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As is well known, diferential algebraic equations (DAEs), which are able to describe dynamic changes and underlying constraints,
have been widely applied in engineering felds such as fuid dynamics, multi-body dynamics, mechanical systems, and control
theory. In practical physical modeling within these domains, the systems often generate high-index DAEs. Classical implicit
numerical methods typically result in varying order reduction of numerical accuracy when solving high-index systems. Recently,
the physics-informed neural networks (PINNs) have gained attention for solving DAE systems. However, it faces challenges like
the inability to directly solve high-index systems, lower predictive accuracy, and weaker generalization capabilities. In this paper,
we propose a PINN computational framework, combined Radau IIA numerical method with an improved fully connected neural
network structure, to directly solve high-index DAEs. Furthermore, we employ a domain decomposition strategy to enhance
solution accuracy.We conduct numerical experiments with two classical high-index systems as illustrative examples, investigating
how diferent orders and time-step sizes of the Radau IIA method afect the accuracy of neural network solutions. For diferent
time-step sizes, the experimental results indicate that utilizing a 5th-order Radau IIA method in the PINN achieves a high level of
system accuracy and stability. Specifcally, the absolute errors for all diferential variables remain as low as 10− 6, and the absolute
errors for algebraic variables are maintained at 10− 5. Terefore, our method exhibits excellent computational accuracy and strong
generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs with higher indices
or challenging high-dimensional partial diferential algebraic equation systems.

1. Introduction

Te concept of diferential algebraic equations (DAEs) was
formally proposed by Gear in the study of network analysis
and continuous system simulation problems [1]. Petzold
made it explicit through her study of numerical methods that
DAEs are not ordinary diferential equations (ODEs) [2].
DAE systems are composed of coupled ODE systems and
algebraic equation systems with physical signifcance. Tese
systems encompass both diferential and algebraic variables,

and their system form is more generalized compared to
traditional ODE systems. DAEs have gained signifcant
attention since their inception, as they can accurately de-
scribe systems that some ODEs cannot represent. Tey have
found extensive applications in various felds, including fuid
dynamics, multi-body dynamics, electronic circuits, me-
chanical systems, control theory, and chemical engineering.

In diferent developmental periods and research felds,
DAEs are also known as singular systems, general systems,
descriptor systems, or constrained systems, among other

Hindawi
International Journal of Intelligent Systems
Volume 2024, Article ID 6641674, 12 pages
https://doi.org/10.1155/2024/6641674

https://orcid.org/0009-0000-3040-5752
https://orcid.org/0009-0009-4276-0431
mailto:tangjn16@gzhu.edu.cn
https://creativecommons.org/licenses/by/4.0/


names. Tey often exhibit various structural forms, such as
linear DAEs, nonlinear DAEs, semi-explicit DAEs, implicit
DAEs, and Hessenberg-type DAEs. Fortunately, in practical
physical modeling, most of the system models obtained are
either low-index DAEs or high-index (≥ 2) Hessenberg-type
DAEs [3]. Te index of DAEs measures the “distance” be-
tween DAEs and ODEs. Generally, a higher index implies
greater difculty in transforming DAEs into ODEs or in
directly solving DAEs using ODE numerical methods.
Traditional numerical methods for solving DAE systems
include implicit Runge–Kutta methods [4], BDF methods
[5], pseudospectral methods [6], Adomian decomposition
method [7], exponential integrators [8], generalized-α
methods [9], and Lie group methods [10–12]. It is worth
noting that these direct numerical methods can solve DAEs
with an index of 1. However, for high-index DAE systems,
these methods are only applicable to a certain class of DAEs
and may result in varying order reduction of numerical
accuracy.

With the rapid advancement of neural network tech-
nology and hardware resources, neural networks demon-
strate increasingly powerful capabilities. Compared to
traditional numerical computing methods, neural networks
ofer several advantages, including strong generalization,
fault tolerance, and the ability for parallel computation. In
1998, Lagaris et al. [13] approximated solutions to ODEs or
PDEs problems by constructing parameterized trial func-
tions. Tese trial functions consist of two parts: one part
satisfes initial conditions or boundary conditions which do
not contain trainable parameters, while the other part is
a simple feed forward neural network with trainable pa-
rameters. In 2019, Raissi et al. [14] introduced an important
technique known as physics-informed neural networks
(PINNs) for the numerical approximation of partial dif-
ferential equation (PDE) problems. Te PINN loss function
includes not only initial or boundary conditions that refect
physical properties but also a residual term at selected points
in the time-space domain where the PDEs hold. It is worth
noting that PINN is a data-driven approach that does not
require prior knowledge of the analytical form of the so-
lution; instead, it learns the solution from data. Various
variants of PINN have been proposed based on diferent
collocationmethods, such as variational hp-VPINN [15] and
conservative PINN (CPINN) [16]. Specifcally, Wu et al. [17]
recently introduced an innovative PINN designed to address
Hausdorf derivative Poisson equations across irregular
domains. Tis method leverages the Hausdorf fractal de-
rivative to reformulate the numerical resolution of partial
diferential equations into an optimization challenge,
encompassing the principal equation and its boundary
conditions. Notably, this technique is characterized by its
simplicity, clarity, and programming convenience. Addi-
tionally, PINN has been widely applied to solve problems in
various felds, including fuid dynamics [18–21], seismic
wave prediction [22], and optical problems [23].

In recent years, many researchers have attempted to
construct neural network models from diferent perspectives
to solve various types of DAEs systems infuenced by these
methods. For Hessenberg-DAEs with control variables and

an index of 3, Kozlov and Tiumentsev [24] achieved the
implementation of BDFs method using a semi-empirical
neural network model. Zhao et al. [25] constructed a single-
layer feed-forward neural network (FFNN) to solve
Hessenberg-type DAEs systems. Tey augmented the loss
function in their special Euler–Lagrange equation system
with penalty terms for algebraic equations to avoid drifting
in the results. Experimental results in their paper showed
that the FFNNmethod with the Sigmoid activation function
provided approximate analytical solutions close to the nu-
merical solutions of corresponding Runge–Kutta methods,
but they did not provide further details about the method’s
accuracy. For linear DAEs systems, Liu et al. [26] selected
Jacobi polynomials as activation functions and constructed
a single-hidden-layer feed-forward neural network (JNN).
Tey determined the network parameters using the classical
ELM algorithm. Trough experimental comparisons with
other approximation methods such as Padé approximation,
ADM method, and Adams methods, they illustrated the
feasibility and superiority of the JNN method. It is worth
noting that the examples in the paper involve DAEs with an
index of 1 or linear DAEs that have been reduced to index 1.
For DAEs systems with an index of 1, Moya and Lin [27]
proposed a neural network architecture called DAE-PINN
based on the PINN method for solving DAEs systems. Tis
neural network model is a discrete-time model based on the
implicit Runge–Kutta method, which can directly address
most index-1 diferential-algebraic equation problems.
However, it cannot solve high-index DAEs problems and
sufers from low accuracy issues. To address the high-
accuracy computation challenges in high-index DAEs sys-
tems, we have combined the Radau IIA numerical method
with an improved fully connected neural network. We have
proposed a PINN computational framework based on the
Radau method. Furthermore, we have improved the ef-
ciency and accuracy of the solution by applying a strategy of
domain decomposition.

In Section 2, we briefy introduce the fundamental
concepts of DAEs systems, the Radau IIA numerical
method, the improved fully connected neural network, and
the discrete-time model of PINN. Building upon this
foundation, we provide a detailed construction of the PINN
computing framework based on the Radau IIA method.
Additionally, we employ a time domain decomposition
strategy for neural network. Section 3 uses the neural net-
work designed in this paper to solve two high-index DAEs
systems, and we analyze the solving accuracy of this neural
network. Finally, we discuss and summarize the advantages,
challenges, and potential avenues for improvement in the
Radau-PINN architecture.

2. Scientific Machine Learning Methods

Tis section frst sequentially introduces the basic con-
cepts of DAEs and the classical Radau IIA numerical
method. Ten, we introduce an improved fully connected
neural network architecture and the discrete-time model
of PINN. Building upon this, we construct a PINN based
on the Radau IIA method. Finally, we enhance the
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efciency and accuracy of neural network solutions for
DAEs systems by utilizing the concept of domain
decomposition.

2.1. Radau IIA Method for DAE Systems. Tis article frst
provides a brief introduction to DAEs with an index of 2,
with the specifc form as follows:

y′(t) � f(t, y(t), z(t)),

0 � g(t, y(t)),

⎧⎨

⎩ (1)

where y(t) ∈ Rn is the diferential function variable,
z(t) ∈ Rm is the algebraic function variable, t ∈ [t0, T], t0 is
the initial time point, and y0 � y(t0) is the initial value. Both
f(t, y, z) ∈ Rn and g(t, y) ∈ Rm are sufciently smooth, and
the Jacobian matrix gyfz is non-singular.

Te Radau IIAmethod is a class of implicit Runge–Kutta
methods, typically defned in the following general form:

ξi � yn + h 
v

j�1
ai,jf ξj, ζj ,

g ξi(  � 0,

yn+1 � yn + h 
v

j�1
bjf ξj, ζj ,

g yn+1(  � 0,

(2)

where ξi � y(tn + cih), ζ i � z(tn + cih), h is the step size, n is
the current step number, aij, bj, ci  are parameters, and
ci � 

v
j�1aij, i, j � 1, . . . , v.

In Table 1, diferent sets of parameters lead to diferent
implicit Runge–Kutta methods, such as commonly used
Gauss method, Radau method, and Lobatto method. Tese
parameters are determined using Gauss polynomials, Radau
polynomials, and Lobatto polynomials, respectively. Among
them, the Radau IIA method is a high-precision numerical
method with excellent numerical stability. Terefore, in this
paper, the Radau IIA method is chosen, and the parameters
need to satisfy the following conditions:

B(2v − 1): 
v
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bic

k−1
i �

1
k

, k � 1, . . . , 2v − 1,

C(v): 
v

j�1
aijc
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, k � 1, . . . , v,

D(v − 1): 
v

i�1
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k−1
i aij �

bj

k
1 − c

k
j , k � 1, . . . , v − 1,

(3)

and cv � 1, bj � avj, i, j � 1, 2, . . . , v.

2.2. Improved Fully Connected Neural Network Structure.
Building upon the DAE-PINN structure, we employ adaptive
activation functions (4) to train an improved fully connected
neural network structure. Te specifcs are as follows:

Te architecture of the improved fully connected neural
network model is primarily constructed using two trans-
former networks, denoted as U and R, to build two stacked-
layer networks, as illustrated in Figure 1. Both neural net-
works map the input variable X (diferential function var-
iable y) to a high-dimensional feature space. Subsequently,
each hidden layer forms new residual connections using
element-wise multiplication operations, as expressed below:

U � φ XW1
+ b

1
 ,

R � φ XW2
+ b

2
 ,

H
(1)

� φ η · l · XWo,1
+ b

o,1
 ,

M
(k)

� φ H
k
W

o,k
+ b

o,k
 ,

H
(k+1)

� 1 − M
(k)

 ⊙U + M
(k) ⊙R,

Pθ(X) � H
d+1

W + b,

(4)

where X represents the input vector of the neural network,
Wo,k is the collection of weights for the o-th neuron in the
k-th layer, bo,k denotes the set of biases for the o-th neuron in
the k-th layer, φ is the activation function, ⊙ represents
element-wise multiplication, d indicates the number of
hidden layers (the depth of the neural network), Pθ(X) is the
fnal output vector of the neural network, η is a pre-
determined hyper-parameter that ensures the slope is
greater than 1, and l is a parameter that can modify the slope
of the activation function.

2.3. Discrete-Time Model of PINN. In this section, we will
provide a detailed introduction to the PINN for discrete-
time model as outlined in [14].

Te main idea of the discrete-time model in PINN is to
integrate neural networks with traditional Runge–Kutta
methods. Considering the general form of PDE, it can be
expressed as follows:

ut + N[u] � 0, x ∈ Ω, t ∈ [0, T], (5)

where u(t, x) denotes the solution of PDE, N[·] is a non-
linear diferential operator, and Ω is a subset of RD.

Substituting the general form of the v-stage Runge-Kutta
method into the above PDE (5), we can obtain as follows:

u
n+ci � u

n
− h 

v

j�1
aijN u

n+cj , i � 1, . . . v,

u
n+1

� u
n

− h 

v

j�1
bjN u

n+cj .

(6)

Table 1: Te parameter table of the v-stage implicit Runge-Kutta
methods.

c1 a11 a12 a13 · · · a1v

c2 a21 a22 a23 · · · a2v

c3 a31 a32 a33 · · · a3v

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
cv av1 av2 av3 · · · avv

b1 b2 b3 · · · bv
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Here, un+cj (x) � u(tn + cjh, x) for j � 1, . . . , v, h is the
step size. For ease of writing and comprehension, equation
(6) above can be equivalently represented as follows:

u
n

� u
n
i , i � 1, . . . , v,

u
n

� u
n
v+1,

(7)

where

u
n
i ≔ u

n+ci + h 
v

j�1
aijN u

n+cj , i � 1, . . . v,

u
n
q+1 ≔ u

n+1
+ h 

v

j�1
bjN u

n+cj .

(8)

Te output layer of the PINN for discrete-time models
has a number of neurons equal to the stage of the Run-
ge–Kutta method plus one (v + 1). Te output layer is de-
scribed as follows:

u
n+c1(x), . . . , u

n+cq (x), u
n+1

(x) . (9)

By integrating the Runge–Kutta formulas (8) and the
output values of the PINN for discrete-time model (9), we
can derive a neural network architecture with x as input and

u
n
1(x), . . . , u

n
v(x), u

n
v+1(x) , (10)

as output.
In the discrete-time model of a PINN, the time axis is

typically divided into several time steps. Besides spatial
coordinates, the neural network’s input also includes in-
formation about the current time step. Tis enables the
neural network to learn temporal dynamics and predict the
solution at each time step. Based on the PINN’s discrete-
time model, we have constructed a PINN architecture based
on the Radau IIA method for solving high-index DAEs,
which will be described in the following section.

2.4. PINN Based on Radau IIA Method. In this section, we
use the discrete-time model of PINN as the foundation,
incorporating an improved fully connected neural network.
We have constructed a PINN architecture based on the
Radau IIA method, as illustrated in Figure 2.

Firstly, construct a neural network with multiple inputs
and multiple outputs, where the inputs consist of the col-
lection of diferential variables yn, and outputs

ξθ1, ξ
θ
2, , . . . . . . , ξθv, y

θ
n+1; ,

ζθ1, ζ
θ
2, , . . . . . . , ζθv, z

θ
n+1.

(11)

Te frst v values of ξθi represent intermediate diferential
variables, and the frst v values of ζθi represent intermediate
algebraic variables, where i � 1, 2, . . . . . . , v.

Secondly, based on the structure of theDAEs systemwith an
index of 2 and the characteristics of the Radau IIA method, we
further design an improved fully connected neural network for
both the diferential variable part and the algebraic variable part
of the system. Tere are two specifc design approaches: one
assigns a single neural network to all diferential variables and
two neural networks to the algebraic variables, and the other
assigns a separate neural network to each diferential variable
while keeping the algebraic variable part unchanged. In the case
of the algebraic variable part, one of the neural networks is used
to predict the frst v values, while the other neural network is
used to predict the v + 1-th value. Teoretically, the second
method, illustrated in Figure 2, involves creating a separate
neural network for each diferential or algebraic variable. Tis
approach difers from the frst by efectively increasing the size of
the network. Additionally, it ofers the beneft of avoiding the
negative impact on other variables that could result from un-
successful parameter optimization of a single variable during
training. As a result, this enhances both the precision and the
ability of the model to generalize. Trough further testing, the
second approach’s training results aremore precise than those of
the frst approach, consistent with the expected results. As
a result, all subsequent experiments in this paper are imple-
mented based on the second approach.

Tirdly, based on the designed network structure, this
paper constructs the loss function as follows:

L(θ;T) � WfLf(θ;T) + WgLg(θ;T) + WsLs(θ;T). (12)

(i) Lf(θ;T) is the loss related to the diferential
network and is expressed as follows:

1
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k�1


v+1

i�1
yn,k − y

i
n,k(θ)

����
����
2
2,

y
i
n,k(θ) � ξθi,k − h 

v

j�1
ai,jf ξθj,k, ζθj,k , i � 1, . . . , v,

y
v+1
n,k (θ) � y

θ
n+1,k − h 

v

i�1
bif ξθi,k, ζθi,k ; .

(13)
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Residual
Connection

... Residual
Connection Output Pθ (X)

Figure 1: Improved fully connected neural network structure.
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(ii) Lg(θ;T) is the loss associated with the algebraic
network and can be expressed as follows:

1
NT(v + 1)



NT

k�1


v

i�1
g ξθi,k, ζθi,k 

�����

�����
2

2
+ g y

θ
n+1,k, z

θ
n+1,k 

�����

�����
2

2
⎛⎝ ⎞⎠; .

(14)

(iii) Ls(θ;T) is the loss related to the last value of the
controlled algebraic variable and can be expressed as
follows:

1
NT



NT

k�1

z
θ
n+1,k − ζθv,k

�����

�����
2

2
 , (15)

where Wf represents the loss weight for the dif-
ferential neural network, Wg is the weight for the
algebraic neural network, and Ws signifes the
weight for the control of algebraic variable pre-
diction neural network. Te parameters ai,j and bi

are specifc to the Radau IIA method. T is the total
number of samples, NT is the number of training
samples in the current batch, and θ denotes the
neural network parameters. Here, f represents the
diferential network, and g represents the algebraic
network. yn,k corresponds to the sample data of the
model, ξθi,k stands for the values of intermediate
diferential variables, and ζθi,k signifes the values of
intermediate algebraic variables. Furthermore,
yi

n,k(θ) represents the output values of the difer-
ential neural network.Te notation ‖·‖22 refers to the
square of the L2 norm, zθn+1,k represents the fnal
output of the algebraic neural network, and ζθn,k

denotes the penultimate output of the algebraic
neural network.

Finally, we use gradient descent to solve for the weights,
biases, and other parameters of the PINN,

θ∗ � argmin
θ

L(θ;T). (16)

2.5.Time-DomainDecompositionofNeuralNetworks. In this
section, based on an analysis of the existing limitations of the
PINN architecture, we adopt a time-domain decomposition
strategy using neural networks.

One limitation of the PINN model is that it exhibits
relatively low accuracy in predicting solutions. Tis is be-
cause the inherent inaccuracies involved in solving high-
dimensional non-convex optimization problems can lead to
local minima, making it challenging to achieve absolute
errors below 10− 5. Another evident limitation is the high
training cost [16]. Similarly, our proposed PINN model
based on the Radau IIA method may encounter similar
issues. Furthermore, the iterative format of the Radau IIA
method does not fully exploit its high-precision advantages
during training.

To address these issues, we propose a time-domain
decomposition strategy for neural networks, as illustrated
in Figure 3. With this approach, we partition the original
problem into segments, enhancing solution accuracy while
leveraging iterative training. In other words, the predicted
values from the previous time segment can serve as input
values for the subsequent segment. Tis means that knowing
the data values at the initial point t0 for the frst segment is
sufcient to iteratively compute the solutions over the entire
time domain. Tis approach signifcantly reduces the
amount of required data. Specifcally, only the data at the
initial point t0 for a set of diferential variables, denoted as
y0, are needed. Using the time-domain decomposition
structure, we can iteratively determine the desired values
within the range [t0, T]. If we can obtain the initial values for
each network at every time segment, parallel training of each
neural network becomes possible, signifcantly reducing the
model training time.
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Figure 2: Te schematic diagram of PINN based on Radau IIA method.
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3. Numerical Experiments

In this section, we apply PINN based on the Radau IIA
method to solve two high-index DAEs systems separately
and further investigate the infuence of the order of the
Radau IIA method on the solution results. Te experiments
were conducted on a Windows 10 operating system with an
Intel(R) Core(TM) i7-10875H CPU @2.30GHz processor.
We used Python 3.9 software and coded the neural network
architecture using PyTorch 1.12.1, the GPU version. Addi-
tionally, this paper involves two formulas to measure the
accuracy of the experiments. One is the commonly used
absolute error (AE) formula, defned as AE � |ytrue − ypred|,
which refects the magnitude of the deviation between the
neural network’s predicted solution and the true solution.
Te other metric is the mean absolute error (MAE) formula,
defned as MAE � (1/n)

n
i�1|y

i
true − yi

pred|, used to assess the
diferences in accuracy among diferent orders of the Radau
IIA method.

3.1. Hessenberg-Type DAEs System. In this section, we ex-
plore classical Hessenberg-type DAE systems with an index
of 2 that possess exact analytical solutions [12], as follows:

y1′(t) � y3(t)y4(t) + y1(t)y2(t)( y5(t),

y2′(t) � −y3(t)y4(t)
2
y2(t)

2
y5(t),

y3′(t) � 2y3(t)y4(t)y1(t)y2(t),

y4′(t) � −y3(t)y4(t)y2(t)
2
,

0 � y1(t)y4(t) − y2(t)y3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where t ∈ [0, 1], and the initial values y0 � (1, 1, 1, 1, 1).
Te functions y1(t), y2(t), y3(t), y4(t) represent diferential
variables, while y5(t) is an algebraic variable. Te system’s
exact solution expressions are y1(t) � e2t, y2(t) � e− t,
y3(t) � e2t, y4(t) � e− t, and y5(t) � et.

Firstly, we consider the impact of diferent orders of
Radau IIA methods, including 3rd, 5th, 9th, and 13th
orders (corresponding to v � 2, 3, 5, 7), on the precision
of neural network solutions. Secondly, we explore the
infuence of activation functions on PINN. Common
activation functions for hidden layers include Sigmoid,
TanH, Sin, and ReLu, among others. When solving
smoothly continuous systems, ReLu is generally not
chosen; instead, Sigmoid, TanH, or Sin activation func-
tions are preferred. In the experiments, Sigmoid resulted
in better approximate solutions. Within this neural net-
work framework, the initial values of the diferential
variables, namely, y1(t), y2(t), y3(t), and y4(t) for each
time segment, are used as a dataset for training. Te step
size h is 0.05, which means that each time interval has
a length of 0.05. Each network model in every time
segment comprises 5 hidden layers, with each hidden layer
containing 100 neurons. Sigmoid is used as the activation
function, and the Adam optimizer is applied for 100,000
iterations. Te experimental results within the time in-
terval of 0 to 1 are presented in Figure 4.

From Figure 4, it is evident that the accuracy of the mean
absolute errors for the 3rd and 13th-order Radau IIA
methods corresponds to the blue Y-axis, while the accuracy
of the average absolute errors for the 5th and 9th-order
Radau methods corresponds to the red Y-axis. For all the
diferential function variables, the 3rd and 13th-order Radau
IIA methods exhibit signifcantly higher average absolute
errors compared to the 5th and 9th-order methods. For the
algebraic variable y5, the 13th-order Radau IIA method has
notably higher average absolute errors than the 3rd, 5th, and
9th-order methods.

Additionally, we further observe that for all diferential
function variables from red Y-axis, the 9th-order Radau IIA
method’s overall trend in average absolute errors is signif-
icantly higher than the 5th-order method. For the algebraic
variable y5, the 9th-order Radau IIA method exhibits

t=t0 t=t0 +N*ht=t0 +(N–1)*ht=t0 +2*ht=t0 +h
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Figure 3: Te time domain decomposition of neural networks.
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notably higher average absolute errors than the 5th-order
method. In other words, the 5th-order Radau IIA-based
PINN achieves the highest precision in terms of average
absolute errors.

Te absolute error results obtained using the 5th-order
method are shown in Figure 5. Te accuracy of the absolute
errors for y1(t), y3(t), and y5(t) corresponds to the blue Y-
axis, while the accuracy of the absolute errors for y2(t) and
y4(t) corresponds to the redY-axis. From the fgure, it is evident
that the neural network’s predicted values for all four diferential
variables have their lowest precision of absolute errors main-
tained at the order of 10− 6, while the lowest precision of absolute
errors for the algebraic variable is kept at 10− 6.Te experimental
results suggest that the neural network’s predicted solutions have
reached a high level of accuracy.

For the neural network structure designed in this paper,
the predicted values of the diferential variables can be used
as the initial values for the next time step’s network input
dataset. Te precision of the diferential variables can afect
the results of the next time step’s network. In this context,
the precision of the diferential variables y1 and y3 is already
at the order of 10− 6, and the precision of the diferential

variables y2 and y4 is at the order of 10− 7, which will not
signifcantly afect the precision of the next time step.

Te key parameters controlling the performance of our
algorithm are the total number of Radau IIA stages v and the
time-step size h. We consider diferent orders (3, 5, 9, 13,
corresponding to v � 2, 3, 5, 7) of the Radau IIA method at
various time steps (h � 0.025, 0.05, 0.1) to investigate their
impact on the precision of neural network solutions.
Troughout the experimental process, we maintain a fxed
network architecture with 5 hidden layers, each containing
100 neurons, while varying the stages v and time-step size h

of the Radau IIA method.
From Tables 2 and 3, the bold values in the table represent

the optimal accuracy achieved at each time step. we sum-
marize the average absolute error precision of solving the
diferential and algebraic function variables of the
Hessenberg-type DAEs system using Radau IIA method with
diferent stages and time-step size. Specifcally, we can clearly
observe that when the time-step is set to 0.025, 0.05, or 0.1, the
Radau IIA method with a stage v of 3 consistently produces
accurate results. Furthermore, for the Radau IIAmethod with
a stage v of 3 and a time-step size h of 0.05, the neural network
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solution achieves optimal accuracy. Additionally, the overall
trend of the average absolute error for the 9th order (v= 5)
Radau IIA method is similar to the 5th order (v= 3) method.

For the diferential function variables, the Radau IIA
methods of four diferent orders demonstrate consistently
stable accuracy in average absolute error across various time
steps. However, for algebraic variables, compared to the 5th
and 9th-order methods, the 3rd and 13th-order Radau IIA
methods exhibit signifcantly higher average absolute errors
across three diferent time steps. When using higher-order
Radau IIA methods with smaller time steps, there is no

doubt that it will enhance the convergence speed of the
neural network. However, it also increases the demand for
a larger neural network scale. Tese adjustments require
tuning in experiments. Nevertheless, overall, the 5th-order
(v � 3) Radau IIA method proves to be the most stable. Tis
characteristic is evident in the Hessenberg-DAEs system
discussed below, where its numerical stability remains
uncompromised.Tis makes the 5th-order (v � 3) Radau IIA
method an ideal choice for solving stif problems.

3.2. DAE System of the PendulumModel. In this section, we
study the classical pendulum DAEs system with an index of
2, as follows:

y1′(t) � y3(t),

y2′(t) � y4(t),

y3′(t) � −y1(t)y5(t),

my4′(t) � −y2(t)y5(t) − λ,

0 � y1(t)y3(t) + y2(t)y4(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where t ∈ [0, 1], and the parameters m and λ are variable
parameters, both set to 1 in the experiments of this section.
Te initial values are y0 � (1, 0, 0, 1, 1). In this context,
y1(t), y2(t), y3(t), and y4(t) are diferential function
variables, while y5(t) is an algebraic function variable. Tis
DAEs system does not have an exact analytical expression. In
this paper, we directly solve the reduced inner ODEs of this
system using high-precision ODE solvers from the Python
scientifc computing library Scipy and compare the obtained
approximate solution with the predicted values from the
neural network. Similarly, we consider the impact of dif-
ferent orders (3, 5, 9, 13, corresponding to v � 2, 3, 5, 7) in
the Radau IIA methods on the accuracy of the neural
network’s solutions. Secondly, we explore the efect of ac-
tivation functions on PINN. In this experiment, the Sin
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Table 2: Hessenberg-DAEs systems: Measure the average absolute
error of diferential function variables for diferent numbers of
Radau IIA stages v and time-step sizes h.

v
h

0.025 0.05 0.1
2 1.9e − 06 1.7e − 05 1.8e − 04
3 2.2e −  7 2.2e −  7 1.4e − 06
5 9.8e − 07 2.7e − 07 1. e −  6
7 2.1e − 05 1.8e − 05 6.0e − 06
Bold values indicate the optimal accuracy achieved at each time step and
show the Radau IIA method stages v used for optimal accuracy.

Table 3: Hessenberg-DAEs systems: Measure the average absolute
error of algebraic function variable for diferent numbers of Radau
IIA stages v and time-step sizes h.

v
h

0.025 0.05 0.1
2 4.7e − 05 1.1e − 05 9.0e − 05
3 9.9e −  6 1.6e −  6 1.6e −  6
5 6.2e − 05 9.7e − 06 2.0e − 04
7 2.8e − 02 1.7e − 02 2.3e − 03
Bold values indicate the optimal accuracy achieved at each time step and
show the Radau IIA method stages v used for optimal accuracy.
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activation function provides a better approximation. To
maintain consistency in the numerical experiments, other
network structural information is consistent with the ex-
periments in the previous section. Te results obtained are
shown in Figure 6.

From Figure 6, we can observe that the accuracy of the
mean absolute errors for the 3rd and 13th-order Radau IIA
methods corresponds to the blue Y-axis, while the accuracy
of the average absolute errors for the 5th and 9th-order
Radau methods corresponds to the red Y-axis. For the
diferential function variables y1(t), y3(t), and y4(t), the
3rd-order Radau IIA method has signifcantly higher av-
erage absolute errors than the 5th, 9th, and 13th-order
methods. For the diferential function variable y2(t), the
13th-order Radau IIA method exhibits signifcantly higher
average absolute errors than the 3rd, 5th, and 9th-order
methods. For the algebraic variable y5(t), the 3rd and 13th-
order Radau IIA methods have signifcantly higher average
absolute errors compared to the 5th and 9th-order methods.

Additionally, we further observe that for all diferential
function variables from red Y-axis, the 9th-order Radau IIA
method’s average absolute error overall trends similarly to

the 5th-order method. For the algebraic variable y5(t), the
9th-order Radau IIA method exhibits signifcantly higher
average absolute errors in the later time regions compared to
the 5th-order method. In other words, a PINN based on the
5th-order Radau IIA method achieves the highest precision
in terms of average absolute errors.

Te absolute error results obtained using the 5th-order
method are shown in Figure 7. Te accuracy of the absolute
errors for y1(t), y2(t), y3(t), and y4(t) corresponds to the
blue Y-axis, while the accuracy of the absolute errors for
y5(t) corresponds to the red Y-axis. From the fgure, we can
see that the lowest precision of absolute errors for all four
diferential variables is maintained at 10− 7, while the lowest
precision of absolute errors for the algebraic variable is kept
at 10− 5. Te experimental results suggest that the neural
network’s predicted solutions for the pendulum’s DAEs
system can also achieve high precision.

Similarly, we also consider the impact of diferent
orders (3, 5, 9, 13, corresponding to v= 2, 3, 5, 7) in the
Radau IIA method at various time steps (h= 0.025, 0.05,
0.1) on the precision of the neural network solutions for
the pendulum DAEs system. From Tables 4 and 5, the bold
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values in the table represent the optimal accuracy
achieved at each time step. Clearly, the overall trends in
the mean absolute errors for both the diferential and
algebraic function variables of the 5th-order (v= 3) and
9th-order (v= 5) Radau IIA methods consistently remain
within the same order of magnitude. Additionally, the
solving accuracy of these two orders of Radau IIA
methods remains highly stable regardless of the chosen
time step value.

In general, the results of solving the pendulum DAEs
system using Radau IIA methods with diferent orders and
time steps are consistent with the results obtained in the
solution of the Hessenberg-type DAEs system
mentioned above.

4. Summary and Conclusions

DAE systems are widely employed in various domains,
including fuid dynamics, multi-body dynamics, and control
theory. In practical physical modeling, most DAEmodels are
either low-index DAEs or high-index Hessenberg-type
DAEs. Classical implicit numerical methods are suitable
for a certain class of high-index DAEs, but they often lead to
varying order reduction of numerical accuracy. Recently,
a novel neural network method, DAE-PINN, has been de-
veloped for solving low-index DAEs. However, it cannot
directly handle high-index systems. Terefore, this paper
proposes a PINN-based approach using the Radau method
to solve high-index DAEs systems. Tis method combines
the strengths of the Radau IIA method with an improved
fully connected neural network structure and employs
a time-domain decomposition strategy to enhance both
efciency and accuracy in solving these systems.

In this paper, two high-index systems, namely,
Hessenberg-type DAEs and pendulum model DAEs, are
studied as examples. Te research takes into account the
infuence of diferent orders and time-step sizes in the Radau
IIA methods and the activation functions on the accuracy of
neural network solutions. Generally, employing higher-
order Radau IIA methods enhances the neural network’s
generalization capability. However, through comparative
experiments with two examples, it is found that employing
a 5th-order Radau IIA method in the PINN yields a high
degree of system accuracy and stability for varying time-step

8

7

×10-7 ×10-5

6

5

4

T
e a

bs
ol

ut
e e

rr
or

s o
f y

1,y
2,y

3,y
4

T
e a

bs
ol

ut
e e

rr
or

s o
f y

5

3

2

1

0

3

2.5

2

1.5

1

0

0.5

0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

y1 y2 y3 y4 y5

Figure 7:Te absolute errors of single PendulumDAEs system solved by PINN based on 5th-order Radau IIA.Te blue curves represent the
absolute errors of y1, y2, y3 and y4 on the left Y-axis, while the red curve corresponds to y5 on the right Y-axis.

Table 4: Pendulum DAEs systems: Measure the average absolute
error of diferential function variables for diferent numbers of
Radau IIA stages v and time-step sizes h.

v
h

0.025 0.05 0.1
2 2.3e −  7 1.3e − 05 3.8e − 05
3 2.9e − 07 1.1e − 07 2.3e − 07
5 7.1e − 07 9.1e −  8 1.1e −  7
7 2.4e − 06 1.4e − 07 1.2e − 07
Bold values indicate the optimal accuracy achieved at each time step and
show the Radau IIA method stages v used for optimal accuracy.

Table 5: Pendulum DAEs systems: Measure the average absolute
error of algebraic function variable for diferent numbers of Radau
IIA stages v and time-step sizes h.

v
h

0.025 0.05 0.1
2 1.6e − 04 5.9e − 04 2.4e − 03
3 1.2e −  5 3.5e −  6 1.4e − 05
5 4.7e − 05 4.9e − 06 7. e −  6
7 1.6e − 02 1.3e − 04 2.1e − 05
Bold values indicate the optimal accuracy achieved at each time step and
show the Radau IIA method stages v used for optimal accuracy.
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sizes. Tis conclusion is consistent with the notion that
Radau-5 is a high-precision numerical method [3]. Further
experimental results indicate that in high-index systems, the
absolute errors for all diferential variables maintain
a minimum precision of 10− 6, while the absolute errors for
algebraic variables maintain a minimum precision of 10− 5.
Tis method’s numerical accuracy surpasses the corre-
sponding results in the literature [25] and, to some extent,
surpasses the accuracy achieved by the DAE-PINN method
[27]. Tis demonstrates that our method can directly and
accurately solve high-index DAEs systems, showcasing
strong generalization capabilities and ofering a viable ap-
proach for high-precision solutions to even higher-index
DAEs or challenging systems of partial diferential algebraic
equations. Furthermore, we have maintained the depth and
width of the neural networks as in DAE-PINN [27] and have
not delved into a detailed study of their impact on the
accuracy of our method, which we will need to investigate in
our future work.
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