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GNSS (global navigation satellite systems) technology enables high-precision single-point positioning (SPP) in open environments.
However, the accuracy of GNSS positioning is signifcantly compromised in complex urban canyons due to signal obstructions and non-
line-of-sight propagation errors. To address this challenge, we propose a GNSS displacement estimation algorithm. Tis method learns
nonlinear dependencies between GNSS rawmeasurements and corresponding position changes, capturing dynamic and layered features
in GNSS measurement data for displacement estimation. We introduce a denoising auto-encoder (DAE) to preprocess raw GNSS
observations, reducing the impact of noise.Temodel simultaneously outputs estimated displacement andmodel confdence.Te fusion
process dynamically combines positioning results from the SPP algorithm and the D-Tran model, adaptively blending them to achieve
accurate and optimal positioning estimation. Tis approach optimizes the accuracy of estimated positioning results while maintaining
confdence in the estimation. Experimental results show a 61% reduction in root mean square error (RMSE) and 100% availability in
urban canyon environments compared to traditional single-point positioning techniques.

1. Introduction

Nowadays, demand for high-accuracy position-based services
in daily activities, such as location-based services (LBS) [1]
and intelligent transportation system (ITS) [2], has increased
signifcantly. Tis has generated interest in improving the
localization accuracy of low-cost receivers, specifcally those
integrated into smartphones, within the GNSS (global navi-
gation satellite systems) [3]. In GNSS positioning with
smartphones, accurate absolute positioning extraction is es-
sential, particularly in complex environments. Smartphones
typically use a combination of GNSS code-only SPP (single-
point positioning) and IMU (inertial management unit) data
to derive location information. While SPP performance is
satisfactory in areas with good satellite observing conditions
like rural, expressway, and suburban areas, realistic usage of
SPP in semiurban, forested, and urban areas presents nu-
merous limitations and challenges, including poor multipath

suppression, low carrier-to-noise density ratio (C/N0), and
missing measurements, as exemplifed in Figure 1. Te no-
torious multipath and NLOS (non-line-of-sight) efects in
dense building and scenario environments signifcantly re-
duce SPP localization accuracy and continuity [4]. In high
multipath environments and kinematic scenarios, the SPP
solution can degrade to several tens-of-meters. Te extraction
of stable and continuous positioning information is an es-
sential requirement for various everyday applications. Hence,
a signifcant number of academic researchers aim to improve
positioning performance.

Numerous studies have thoroughly investigated various
methods to improve the accuracy and continuity of global
navigation satellite system (GNSS) positioning. Tese
methods can typically be classifed into two categories: ex-
ternal hardware and error reduction. In recent years, there
has been considerable research interest in integrating GNSS
with other sensors. For instance, studies have proposed
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integrating vision sensors [5, 6], lidar odometers [7, 8], and
INS (inertial navigation systems) [9] with GNSS to improve
positioning accuracy in environments where GNSS signals
are degraded. While methods relying on IMU can enhance
positioning accuracy, there are notable drawbacks. Firstly,
the increased use of sensors introduces additional costs.
Secondly, such methods may be sensitive to sensor con-
fguration, requiring precise installation and calibration to
ensure accurate attitude and motion estimation. Lastly, IMU
and similar sensors can only provide relative positions, and
achieving precise carrier positioning still relies on sensors
primarily based on GNSS to provide the absolute position of
the carrier. Nonetheless, GNSS still remains the primary
sensor for providing absolute user position, which neces-
sitates high levels of accuracy. Since 2016, carrier-phase and
pseudorange measurements have been made publicly
available through Google’s Android API (application pro-
gramming interface) [10]. Tis has paved the way for re-
searchers to analyze and condition raw measurements from
smartphones, such as carrier-phase smoothing and Doppler
smoothing, to improve positioning accuracy [11]. Simul-
taneously, predicting interferences in urban areas [12] or
measurement noise [13] has provided novel approaches for
enhancing positioning performance. It is worth noting that
non-Gaussian error distributions in practical global navi-
gation satellite system (GNSS) measurements, as well as
environmental interferences, can lead to degradation in the
accuracy of traditional techniques that rely on Gaussian
approximations for error estimation [14].

Over the past decade, the rapid advancement of deep
learning techniques has enabled the utilization of deep
learning models to acquire abstract representations of
preexisting positioning data, which can be utilized to direct
the navigation system’s behavior when satellite signals are
weak or when the number of visible satellites is less than
four. In order to enhance positioning accuracy, researchers
have explored the fusion of deep learning models with

integrated navigation methods [15, 16]. Nonetheless, these
methods rely on the integration of intelligent techniques
with INS, such as the method proposed by Fang et al. [17],
who used LSTM (long short-term memory) to predict
pseudomeasurement data. Tese methods relying on deep
kinematic models frst struggle to efectively handle mea-
surement errors and uncertainties, especially in complex
urban environments, and cannot avoid the accumulation of
errors during the computation process. Additionally, deep
kinematic models still depend on inertial navigation systems
(INS), requiring precise installation and calibration of
sensors. Tis increases the complexity of the system.

Diferent from the methods relying on IMU and deep
kinematic modeling as mentioned above, this paper pro-
poses a GNSS measurement feature learning framework
based on the transformer model to enhance the continuity
and accuracy of position estimation through an intelligent
SPP algorithm. In contrast to the LSTM model used in the
approach proposed by paper [17], we employ a parallelizable
transformer model. Tis choice considers the limitations of
the LSTM model, such as gradient vanishing or explosion
during training, lengthy training time, and limited explo-
ration of long-term dependencies in the data. Te trans-
former model enhances the training speed and better
explores long-term dependencies in the data. To enhance the
model’s robustness, we introduce a DAE (denoising auto-
encoder) model to clean GNSS raw observation data. Te
DAE model processes noise and outliers in the input data
and reconstructs the input data, thereby improving the
accuracy and robustness of the model. In summary, our
proposed framework combines the strengths of deep
learning and GNSS to provide a more accurate and robust
approach for GNSS-based position estimation. In the frst
place, D-Trans introduces the capability to dynamically and
hierarchically learn features from GNSS measurement data.
Tis implies that the model can adapt to diferent envi-
ronments and dynamic conditions, enhancing its
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Figure 1: Te urban positioning environment of SPP with NLOS and multipath.
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adaptability in complex terrains such as urban canyons.
Additionally, GNSS raw observations exhibit signifcant
noise, which can impact model training. Tis paper in-
troduces a denoising auto-encoder (DAE) to preprocess raw
GNSS observations, aiding in mitigating the infuence of
noise on the model. Tis enhances the model’s availability to
measurement errors caused by signal obstruction and non-
line-of-sight propagation in the environment.

Te main contributions of this paper are summarized as
follows:

(i) Tis paper proposes a newmodel, D-Tran (denoising
auto-encoder-transformer), which captures dynamic
and potential features in GNSS measurement se-
quences. D-Tran is based on the transformer
framework and uses an attention mechanism to
capture global dependencies between GNSS mea-
surements and position increments (∆P). Addi-
tionally, a DAE is connected with the transformer to
reduce occasional noise in GNSS measurements and
produce denoised feature vectors. To the best of our
knowledge, this work is the frst to explore the ap-
plication of deep learning methods only using the
raw GNSS observation and has shown promising
results in improving positioning performance.

(ii) We propose a dynamic confdence estimation
method that adaptively adjusts the weights of the
intelligent model. Tis method allows for the
adaptive and real-time adjustment of model
weights, enabling the system to efectively adapt to
environmental changes and optimize positioning
performance. To address the challenge of lacking
label for confdence estimation, we design a com-
putation method for the loss function that in-
corporates confdence feedback. By incorporating
confdence estimation into the loss function cal-
culation, we are able to refect the confdence in-
formation during training.

(iii) We validated our proposed method by testing it on
three datasets: the open-source UrbanNav dataset,
our own device-collected dataset, and a proprietary
dataset provided by Didi Corporation. Extensive
experimental results show that our proposed T-SPP
algorithm efectively enhances the accuracy, con-
tinuity, availability, and generalization performance
of the SPP algorithm.

Te remaining part of this paper is organized as follows:
the relevant literature is reviewed in Section 2; Section 3
presents the proposed T-SPP framework for improving the
continuity and performance of the SPP algorithm; in Section
4, we present the experimental results; and fnally, the
conclusion is given in Section 5.

2. Related Work

Achieving high-accuracy positioning in urban environments
has been a focal point of previous studies. Prior to the
availability of the Google API, GNSS chipsets only provided

position, velocity, and time (PVT) information. Some
studies attempted to mitigate positioning errors through
loosely integrated navigation techniques [18, 19]. However,
achieving high-accuracy positioning through loosely in-
tegrated navigation without relying on expensive external
hardware and GNSS raw observations from smartphones is
still a challenging task.Tis paper conducts an analysis of the
current research progress from two perspectives: model-
based methods and data-driven modeling approaches.

In May 2016, Google’s announcement on the availability
of raw GNSS measurements to the public brought about
a signifcant breakthrough in the feld of positioning per-
formance. Since then, many studies have leveraged these raw
observations to enhance positioning accuracy. For instance,
Zhu et al. [20] proposed a method to separate the efects of
multipath andNLOS by utilizing satellite elevation angle and
C/N0, while Shuai et al. [21] introduced satellite broadcast
data quality and user equivalent distance error for optimal
satellite selection. To address cumulative errors from ion-
osphere, cycle slips, and outliers, a TT-SD (Tree-Tresholds
and Single-Diference) Hatch flter [11] was proposed, which
adapts the carrier-phase smoothed pseudorange window
width based on three thresholds. Prochniewicz et al. [22]
investigated correlation models among diferent GNSS
measurement values. For each signal and satellite block of
the GPS, GLONASS, Galileo, and BeiDou systems, they
established independent empirical stochastic models, con-
sidering crosscorrelation and temporal correlation among
observation values. However, some errors do not behave as
expected, and Farooq et al. [23] attempted to apply the
extended Kalman flter (EKF) model to single-frequency
pseudorange measurements. To accurately describe the
user’s movement, Guo et al. [24] utilized pseudorange and
high-precision carrier phase observations to construct the
state equation. Furthermore, a modifed single-frequency
precise point positioning (PPP) strategy was proposed by
estimating separate clock biases for pseudorange and
carrier-phase observations [25, 26]. However, in complex
urban canyons, signal interruptions and ambiguity reiniti-
alization often degrade the availability of PPP. Wen and Hsu
[27] formulated a factor graph-based approach for GNSS
positioning that efectively explores the time-correlation of
GNSS measurements. Nevertheless, in complex urban en-
vironments, the trajectory can still deviate signifcantly from
the ground truth trajectory. However, model-based GNSS
positioning methods exhibit certain performance limitations
in real-world scenarios. Due to the complexity of real en-
vironments, optimization methods for GNSS positioning
based on model assumptions often deviate from these as-
sumptions, leading to issues such as positioning divergence.
Model-based approaches for mitigating GNSS single-point
positioning errors sufer from poor ftting performance,
limited generalization, and difculty in adapting to the
complexities of dynamic urban environments.

Te feld of artifcial intelligence (AI) has experienced
a rapid evolution, leading to a growing preference for data-
driven approaches. In numerous studies, deep learning or
machine learning techniques have been utilized to extract
representations of GNSS observation data without requiring
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expertise in the underlying principles. Additionally, AI
methods have been used to forecast complex GNSS mea-
surement errors. For instance, Linty et al. [28] employed
machine learning to identify amplitude ionospheric scin-
tillation events, while Kaselimi et al. [29] combined a con-
volutional neural network and a gated recurrent unit to
estimate ionospheric delays on GNSS satellite signals. Ad-
ditional studies [30–33] have focused on the utilization of AI
technology, including deep learning and machine learning,
for automatic detection and classifcation of GNSS in-
terference, such as jamming, spoofng, NLOS, and multipath
signals. It is noteworthy that Munin et al. [34] employed
a convolutional neural network (CNN) for the extraction of
multipath detection features. Similarly, Min et al. [35]
proposed a code multipath mitigation method using a deep
neural network (DNN) for GNSS navigation, while Zhang
et al. [15] employed a combination of LSTM and conven-
tional fully connected neural networks (FCNNs) to predict
satellite visibility and pseudorange uncertainty. However, it
is important to note that these studies have primarily
concentrated on the GNSS measurement domain rather
than the GNSS positioning domain.While research based on
GNSS observation data has controlled GNSS observation
signals, ensuring high-quality GNSS observation data for
calculating carrier positions, in complex environments, the
available amount of observation data is limited.Te data that
have undergone fltering are even more challenging to meet
the minimum requirements for satellite observation data in
positioning, leading to the inability to output positioning
results.

Te primary objective of this study is to develop a robust
and efcient GNSS positioning algorithm optimized for
urban environments. To accomplish this, we propose a novel
approach that transforms conventional GNSS positioning
methods into a problem of estimating position increments
using GNSS measurements. Tis approach employs an end-
to-end deep learning model in conjunction with a DAE to
jointly predict and rectify GNSS positioning errors. Rec-
ognizing the limited interpretability of neural network
methods, we assert that deep learning methods cannot fully
replace the traditional SPP algorithm. Consequently, we
integrate confdence estimation into the deep learning
model to facilitate a better fusion of deep learning techniques
with the traditional SPP algorithm. While previous studies,
such as Kanhere et al. [36], have proposed algorithms for
GNSS positioning corrections using DNNs, they did not
address the issue of positioning continuity in urban envi-
ronments, which is a key focus of our work. Our aim is to
develop a highly efective and reliable GNSS positioning
algorithm that can overcome the challenges posed by urban
environments and enable continuous positioning for users.

3. Proposed Method

In this section, we will discuss our methodology for de-
veloping the D-Tran model, which utilizes the raw GNSS
measurements to estimate position increments. Te overall
architecture of our proposed T-SPP algorithm is illustrated
in Figure 2.

Figure 2 shows that the proposed T-SPP algorithm is
built upon the transformer framework and consists of two
main components. In the fgure, we denote the predicted
position increment as ∆Pg, η represents the estimation of
model confdence, ∆􏽢P is the corrected and fused position
increment, and ∆PT represents the true position increment.
Other model parameters are described in detail in Section
3.2. Te frst component is the traditional SPP algorithm,
which is represented by the blue rectangle. Te GNSS OBS
block contains the GNSS raw observation data, such as
pseudorange and Doppler frequency. During the data
preprocessing stage, gross errors are eliminated. Addition-
ally, during the error correction phase, ionospheric errors,
tropospheric errors, and other errors are corrected.

Te D-Tran module, as the second component of the
T-SPP method, employs a transformer to estimate position
increments and model confdence by leveraging raw GNSS
observation sequences. In situations where accurate labels are
unavailable for determining the confdence of the intelligent
model, a loss function is devised to integrate confdence es-
timation and position increment estimation, providing valu-
able feedback. When the number of observable satellites
exceeds four, indicating the capability of the traditional SPP
algorithm to yield positioning results, the algorithm dynam-
ically merges the positioning results from the SPP algorithm
with the position increments generated by the intelligent
model, utilizing the predicted model confdence. However, in
complex urban environments, the traditional SPP algorithm
may fail to produce positioning results. To ensure continuity in
positioning, the intelligent model is employed to deliver
continuous positioning results in such scenarios.

Due to the lack of interpretability in deep learning
models, they cannot completely replace the traditional SPP
method for position estimation. On the contrary, deep
learning methods should be seen as complementary to
traditional SPP algorithms. Tese methods can optimize the
positioning results obtained from SPP when it is capable of
producing positioning results and provide additional posi-
tioning information when SPP fails to accurately determine
the position.

3.1. SPP Observation Equation. In general, the pseudorange
observation on a single frequency [37] between a satellite
and a receiver can be modeled as shown in (1).

ρs
r � ps

r + cδtr − cδt
s

+ I
s
r + T

s
r + εs

r, (1)

where the superscript s indicates the number of satellite and
the subscript r denotes the number of receiver; ρs

r is the
measured pseudorange in meters; ps

r means the receiver-
satellite geometric distance in meters; c is the speed of light
in vacuum in meters per second; δtr and δts represent the
receiver and satellite clock ofset in seconds, respectively; Is

r

and Ts
r are ionospheric delay and tropospheric delay, re-

spectively; εs
r includes unmodeled errors such as measure-

ment noise and multipath error in meters.
In (1), the satellite clock ofset can be computed using the

broadcast ephemeris, which is transmitted from the GPS
satellites and contains information about the satellite
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position and clock bias. To correct for the ionospheric and
tropospheric delay, we use the Klobuchar model [38] and
Saastamoinen model [39], respectively. Te Klobuchar
model is an empirical model based on the ionospheric
electron density, while the Saastamoinen model accounts for
the delay caused by the Earth’s atmosphere. In the SPP
algorithm part, we neglect the unmodeled errors, which
include measurement noise and multipath error [40]. Te
distance between the satellite and the receiver can be

calculated using the measured pseudorange, the speed of
light in vacuum, and the receiver-satellite geometric dis-
tance. To obtain precise positioning results, a minimum of
four observable satellites’ raw data is necessary. Tis re-
quirement arises from the presence of unknown variables,
including three-dimensional position coordinates and re-
ceiver clock ofset.Te computation process involves solving
multiple equations using the least squares method, and this
can be expressed as the following equation:

ps
r + cδtr � ρs

r + cδt
s

− I
s
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where (xs, ys, zs) are the satellite coordinates in meters; (xr,
yr, zr) are the receiver coordinates in meters; ρs

r%̂ is the
pseudorange after error correction. According to (3), users
can obtain their position by receiving pseudorange obser-
vation from at least four satellites.

3.2. D-Tran Model. Te detailed architecture of the D-Tran
model is depicted in Figure 3.Te inputs of our proposed D-
Tran model are the raw GNSS measurements S, which are
defned as follows:

S � S1, S2, ...Sn􏼈 􏼉, (4)

Sk � p
k
, ρk

, fdk
, ck􏽮 􏽯, (5)

where k represents the number of satellites, ρk is the
satellite coordinates of satellite k, ρk is the pseudorange
between satellite k and phone position, fdk

is the Doppler

shift of satellite k, and ck is the C/N0 of satellite k. To speed
up training and improve the stability of the model, all the
input data are normalized as shown in the following
equation:

S �
S − Smin

Smax − Smin
. (6)

It is worth noting that raw GNSS measurement data are
usually corrupted by noise, which can severely degrade the
prediction accuracy of the model. Terefore, the proposed
D-Tran model incorporates a DAE as a preprocessing step.
Te DAE is an unsupervised learning method that learns to
extract useful features from the noisy input data. It consists
of two stages, namely, the encoding stage and the decoding
stage. In the encoding stage, noisy training samples 􏽥S are
mapped to a lower-dimensional space, and the denoised data
are then reconstructed in the decoding stage, as shown in (7)
and (8).

GNSS OBS

pk

ρk

fdk

ck

Error Correction

Back Propogation

ΔPT

ΔPg ΔP

ηS X

D – Tran

Feed Forward Layer
Multi – Head Attention

Data Preprocessing

Figure 2: Te architecture of the T-SPP algorithm.
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Tis preprocessing step efectively reduces the impact of
noise on the subsequent processing steps and thus improves
the overall performance of the model.

η � σ(W · 􏽥S + b), (7)

X � σ W′ · η + b′􏼒 􏼓, (8)

where W and W′ are encoding and decoding weight ma-
trices, respectively, b and b′ are biases of input and output
layers, and σ(·) is the activation function defned as

σ(x) �
1

1 + exp(−x)
. (9)

Te D-Tran model utilizes a denoising process through
a DAE, where the resultant vector X is input into a trans-
former architecture to extract degradation features. Te
transformer is a sequence-to-sequence model with an en-
coder and decoder, designed to capture contextual in-
formation from neighboring positions [41]. Te encoder
predicts the continuous position increment from GNSS
measurements in the proposed method. Te transformer
layer contains the multihead attention sublayer and the feed
forward sublayer. Te former aims to capture dependencies
between input features, irrespective of their distance in the
sequence. Te input features X are encoded to generate
queries’ matrix Q and keys’ matrix K, as depicted in (10). By
performing such encodings, the transformer architecture
efectively extracts features from the input data that capture
the underlying degradation patterns, as demonstrated in this
study.

Q � X × Wq,

K � X × Wk,
􏼨 (10)

where Wq and Wk are the learnable parameter matrices of
diferent networks. Te attention weight matrix A can be
formulated as (11).

A � softmax
QKT

��
dx

􏽰􏼠 􏼡. (11)

In the fnal step, the transformer performers feature
encoding on input features to obtain the values V and the
output is computed as follows:

V � X × Wv, (12)

Attention(Q,K,V) � A × V, (13)

where Wv is the parameter matrix. Te multihead attention
is defned as follows:

Multihead(Q,K,V) � Concat head1, . . . headh( 􏼁WO,

headi � Attention Qi,Ki,Vi( 􏼁,

(14)

whereWo is the learnable parameter matrix.
Te feed forward sublayer, applied after the attention

sublayer, is designed to further fne-tune the data dimension.
Tis layer consists of two linear layers and a nonlinear
activation function and can be denoted as the following
function:

FFN(X) � W2 ReLU W1X + b1( 􏼁 + b2, (15)

where W1, b1 and W2, b2 are the parameter matrices and
biases of two linear layers.

Finally, in order to enhance the integration of posi-
tioning results between the SPP algorithm and the position
estimation outputs of the intelligent model, we defne the
output of the D-Tran model as the position increment ∆Pg

and the model confdence η, see as (16).

∆Pg, η􏼐 􏼑 � D − Tran(S). (16)

However, a signifcant challenge arises within supervised
learning frameworks, where acquiring labels for position
changes can be accomplished through additional high-
precision sensor devices, while generating labels for

DAE encoder DAE decoder Linear Sofmax
Attention

Add & Norm
Feed Forward

GNSS
raw

measurement fdk, ck

pk, ρk ΔPg

η

Figure 3: Te overall architecture of the D-Tran model.
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confdence estimation proves difcult for training purposes.
Consequently, we have devised a novel method for calcu-
lating the loss function. By minimizing (17) during neural
network training, we achieve a better alignment with the
ground truth without the necessity of confdence labels, thus
resulting in enhanced feedback correction of the network.

L � 􏽘
i

(1 − η)∆Pg + η∆PS􏼐 􏼑 − ∆PT

�����

�����
2
, (17)

where ∆PT is the ground truth and ∆PS is the output of the
SPP algorithm. After estimating the input gradient on each
node via backpropagation from the output, we use a gradient
descent optimization method to obtain the optimal pa-
rameters that minimize the loss function. Tis step is crucial
in improving the performance of the model by iteratively
adjusting the parameters to reduce the diference between
the predicted output ∆Pg and the ground truth ∆PT.

During the training phase, trajectory data collected using
high-precision devices are used as ground truth. Te T-SPP
algorithm frst checks if the SPP algorithm generates an
output. When the SPP algorithm provides positioning re-
sults, the trained confdence is employed to dynamically fuse
the outputs of the SPP algorithm and the intelligent model,
enabling the inference of the current positioning result. In
scenarios where the SPP algorithm fails to produce posi-
tioning results, the current positioning result is calculated
using the position change estimation derived from the
output of the intelligent model. Te training procedure of
the D-Tran model is depicted in the pseudocode format in
Algorithm 1, while Algorithm 2 depicts the real-time po-
sitioning process of the T-SPP method. Te performance of
our approach will be evaluated in the following section:

4. Experiments

In this section, we present an analysis of the positioning
performance of the T-SPP method in a typical urban canyon
environment. To further investigate the adaptability of the
proposed algorithm’s global performance, we compare the
positioning results of the traditional SPP method, DNN-
based correction method, proposed T-SPP method, and
factor graph method. Additionally, we analyze the perfor-
mance of raw measurements from smartphone in diferent
realistic environments.

4.1. Data Collection. Tis section focuses on the analysis of
GNSS observation data performance in complex urban
environments. To achieve this, we use the UrbanNav dataset
[42] collected in typical urban canyons of Hong Kong, which
provides a challenging data source due to high-rising
buildings, dynamic urban canyons, and narrow streets.

Furthermore, to supplement the analysis of the
UrbanNav dataset, we designed a robotic car for collecting
GNSS data of smartphones and ground truth data in
a medium urban environment.Te framework of the robotic
car is depicted in Figure 4. Te smartphone was mounted on
the robotic car to collect GNSS data while driving in the
medium urban environment around the Institute of

Computing Technology, Chinese Academy of Sciences. On 3
March 2022, we collected GNSS data using a Xiaomi MI 8
phone with the “Geo++ RINEX Logger” app. To obtain
precise location information for the smartphones, we uti-
lized a real-time kinematic (RTK) GNSS/INS integrated
solution from NovAtel SPAN-CPT, which has centimeter-
level accuracy.

4.2. Observation Quality Analysis. Analyzing the quality of
raw GNSS measurements is a crucial step in isolating ir-
relevant features and enhancing the efectiveness of D-Tran
model training. In this section, we discuss several measures,
such as C/N0, pseudorange residuals, and the number of
satellites observed, along with some samples. Te medium
urban positioning data used in this study are collected using
our robocar introduced in the last section, and the
UrbanNav dataset is utilized as complex data.

4.2.1. Visible Satellites. Te availability of satellites in dif-
ferent environments is shown in Figure 5. As depicted in the
fgure, 8 GPS satellites were observed in urban canyon and
medium urban environment using XiaomiMI 8. However, it
is important to note that the identifcation and total numbers
of satellites vary due to the diferent time and place of
observation data. Furthermore, the pseudorange observation
data are more continuous in the medium urban environ-
ment as compared to the urban canyon.Tis is because deep
canyon environments have more high-rising buildings,
leading to numerous NLOS receptions andmultipath efects,
which can signifcantly afect the quality of GNSS
measurements.

4.2.2. C/N0 of Satellites. Te C/N0 is a measure of the
strength of the received signal in relation to the noise level,
and it is related to the diferent gains and losses along the
entire transmitting chain. Te C/N0 values obtained for the
kinematic scenario while driving in diferent environments
are presented in Figure 6. Te results show that the C/N0 in
the complex urban environment is at least 5 dBHz lower on
average than that in the medium urban environment. Tis is
because the quality of the received signal depends on the
quality of the antenna and the reception area of the antenna,
and in complex environments, smartphones with low-cost
linearly polarized antennas have a smaller reception area.
C/N0 is often used to evaluate the quality of satellite data,
with lower C/N0 values indicating poorer satellite quality.

4.2.3. Pseudorange of Satellites. Pseudorange measurement
is a crucial aspect of satellite navigation systems. However,
the accuracy of the pseudorange measurements is often
afected by various error sources, including receiver clock
errors, multipath efects, and pseudorange noise. Tese
errors can be quantifed by the pseudorange residuals, which
can be expressed mathematically using (18). To illustrate the
impact of environmental factors on pseudorange residuals,
Figure 7 presents the pseudorange residuals of Xiaomi 8 in
both moderate and complex environments.
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s
􏼐 􏼑. (18)

From the plot in Figure 7, it can be observed that the
pseudorange residuals for both moderate and complex
environments fuctuate around a zero mean, indicating that
the system bias has been efectively eliminated. Never-
theless, the residuals are still infuenced by observation
quality, including multipath efects and clock ofset errors.
Te results reveal that the pseudorange residuals vary
signifcantly in moderate and complex environments,

ranging from −40 to 60meters and −80 to 60meters, re-
spectively. It is noteworthy that in complex environments,
where tall buildings can cause severe blockage, there are
some extremely large residuals outside the typical range of
−80 to 60meters. Tus, it is essential to account for these
environmental factors when analyzing the accuracy of
pseudorange measurements.

Table 1 presents the ranging root-mean squared error
(RMSE) andmaximum error of the pseudorange residuals. It
can be seen from the statistics that the pseudorange accuracy

Input: input data S, learning rate, hyper-parameters
Output: a well-trained D-Tran model.
(1) initializing parameters of the D-Tran model
(2) normalize S
(3) calculate ∆PS

(4) calculate ∆PT

(5) for training episode i � 1, N:
(6) predict ∆Pg and η with the inputs of S
(7) calculate loss based on ∆Pg and η
(8) calculate gradient
(9) update parameters of DAE
(10) update parameters of Transformer
(11) end for
(12) return the well-trained D-Tran model

ALGORITHM 1: D-Tran model training.

Input: GNSS observation data
Output: continuous positioning result.
(1) calculate position PS with SPP algorithm
(2) normalize S
(3) predict ∆Pg and η with D-Tran model
(4) ifPS:
(5) calculate ∆PS

(6) ∆P � (1 − η)∆Pg + η∆PS

(7) 􏽢pk � 􏽢pk−1 + ∆P

(8) else:
(9) 􏽢pk � 􏽢pk−1 + ∆Pg

(10) return􏽢pk

ALGORITHM 2: Real-time positioning with T-SPP methods.

Figure 4: Robocar and its surveying receiver and android smartphone.
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is approximately 46.27m in a complex environment,
whereas it is approximately 9.09m in a moderate envi-
ronment. Tis indicates that the antimultipath capability of
smartphones is weakened, which is related to the perfor-
mance of their own antenna and receiver, making them

easily infuenced by the surrounding environment. Addi-
tionally, there are numerous pseudorange gross errors in
smartphones, particularly in complex environments. Based
on the aforementioned data analysis, it is crucial to obtain
reliable positioning results in complex urban environments.
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Figure 5: Te visibility of satellites in diferent environments. (a) Complex environment. (b) Medium environment.
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In order to evaluate the performance of the T-SPP algorithm
in such environments, the UrbanNav dataset was utilized in
this study.

4.3. Experimental Setup. Te performance and continuity of
the proposed T-SPP algorithm on positioning is validated by
UrbanNav dataset collected in an urban area of Hong Kong.
Te smartphone GNSS observation data are collected using
Xiao MI 8 in the RINEX format. Te GNSS chip receiver of
smartphone outputs signal observables at approximately
1Hertz in our experiment methods. Te ground truth is
obtained from the GNSS/INS integrated solution from
NovAtel SPAN-CPT. Te experimental data were collected
in an urban environment, with duration of 3367 seconds,
about 4.86 km, where four-ffths of data are used for training,
and the rest is used as the test set for performance evaluation.
To evaluate the availability of our proposed T-SPP algorithm
on a diferent smartphone, we also use the model to test with
a completely new test data set collected by Huawei P40. Te
D-Tran model network is constructed and trained based on
Python in PyTorch library, which includes the activation
function (ReLU function in this study).

In the following section, we analyze and discuss the
positioning accuracy and availability of the T-SPP algorithm.
To address the challenge of SPP algorithms failing to provide
positioning results in complex urban environments, we
propose a novel evaluation metric that measures the pro-
portion of available positioning results time over the
total time.

To evaluate the efectiveness of the proposed T-SPP
algorithm, we compare it with three methods on the same
data sets.

(1) T-SPP: using our proposed T-SPP algorithm based
on pseudorange for the GNSS positioning task.

(2) FGO [27]: GNSS positioning based on the in-
tegration of pseudorange and Doppler measure-
ments using FGO.

(3) RTKLIB: traditional SPP algorithm using pseudor-
ange measurements.

(4) DNN [36]: GNSS positioning by applying DNN-
based correction to an initial position guess. Com-
parison with diferent networks.

Figure 8 displays a subset of the test dataset used to
validate our algorithm. Traditional SPP algorithms exhibit
fragility in urban environments, failing to provide posi-
tioning results when surrounded by tall buildings on both
sides. On the other hand, the performance improvement of
the DNN algorithm relies on high-quality satellite obser-
vation data, which is challenging to obtain in complex
environments. Consequently, the DNN algorithm struggles

to learn efective information, leading to limited optimi-
zation benefts. Meanwhile, the FGO algorithm can ofer
relatively continuous positioning results and optimize the
outcome even in the presence of tall buildings on one side.
However, in situations involving turns or tall buildings on
both sides, insufcient optimization data reduce the avail-
ability of the FGO algorithm. Research indicates that in-
creasing the optimization window of the FGO algorithm can
enhance its performance but at the expense of increased
computation time. Under the condition of using the same
optimization time window, the proposed T-SPP algorithm
achieves better results.

Figure 9 illustrates the positioning error curves for the
four algorithms. It is evident that in open areas, all four
methods demonstrate relatively small positioning errors.
However, in scenarios with signifcant obstacles where the
positioning errors of the four algorithms increase, the T-SPP
algorithm exhibits superior positioning performance.

4.4. Comparison with Diferent Networks. We evaluate the
positioning performance with diferent deep learning
models, including the feedback neural network LSTM and
the feedforward neural networks CNN. As illustrated in
Figure 10, CNN and transformer can more efectively learn
the characteristics of the satellite spatial structure in com-
parison to LSTM. Specifcally, LSTM prioritizes temporal
correlation in the analysis of time series, whereas it places
less emphasis on spatial structure. Conversely, the trans-
former emphasizes the interrelationship between each row
of data, thereby better utilizing the spatiotemporal corre-
lation inherent in GNSS raw measurement.

Te results of error analysis from Table 2 indicate that
the transformer outperforms LSTM and CNN in terms of
positioning. We conducted tests to determine the time re-
quired for predicting positioning results using the trans-
former model. Despite the relatively long training time
required for the transformer method, it can output posi-
tioning results within 10ms during the prediction phase.
Given the growing prevalence of intelligent chips in
smartphones and the incorporation of cloud-edge tech-
nologies, our algorithm can be applied to smartphone po-
sitioning during the ofine prediction phase.

In our ablation experiments using UrbanNav data, the
results are shown in Figure 11. Te red dashed line repre-
sents the use of only the transformer model, while the blue
solid line represents our proposed D-Tran model. It is ev-
ident that when using the transformer model, the fusion
with the D-Tran model signifcantly improves accuracy
compared to using the transformer model alone. We at-
tribute this improvement to the substantial noise present in
GNSS observation data. Without proper noise processing,
noise can adversely afect feature extraction in the model,
impeding efective feature learning from observational data
during training and introducing negative impacts.

4.5. Result Analysis. Table 3 compares the performance of
the T-SPP algorithm with the traditional RTKLIB method
and the FGO method. Te results show that the T-SPP

Table 1: Statistics of the pseudorange residuals.

Environment Max (m) RMSE (m)
Complex 3310.53 46.27
Medium 63.03 9.09
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algorithm outperforms the RTKLIB and FGO methods by
61.01% and 29.77%, respectively. Additionally, the avail-
ability of the T-SPP and FGO methods is recorded as being
100%, whereas the availability of the RTKLIB and DNN
methods is only 60.84%.

As shown in Table 3 and Figure 12, the performance of
the position correction method-based DNN is worse than
FGO and T-SPP. Tis is because that this method assumes
that the training dataset of observation GNSS is obtained in
the open sky, without considering the impact of observation
data quality on positioning in complex environments.
However, in complex environments, the quality of obser-
vation data is fragile, and the method that does not consider
the data quality is unlikely to achieve good optimization
results in practical urban environments. Te FGO method
optimizes the current positioning results using historical
data within a certain size window range. It can be seen that
FGO can achieve 100% availability. When optimization
window size is expanded, the positioning performance of

FGO is often improved with the increase of the time cost. As
can be seen from Figure 12, when the GNSS observation is
poor for a long time, the performance of FGO is worse
than T-SPP.

Considering that T-SPP and FGO have supplemented
a lot of epochs, Table 4 shows the position error statistics of
the four methods in the epochs that also have positioning
results. It can be seen that our method still has the best
performance.

We also tested the performance of the T-SPP method
using a poor dataset collected from Huawei P40, and the
performance of methods is shown in Table 5. We no longer
compare the performance of the DNN method because we
found that the performance of DNN is worse than other
methods. Te FGOmethod uses the full data to optimize the
current result because we found that setting the optimizing
window size to 150 cannot give reliable localization results.
As can be seen in Table 5, when the quality of observation
data is poor, the availability of the RTKLIB method is only
35.06% using the Huawei dataset. Although the FGO
method achieved 100% reliability, it was difcult to optimize
the current positioning result when the observation data
quality was poor, as the optimization was based on the
measurement and positioning results within the window,
which could not provide good quality results when the data
within the optimization window were of poor quality.
Leveraging the formidable learning capability of the D-Tran
network, the T-SPP algorithm exhibits superior perfor-
mance when contrasted against the FGO and RTKLIB
methodologies, and T-SPP can provide relatively reliable
positioning results even when the quality of GNSS raw
measurement is poor.

In order to further evaluate the efectiveness of the T-SPP
algorithm in novel and dynamic environments, a rigorous
test was conducted on the T-SPP algorithm using the GNSS

Table 2: Performance of diferent networks.

Methods 1σ (m) 2σ (m) 3σ (m) RMS
Transformer 17.57 23.33 31.90 19.57
LSTM 22.78 31.86 41.99 26.18
CNN 17.58 27.29 38.51 22.47
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Table 3: Performance of diferent methods.

Methods 1σ (m) 2σ (m) RMS (m) Positioning
availability (%)

T-SPP 16.33 23.32 18.01 100
FGO 35.40 54.29 30.92 100
RTKLIB 37.12 73.22 34.60 60.84
DNN 34.71 66.84 34.18 60.84
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observation dataset collected by Didi Corporation in Beijing.
Te positioning errors of our proposed method are shown in
Table 6. As can be seen from Table 6, the T-SPP also out-
performs other comparative baselines. T-SPP and FGO
maintain an error within ten meters in the urban envi-
ronment of Beijing and can position the current road
without crossing the road network structure. A better efect
can be achieved by combining the road network topology
structure. Compared to FGO, T-SPP achieves better posi-
tioning accuracy. While the transformer model utilized in
our study demands a substantial training time investment, it
exhibits an efcient computational performance during
testing, requiring only 20ms for the computation of each
output.

5. Conclusion

Tis study proposes a novel sequence-to-sequence posi-
tioning algorithm that combines the GNSS SPP algorithm
with the D-Tran model. Firstly, the GNSS raw observation
data are denoised using DAE and then the transformer
model is used to capture the spatial correlations in the GNSS
position sequence. Tis method automatically learns latent
features from the GNSS observation sequence, flling oc-
casional or short-term missing GNSS position data. Te
model simultaneously outputs position increments and
model confdence estimates, adaptively adjusting the fusion
weights of the model and SPP algorithm to optimize the
positioning results. Experimental results on multiple data-
sets demonstrate that the T-SPP method can provide con-
tinuous positioning results in challenging environments and
outperforms FGO and traditional methods.

Although the T-SPP method shows promising prospects
in SPP positioning, it cannot replace classical geometric-
based methods. On the contrary, combining geometric-
based methods with representations, knowledge, and
models learned through transformers will serve as a feasible
complement to further improve the accuracy and availability
of SPP systems. Te inherent opaqueness of deep learning
models, rendering them as black-box systems with chal-
lenging interpretability of internal workings, underscores
the caution required when considering their substitution for
classical geometry-based approaches. Tis paper advocates
the integration of geometric methodologies with represen-
tations, knowledge, and models acquired through trans-
former learning, presenting a viable supplementation to
enhance the accuracy and availability of SPP systems. Te
proposed T-SPP method, grounded in deep learning, de-
mands substantial computational resources during the
training phase, posing challenges in environments con-
strained by device capabilities. It is conceivable that future
advancements in hardware technology may pave the way for
the feasibility of deep learning methods on mobile
devices [43].
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