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Currently, individual artifcial intelligence (AI) algorithms face signifcant challenges in efectively diagnosing and predicting early
stage emerging serious diseases. Our investigation indicates that these challenges primarily arise from insufcient clinical
treatment data, leading to inadequate model training and substantial disparities among algorithm outcomes. Terefore, this study
introduces an adaptive framework aimed at increasing prediction accuracy and mitigating instability by integrating various AI
algorithms. In analyzing two cohorts of early cases of the coronavirus disease 2019 (COVID-19) inWuhan, China, we demonstrate
the reliability and precision of the adaptive combined learning algorithm. Employing an adaptive combination with three feature
importance methods (Random Forest (RF), Scalable end-to-end Tree Boosting System (XGBoost), and Sparsity Oriented Im-
portance Learning (SOIL)) for two cohorts, we identifed 23 clinical features with signifcant impacts on COVID-19 outcomes.
Subsequently, the adaptive combined prediction leveraged and enhanced the advantages of individual methods based on three
forecasting algorithms (RF, XGBoost, and Logistic regression).Te average accuracy for both cohorts exceeded 0.95, with the area
under the receiver operating characteristics curve (AUC) values of 0.983 and 0.988, respectively. We established a severity grading
system for COVID-19 based on the combined probability of death. Compared to the original classifcation, there was a signifcant
decrease in the number of patients in the severe and critical levels, while the levels of mild and moderate showed a substantial
increase. Tis severity grading system provides a more rational grading in clinical treatment. Clinicians can utilize this system for
efective and reliable preliminary assessments and examinations of patients with emerging diseases, enabling timely and targeted
treatment.

1. Introduction

Emerging and reemerging infectious diseases continuously
pose a serious threat to human health [1, 2]. Particularly, the
outbreak and spread of the coronavirus disease 2019
(COVID-19) not only brought about profound loss of lives
but also triggered a severe socioeconomic crisis [3]. If an
efcient and precise healthcare identifcation, diagnostic,

and treatment system can be established early in the de-
velopment of a disease, it has the potential to minimize the
scope of the disease outbreak, reduce individual health
damage, and optimize resource utilization [4, 5].

Using COVID-19 in the early stage as a case study, data
from the Chinese Center for Disease Control and Pre-
vention’s epidemiological investigation revealed that out of
44,415 confrmed cases, 81% were categorized as mild, 14%
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as severe, and 5% as critical. COVID-19 patients of diferent
severity levels exhibited signifcant diferences in prognosis
upon hospital admission. Most mild cases or suspected cases
were allocated to Fangcang shelter hospitals or other public
facilities for centralized isolation, where they received pri-
marymedical care and showed better prognosis [6, 7]. Severe
or critical patients, especially the elderly or those with
preexisting comorbidities, were prone to develop severe
pneumonia, acute respiratory distress syndrome (ARDS),
and multiple organ failure, thereby facing a higher risk of
mortality [8].

Artifcial intelligence (AI) has made signifcant ad-
vancements in guiding disease diagnosis and prognosis
management, particularly in combating the COVID-19
pandemic [9]. Te identifcation, diagnosis, and prognosis
prediction of COVID-19 hospitalized patients using AI al-
gorithms have been proposed. Existing approaches involve
machine learning and deep learning algorithms to analyze
multisource data, including clinical examinations and im-
aging scans [10]. However, existing AI methods have not yet
been able to accurately analyze disease features and pre-
dictions in the early stages of emerging diseases. Below, we
will frst review the typical applications of current AI al-
gorithms in common diseases, with a specifc focus on AI in
the diagnosis of emerging diseases, especially COVID-19.

2. Literature Review

2.1. AI for Diagnosis and Prognosis of Common Disease.
Signifcant progress has been made in AI-based disease
diagnosis and prediction of disease risks, progression, and
treatment response. In particular, image recognition and
natural language processing, which are based on big data,
have been widely applied in recent years. To classify skin
lesions, a convolutional neural network model was trained
using a dataset of 129,450 clinical images [11, 12], and
a specialized neural network, tailored for image classifca-
tion, was trained on a retrospective development dataset
consisting of 128,175 retinal images. Te focus of the
training was on detecting diabetic retinopathy, specifcally in
primary care ofces [13, 14]. In addition, for the develop-
ment of an artifcial intelligence algorithm for the diagnosis
and Gleason grading of prostate cancer, a retrospective
collection of 12,625 whole-slide images (WSIs) from six
diferent sites was undertaken. Tese WSIs comprised
prostate biopsies and were utilized to train and refne the
algorithm [15], as well as other applications such as co-
lorectal cancer stratifcation and atrial fbrillation identif-
cation [16, 17]. Another application utilized automated
natural language processing systems and deep learning
techniques to analyze electronic health records from
1,362,559 pediatric patients and guide the classifcation
diagnosis of common childhood diseases [18]. Machine
learning algorithms were applied to explore the key features
infuencing the treatment of infertility and to grade the
outcomes in 78,826 treatment cycles [19, 20]. Recently, the
Human Lung Cell Atlas (HLCA) has been developed, which
integrates large-scale, cross-dataset organ maps within the
Human Cell Atlas [21]. Furthermore, new research from

a preventive perspective, such as utilizing machine learning
models to train on data involving 22 common cancers and
predicting the origins of cancer and treatment responses in
36,445 cases, is noteworthy. Tis research assists doctors in
formulating personalized treatment strategies [22].

2.2.AI for Prediction ofDiagnosis andPrognosis of COVID-19.
Te huge applications of AI techniques have encompassed
epidemiology, therapeutics, clinical research, and social
studies to combat the COVID-19 pandemic [23, 24]. First, in
terms of rapid and accurate COVID-19 diagnosis, deep
learning methods provide great help for rapid and accurate
detection of COVID-19 through chest X-ray and Computed
Tomography (CT) images [25–29]. In addition, some studies
have conducted a series of deep learning algorithms trained on
cohorts consisting of thousands of patients to localize the
pleural/parenchymal walls and classify COVID-19 pneumonia
[30, 31]. Second, some studies have focused on the prediction
of prognosis in COVID-19. A research employed machine
learning tools to identify three biomarkers from blood samples
of COVID-19 patients, achieving a prediction accuracy of over
90% in forecasting patient mortality ten days in advance [32].
A high-resolution COVID-19 mortality prediction model has
been developed to identify future mortality risk two weeks
prior to clinical outcomes [33]. Amethod utilized Shift3D and
random weighted loss for multitask learning in COVID-19
diagnosis and severity assessment [34]. Some interesting
studies have taken into consideration the issue of multiple
sources. An open-source deep learning approach has been
proposed for diagnosing COVID-19 using chest CT images
[35], and an approach combining regularized cost-sensitive
capsule network was proposed for early detection of
COVID-19 using imbalanced or limited data [36]. In addition,
the integration of deep learning CT scan models with bi-
ological and clinical variables was proposed to predict the
severity of COVID-19 in patients [37], and an integrated CT
image and resource library for COVID-19 with deep learning
algorithms was developed [38]. Recently, some studies have
focused on selecting key features that infuence the outcome of
COVID-19 for prediction [39]. For example, a study consid-
ered utilizing feature selection methods to reduce the clinical
features to 13 key features and predicted COVID-19 severity
based on personalized diagnostic models [40]. Te signifcance
of known risk factors for the in-hospital mortality rate of
COVID-19 was evaluated, and the predictive utility and
grading diagnosis of radiological texture features were in-
vestigated using various machine learning methods [41].

2.3. Motivations and Contributions. Trough a review of
research, it can be observed that current AI methods heavily
rely on vast amounts of data for the diagnosis of various
diseases, including COVID-19. However, there is almost no
AI application research for early stage emerging diseases. For
newly emerging diseases like COVID-19, it is crucial in the
early stages for timely and accurate identifcation, diagnosis,
and treatment. Tis often becomes a race against time and
a matter of life and death, and waiting until a large number
of cases accumulate for analysis can prove to be too late [42].
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In addition, an examination of 37,421 COVID-19-related
studies in the British Medical Journal revealed that nearly
87% of the studies exhibited bias, primarily due to in-
adequate sample sizes [43]. Moreover, the widespread use of
a single model introduces uncertainty in model selection,
potentially leading to biased model estimates and increased
unreliability of results [44].

Tis study proposes an adaptive combined learning
framework for the diagnosis and outcome prediction of newly
emerging major diseases in small sample data. Taking ad-
vantage of combined computation, we can alleviate the
underftting issues arising from insufcient training data and
reduce biases associated with the selection of a single AI
method. Te weight of the combination is placed on the
method that can better ft the real data, which refects the
adaptability and scalability for diferent data. Te proposed
framework is applied in two early COVID-19 cohorts, dem-
onstrating the adaptability and reliability of this approach.Te
main contributions of this study include the following:

(1) To provide targeted guidance to doctors for a rapid
and accurate understanding of the clinical charac-
teristics and examination of newly emerging diseases,
we propose the Adaptive Combination Importance
(ACIM) measure with binary responses. Tis method
combines the importance of various AI algorithms
regarding the impact of clinical features on disease
outcomes. Tis provides a basis for the swift for-
mulation of public health emergency policies in re-
sponse to emerging diseases with limited sample data.

(2) To provide a precise prediction of newly emerging
disease outcomes based on a key clinical un-
derstanding, we design an Adaptive Combination
Prediction Algorithm (ACPA) with binary re-
sponses. Tis method combines the serious disease
outcome predictions from diferent AI algorithms.
Tis serves as a reliable algorithmic foundation to
assist doctors in faster and more accurate assess-
ments of disease occurrence, progression, and out-
comes within limited time and medical data
information. And it supports medical decision
making and resource allocation with a fexible AI
framework.

(3) To provide grading treatment with a focus on pre-
dicting outcomes and assigning corresponding
therapies upon patients’ admission, we propose
a disease severity grading system based on adaptive
prediction in terms of probability of death for pa-
tients. Tis ofers a meticulously designed treatment
approach that aligns with key features and early
diagnosis, potentially improving actual treatment
outcomes. Tis will support the optimization of
medical interventions in the event of severe disease
outbreaks and minimize the wastage of medical
resources.

Te outline of the rest of this paper is as follows.
Section 3 introduces the adaptive combined feature
screening and combined prediction algorithms for

emerging diseases. Section 4 presents two cohorts of
COVID-19 in Wuhan, along with relevant data analysis.
Section 5 elaborates on the results for both cohorts.
Section 6 encompasses the discussion, and Section 7 will
address future work.

3. The Combined Feature Screening and
Prediction for an Emerging Disease

In this section, we propose a comprehensive framework for
screening features and predicting outcomes in the context of
an emerging disease. Initially, leveraging existing clinical
data, we designed an algorithm that integrates multiple
feature screening methods to mitigate instability across
diferent approaches. Trough weighted calculations, our
aim is to align the combined feature assessment with the
inherent patterns in the data. Subsequently, the combined
prediction based on variables with feature screening is used
to forecast disease outcomes. We anticipate that this in-
tegrated approach will deliver more stable and accurate
predictions.

We use the following notation to represent the dataset
and model parameters. Let the dataset contain n samples,
each sample consisting of p features, represented by
D � (Xi, Yi), i � 1, ..., n􏼈 􏼉, where Xi represents the feature
vector of the i-th sample, andYi ∈ {0, 1} represents the binary
response variable of the i-th sample. Let f(Xi)

� P(Yi� 1 | Xi � xi) denote the probability of Yi occurring
given the feature vector X � xi, where the sample size could
be smaller than the number of features.

3.1. Adaptive Combined Importance Measure for Binary
Response. Feature importance is the study of the contri-
bution of each feature to the outcome and the selection of
features considered signifcant. Random Forest (RF) and
XGBoost algorithms, as representatives of model-free
methods, are widely used in importance learning [45, 46]. In
recent years, there have been other combined methods
proposed for feature importance learning based on para-
metric models, such as Sparsity Oriented Importance
Learning (SOIL), which presents feature importance as
a weighted linear model [47]. A combined feature learning
method based on these three feature algorithms has been
proposed to comprehensively and objectively evaluate the
importance of features infuencing the continuity of health
[48]. However, there has been no research based on binary
response.

We introduce the general form of combined feature
screening in binary disease data. Te calculation has three
steps based on K screening methods. First, calculate the
feature importance sequence for each screening method
under binary scenario and normalize their values then
denoted as IM1, IM2, . . ., IMK, where IMk � (Ik,1, . . . , Ik,p)

represents the importance value of the k method for p
features. Secondly, weights are calculated based on the
features recommended by each algorithm, denoted as w1,
w2, . . ., wK. Finally, an adaptive combined importance
(ACIM) for binary response is
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ACIM � w1IM1 + w2IM2 + ... + wKIMK, (1)

where the computation of weights relies on the data-
splitting, and we employ analogous calculations to derive
the weight procedure, as to those utilized in
Algorithm 1 [49].

A larger weight for a method indicates a better model ft.
Due to the random nature of data-splitting, there is a sig-
nifcant possibility of distinguishing the performance of
diferent methods on diferent datasets.

Combined feature screening brings several advantages.
Firstly, it serves as a consolidation of information from
various feature screening methods, achieving an efect akin
to the majority’s choice. Secondly, with adaptive weight
calculations, it can refect which method fts the real data
better based on the magnitude of weights. Tis grants more
infuence to the method with superior ftting, enhancing its
say in the majority of selections. Consequently, this makes
the features identifed by the combined screening more
closely approximate the true ranking of feature importance.

3.2. Adaptive Combined Prediction Algorithm for Binary
Response. We provide a computational framework for
adaptive combined prediction algorithm (ACPA) for binary
response. Assuming there are M methods available to
provide probability predictions for the binary disease out-
come being 1, denoted as 􏽢f1(Xi),

􏽢f2(Xi), · · · , 􏽢fM(Xi), the
combined estimation of probability is

􏽢f Xi( 􏼁 � w
∗
1

􏽢f1 Xi( 􏼁 + w
∗
2

􏽢f2 Xi( 􏼁 + · · · + w
∗
M

􏽢fM Xi( 􏼁. (2)

Te detailed weighting calculation in (2) is similar to that
in Algorithm 1.

Regarding combined prediction, there are several ad-
vantages. Firstly, a single predictionmethodmay exhibit bias
in predicting disease outcomes, while a combination of
multiple prediction methods brings more stable results,
especially in scenarios where highly accurate disease pre-
diction is needed. Secondly, weight calculations can assess
the performance of diferent prediction methods, allowing
the method with the best performance in combined pre-
diction to give greater weight. When one method signif-
cantly outperforms others, its weight in ACPA is likely to
approach 1. Tis makes the ACPA results closely align with
the performance of the best method. Te relevant theories
are ensured to be present in the literature [50]. Conversely, if
all methods perform similarly and are not particularly ef-
fective, ACPA’s results may surpass those of individual
methods.

4. COVID-19 Cohorts and
Calculation Procedures

4.1. Data Source. In this retrospective study, we collected
clinical records from two groups of COVID-19 patients
admitted early and with prolonged hospital stays. Both
datasets comprise extensive clinical examinations conducted
upon patient admission, categorizing patients into four
diferent disease severity levels for treatment (Mild (T4),

Moderate (T3), Severe (T2), and Critical (T1)) based on the
Diagnosis and Treatment Protocol for COVID-19 issued by
the National Health Commission of China (Trial Version 5),
and the composite endpoint was discharge from the hospital
or death (cured or deceased).

4.1.1. Cohort 1. Tese data related to early stage COVID-19
are presented on a public website (https://ngdc.cncb.ac.cn/
ictcf/HUST-19.php). It enrolled 1,126 patients from Union
Hospital (HUST-UH) and 395 patients from Liyuan Hos-
pital (HUST-LH) in Wuhan, Hubei Province, China, during
the period from January 2020 to February 2020.

Tese data encompass rich clinical features of early
COVID-19 confrmed cases. Among these patients, 130
clinical tests spanning nine categories were conducted, in-
cluding basic information, routine blood tests, infammation
tests, blood coagulation tests, biochemical tests, immune cell
typing, cytokine profle tests, autoimmune tests, and routine
urine tests.

Te inclusion criteria for this cohort comprised 711
confrmed COVID-19 patients with the number of cured
being 654 and deceased being 57. Among the 311 clinical
examination features, a considerable proportion exhibited
signifcant missing data. We opted to include 62 features
with a missing proportion below 40% for further in-
vestigation. Tese selected features encompassed all the
aforementioned diagnostic procedures, and detailed feature
information is available in Table S1 of supplementary ma-
terial. Basic information, such as mortality outcomes, SARS-
CoV-2 RNA testing, age, gender, body temperature (°C), and
the presence of underlying diseases, was derived from pa-
tients’ medical records, and none of these variables had
missing values.

4.1.2. Cohort 2. Te study involves a substantial analysis of
COVID-19 and serves as a focal point for the COVID-19
pandemic [32, 51–54]. We collected and compiled data from
early consecutive COVID-19 patients admitted to Tongji
Hospital in Wuhan, Hubei province, China, from January
2020 to April 2020. A total of 3286 medical records were
extracted from electronic health records. Of the initial 3286
medical records, 63 records hadmissing data or did not meet
the composite endpoint, and 3223 patients were included in
this study, as detailed in Table S2 of supplementary material.

Te inclusion criteria for this cohort include 3223
confrmed COVID-19 patients with the number of cured
being 2920 and deceased being 303. Medical records were
reviewed and extracted from electronic health records using
a standardized data collection form by experienced clini-
cians and independently reviewed by two researchers. 32
clinical examination features are provided in this cohort.
Tis study was approved by the Medical Ethical Committee
of Tongji Hospital, Tongji Medical College of Huazhong
University of Science and Technology. Written informed
consent was waived in light of the use of deidentifed
retrospective data.

All methods were performed in accordance with the
relevant guidelines and regulations. Te study followed the
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transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) reporting
guideline.

Te processing and analysis of the two datasets are
conducted in parallel, involving data preparation, feature
selection, and outcome prediction. Te detailed analysis
process is shown in Figure 1.

4.2. Data Processing. Data preparation primarily involves
data imputation and data balancing [55, 56]. For cohort 1,
except for 4 basic kinds of information: gender, underlying
diseases, age, and body temperature at admission, other 126
clinical examination features all have missing data. We
selected 58 features with missing proportions less than 40%
from cohort 1 and used Multiple Imputation by Chained
Equations (MICEs) to impute missing data, specifcally
calculated using the R package ‘mice’. To ensure data bal-
ance, the Synthetic Minority Oversampling Technique
for Nominal and Continuous features (SMOTENC) was
implemented in both cohorts, with the specifc calculation
performed using Python 3.10 with Imbalanced-learn version
0.10.0.

4.3.ACIMCalculation forFeatureScreening. We selected RF,
XGBoost, and SOIL for ACIM, and the calculations cor-
responding to these three methods use R packages: “ran-
domForest”, “xgboost” XGBoost, and “SOIL”. Te parameter
settings for these three methods were primarily based on
their default settings, with the exception of setting
ntree� 200 to control the model complexity in RF. For
XGBoost, we utilized the “trainControl” function from the
“caret” package in R to optimize parameters, setting
max_depth� 3 to control model complexities for both
cohorts.

Weight calculations were derived from Algorithm 1,
where we chose features with value of ACIM greater than 0.2
in each method for model evaluation. Te specifc results of
ACIM calculations for the two cohorts are illustrated in
Figure 2.

4.4. ACPACalculation forDiseaseOutcomes. We utilized the
combined prediction of RF, XGBoost, and Logistic re-
gression based on important features recommended by

ACIM, specifcally those with ACIM greater than 0.2. Te
parameter settings for RF and XGBoost are similar to ACIM.
Weight calculations are also similar to ACIM.

We randomly split data for both cohorts into training
and testing sets using an 8/2 split ratio. Tis ensures ho-
mogeneity in both the training and testing data, reducing the
impact of human selection. Additionally, to obtain stable
prediction results and evaluate model performance, we

Input: D � (X, Y), N (Repeat times);
Output: weight of each screening method.

(i) Randomly split D � (X,Y) into a training set D1 � (Xi, Yi), for i � 1, · · · , n1 and a test set D2 � (Xi, Yi), for i � n1 + 1, · · · , n2,
and the sample sizes are n1 � n2 � n/2, respectively.

(ii) For each method, ft an estimator 􏽢fk(Xi) using the training set D1, where k � 1, . . . , K represents the screening method that
needs to be computed.

(iii) For each method, compute the prediction 􏽢fk(Xi) on the test set D2 using the training model under D1.
(iv) For the observations Yi, the weight for each method under s time is ws

k � 􏽑
iϵD2

(􏽢fk(Xi))
Yi (1 − 􏽢fk(Xi))

1−Yi /
(􏽐 /l � 1K 􏽑

iϵD2

(􏽢fl(Xi))
Yi (1 − 􏽢fl(Xi))

1−Yi )

Repeat the above steps N times to get ws
k, s � 1, . . . , N and then obtain the weight wk � 􏽐

N
s�1w

s
k/N.

ALGORITHM 1: Weighting calculation.

Train

MICE
(58 of 62 has missing data)

Cohort 1
(n=711, p=62

Deceased=57,Cured=654)

SMOTENC

ACIM screening

Model 1 Model 2

POD (Probability of Death)

Critical Severe Regular Mild

Cohort 2
(n=3223, p=35

Deceased=303,Cured=2920)

Cohort 1*
(Deceased=654,Cured=654)

Cohort 2*
(Deceased=2920,Cured=2920)

Cohort 1*
12 features

Cohort 2*
16 features

ACPA 
Predict

Classify

ACPA 
Predict

Figure 1: Te detailed calculation process of the two COVID-19
cohorts.
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Figure 2: Important measure based on ACIM for two cohorts. (a) is the ranking of feature importance for cohort 1 and (b) is the ranking of
feature importance for cohort 2. Group C represents the key features that we selected to afect COVID-19 outcomes, and GroupD represents
the features that we considered less important and deleted.
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repeated the data-splitting process 100 times. If the esti-
mated probability of death calculated by ACPA exceeds 0.5,
it is considered as death; otherwise, it is considered as cured,
and the results are presented in Table 1.

4.5. Model Evaluation. We utilize common machine
learning classifcation metrics to elucidate the efectiveness
of the method. Tese metrics include Accuracy, Precision,
Recall, and F1 score. Furthermore, the receiver operating
characteristics curve (ROC) and the area under its curve
(AUC) value will also demonstrate the model’s predictive
prowess. In addition, we performed calibration evaluation
for our model [57], and the R package ‘PresenceAbsence’
provided specifc calculations.

5. Result

5.1. Rankings of Feature Importance. We measure the im-
portance of clinical features on treatment outcomes (Cured
and Deceased) in two COVID-19 cohorts. Two importance
feature rankings are shown in Figure 2. Tree popular
feature importance algorithms are adaptively combined to
measure the impact of features on the death of a patient, with
the top-ranked having a more signifcant impact and re-
quiring more attention. Tere are diferences in the number
of clinical features between the two cohorts, but the two
rankings share similarities in important features. We take
the threshold according to the attenuation degree of the
feature importance curve and select the features with im-
portance greater than 0.2 as important features. Figure 2(a)
shows the ranking of the importance of 62 clinical features
for whether a patient died in cohort 1. We fnd 12 important
features to focus on: DD, Age, LDH, NEP, Gen, NE, LYP,
ALP, URIC, BAP, INR, and MOP. Tey are in routine blood
test, blood coagulation test, and biochemical test. Figure 2(b)
shows the importance of 32 clinical features for whether
a patient died in cohort 2, of which 16 features were marked
as having a signifcant impact. Te importance of IL6, DD,
EO, BA, CRP, Age, NE, IL8, LY, IL2, LDH, CA, INR,
RDWCV, TT, and PT is greater than 0.2. Te features
considered important in both cohorts are DD, Age, LDH,
NE, and INR. Although more clinical tests were recorded
and performed in cohort 1, only a small number of test
results could have a signifcant impact on COVID-19 out-
comes. In cohort 2, fewer clinical tests were performed, but
a larger proportion of the features had critical impacts on
COVID-19 outcomes.

5.2. Outcome Prediction and Evaluation. We selected key
features with ACIM values greater than 0.2 for outcome
prediction. Cohort 1 includes 12 key features, and cohort 2
includes 16 key features. We compare the performance of
three individual methods (Logistic, RF, and XGBoost) and
ACPA for both cohorts, employing four evaluation metrics
to provide a comprehensive assessment. Te average
training and testing performances are presented for 100
repeats of random data-splitting (with 80% as train and 20%

as test in each calculation). Te detailed results are provided
in Table 1.

In the results for cohort 1, XGBoost exhibits superior
training performance, but its testing performance is inferior
to RF, and Logistic shows the poorest results. However,
overall, ACPA demonstrates the best comprehensive per-
formance. It closely rivals XGBoost in training and RF in
testing, surpassing RF in F1 score and Accuracy. In the
results for cohort 2, RF maintains the best performance in
testing, and XGBoost continues to excel in training. ACPA
leverages the strengths of both, demonstrating stable
advantages.

For both cohorts, the results highlight the advantages of
ACPA combination. In practical terms, as the true best
method or the one most suitable for uncovering the inherent
nature of the data is often unknown, if ACPA achieves
results comparable to or even slightly surpassing the best
method after computation, it indicates the method’s ver-
satility, ensuring the quality of computed results in most
scenarios.

Furthermore, we conducted an evaluation of the pre-
dictive performance of the models, including model cali-
bration and discrimination, as illustrated in Figure 3. Te
results of model calibration at a confdence level of 0.05 are
shown in Figures 3(a) and 3(b), with fve probability bins
displayed. It can be seen that both the observed and pre-
dicted probability bins are close to the diagonal line, in-
dicating that the models for both cohorts are well calibrated.
In addition, we calculated the discriminant performances of
the two models for two cohorts. In the case of diferent
threshold selection, ROC curves show excellent perfor-
mance, and the AUC values are 0.983 and 0.988, respectively.

5.3. Severity Grading of COVID-19. According to the
COVID-19 grading system [58], we divided the degree of
severity into four groups by the probability of death (POD),
namely, Mild (T4): POD< 0.25, Moderate (T3):
0.25≤POD< 0.5, Severe (T2): 0.5≤POD< 0.75, and Critical
(T1): POD≥ 0.75. From Figures 4(a) and 4(b), it can be
found that the proportion of green and yellow parts is the
largest, that is, when the probability of death is lower than
0.5 or 0.25, most patients are mild and regular, which does
not need to take up too much treatment cost. On the
contrary, the proportion of the red part is small, and its
probability of death is greater than 0.75. Tere is a high
probability of death without timely assistance, which needs
to be focused on. In orange part, the probability of death is
between 0.75 and 0.5, which requires doctors’ attention and
more resources. In the absence of timely diagnosis and
treatment, these patients will be at great risk, whereas with
timely diagnosis and treatment, these patients are likely to
recover.

Table 2 shows the patient classifcation under the original
grading and the new grading with the classifcation
threshold equal to 0.5. Under the original classifcation,
there were signifcantly fewer mild (T4) and moderate (T3)
cases than severe (T2) and critical (T1) cases, which is
obviously lacking in rationality. Under the original
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Table 1: Prediction performances of two cohorts under four evaluations.

Method Recall Precision F1 score Accuracy

Cohort 1

ACPA 0.9421 (0.0062) 0.9 2 (0.0042) 0.9621 (0.0031) 0.9625 (0.003 )
0.9262 (0.0196) 0.9759 (0.0127) 0.9503 (0.0122) 0.9509 (0.0119)

Logistic 0. 591 (0.0077) 0.9076 (0.0063) 0.  26 (0.0054) 0.  34 (0.0053)
0.8612 (0.0268) 0.9064 (0.0280) 0.8828 (0.0190) 0.8835 (0.0192)

RF 0.9253 (0.0062) 0.9726 (0.0049) 0.94 4 (0.0039) 0.9491 (0.0039)
0.9252 (0.0269) 0.9758 (0.0161) 0.9496 (0.0167) 0.9504 (0.0164)

XGBoost 0.9 07 (0.0037) 0.9925 (0.0027) 0.9 66 (0.0023) 0.9 66 (0.0023)
0.9171 (0.0253) 0.9602 (0.0169) 0.9379 (0.0138) 0.9388 (0.0132)

Cohort 2

ACPA 0.9416 (0.0029) 0.9 34 (0.0016) 0.9621 (0.0016) 0.9625 (0.0016)
0.9242 (0.0102) 0.9751 (0.0071) 0.9489 (0.0056) 0.9496 (0.0055)

Logistic 0. 694 (0.0032) 0.9027 (0.0026) 0.  57 (0.0023) 0.  61 (0.0023)
0.8679 (0.0146) 0.9004 (0.0115) 0.8837 (0.0089) 0.8842 (0.0088)

RF 0.9261 (0.0269) 0.9791 (0.0019) 0.951 (0.001 ) 0.9526 (0.001 )
0.9286 (0.0106) 0.9816 (0.0062) 0.9543 (0.0062) 0.9551 (0.0060)

XGBoost 0.9501 (0.0027) 0.97 1 (0.0021) 0.9639 (0.0017) 0.9641 (0.0017)
0.9242 (0.0115) 0.9608 (0.0075) 0.9421 (0.0069) 0.9425 (0.0067)

Bold font is for train and italic font is for test. Te standard deviation of the results is in parentheses.
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Figure 3: Te evaluation of the prediction performance. (a) and (b) represent the performances of model calibration of two cohorts.
(c) shows the ROC curves and AUC values of the two models. Cohort 1 is in red, and cohort 2 is in green.
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classifcation, there were signifcantly fewer mild (T4) and
moderate (T3) cases than severe (T2) and critical (T1) cases,
which is obviously lacking in rationality. Compared with the
original grading structure, the new grading system for
COVID-19 patients established in the paper is more rea-
sonable and scientifc, which can efectively and accurately
distinguish mild patients from severe patients. Accurate
classifcation is conducive to the efective utilization of
medical resources and helps patients establish the most
correct treatment path in the early stage of admission.

6. Discussion

Tough there are studies that assess the risk for progression,
prognosis, and mortality of patients with COVID-19, few
studies focus on developing a disease grading system based
on various characteristics through combined AI methods
[59–61]. In this study, we conduct and validate a disease
grading system for patients with COVID-19 based on the
prediction of the probability of death under a combination
algorithm, which can be used to identify and predict the
prognosis among hospitalized patients on admission. Te
reliable and feasible early identifcation of patients is es-
sential for timely triaging in clinical practice, especially
under the heavy burden of medical resource.Te application
of combined AI method to the diagnosis of COVID-19 can
improve diagnostic efciency and optimize the allocation of
medical resources, which is of great signifcance to curb the
pandemic.

Te combined framework we ofer includes calculations
for three feature screening methods and three prediction
methods. Of course, within this framework, we allow the
integration of additional methods to enhance the overall

efectiveness, including some deep learning algorithms.
Furthermore, calculations for feature screening and disease
prediction can be conducted independently, based on the
specifc requirements of the task. However, if there are
a substantial number of features to be predicted, it is rec-
ommended to perform combined feature selection before
prediction. Importantly, our framework does not mandate
extensive parameter training for each combinable method to
seek optimality, as it is apparent that such an approach may
be more benefcial. We recommend initially attempting the
combination of potential methods to see if the desired efects
are achieved; otherwise, one can incorporate better methods
or optimize existing methods based on the task
requirements.

In terms of the risk factors of COVID-19, a total of 23
indicators were chosen as prediction markers, including the
demographic characteristics (age and gender), blood routine
(Lymphocyte, Neutrophil, Eosinophil, Basophil, and
Monocyte), coagulation function (PT, Trombin, and D-
Dimer), LDH, cytokine profles (IL2, IL6, IL8, and IL10), and
CRP. Tese features can be used as elements of clinical tests
or early warning systems to optimize the treatment process
of COVID-19. In particular, these characteristics have been
verifed by previous studies. Regarding the severity grading
of COVID-19, the current ofcial disease grading is based on
some symptom observations, which are based on historical
and subjective judgment and have a certain lag. However,
our grading system is based on the fnal result of prediction,
which has an early warning efect and can signifcantly
reduce the irreparable outcome caused by historical judg-
ment bias. Doctors can decide the treatment sequence of
patients by predicting the outcome; at the same time, all
patients are managed hierarchically.
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Figure 4: Distribution of predicted probability of death in two cohorts.
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7. Future Work

Te current study has several limitations. First, our fndings
might be limited by the quality of the data. First, the
samples for disease grading system are entirely from
Wuhan, China, which may require more data from other
areas of the world to increase the generalizability and
applicability. Second, the hospitals contributing to our
current research cohort tend to admit severe and critical
COVID-19 patients. Terefore, this subset of patients may
have disproportionately representation in the study, po-
tentially leading to some bias in the grading system. Te
clinical experiments are pending to validate the practicality
of the algorithmic procedures.

Future research can focus on addressing data issues in
more depth. For example, when dealing with a large number
of features that require selection, designing penalties for
weights to combine can provide feedback on the impact of
model complexity. Exploring how to combine methods on
imbalanced data and mitigating potential efects of the
SMOTE algorithm could be another area of investigation.
Additionally, retrospective studies can contribute to the
establishment of a comprehensive compendium for
COVID-19, providing more guidance for uncertain future
pandemics.
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[21] L. Sikkema, C. Ramı́rez-Suástegui, D. C. Strobl et al., “An
integrated cell atlas of the lung in health and disease,” Nature
Medicine, vol. 29, no. 6, pp. 1563–1577, 2023.

[22] I. Moon, J. LoPiccolo, S. C. Baca et al., “Machine learning for
genetics-based classifcation and treatment response pre-
diction in cancer of unknown primary,” Nature Medicine,
vol. 29, no. 8, pp. 2057–2067, 2023.

[23] Z. Xu, C. Su, Y. Xiao, and F. Wang, “Artifcial intelligence for
COVID-19: battling the pandemic with computational in-
telligence,” Intelligent medicine, vol. 2, no. 1, pp. 13–29, 2022.

[24] Y. H. Bhosale and K. S. Patnaik, “Application of deep learning
techniques in diagnosis of covid-19 (coronavirus): a system-
atic review,” Neural Processing Letters, vol. 55, no. 3,
pp. 3551–3603, 2023.

[25] S. Minaee, R. Kafeh, M. Sonka, S. Yazdani, and G. Jamalipour
Souf, “Deep-COVID: predicting COVID-19 from chest X-ray
images using deep transfer learning,”Medical Image Analysis,
vol. 65, Article ID 101794, 2020.
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