)

In the data update stage, the worker data update cost Q is
satisfed Q1 ≥ · · · ≥Qm ≥ · · · ≥QM, and we have

ki − Qiηi ≥ k1 − Qiη1 ≥ k1 − Q1η1. (40)

As such, if the IR constraint of worker type 1 is satisfed,
the other IR constraints are automatically satisfed. □

Lemma 14 (reduce dual contract IC constraints). Te
constraints can be reduced to local down incentive constraints
(LDIC).

Proof. In the data collection stage, consider three worker
types, where cm−1 ≥ cm ≥ cm+1. Te two LDICs, i.e., con-
straints between owners of type m and type m− 1, are as
follows:

rm+1 − cm+1qm+1 ≥ rm − cm+1qm, and

rm − cmqm ≥ rm−1 − cmqm−1.
(41)

It can be obtained from Lemma 11 that when cm ≤ cz, it
follows qm ≥ qz. As such, we can rewrite LDICs as follows:

cm−1 qm−1 − qm( 􏼁≥

cm qm−1 − qm( 􏼁≥ rm−1 − rm.
(42)

Tidy it up, we have

rm+1 − cm+1qm+1 ≥

rm − cm+1qm ≥ rm−1 − cm+1qm−1.
(43)

As such, we have

rm+1 − cm+1qm+1 ≥ rm−1 − cm+1qm−1. (44)

If the IC constraint in Defnition 10 applies to workers of
type m, it will also apply to workers of type m − 1. Tis
process can be extended down from type m − 1 to workers of
type 1, i.e., all LDICs remain the same, and we can rewrite
that as follows:

rm+1 − cm+1qm+1 ≥ rm−1 − cm+1qm−1

≥ · · ·

≥ r1 − cm+1q1.

(45)

We can fnd that if the local upward incentive constraint
(LUIC) holds, then all UICs are also satisfed. From the
condition in Teorem 12, if rm ≥ rm−1, LDIC also implies
a local upward incentive constraint (LUIC) as follows:

rm − cm−1qm ≤ rm−1 − cm−1qm−1. (46)

Likewise, we can prove the data update contract in this
way. As such, we have shown that the IC constraints in
Defnition 10 can be reduced to LDIC constraints since it
also guarantees that all UIC and DIC constraints hold. □

With the constraints relaxed, we can derive a tractable set
of sufcient conditions for the feasible contract.

Theorem 15. A feasible contract must meet the following
sufcient conditions:

rM − cMqM ≥ 0,

kM − QMηM ≥ 0,

rm−1 − cm−1qm−1 ≥ rm − cmqm,

km−1 − Qm−1ηm−1 ≥ km − Qmηm,

􏽘

M

m�1
zarm + zbkm( 􏼁≤R

∗
m,

􏽘

M

m�1
zaqm + zbμqmηm( 􏼁 � V

∗
m.

(47)

Teorem 15 implies that the weighted quality of data
quantity and data update frequency is equal to the data
quality required in the single contract, where we add
a quality conversion parameter μ from data update fre-
quency to data quantity. Te reward obtained by the
weighted data quantity and data update frequency is smaller
than the reward obtained in the single contract. Tereafter,
we take c and η as the only infuencing factor to study data
collection and data update, respectively. As such, the optimal
rewarding scheme can be summarized in the following
theorem.

Theorem 16. For a known set of data quantity q satisfying
q1 ≥ · · · ≥ qm ≥ · · · ≥ qM in a feasible contract, the optimal
reward is given by

r
∗
m �

cmqm, if m � M,

rm−1 − cm−1qm−1 + cm−1qm−1, otherwise.
􏼨 (48)

Similar, for a η satisfying η1 ≥ · · · ≥ ηm ≥ · · · ≥ ηM in
a feasible contract, the optimal reward is given by

k
∗
m �

Qmηm, if m � M,

km−1 − Qm−1ηm−1 + Qm−1ηm−1, otherwise.
􏼨 (49)

Proof. We adopt the proof by contradiction to validate this
theorem. We frst assume that there exists a rΓ that yields
greater proft for the worker, meaning that Teorem 15 is
incorrect, i.e., δ1(rΓ)≥ δ1(r∗). Tis implies there exists at
least a x ∈ 1, 2, . . . , M{ } that satisfes the inequality rΓx ≤ r∗x.

According to Lemma 13 and Teorem 15, we have

r
Γ
x ≥ r
Γ
x−1 − cxqx−1 + cxqx, (50)

r
Γ
x � r
Γ
x−1 − cxqx−1 + cxqx. (51)
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From (50) and (51), we can deduce that rΓ1 ≤ r∗1 � c1q1.
Tis violates the IR constraint. Terefore, there does not
exist the rewards cΓ in the feasible contract that yields greater
proft for the model owner. Likewise, we can prove the (26)
in this way. □

Substitute (25) into (16), the variable of each data
quantity qm can be derived by separately optimizing each q∗m
as follows:

V
∗
m � argmax

Vm

P ϕm( 􏼁 σ1ϕm log Vm + 1( 􏼁( 􏼁

− 􏽘
M

m�1
P ϕm( 􏼁

1
ϕm

CVm + Θm 􏽘

M

d�m+1
P ϕt( 􏼁⎛⎝ ⎞⎠.

(52)

Similarly, substitute (49) into (28), the variable of each
data update frequency ηm can be derived by separately
optimizing each η∗m as follows:

η∗m � argmax
ηm

p Qm( 􏼁 σ3 sa log 1 + αηm( 􏼁 + sb −
ηm

2

β
+ ϑ􏼠 􏼡􏼠 􏼡􏼠 􏼡

+ Qm−1ηm 􏽘

m−1

t�1
p Qt( 􏼁 − Qmηm 􏽘

m

t�1
p Qt( 􏼁.

(53)

Te derived solutions are feasible if and only if they
satisfy the monotonicity constraint. Otherwise, we can re-
place V with q or η using the Bunching and Ironing
algorithm.

5. Performance Evaluation

In this section, we evaluate the feasibility of the single
contract and the dual contract and the optimality of our
designed dual contract-based incentive mechanism. Ten,
we evaluate the data quantity and data update frequency
changes under the diferent preferences. Also, we evaluate
the utility of workers, the utility of model owners, and social
welfare changes under the diferent worker types.

Te key simulation parameters are provided in Table 3,
and we assume that there are 100 workers to research our
incentive mechanism, with varying collection costs qm

modeled by the normal distribution. We adopt the k-means
clustering method to derive M� 5 clusters of workers and
M� 8 clusters of model owners. We keep sa � sb � 0.5, i.e.,
both data freshness and service delays are of equal impor-
tance to the model owner.

5.1. Contract Optimization. To study the contract feasibility,
we set σ1 � 100, σ2 � 20, and σ3 � 70.

For the single contract of the incentive mechanism,
Figure 2 shows that both the quality of the gradient con-
tributed and rewards for the model owners increase as the
model owner’s willingness to participate increases. Te
monotonicity constraint in Teorem 4 is satisfed. Also,
Figure 3 shows that all model owner utilities are positive and
can maximize utility when they choose the contract design
for its type. Te IR constraint in Defnition 1 and the IC
constraint in Defnition 2 are satisfed.

Te dual contract of the incentive mechanism contains
two superimposed contracts. For the frst stage contract,
Figure 4 shows that both the data quantity contributed and
rewards for the workers decrease as the cost incurred per
unit quantity of the data collected increases. Te

monotonicity constraint in Teorem 12 is satisfed. Also,
Figure 5 shows that all worker utilities are positive and can
maximize utility when they choose the contract design for its
type. Te IR constraint in Defnition 9 and the IC constraint
in Defnition 10 are satisfed. Te workers collect more data
in the frst stage, i.e., the higher update costs in the second
stage. As such, Figure 6 shows that both the data update
frequency contributed and rewards for the workers increase
as the cost of the data update decreases. Te monotonicity in
Teorem 12 is satisfed. Also, Figure 7 shows that all worker
utilities are positive and can maximize utility when they
choose the contract design for its type. Te IR constraints in
Defnition 9 and IC constraints in Defnition 10 are satisfed.

5.2. Performance Comparison. To facilitate the analysis, we
consider one task as representative of the continuous task,
while the other tasks are similar. Terefore, our proposed
incentive mechanism can be applied to any number of
tasks in a continuous task with a fxed duration
T. Moreover, we take the example of the requester who
prefers data quantity with a set of values for σ2 � 5.9z2

a +

0.85za + 20.88 and σ3 � 6z2a − 11za + 75. Figure 8 illus-
trates the variations in the model owner’s utility as the
data quantity preference za changes. As expected, the
model owner’s utility increases as the data quantity
weighing za becomes higher, indicating a greater in-
clination toward the requester’s preference. Furthermore,
when za > 0.5, the value of za is equivalent to the model
owner’s willingness to participate φ in the single contract.
A higher za implies a greater willingness to participate.
Tis fnding validates that the model owner can adjust the
weights za and zb to accommodate the requester’s pref-
erence and own willingness to participate.

We present a comparison between the proposed in-
centive scheme and two other contract-based schemes: the
contract-based social maximization scheme (CS) and the
contract-based complete information scheme (CC) pre-
sented in [33]. Te CC scenario assumes that the model
owner has full knowledge of the cost types of each worker,
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while the CS scenario aims to maximize social welfare. We
observe from Figure 8 that the utility of model owners
cannot always be maximized under the single contract in
CC. On the other hand, the single contract in CS yields
similar results to the dual contract in terms of model
owner utility, which is consistently lower than that of the
proposed scheme. We attribute this diference in

performance to the second stage of the proposed contract,
where the average data update cost is smaller compared to
that of the CS and CC scenarios. Tis leads to a better
model owner utility under the proposed scheme com-
pared to the single contract in CS and CC. Furthermore,
the proposed contract also outperforms the single con-
tract in CA, as the efect of the second stage contract
improves its overall performance.

Overall, our results highlight the importance of con-
sidering a multistage contract in incentivizing workers for
collaborative data updates.

5.3.Managing theAoI-Service LatencyTrade-Of. In practice,
a model owner may have diferent preferences for varying
tasks. We vary the weights za and zb within the range [0.1,
0.9] to study the changes in data quantity and data update
frequency when the model owner preferences vary.
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Table 3: Table of key simulation parameters.

Simulation parameters Value

Gradient collect parameters: ϕ, C, and μ N(0.8, 0.01), 1.5, and
0.5

Data collect parameters: c and 9 N(0.7, 0.01) and 1
Data update parameters: α, β, ϑ, zT, and
zS 1, 100, 1, 0.015, and 0.04
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Figure 9 depicts the changes in the number of data
quantities as the preference towards za varies. As expected,
data quantities and the growth rate increase as za increases.
Figure 10 depicts the changes in data update frequency as the
preference towards za varies. As expected, the number of
data update frequencies decreases, and the rate of decline
increases as za increases.

5.4. Impact ofWorkerTypes. Figures 11–13 depict the system
performance concerning za under a diferent number of
worker types. When the number of za increases, both the

model owner and the workers obtain higher utilities. Be-
cause the collected quality of data improves, model owners
can obtain more utility for training the model and gaining
more rewards.Tus, social welfare is also improved. Also, we
found when the number of worker types increases, the utility
of the model owner decreases but the utilities of workers
increase.Te reason is that when the number of worker types
increases, it becomes more difcult for the model owner to
mine the information of the worker type and design the
corresponding contract. Terefore, the workers can extract
more rewards from the model owner.
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6. Conclusion

Tis paper presents a hierarchical incentive mechanism for
an FL-based system with caching where the models trained
by the workers are all based on their latest data and in-
vestigate the trade-of between data quantity and data update
frequency. Specifcally, we design a single contract to a dual
contract based on the model owner’s willingness to par-
ticipate and the gradient quality that the worker provides.
Our proposed mechanism uses contract theory to in-
centivize high-quality gradient updates from diferent types
of workers.

As a future research direction, we can explore superior
incentive mechanisms to improve FL efciency. Further-
more, by considering worker data quality in more aspects
and practical conditions limitations, this may involve in-
corporating other metrics, such as data completeness or
relevance or data correlation between diferent people into
the incentive mechanism design.
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