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Optimal maintenance decision for a sensor network aims to intelligently determine the optimal repair time. Te accuracy of the
optimal maintenance decision method directly afects the reliability and safety of the sensor network. Tis paper develops a new
optimal maintenance decision method based on belief rule base considering attribute correlation (BRB-c), which is designed to
address three challenges: the lack of observation data, complex system mechanisms, and characteristic correlation. Tis method
consists of two sections: the health state assessment model and the health state prediction model. Firstly, the former is ac-
complished through a BRB-c-based health assessment model that considers characteristic correlation. Subsequently, based on the
current health state, a Wiener process is used to predict the health state of the sensor network. After predicting the health state,
experts are then required to establish the minimum threshold, which in turn determines the optimal maintenance time. To
demonstrate the proposed method is efective, a case study for the wireless sensor network (WSN) of oil storage tank was
conducted. Te experimental data were collected from an actual storage tank sensor network in Hainan Province, China. Te
experimental results validate the accuracy of the developed optimal maintenance decision model, confrming its capability to
efciently predict the optimal maintenance time.

1. Introduction

Sensor networks comprise distributed, autonomous nodes
that sense environmental information and transmit it via
communication channels for processing and analysis [1].
Serving as essential tools for information collection and
transmission, sensor networks are capable of sensing me-
teorological data, water quality information, and so on in
environmental monitoring, thereby providing robust sup-
port for disaster early warning and resource management
[2]. In the realm of agriculture, sensor networks can monitor
parameters such as soil moisture and temperature to opti-
mize crop cultivation strategies [3]. In the industrial domain,
sensor networks have also become indispensable tools for
monitoring complex systems, such as oil tanks, liquid-fueled

launch vehicles, and trafc control [4]. By sensing various
environmental parameters, these networks provide crucial
data support to ensure the safety, reliability, and efciency of
the systems. However, as the size of the sensing network
continues to expand, the number of nodes and the node
failure rate increase, the stability and reliability of the net-
work are also afected [5]. Terefore, to ensure the smooth
operation of the network, it is crucial to maintain the sensing
network. Maintenance of a sensing network helps to ensure
that it can consistently provide high quality data, thus
avoiding faulty decisions and analyses. Since sensor net-
works usually consist of a large number of nodes, regular
maintenance of each node can be costly, so exploring op-
timal maintenance decisions for sensor networks can help
reduce maintenance costs. Most importantly, making
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optimal maintenance decisions can help extends the lifetime
of the network as well as ensures its proper operation in
complex environments [6].

Many researchers have made remarkable contributions
in various aspects of sensor network prediction and health
management, as well as the optimization of sensor network
performance. For instance, K. S. Hoong Ong et al. [7]
proposed a model-independent deep reinforcement
learning-based approach for predictive maintenance in edge
sensor networks, which addresses the challenge of handling
a large amount of sensor data and device state prediction.
Iqbal et al. [8] focused on underwater WSN, addressing
energy-efcient optimization and reliable data transmission
in underwater environments. Saeed et al. [9] applied extra
trees for fault diagnosis in WSN. Trough this ensemble
learning method, the accuracy and efciency of fault free
diagnosis were improved, and the training time was shorter.
Rajan et al. [10] introduced a defect-tolerant WSN fault
detection and node classifcation method using an adaptive
neuro-fuzzy inference system (ANFIS). Tis method im-
proved traditional fault detection strategies through a dis-
tributed adaptive mechanism, enhancing the robustness and
reliability of WSN. Chawra et al. [11] proposed a hybrid
metaheuristic-based wake-up scheduling scheme based on
the Memtic algorithm and Tabu search. Tis approach aims
to optimize coverage and connectivity in 3D wireless sensor
networks (3D WSNs), thereby enhancing their overall ef-
fciency. Although the above studies have made signifcant
progress in the prediction, health management, and per-
formance optimization of sensor networks, these methods
are often limited to specifc application scenarios and face
challenges in dealing with data scarcity, uncertainty, system
complexity, and environmental dynamics.Tis may result in
existing methods being unable to efectively address the
increased node failure rate and network stability issues in
large-scale networks.

Specifcally, in the current optimization of maintenance
decisions for sensor networks, researchers face two primary
challenges: a lack of sufcient observation data and complex
system mechanisms [8, 9]. With ongoing improvements in
themanufacturing industry, the reliability of sensors has also
been enhanced, leading to a decrease in instances of sensor
failures. However, this also implies that failure data available
for accurate maintenance decisions are relatively scarce. In
such cases, it is necessary to leverage additional information
from the sensor network to enhance the accuracy and re-
liability of maintenance decisions. Sensor networks bear the
responsibility of monitoring complex systems, distributed
across diferent locations and exhibiting various charac-
teristics. Te intricate system mechanisms introduce in-
terdependencies among sensor nodes and susceptibility to
external environmental changes, potentially resulting in
complex correlations and nonlinear relationships among
sensor data. Due to the broad and heterogeneous nature of
monitoring, traditional maintenance schedules based solely
on expert recommendations often prove overly conservative,
leading to unnecessary increases in maintenance costs.

Furthermore, the uncertainty and vagueness of expert
knowledge pose challenges in its application to maintenance
decision-making. To simultaneously reduce maintenance
costs and enhance the reliability of sensor networks, it is
crucial to address the aforementioned issues, particularly in
efectively utilizing limited data and uncertain expert
knowledge in optimizing maintenance decisions. By com-
prehensively considering multiple sources of information,
such as sensor data and system states, a more comprehensive
and accurate foundation can be provided for decision-
making. Terefore, there is an urgent need for a compre-
hensive approach that efectively utilizes limited data and
uncertain expert knowledge to address these challenges in
optimizing maintenance decisions for sensor networks.

To address the outlined challenges, the belief rule base
(BRB) system is explored as a potential solution in the
subsequent discussion. Developed by Yang et al. [12, 13], the
BRB expert system integrates fuzzy theory, IF-THEN rules,
and evidence theory, allowing it to handle indeterminate,
unclear, or incomplete information efectively [14]. Its su-
perior performance has led to applications across various
domains, including safety assessment, fault diagnosis, and
health state prediction. For instance, Xu et al. [15] designed
a new fault diagnosis model for marine diesel engines using
multiple BRB subsystems. He et al. [16] addressed the
challenge of belief rule combination explosion through an
interval construction BRB, and Feng et al. [17] enhanced the
interpretability of the BRB-based assessment model with
a new optimization approach. Incorporating observation
data and expert knowledge, BRB extend the information
source of sensor networks and aid in solving problems re-
lated to optimal maintenance decision-making in engi-
neering practice [18–20]. Furthermore, as a typical
prediction method, the Wiener process can predict the
system’s future state based on the current one, making it
widely used in life prediction, health state prediction, and
other felds due to its high adaptability in engineering ap-
plications [21]. However, infuenced by the complex envi-
ronment and the sensor mounting model, there are
correlations between the characteristics of the Wiener
process.Tat is to say, the characteristic has some redundant
information that is represented by the other characteristics,
and it will infuence the accuracy of the BRB model.

Terefore, this study introduces a new optimal main-
tenance decision model based on BRB-c and the Wiener
process. Te model consists of two key components: a BRB-
c-based health state assessment for evaluating the current
health of the sensor network and a Wiener process-based
prediction model for forecasting future health conditions.
Te initial structure and parameters of the assessment
model are decided determined with expert input [22].
However, due to the indeterminacy of expert knowledge,
an optimization model employing the projection co-
variance matrix adaptation evolution strategy (P-CMA-
ES) is utilized to simultaneously train the health state
assessment and prediction models, improving estimation
accuracy.
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Te key contributions of this research are as follows:

(1) Te proposed model leverages limited failure data
more efectively by integrating BRB-c for health state
assessment, which is adept at processing uncertain
data. Tis approach allows for a more detailed and
accurate analysis, enhancing the model’s predictive
performance and decision-making quality.

(2) By combining the BRB-c-based assessment with the
Wiener process for prediction, the model integrates
multiple sources of information, including sensor
data, historical maintenance records, and expert
knowledge. Tis facilitates a comprehensive view of
the network’s health, enabling more informed and
reliable maintenance decisions.

(3) Te model explicitly accounts for the in-
terdependencies among sensor characteristics, uti-
lizing the BRB-c to capture and analyse these
correlations. Tis leads to a more nuanced un-
derstanding of the network’s behaviour, signifcantly
improving the accuracy and reliability of mainte-
nance predictions and decisions.

In addition, for sensor networks, a signifcant amount of
normal observation data can be collected, which can provide
enough information to understand the correlation between
characteristics. Compared to existing methods such as fault
tree analysis (FTA), reliability-centered maintenance
(RCM), and data-driven approaches, the developed method
based on correlation coefcient can handle the constraints of
the optimization model and reduce model complexity.
Terefore, the optimal maintenance decision model in-
corporates the correlation coefcient.

Te rest of this article is arranged in the following
parts. In Section 2, the problems in optimal maintenance
decision are formulated and a new one based on BRB-c is
built. Section 3 presents the inference process of the
model. Te optimization model for the developed
optimal maintenance decision model is proposed in
Section 4. A case study is carried out to demonstrate the
efectiveness of the model in Section 5. Section 6 provides
a conclusion.

2. Problem Formulation

In the optimal maintenance decision of the sensor networks,
there are two problems: the shortage of observation data and
the complicacy of the sensor network system. It should be
noted that the complexity of the sensor network can be
divided into two aspects: complex system mechanism and
characteristic correlation. Tese problems are formulated in
Subsection 2.1, and then the construction of the optimal
maintenance decision model based on BRB-c and Wiener
process is presented in Subsection 2.2.

2.1. Problem Formulation of Optimal Maintenance Decision
for Sensor Network. Te three problems in the optimal
maintenance decision for a sensor network can be listed as
follows:

Problem 1. In the health management of a sensor network,
the availability of observation data is crucial for constructing
an efective maintenance model. As electronic products,
including sensors, continue to improve in quality, their
reliability has signifcantly increased. Consequently, the
probability of sensor failures has decreased. However, even
with enhanced reliability, it is inevitable for sensors to ex-
perience failures over prolonged operation periods. As
a result, the amount of failure data that can be collected for
analysis remains limited. Tis scarcity of failure data poses
a signifcant challenge in accurately establishing an optimal
maintenance decision framework. Tis is the frst issue that
should be resolved.

Problem 2. Te primary function of a sensor network is to
monitor the state of a complex system. In the case of such
systems, the sensor deployment often spans a wide range,
leading to strong nonlinearity and interdependencies among
the observed information from diferent sensors. Conse-
quently, relying solely on expert knowledge to provide ac-
curate information for optimal maintenance decision-
making in sensor networks becomes nearly impossible.
Furthermore, expert knowledge itself is prone to un-
certainties, incompleteness, and vagueness, which further
complicates its practical application. Terefore, it becomes
necessary to incorporate additional sources of information
alongside expert knowledge to tackle these challenges.
Addressing this second problem is essential to enhance the
efectiveness and robustness of the optimal maintenance
decision-making process in sensor networks.

Problem 3. In engineering practice, the characteristics of
a sensor network are often infuenced by the complex en-
vironment in which they operate. Consequently, redundant
system information can be observed within these charac-
teristics, indicating that they are not independent but rather
exhibit correlations among themselves. Tis characteristic
correlation poses challenges to accurately represent system
information and, subsequently, afects the accuracy of the
optimal maintenance decision model. Tis paper highlights
the signifcance of considering characteristic correlation in
order to enhance the accuracy of optimal maintenance
decisions. By considering the interdependencies among the
characteristics, the aim is to improve the fdelity of themodel
and enable more precise maintenance decision-making in
sensor networks.

Tus, to solve these problems, an optimal maintenance
decision model can be constructed as follows:

Τopt(t) � Ξ Ψ x1(t), x2(t), . . . , xM(t)( ,Κthre, E, C( , (1)

where Τopt(t) is the optimal maintenance time of the sensor
network at time instant t. Ψ(·) and Ξ(·) are the nonlinear
assessment model and prediction model, respectively. Κthre
is the repair threshold that is determined by experts. Emeans
the expert knowledge used in the optimal maintenance
decision model. x1(t), x2(t), ..., xM(t) denote the observa-
tion data of the M characteristics of a sensor network. C
denotes the attribute correlation between the characteristics.
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2.2. Construction of OptimalMaintenance Decision for Sensor
Networks. Tere are two components in the optimal
maintenance decision for the sensor network: the health
state assessment model and the health prediction model.

As an expert system, BRB-c can combine observation
data and expert knowledge simultaneously. Te health state
assessment model contains more than one belief rules, and
the kth belief rule can be shown as follows:

Bk(t): If  x1(t)  is Ak
1 ∧x2(t)  is Ak

2 · · · ∧xM(t)  is Ak
M,

Then H(t)  is  D1, β1,k , . . . , DN, βN,k  ,

With  rule weight θk, characteristic weight δ1, δ2, . . . , δM,

and  the  correlation matrix C,

(2)

where H(t) is the estimated health state of the sensor
network at time instant t. Ak

1, Ak
2, · · · , Ak

M are the reference
points of M characteristics that are used to transform the
diferent observation information to a unifed framework
[23]. (D1, β1,k), . . . , (DN, βN,k)  denote the output of the
health state assessment model, where (D1, . . . , DN) are the
N reference degree of the assessment model and
(β1,k, . . . , βN,k) are the belief degrees that correspond to
them. θk denotes the kth weight of the rule, and
δ1, δ2, . . . , δM are the weights of the M characteristics [24].
Unlike the BRB model, the BRB-c model includes a new
parameter, which is the correlation matrix C used to handle
related attributes. Te matrix C can be represented as
follows:

C �

1 c x1, x2(  · · · c x1, xM( 

c x2, x1(  1 · · · c x2, xM( 

⋮ ⋮ ⋱ ⋮

c xM, x1(  c xM, x2(  · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Te BRB-c model enhances the consideration of attri-
bute correlations by incorporating a correlation matrix.
Based on system mechanisms and observational data, it
employs the correlation coefcient method for calculation of
interattribute correlations. Tis integration aims to improve
the accuracy and efciency of the BRB model, with the
specifc method of calculating attribute correlations detailed
in (5) of Section 3.1.

Ten, based on the estimated health state, the Wiener
process-based health state prediction model of the sensor
network in the future can be obtained by

XΦ � H(t) + ψ(t)Ξ(t) + φ(t)t, (4)

where Φ is the predicted health state in the future. ψ(t)

and φ(t) are the parameters of the Wiener process-based
at time instant t. Ξ(t) is the normal process of Brownian
motion.

Te optimal maintenance time can be determined by the
repair threshold Κthre and the predicted health state Φ.

3. Inference of the Optimal Maintenance
Decision for Sensor Networks

Tis section presents the inference process of the developed
optimal maintenance decision model. Tere are two parts in
the optimal maintenance decision model: the health state
assessment model and the health state prediction model,
presented in Subsection 3.1 and 3.2, respectively.

3.1. Health State Assessment Model Based on BRB-c. In the
assessment model, there are fve steps: attribute correlation
calculation, observation data transformation, belief rule
activation, belief rule combination, and health state
calculation.

Step 1: To address the infuence of the correlation
between the attributes in the BRB-c model, the at-
tribute correlation can be frst calculated by the
correlation coefcient method, and it can be shown as
follows:

c xi, xj  �

Cov xi, xj 
��������������
Var xi( Var xj 

 , i≠ j

1, i � j,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i, j � 1, · · · , M),

(5)

where xi and xj are the two attributes of the BRB-c
model. Cov(xi, xj) denotes the covariance and Var(xi)

and Var(xj) represent the variance.
Step 2: In engineering practice, diferent characteristics
have diferent data forms. Tus, the following formula
can be used to transform the observation data of the
network characteristics into a uniform form.

m
i
j(t) �

Ai(k+1) − x
∗
i (t)

Ai(k+1) − Aik

, j � k if Aik ≤x
∗
i (t)≤Ai(k+1),

x
∗
i (t) − Aik

Ai(k+1) − Aik

, j � k + 1,

0, j � 1, 2, · · · , | xi | , j≠ k, j≠ k + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where mi
j(t) is the degree of matching between the ith

characteristic and the jth reference point. Aik is the
reference point of the ith characteristic in the kth belief
rule and Ai(k+1) is the (k + 1)th belief rule. |xi| denotes
the quantity of the belief rule that comprises the ith
characteristic [25].
Step 3: Following the obtaining of the matching degree
of every reference point, the degree of matching be-
tween the input information of network characteristics
and the belief rule is calculated by the following:
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δi �
δi 1 − 

Tk

j�1,j≠ic xi, xj  

maxi�1,...,Tk
δi 

(7)

mk � 

Tk

i�1
m

i
k 

δi (8)

where mk is the matching degree of the input in-
formation to the kth belief rule. Tk represents the
number of the characteristic in the kth belief rule. δi

refers to the relative weight of the ith characteristic,
representing the importance of the characteristic in the
Tk characteristics [26]. It should be noted that the
characteristic correlation represents its objective aspect
and the characteristic weight denotes its subjective
aspect. Tus, the relative weight δi is a combined
coefcient.
Ten, based on the matching degree of the input in-
formation, the activation of the belief rules in the rule

base can be carried out in diferent degrees. Te degree
of matching of the belief rule can be obtained by

wk �
θkmk


L
l�1θlml

, k � 1, 2, · · · , L, (9)

where wk is the activation weight of the kth belief rule. L
refers to the number of the belief rule in the assessment
model of health state on the basis of BRB-c, and θk

denotes the rule weight that shows the relative im-
portance of the belief rule in the rule base [27].
Step 4: With the activation weight calculated, the health
state can be obtained in the rule output. As the output
of belief rules takes diferent forms, the health state
cannot be obtained directly and the fnal output can be
derived from the analytical format of the evidential
reasoning (ER) algorithm, which can be shown as
follows:

βn �
μ 

L
k�1 wkβn,k + 1 − wk

N
j�1βj,k  − 

L
k�1 1 − wk

N
j�1βj,k  

1 − μ 
L
k�1 1 − wk(  

(10)

μ � 
N

n�1


L

k�1
wkβn,k + 1 − wk 

N

j�1
βj,k

⎛⎝ ⎞⎠ − (N − 1)
L

k�1
1 − wk 

N

j�1
βj,k

⎛⎝ ⎞⎠⎤⎥⎥⎦

− 1

,⎡⎢⎢⎢⎢⎣ (11)

where βn is the combined output belief degree of nth
output reference degree Dn, L is the number of the
belief rule, and N the output reference degree [17].
Note that in this modeling process, the health state of
the sensor network varies, and the optimal mainte-
nance time should be determined by the health state at
current time.
Step 5: Te combined belief degree of the output ref-
erence degree represents the probability of the health
state at diferent reference degree. Te formula below
can be used to calculate the fnal health state.

e(x(t)) � 
N

n�1
u Dn( βn, (12)

where e(x(t)) is the estimation of health state at time
instant t by the gathered observation information of
sensor characteristics. u(Dn) represents the utility of
the reference degree that is given by experts and used to
measure the impact of diferent reference degrees on
the fnal estimated health state [28].

3.2. Wiener Process-Based Health State Prediction Model.
Wiener process is a traditional prediction method that has
been used widely in engineering practice [29, 30]. Wiener
process, a stochastic process, is widely used in various felds

such as engineering, fnance, and physics. It can be used to
predict the health state of a sensor network. Te Wiener
process estimates the future state of a sensor network based
on historical data and statistical analysis. By analysing
patterns and trends in the data, it is possible to predict the
evolution of the state of health, identify potential problems
or failures, and optimize maintenance strategies. In this
study, the Wiener process is used for the prediction of the
health state of the sensor network.

On the basis of the estimated health state under the
assessment model, a prediction can be made about the future
health state with the model as follows:

Φ ti(  � Θ ti− 1(  + φ ti( Δt + ψ ti( Ξ(Δt), (13)

where Φ(ti) and Θ(ti− 1) are the health states of the network
at time instant ti and ti− 1, respectively. Δt � ti − ti− 1. Ξ(Δt)
denotes the Brownian motion and Ξ(Δt) ∼ N(0,Δt). φ(ti)

and ψ(ti) represent the degradation coefcient and the
difusion coefcient of the health state prediction model,
respectively.

Te change of the health state can be obtained by the
following theorem.

Theorem 1. Te degradation coefcient and the difusion
coefcient of the health state prediction model can be esti-
mated as follows:
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φ ti(  �


T ti( )
j�1 ΔΦj


T ti( )
j�1 Δtj

, (14)

ψ ti(  � 

T ti( )

j�1

ΔΦj − φ ti( Δtj 
2

Δtj

, (15)

where ΔΦj is the jth change of the health state and T(ti) is the
number of the available health state of the sensor network at
time instant ti.

Proof. Te change of the state transition can be obtained by

ΔΦ � Φ ti(  − Φ ti− 1( 

� φ ti( Δt + ψ2
ti( Ξ(Δt).

(16)

Ten, the mean and the variance of the change of the
state transition can be obtained by the following formula:

E(ΔΦ) � φ ti( Δt, (17)

D(ΔΦ) � ψ2
ti( Δt. (18)

Tus, the change of the state transition obeys normal
distribution N(φ(ti)Δt,ψ2(ti)Δt). Te probability distri-
bution of ΔΦ can be profled as follows:

f(ΔΦ) �
1

����������

2πψ2
ti( Δt

 exp −
ΔΦ − φ ti( Δt( 

2

2ψ2
ti( Δt

 . (19)

Ten, the maximum likelihood function can be con-
structed and shown as follows:

L(ΔΦ) � 

T ti( )

j�1

1
����������
2πψ2

ti( Δtj

 exp −
ΔΦj − φ ti( Δtj 

2

2ψ2
ti( Δtj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(20)

lnL(ΔΦ) � −
1
2
ln 2πψ2

ti(  + 

T ti( )

j�1
−
1
2
lnΔtj 

− 

T ti( )

j�1

ΔΦj − φ ti( Δtj 
2

2ψ2
ti( Δtj

.

(21)

Te estimated degradation coefcient and the difusion
coefcient of the health state prediction model can be cal-
culated by

z ln L(ΔΦ)

zφ ti( 
� 0,

z ln L(ΔΦ)

zψ ti( 
� 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

Terefore, the estimated degradation coefcient φ(ti)

and the difusion coefcient ψ(ti) of the prediction model
can be acquired as the theorem.

With the predicted health state, the optimal maintenance
time of the sensor network can be provided using the fol-
lowing formula:

Toptimal �
tp, if  Φ tp <Φthre,

tp + tc, if  Φ tp ≥Φthre,

⎧⎪⎨

⎪⎩
(23)

where Toptimal is the optimal maintenance time and tc is the
time adjusted when the health status reaches or exceeds the
threshold. Φthre is the maintenance threshold that is de-
termined by experts with both considering sensor network
reliability and maintenance cost. □

Remark 1. It is worth noting that predicted health states
below the maintenance threshold may be afected by am-
bient noise. Terefore, in order to improve the accuracy of
determining the optimal maintenance time, the modeling
study involves the simultaneous monitoring of the predicted
health state at multiple consecutive moments. Tis approach
helps to mitigate the efects of ambient noise and provides
more reliable maintenance predictions. For example, only
when the health states at time instant t, t + 1, and t + 2 lower
than Φthre, the optimal maintenance time is determined as t.

4. Optimization Model for Optimal
Maintenance Decision Model

On account of the indeterminacy of the expert knowledge,
the original optimal maintenance decision model cannot
provide accurate maintenance time. Tus, this section
elaborates the construction of the optimization model for
the developed optimal maintenance decision model and
concludes its modeling process.

4.1. Optimization Model Based on P-CMA-ES. As an expert
system, BRB-c model is used to construct the assessment
model for health state. Te initial model is built by domain
experts, who provide reference points and values, output
belief degrees for the belief rules, rule weights, and attribute
weights. However, in the real environment, the initial model
cannot accurately assess the health state of the sensor net-
work due to the uncertainty and ambiguity of the expert
knowledge. Terefore, the model parameters need to be
adjusted according to the monitoring data to improve its
accuracy.

In addition, one of the greatest advantages of the BRB-c
model is that it is highly interpretable. Tis means that it is
possible to understand how the model arrived at the as-
sessment results, thus increasing the level of confdence in
the results. In order to maintain the interpretability of the
model, certain constraints can be introduced into the op-
timization model. Tese constraints can include limiting the
range of attribute weights, controlling the sum of rule
weights, and so on to ensure that the output of the model is
in line with expert knowledge and the actual situation.

Trough the analysis mentioned above, a conclusion is
reached that the optimization model of the established
health assessment model has a single optimization
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objective, which makes it a constrained one. In this study,
the P-CMA-ES algorithm, which is the foundation of the
suggested optimization model, is an intelligent optimiza-
tion algorithm that will solve the problem of gradient
difusion.

For the health assessment model, the optimization ob-
jective is to minimize the gap between the real health state
and the estimated health state. Terefore, the mean square
error (MSE) between the two can represent the accuracy of
the health assessment model. By using formula below, the
MSE can be computed.

MSE �
1
T



T

t�1
outputmodel − outputactual( 

2
, (24)

where outputmodel and outputactual are the output of the
developed model and the actual health state of the sensor
network, respectively. T denotes the amount of the obser-
vation data in the developed model.

In the health state assessment model based on BRB-c, the
parameters have physical meaning. Tus, in order to
guarantee their physical meaning in the modeling process,
some constraints need to be satisfed as (26)–(29).

Ten, the optimization model is presented as

minMSE θk, βn,k, δi ,

subject  to  the  constraints:
(25)

0≤ θk ≤ 1, k � 1, 2, · · · L, (26)

0≤ βn,k ≤ 1, n � 1, 2, · · · , N, k � 1, 2, · · · , L, (27)

0≤ δi ≤ 1, i � 1, 2, · · · , t − 1, (28)



N

n�1
βn,k ≤ 1, k � 1, 2, . . . , L, (29)

where the above parameters are the optimization parameters
in the optimization model. It should be noted that the
constraints can be adjusted according to the sensor network
status.

In the optimization model, it is worth noting that the
parameters in the health state prediction model are not
optimized, and they are calculated by the maximum like-
lihood estimation method as shown in Subsection 3.2 of
Section 3.

Remark 2. In the modeling process, the BRB-c based op-
timal maintenance decision method is a recursive process.
Te P-CMA-ES algorithm is an optimization method that
can research the optimal result intelligently. It aims to search
the optimal parameters of the BRB-c model based on the
constructed optimization model. Te modeling process of
the BRB-c-based optimal maintenance decision method is
determined by the optimization model and it has nothing to
do with the optimization algorithm. Tus, P-CMA-ES has
not infuenced the recursive process of the BRB-c-based
optimal maintenance decision.

4.2. Modeling Process of the Developed Optimal Maintenance
Decision Model. According to the above inference of the
optimal maintenance decision model, the modeling process
of the optimal maintenance decision model is profled in
Figure 1.

Te modeling process of the BRB-c-based optimal
maintenance decision model can be concluded as follows:

Step 1: Diferentiate the two types of observation data,
namely, training data and testing data, which are used
to train and test the optimal maintenance decision
model, respectively.
Step 2: Train the developed optimal maintenance de-
cision model by the training data. Te observation data
of the characteristics of the sensor network are used to
optimize the health assessment model, and then the
obtained health states are utilized for calculating the
parameters of the health state prediction model.
Step 3: Test the optimized model by the testing data.
Te present health state of the sensor network can be
obtained by the BRB-c-based health assessment model.
And with the estimated health state at the current time,
the future health state can be obtained by the health
state prediction model.
Step 4: Te repair threshold is determined by experts,
and based on the predicted health state, the optimal
maintenance time can be obtained.

5. Case Study

To demonstrate the efectiveness of the developed optimal
maintenance decision model, a case study was conducted on
a WSN for an oil storage tank located in Hainan province,
China.

5.1. Problem Formulation for the Optimal Maintenance De-
cision ofWSN. Optimizing the maintenance decision for the
sensor network is a valuable approach to enhance its re-
liability. However, two main challenges need to be addressed
in this context. On the one hand, the high reliability of the
sensor leads to a low sensor failure rate.Tus, the failure data
of the sensor that can be obtained is relatively small, and
there is not sufcient information to construct an accurate
optimal maintenance decision model. On the other side, the
sensors in the WSN are distributed in diferent positions of
the monitored object, and its monitored characteristics are
diferent. Moreover, the noise of the environment of the
WSN also infuences the accuracy of the observation data.
Terefore, experts cannot provide accurate knowledge of the
WSN, and the indeterminacy of the expert knowledge also
improves the difculty of using the knowledge. Tus, the
above two factors lead to the inaccuracy of the optimal
maintenance time of the WSN.

In this particular case study, the WSN is deployed near
the sea to monitor the condition of an oil storage tank. Two
key characteristics, namely the failure rate (FR) and coverage
range (CR), are selected for the WSN. Tese characteristics
serve as the basis for constructing a health state assessment
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model, which is then utilized to develop a Wiener-based
health state prediction model using both the reference health
state and estimated health state.

5.2.Constructionof theOptimalMaintenanceDecisionModel.
In this subsection, experts construct the optimal main-
tenance decision model, where 4 and 5 reference points are
selected for CR and FR, respectively, and L, SL, M, SH, and
H represent low, slight low, medium, slight high, and high,
respectively. Tables 1 and 2 showing the reference values of
these two characteristics are decided by experts. And
Table 3 shows the reference degrees of the health state in
the output of the assessment model, where L, SL, M, SH,
and H denote low, slight low, medium, slight high, and
high health state, respectively. Terefore, the belief rule in
this health assessment model of the sensor network is as
follows:

Bk(t): If  CR(t)  is Ak
1 ∧FR(t)  is Ak

2,

Then H(t)  is 
L, β1,k , SL, β2,k , M, β3,k ,

SH, β4,k , H, β5,k 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

With  rule weight θk, and  characteristic weight δ1δ2,
(30)

where the initial rule weight and the initial characteristic
weight are assumed to be 1.

Based on the structure of the belief rule, there are 20
belief rules in the BRB-c-based health state assessment
model. Table 4 shows the initial assessment model. Ten, the
initial Wiener process-based health state prediction model
can be obtained by the historical health state, and it can be
shown as the following equation:

Φ ti(  � Θ ti− 1(  + 0.0116 · Δt + 0.0112 · Ξ(Δt), (31)

where Δt � 1. Tus, Ξ(1) ∼ N(0, 1).

5.3. Training and Testing of the Constructed Optimal Main-
tenance Decision Model. In training and testing of the op-
timal maintenance decision model for the WSN, 250 sets of
observation data of two characteristics are randomly selected
as training data and the rest are used for testing. Among
them, there are 64 sets of fault data, which indicate that the
storage tanks have experienced problems or failures.

In the P-CMA-ES algorithm, the optimization iteration
is set to 300. Te optimization iteration process of the BRB-
c-based health assessment model is shown in Figure 2. Te
iterations were set to 50, 100, 200, and 300, respectively. It
can be seen that as the number of optimization iterations
increased, the actual value and the estimated value gradually
approached each other. When the number of iterations
reached 300, it can meet the requirements of assessment
accuracy and also avoid the occurrence of overftting.

In Figure 3, the blue and red lines represent the esti-
mation errors of the health status evaluation model based on
BRB-c and BRB for the actual health status of WSN, re-
spectively. Obviously, the health status assessment model
based on BRB-c can more accurately estimate the health
status of WSN.

Table 1: Te referential points and values for CR.

Referential point L M SH H
Referential value 5.3998 5.5 5.7 5.815

Table 2: Te referential points and values for FR.

Referential point L SL M SH H
Referential value 0.3699 0.4 0.42 0.44 0.4505

Table 3: Te reference point of output degree.

Referential point L SL M SH H
Referential value 0 0.25 0.5 0.75 1

BRB-c based health state assessment model

Optimal maintenance time

Health state

Wiener process-based health state prediction model

Parameter
estimation

Model
determination

Belief rule
combination

Observation
data

Expert
knowledge

Belief rule
activation

Belief rule
combination

Data
conversion

Attribute correlation

Repair threshold

Predicted health state

Figure 1: Modeling process of the developed optimal maintenance decision model.
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Table 4: Initial health assessment model for WSN.

No. Rule weight
Characteristic Output distribution

CR FR {L, SL, M, SH,
and H}

1 1 L L (1 0 0 0 0)
2 1 L SL (0.7 0.3 0 0 0)
3 1 L M (0.6 0.4 0 0 0)
4 1 L SH (0.5 0.5 0 0 0)
5 1 L H (0.6 0.3 0 0 0)
6 1 M L (0.3 0.7 0 0 0)
7 1 M SL (0.2 0.8 0 0 0)
8 1 M M (0.1 0.9 0 0 0)
9 1 M SH (0 0.7 0 0 0.3)
10 1 M H (0 0.5 0 0 0.5)
11 1 SH L (0.2 0.8 0 0 0)
12 1 SH SL (0 1 0 0 0)
13 1 SH M (0 0.8 0 0 0.2)
14 1 SH SH (0 1 0 0 0)
15 1 SH H (0 0.8 0 0 0.2)
16 1 H L (0 0.9 0 0 0.1)
17 1 H SL (0 1 0 0 0)
18 1 H M (0 0.8 0 0 0.2)
19 1 H SH (0 0.6 0 0 0.4)
20 1 H H (0 0 0 0.4 0.6)
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Figure 2: Output of the health assessment model: (a) comparison of actual and estimated values at 50 iterations, (b) comparison of actual
and estimated values at 100 iterations, (c) comparison of actual and estimated values at 200 iterations, and (d) comparison of actual and
estimated values at 300 iterations.
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Figure 3: Errors generated by BRB-c and BRB.

Table 5: MSEs generated by BRB-c and other models.

Model BRB-c Feng et al.
(BRB)

Zhou et al.
(BRB) ELM BP neural

network Fuzzy inference

MSE 0.0356 0.0442 0.0389 0.0714 0.1012 0.1225

Table 6: Optimized health assessment model for WSN.

No. Rule weight
Characteristic Output distribution of

belief rule

CR FR {L, SL, M, SH,
and H}

1 0.2237 L L (0.1941 0.3806 0.0839 0.0605 0.2809)
2 0.0340 L SL (0.0366 0.2194 0.4384 0.0619 0.2438)
3 0.4825 L M (0.2308 0.1866 0.2243 0.2737 0.0848)
4 0.9214 L SH (0.2901 0.2480 0.0365 0.0285 0.3968)
5 0.1094 L H (0.1499 0.4173 0.0806 0.2005 0.1517)
6 0.0213 M L (0.0278 0.4044 0.3744 0.0823 0.1112)
7 0.8192 M SL (0.9246 0.0103 0.0564 0.0000 0.0226)
8 0.0745 M M (0.3313 0.2423 0.2751 0.0995 0.0519)
9 0.1110 M SH (0.3338 0.1885 0.2150 0.0755 0.1872)
10 0.3228 M H (0.4458 0.1847 0.1215 0.1488 0.0992)
11 0.4260 SH L (0.1800 0.1473 0.0343 0.4604 0.1780)
12 0.2566 SH SL (0.5815 0.1738 0.1383 0.0733 0.0332)
13 0.8864 SH M (0.8368 0.0646 0.0500 0.0424 0.0063)
14 0.3489 SH SH (0.4968 0.0901 0.1494 0.1831 0.0806)
15 0.4101 SH H (0.1739 0.2406 0.3724 0.0390 0.1741)
16 0.1775 H L (0.0580 0.3663 0.2701 0.2254 0.0802)
17 0.9738 H SL (0.1383 0.5759 0.1463 0.0329 0.1066)
18 0.0559 H M (0.1947 0.0924 0.1375 0.0333 0.5422)
19 0.0907 H SH (0.2482 0.1992 0.2872 0.1637 0.1017)
20 0.8838 H H (0.1363 0.4430 0.1582 0.1333 0.1292)
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5.4. ComparisonExperiments. Moreover, the efectiveness of
the developed health state assessment model in this paper is
illustrated through comparison experiments with Feng et al.
[28], Zhou et al. [31], extreme learning machine (ELM),
fuzzy inference, and BP neural network approaches. Te
mean squared errors (MSEs) obtained from these experi-
ments are presented in Table 5.

Comparing the BRB-c assessment model with other
models, signifcant improvements in accuracy are observed.
Specifcally, the developed assessment model shows an
improvement of 19.46% over the BRB model by Feng et al.,
8.53% over the BRB model by Zhou et al., 50.14% over ELM,
64.82% over fuzzy inference, and an impressive 70.94% over
the BP neural network. Tese results clearly demonstrate the
superiority of our developed assessment model in accurately
evaluating health states.

After the optimal maintenance decision model has been
optimized, the optimized health assessment model and
prediction model can be obtained. Te optimized health
assessment model can be seen in Table 6. And it is shown
clearly in Figure 2 that the health state of the WSN can be
accurately estimated by the developed model, and the error
between the model output and the actual health state is
within an acceptable range. On the other side, when the
sampling time reaches 217, the health state of the WSN will
be lower than 0.92, which means it needs repairing. Tus,
based on the developed Wiener process health state pre-
diction model, the predicted health state of the WSN can be
obtained.

In addition, Figure 4 illustrates that the optimal
maintenance time fuctuates around 217. Tis suggests
that the obtained optimal maintenance time aligns with
the requirement of maintaining the health state of the
WSN above 0.92. Consequently, it can be concluded that
the developed optimal maintenance decision model
provides an accurate optimal maintenance time. In
summary, the optimized health assessment model, pre-
diction model, and optimal maintenance decision model
collectively contribute to accurately estimating the health
state of the WSN and determining the appropriate
maintenance time.

6. Conclusions

In response to the challenges of limited observational data,
complex system mechanisms, and the necessity for in-
corporating attribute correlations in sensor network health
management, this study introduces an optimal maintenance
decision model. Grounded in the BRB-c and the Wiener
process, the model enhances the precision of health state
assessments by integrating complex attribute correlations.
TeWiener process is then leveraged for predictive modeling,
forecasting the sensor network’s future health states. Utilizing
maximum likelihood estimation, the model computes the
degradation and difusion coefcients, which are instrumental
in determining the optimal maintenance timing. A signifcant
strength of this approach is its comprehensive utilization of
both quantitative monitoring data and qualitative expert
insights, facilitated by the BRB-c. Tis synergy allows for the
adept handling of uncertainties and incomplete data, thus
fortifying the maintenance decision-making process. Fur-
thermore, the Wiener process-based prediction model en-
hances forecast accuracy by factoring in both the current
health state and the interdependencies among attributes.

However, it must be emphasized that the current health
state assessment model does not address the potential
challenge of rule combination explosion, which may afect
its ability to efectively assess the health status of sensor
networks. Tis limitation underscores the need for further
research and advancements in developing sophisticated
models capable of navigating the complexity and diversity of
sensor networks. Moreover, this study operates under the
assumption that sensor network observational data are
completely reliable, disregarding the impact of environ-
mental noise. Such an assumption might not fully refect the
real-world conditions where noise and uncertainties are
common. Enhancing the model’s practical applicability will
require future research eforts to integrate noise modeling
and formulate robust strategies to mitigate the impact of
these uncertainties [32–35].
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