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Tis paper presents a comparative analysis of bioinspired algorithms employed on a PV system subject to standard conditions,
under step-change of irradiance conditions, and a partial shading condition for tracking the global maximum power point
(GMPP). Four performance analysis and comparison techniques are artifcial bee colony, particle swarm optimization, genetic
algorithm, and a newmetaheuristic technique called jellyfsh optimization, respectively.Tese existing algorithms are well-known
for tracking the GMPP with high efciency. Tis paper compares these algorithms based on extracting GMPP in terms of
maximum power from a PVmodule running at a uniform (STC), nonuniform solar irradiation (under step-change of irradiance),
and partial shading conditions (PSCs). For analysis and comparison, twomodules are taken: 1Soltech-1STH-215P and SolarWorld
Industries GmbH Sunmodule plus SW 245 poly module, which are considered to form a panel by connecting four series modules.
Comparison is based onmaximum power tracking, total execution time, andminimum number of iterations to achieve the GMPP
with high tracking efciency and minimum error. Minitab software fnds the regression equation (objective function) for STC,
step-changing irradiation, and PSC.Te reliability of the data (P-V curves) was measured in terms of p value, R, R2, and VIF. Te
R2 value comes out to be near 1, which shows the accuracy of the data. Te simulation results prove that the new evolutionary
jellyfsh optimization technique gives better results in terms of higher tracking efciency with very less time to obtain GMPP in all
environmental conditions, with a higher efciency of 98 to 99.9% with less time of 0.0386 to 0.1219 sec in comparison to ABC, GA,
and PSO. Te RMSE value for the proposed method JFO (0.59) is much lower than that of ABC, GA, and PSO.

1. Introduction

Photovoltaic (PV) technology is a promising one that sees
annual capacity growth around the globe as it is a clean and
convenient energy source. In recent years, renewable energy
sources, such as solar, tidal, biogas, wind, and solar power,
have become essential for power generation [1, 2]. One such
potential innovation is the solar cell, which transforms solar
energy into electrical energy that can be used directly in
various ways. Although solar or PV cells are benefcial, they

cannot convert all sun energy into electricity. Conversion
efciency refers to the proportion of solar energy a PV device
turns into useable power [3]. Te MPP is often reached by
modifying the PV panel power, which is a function of voltage
and current. Power electronic converters (DC-DC con-
verters) [4] are vital in stabilizing the voltage in all condi-
tions. According to the authors in [5], there are two types of
MPPTcontrol methods for PV systems: traditional methods
and soft-computing approaches, which are further sub-
divided into artifcial intelligence, bionature-inspired, and
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swarm-based MPPT techniques. Soft-computing, artifcial
intelligence (AI), and bioinspired (BI) techniques are the
most powerful methods of trackingMPP, and they are highly
efective and highly efcient when it comes to multi-
constraint issues in solar PV optimization [3, 6]. Conven-
tional MPPT algorithms fail to fnd the maximum point
when environmental factors repeatedly vary; therefore, they
are suitable for low-power and high-power applications [7].
Te P-V characteristic curve exhibits a nonlinear, time-
varying MPP problem due to the sudden changes in envi-
ronmental variables, namely, sun irradiance and tempera-
ture. To overcome the problem of the conventional method,
artifcial intelligence was introduced, which could deal with
the nonlinear behavior occurring in the PV system; more-
over, they did not rely on the model or PV features. Tey
could even use online follow-ups and self-learning to im-
prove the algorithm [6, 7]. However, they are complex,
costly, and take longer to determine the MPP. Tese MPPT
algorithms are, unfortunately, more expensive to implement
than traditional ones and need a specifc training dataset.

Heuristic optimization methodologies are becoming
more common as they can handle the challenges of tradi-
tional and AI-based. Moreover, bioinspired algorithms [8]
involve fewer computations than AI algorithms. Tese
heuristic approaches are benefcial and efective in fnding
the optimal solution for complicated problems in science
and engineering, and they often do not need extensive
mathematical expertise. Diferent applications of optimi-
zation techniques in variousfelds of engineering are dis-
cussed in [8]. A few MPPT approaches have been suggested
[6–8] and used recently to improve the PV yield under
various atmospheric conditions. According to the authors in
[9], MPPT problems are typically solved by considering fve
diferent techniques: the frst approach employs techniques
that consider constant variables, such as the PV current linear
relationship with the short-circuit current; the traditional
perturb and observe (P andO) strategy and its modifed tactics
are used in the second method, which involves the trial-and-
error process; the third utilises comparison and measurement
techniques, particularly the look-up table method; and the
fourth employs mathematically based computation techniques
such as incremental conductance (INC), while the last ap-
proach makes use of soft-computing techniques such as
particle swarm optimization (PSO) or fuzzy logic controller
(FLC) [6]. Bioinspired algorithms, such as swarm insight (SI)
methodologies [6–9], have gained increased recognition as
excellent optimization strategies for delivering the best re-
sponses and solving challenging issues during the PSC. Te
authors in [10] have given the classifcation of a few well-
known MPP controllers with the advantages and disadvan-
tages of conventional and optimization algorithms.

Te classifcation of diferent algorithms is illustrated
in Figure 1. A few of the well-known optimization
techniques are artifcial immune system (AIS) [8], ant
colony optimization (ACO) [5, 8, 12–14], moth-fame
optimization (MFO) [12, 15], whale optimization algo-
rithm (WOA) [12], butterfy optimization (BFO) algo-
rithm [12], shufed frog leaping algorithms (SFLA) [12],
slap swarm algorithm [12], frefy algorithm (FA)

[12, 16, 17], artifcial bee colony (ABC)
[5, 8, 9, 12, 13, 16–20], bat-search algorithm (BA) [12, 17],
grey wolf optimization (GWO) [5, 12, 13, 15, 17, 21, 22],
genetic algorithm (GA) [8, 12–14, 21, 23], fower polli-
nation optimization (FPO) [12, 16, 24], JAYA [16], DE
[8, 16], cuckoo search (CS) [5, 6, 12, 13, 15, 16, 24], particle
swarm optimization (PSO) [5, 6, 8, 13–17, 19–29], seagull
optimization algorithm (SOA) [27], Harris hawk opti-
mization (HHO) [16, 20], African vultures optimization
algorithm (AVOA) [30], AOA-based PI-IC-MPPT [21],
grasshopper optimization algorithm (GOA) [15], Aquila
optimizer (AO) [21], antlion optimizer (ALO) [21], tuna
swarm optimization (TSO) [21], black widow spider
(BWS), squirrel search algorithm (SSA) [15], yellow saddle
goatfsh algorithm (YSGA), and butterfy optimization
algorithm (BOA) [29]. Tese are optimization techniques
that have been utilized for comparing diferent factors in
terms of tracking time [16, 21, 24, 29], tracking efciency
[13, 14, 16, 20, 22, 24, 29, 31], root mean square error
[12, 14, 15, 18, 20], and mean absolute error [20]. Some of
the new optimization techniques that have been recently
introduced in the PV system analysis in 2022 and 2023 are
specifed as seagull optimization algorithm [27], African
vulture optimization [30], jellyfsh optimization algorithm
[32], arithmetic optimization algorithm [21], reptile
search algorithm [22], particle swarm optimization with
butterfy optimization algorithm [29], DGBCO [33], EVO
[34], GRNN-OPA [35], MRO [36], and many others that
are utilized in diferent felds of engineering.

A Google Scholar study was conducted during the past
fve years, 2015–2020, on nonuniform solar irradiance and
shading conditions [23]. Evolutionary algorithms (EAs)
have emerged as the frontrunner forMPP tracking problems
under shading circumstances [25]. Tese algorithms con-
frm that the PV system always runs at its GMPP, regardless
of the change in the atmospheric condition (irradiation and
temperature). Several approaches fail to determine the
global point because they get trapped in local points or local
maxima and minima. Te paper [23, 24] focuses on clas-
sifcations of optimization techniques, mathematical ex-
pressions, operational principles, and fowcharts [26]. Tis
paper presents an attempt to highlight the present and
future problems associated with developing high-
performance PV systems. Te determination of numerous
parameters might cause the optimization approach to be-
come challenging or complicated [27]. Te literature re-
search on fnding popular optimization approaches is shown
in Table 1. According to the authors in [20], the PSO gives
optimum efciency even under PSC, but it quickly falls into
local optima, and as a result, determining MPP takes a long
time. ABC has a strong exploration ability to follow MPP,
though these approaches are highly prone to exploitation.
[37] gives the modeling [38], electrical characteristics, and
[39] parameter estimation of photovoltaic strings under PSC
and explains the importance of bypass diodesTe authors in
[15, 19, 40–42] has reviewed and compared the performance
of some well-known optimization algorithms under par-
tially shaded conditions. Te authors in [13] have reviewed
and given the performance comparisons of conventional,
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artifcial intelligence, and optimization-based MPPT in
terms of tracking capability, convergence, implementation,
tracking accuracy, tracking speed, efciency, economy, and
application and have given advantages and disadvantages of
diferent optimization techniques used to track the GMPP.
In [43], a comprehensive comparative analysis of the
twenty-eight adaptive MPPTalgorithms is performed based
on the tracking time, steady-state oscillations, conversion
efciency, algorithm complexity, implementation cost, and
the capability to perform on the partial shading conditions.
Tis will help the readers to select the suitable MPPT
methods. Te authors in [44] focused on the use of jellyfsh
search optimizer in solving optimization problems. Te
authors in [32] have given a detailed explanation of the
jellyfsh optimization algorithm with its application in en-
gineering. Te authors in [11, 14] have shown a comparison
of the diferent optimization techniques [28]. PSO and FPA
are compared with ten (10) samples for PSC and it is
concluded that the FPA produces 86.03W power output
compared to the power output in PSO of 85.5W under PSC
in the PV panel. Te authors in [21] introduced AOA-based
PI-IC-MPPT, which gives better results than MIC, GWO,
GA, and PSO in terms of reducing rise time and settling
time. Te authors in [22] used the RAS optimization

technique and proved that RSA gives better efciency than
DOA, GWO, WOA, and PSO. Te authors in [29] used
hybrid methods such as BOA-PSO-based algorithm and
found that the PSO-BOA algorithm outperforms the PSO
and BOA in terms of convergence accuracy, with a tracking
accuracy of not less than 99.94%. Te authors in [33]
concluded that DGBCO has signifcantly less RMSE value
than other algorithms. Te authors in [45] reviewed some
algorithms and proposed a SHTS algorithm that was
compared with hybrid algorithms in terms of tracking speed
and accuracy under partial shading conditions. Hybrid
IABC+ SHTS performs excellently in precisely identifying
the GMPP of PV systems with phenomenal rapidity among
multiple peaks. Te authors in [34] introduced the energy
valley optimizer (EVO) MPPT algorithm, showcasing 30%
quicker tracking and 80% faster settling time. Research [35]
also highlights the GRNN-OPA-based MPPT’s superior
performance with 35% faster tracking, 90–110% quicker
settling time, and 4–8% higher energy accumulation. In [36],
the proposed controller achieves an average of 99.95%
power output and 220ms response time under dynamic
thermal conditions, demonstrating 38–70% faster tracking
of the maximum power point in dynamic operating
conditions.

Soft
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Algorithms
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Figure 1: Classifcation of diferent algorithms [11].
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Many researchers [31, 46] have used regression analysis
for forecasting PV power and concluded that one of the
convenient ways to model PV performance is linear re-
gression models. A multiple linear regression model was
implemented for PV systems for MPPT, and regression
analysis of a photovoltaic system in terms of RMSE was
considered to generate the regression coefcient. Te au-
thors in [46] have given the application of regression analysis
and machine learning for tracking the maximum power and
the performance analysis of PV modules using regression
analysis. According to the authors in [31], the accuracy
obtainable for the prediction will depend on the value of the
parameter R2, which lies between 0 and 1. Te closer the
value of R2 to 1, the more accurately the PV module re-
gression model is predicted to function [31, 46].

Tis paper uses a new metaheuristic JFO algorithm to
track the PV panel’s GMPP with the help of regression
analysis of the PV curve obtained by P-V curves. Te ob-
jective function equation is formulated by using the re-
gression analysis with the help of the Minitab software. Te
equation comprises of correlation factors that determine the
power voltage and current relationship. Tis equation is
optimized by using the JFO to fnd the voltage and current’s
value corresponding to GMPP. Many authors
[6, 10, 12, 16–19, 22, 23, 27, 29, 31, 43] have compared
algorithms based on tracking capability, total execution
time, tracking efciency [16, 29], and accuracy. Te authors
in [25] compared in terms of population size, [14, 24]
compared in terms of Iteration. Te authors in [7] analysed
the performance at diferent irradiation and PSC. Refrences
[12, 14, 15, 18, 20, 33] compared RMSE and, the authors in
[20] in terms of MAE. In this paper, three cases, STC, step-
changing irradiation, and PSC, are taken to validate the
performance of JFO in terms of maximum power tracking,
total execution time, the minimum number of iterations to
achieve the GMPP with high tracking efciency, and RMSE
for the same set of population and number of iterations. Te
analysis and comparison between the existing techniques
(GA, ABC, and PSO) and the proposed technique (JFO) is
carried out with a smaller population size (Npop = 8) and
maximum iterations (IteMax = 100). Te module parameters,
specifcation, irradiation, and temperature are kept the same
for all cases. Also, the efect of air mass, wind, module
heating, soiling, panel orientation, and humidity has not
been considered in this research.

Section 2 briefy introduces the PV system description
with the PV panel’s main equations, explains diferent op-
timization techniques with the fowchart, thoroughly ex-
plains how the JFO method works, and illustrates the critical
phases in its execution. Finally, Section 3 gives the process of

objective function formation with the help of Minitab
software (regression model) in which power was made
a function of voltage and current with coefcients that
describe the P-V curve of the PV system for diferent en-
vironmental conditions, i.e., at STC, step-changing irradi-
ations, and PSC. Te MATLAB/simulation software was
used to fnd the response of other optimization techniques.
Te results obtained in both case studies (1Soltech-
1STH-215P and SolarWorld Industries GmbH Sunmodule
plus SW 245 poly module) are compared with other opti-
mization algorithms, i.e., PSO, GA, ABC, and JFO-based
optimization at STC, step-changing irradiation, and PSC
conditions for the same set of iterations and population size.
Lastly, a comparison between the proposed technique and
other optimization techniques is made. Te results prove
that the JFO-based optimization technique gives the desired
output with less population and in less time with higher
efciency and lowest RMSE value. Tese fndings and
problem-solving techniques prove the novelty of the paper
and JFO algorithm. Finally, conclusions are drawn in
Section 4.

2. Materials and Methods

A photovoltaic cell is an energy-harvesting technology that
converts solar energy into practical electricity through
a photovoltaic efect [37]. Te smallest unit is called a solar
cell, the arrangement of cells in series and parallel combi-
nation forms module, arrangement of modules into series or
parallel combination form panel, and a combination of
modules form array. Irradiation and temperature signif-
cantly impact the performance of PV power generation, as
solar irradiation is nonuniform in real life [38]. Tracking the
real MPP is thus a crucial factor to consider while choosing
the technique. Te complexity of an algorithm’s design and
efciency signifcantly impacts how accurate and efcient
the optimization techniques used for tracking GMPP are.
Te PV system’s constant steady-state response, tracking
time, and efciency were the primary deciding factors while
evaluating the diferent optimization techniques. Consid-
ering all these factors, the design parameters of the PV
module and other optimizations are illustrated in the sub-
sections given as follows.

2.1. PV SystemDescription. An antiparallel diode coupled to
series resistance (Rs) and parallel resistance (Rsh) is used to
represent the equivalent circuit of a single-diode PV cell (see
Figure 2). Te photovoltaic current generated (Ipv) is
expressed as [27, 37] follows:

Ipv � IPh − I0 ∗ exp
Vpv + IpvRs

Ns ∗ (k ∗ α∗T/q)
􏼠 􏼡 − 1􏼢 􏼣 −

Vpv + IpvRs

Rsh
. (1)

Te total module current is calculated by using equation
(1), where Ipv is the module current, Vpv is the module
voltage, Iph is the photogenerated current, I0 is the diode

reverse saturation current, Ish is the current through shunt
resistance, Rs is the series resistance, Rsh is the shunt re-
sistance, Ns is the number of cells, Vt is the junction’s
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thermal voltage and can be expressed as VT � (k ∗ α ∗ T)/q,
where k is the Boltzmann’s constant 1.38×10−2 J/K, q is the
electron charge equal to 1.602×10–19 C, T is the temperature
in kelvin, and α is the ideality factor constant [44], and IPh �

(G/Gref ) [ISC,Ref + μSC (T − TRef )], where Isc,ref is the solar
cell short-circuit current, Gref � 1000W/m2, Tref � 25°C, μSC
is the solar cell short-circuit temperature coefcient, usually
provided by the manufacturer (A/K), and G is the actual
irradiance intensity (W/m2) [27].

When PV modules are exposed to high solar irradiation
and low solar irradiation, they produce less current than
unshaded modules, resulting in a phenomenon known as
mismatch loss, which is also known as the partial shading
condition (PSC). PSC afects the electrical characteristics of
PV strings, so bypass diodes are coupled in parallel to every
module to prevent this mismatch loss. Te following
equation [16] represents the bypass diode’s reverse bias
saturation current (Isat,bp) computed:

Ibp � Isat,bp ∗ exp
Vs

Ns ∗ (k∗ α∗T/q)
􏼠 􏼡 − 1􏼢 􏼣. (2)

Te simulation model is designed in MATLAB software
to form a panel by combining four series modules (Fig-
ure 3(a)) that are connected by a bypass diode [38]. In PV
modules, bypass diodes are utilized to avoid generating an
excessive reverse voltage across the cells in the presence of
shading. When one or more PV system cells are shaded and
receive diferent solar radiation, it results in a partial shading
condition [38]. Te shadows projected by nearby trees,
clouds, buildings, dust, and bird droppings are some causes
of shading conditions. A frequent change in the irradiation
level can permanently harm PV modules by generating cell
mismatches, hotspots, and unexpected system losses in the
PV system. Such a problem in the PV system can be avoided
by connecting it to the PV module with a bypass diode. Te
P-V curve produced by these diodes exhibits various power
peaks (Figure 3(b)), known as LMPP and GMPP.

2.2. Diferent Algorithms for Tracking GMPP. Solving chal-
lenging mathematical puzzles in various domains is one of
the most difcult tasks for a human being. Nature is one of
the excellent and extensive sources of inspiration that help
lead the way in solving these complex problems efciently.
Optimization problems should keep the balance between the
dependent variables while defning the objective functions.
Many optimization methods have proved their importance
in solving nondiferentiable and discontinuous problems in
solar power generation to track the GMPP during the PSC
and under step-change of irradiance conditions
[6–10, 12, 16–20, 23–27, 30]. Due to some advantages [37]
over conventional methods and intelligent techniques,
heuristic approaches are usually used in the paper as they
can quickly adapt to algorithm changes, and ample space for
possible optimal solutions is available for diferent problems.

PSO [5, 6, 8, 11, 13, 14, 16, 17, 19, 23–26], GA
[8, 11–14, 23], and ABC [5, 8, 11–13, 16–19] are the most
widely used optimization algorithms because of some

advantages [5, 16, 17] such as their simple structure,
independence of a mathematical model, capability to
solve nonlinear and challenging mathematical problems,
easy understanding, and high reliability. Each optimi-
zation technique considers a few deciding factors such as
the number of populations and a few particles/food
sources/chromosomes/jellyfsh. Te stopping criteria of
each optimization technique are based on the previous
best optimal solution compared with the current optimal
solution such that the current solution should be
greater than the last optimal solution value. Te optimal
solution can be in terms of Pmax or less error or any
parameter (cost function) that can be maximized or
minimized. Each algorithm has some stopping criterion
that helps determine the problem’s optimal solution.
Root mean square error (RMSE) is an essential metric for
assessing the efectiveness of MPPT methodologies. Te
following equation is used for this statistical analysis
[33, 34].

ErrorRMSE �

���������������

􏽐
n
i�1 Ppvi − Ppvi􏼐 􏼑

2

n

􏽳

, (3)

where Ppvi represents the power at STC, Ppv is the power
tracked, and n represents the number of samples.

Regression analysis is a statistical approach that ob-
tains the best coefcients to model the system with
a minimum cumulative least square error. Te accuracy
obtainable for the prediction will depend on the value of
the parameter R2, which lies between 0 and 1, and the
nearer this value is to 1, the better the predicted accuracy
of the regression model designed for the PV module
[31, 46]. P value is a statistical test that determines the
probability of extreme results of the statistical data where
its coefcient turns out to be zero, i.e., for a lower value of
<0.05 [31]. In the literature, some researchers have tried to
apply linear regression to model PV systems. Te good-
ness R2 of ft is defned as [46] follows:

R
2

� 1 −
􏽐

ns
k�1 Yi − Yo( 􏼁

2

􏽐
ns
k�1 Yi − Ya( 􏼁

2 , (4)

where Ya is the mean value of Yi and ns is the sample count.
Te value of R2 and RMSE closer to zero represents the
model with greater prediction strength [46].

A multiple linear regression model for PV can be
denoted as follows [31]:

ID
Rs

Rsh

Ish
Ipv

Iph Vpv

Figure 2: Single-diode PV cell equivalent circuit diagram [2].
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y � β0 + β1v1 + β2v2 + β3v3 + · · · · · · + βnvn + e, (5)

where v1 and v2, . . ., are the input variables (1 to n). Te
coefcient is the intercept, while values of βn, . . ., denote the
slope coefcient of each input (explanatory) variable and the
error e (the amount by which the predicted value is diferent
from the actual value). Te regression model estimates the
best values, leading to the least error “R.” R is known as the
correlation coefcient, and its value determines the strength
and direction of linear association between the two variables
under examination. Building a model with a small dataset
and a high number of predictors leads to a model with low
performance, and the correlation between predictors could
increase, leading to high values of VIF (variance infation
factor) for predictors [31]. A VIF of<5 for their predictors
makes them the potential models for independent variables.
Te collinearity of variables is checked through the VIF. Te
VIF of a predictor is low when it is <5, and the VIF of
a predictor is moderate when it is <10 [31]. Te values of the
correlation coefcient R near 1 or 1 indicate a strong cor-
relation between the two variables. In this paper, the value of
R is 0.95, which shows the excellent correlation between the
variables V and I with Pmax. After using the regression
analysis of the PV curve, an objective function is formed that
is tested by calculating its RMSE value.

Diferent algorithms can fnd the GMPP at STC, under
step-changing irradiation, and PSC [8–20, 23–27, 30, 37–43].
Artifcial jellyfsh optimization (JFO) [44] is a new novel
swarm-based optimization algorithm with some advantages
over other algorithms. JFO can balance exploration and
exploitation strategies well and reach optimal solutions in less
time [32, 44]. A comparative analysis is performed for the two
panels for STC, step-change of irradiances, and PSC condi-
tions. JFO is compared among the PSO, ABC, andGA. A brief
introduction of these algorithms is as follows.

2.2.1. Genetic Algorithm (GA). It is one of the most in-
fuential evolutionary algorithms based on the theory that
living things have evolved biologically and Darwin’s principle
of “survival of the fttest” [8]. A function optimizer is another
name for it [12, 23]. GA commonly uses a fxed population
size. Tree genetic processes are employed: mutation, cross-
over, and selection. Te process begins with developing
a random population of solutions, after which it uses the
ftness function or objective function to assess the ftness of
each chromosome. Ten, the best chromosome is picked for
themating pool, and a new set of solutions known as ofspring
are produced when these chromosomes encounter cross-over
and mutation (switches from 1 to 0). To improve the solution
selected from the present generation, we choose the most
suitable ofspring to transmit to future generations. Te
method is repeated until the requirements are met (Pmax).
Finally, the overview of the genetic algorithm’s [8, 12, 13, 23]
working principle is displayed in Figure 4(a) [13].

2.2.2. Artifcial Bee Colony (ABC). Karaboga proposed the
artifcial bee colony (ABC) method to optimize numerical
challenges in 2005 [17, 44]. Te ABC algorithm is a swarm-
based metaheuristic algorithm. It was infuenced by how
honeybees used intelligence in their foraging. Te algorithm
is based explicitly on the model used for honeybee colony
foraging behavior [5, 8, 12, 16–19]. Its operation is based on
three phases [17]: the employed bee’s phase, the onlooker
bee’s phase, and the scouting phase. Te ABC working
method is shown in Figure 4(b).

In ABC, the artifcial bees update each position over time
using equation (6). Te bee’s primary goal is fnding the best
food source to produce the most nectar [8]. Ten, the scout
bees randomly pick the food sources and fy around the
searched area. Finally, the observing bees choose the food
source based on the expected amount of nectar [16].
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Figure 3: (a) Panel (four series module) and (b) P-V curve at PSC.
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Tey only consider the location of the leading food source
during the greedy search process. Whenever a food source is
fully utilized, an employed bee transforms into a scout bee
and investigates a new area. While creating a new position,
the position that best matches the previously created one is
chosen. In equation (6) [16], ith is the food source in the
swarm (xi), where xmaxj and xminj are the bounds in the jth
dimension and a random number (rand) range from 0 to 1.

xij � xminj + rand[0, 1]. ∗ xmaxj − xminj􏼐 􏼑. (6)

Te dependency of random food source (rm) is on se-
lection probability (Pm) that is represented in terms of food
source (xm) with the food source number (Fn) given in the
following equation [16]:

Pm �
Fitness xm( 􏼁

􏽐
Fn
i fitness xi( 􏼁

. (7)

By comparing a probability factor associated with several
food areas, the location of the food source is determined [5].
Te primary objective of the algorithm is to substitute
a source of nectar with a higher level of food source. Te
main advantages are simplicity, high fexibility, strong ro-
bustness, few control parameters, ease, and combination
with other methods.

2.2.3. Particle Swarm Optimization (PSO). V. Kennedy and
Eberhart gave this algorithm structure in 1995 [16]. Like
many optimization algorithms, PSO draws inspiration from
the natural life cycle and the behaviors during this period.
Fish, insect, and bird herd behavior were studied during the
development of the PSO and incorporated into the algo-
rithm. Every particle has a velocity updating equation (8)
and location updating equation (9), resulting in a change in
variable according to the local best solution Pbest,i and the
globally best solution Gbest, which are modifed after each
iteration by learning from the local best point
[12, 16, 17, 23–26]. Te PSO working fowchart is given in
Figure 5(a). Each particle’s position refers to a set point for
a variable. Te best position is identifed by using the fol-
lowing equation [23]:

x
t+1
i � V

t+1
i + x

t
i , (8)

where vi is the velocity component used to represent the
MPPT step size. Te value of Vt+1

i is calculated by using the
following equation [23]:

V
t+1
i � wv

t
i + c1 r1 Pbest,i − x

t
i􏼐 􏼑 + c2r2 Gbest − x

t
i􏼐 􏼑, (9)

where Vt+1
i is the velocity of the ith swarm, w is the learning

factor, and c1, c2, r1, and r2 are the position constant and
random number, respectively. To use it in the script fle

Start
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Measure the fitness of individual

Section
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Yes

No
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Convergent?

Output the optimal solution

End

(a)
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Acute change
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Figure 4: Te block diagram of (a) GA [13] and (b) ABC-based optimization technique [13].
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(MATLAB), a few steps are needed to get the optimized
value of the function. As a result, an algorithmic replacement
programmodel is created to fnd the optimal solution for the
parties.

2.2.4. Jellyfsh Optimization (JFO). JFO is a new meta-
heuristic optimization algorithm based on jellyfsh behavior.
Tis method is inspired by the exploration behavior and
movement patterns of Jellyfsh [44]. In JFO, the amount of
food at diferent locations varies. Terefore, jellyfsh
movement occurs by comparing the food proportions in an
ocean. Its exploration and exploitation approach helps to
reach optimal solutions in less time [32, 44]. A fowchart of
the JFO algorithms is shown in Figure 5(b). Tis algorithm
follows these rules for operation.

(i) A “time control mechanism”
(ii) Maximum food availability in that ocean area
(iii) Active and passive motions of jellyfsh

Te ocean current can be calculated by using the fol-
lowing equation [44]:

Xi(t + 1) � Xi(t) + rand (0, 1)∗ X″ − 3( ∗ rand(0, 1),

(10)

where the relevant updated position is determined by Xi(t +

1) and c is the motion coefcient.
Equation (11) [44] is considered to calculate the di-

rection of motion, and equation (12) [44] is used to update
the location. In equation (14), c (t) value varies between
0 and 1, co is a constant value of 0.5, and t represents the time
period at a particular instant [32].

|Direction| �

Xj(t) − Xi(t); if f Xi( 􏼁≥f Xj􏼐 􏼑,

Xi(t) − Xj(t); if f Xi( 􏼁<f Xj􏼐 􏼑,

⎧⎪⎪⎨

⎪⎪⎩
(11)

Xi(t + 1) � Xi(t) + c∗ rand(0, 1)

∗ (Upper bound − lower bound),
(12)

Xi(t + 1) � Xi(t) + rand(0, 1)∗Direction, (13)

c(t) � 1 −
t

Maxiteration

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 2∗ rand 0, 1 − 1. (14)

Te population initialization is performed by using the
following equation [32]:

Xi+1 � a∗Xi ∗ (1 − x(i)); 0≤Xo ≤ 1. (15)

Te logistic chaotic (Xi) value of i
th jellyfsh, Xo ∈ (0, 1),

and the value of “a” are chosen as 4.0 [32, 44]. To use it in the
script fle (MATLAB), a few steps are needed to get the
optimized value of the function.

Equation (14) represents the time control mechanism in
the JFO, and equation (15) [32] describes the “initialization
phase” [32, 44], the frst step in JFO optimization. Te
second step is setting the boundary condition for diferent
functions. Te boundary condition is essential so that the
jellyfsh does not move outside the boundary search area.
Equation (16) [32, 44] gives the limit of jellyfsh in a search
space area or boundary condition to jellyfsh [32]. A jellyfsh
is located at X i,d in the dth dimension.

X i,d
′ � X i,d − Upper bounds + Lower bounds; if X i,d >Upper bounds􏽮 􏽯

X i,d
′ � X i,d − Upper bounds + Lower bounds; if X i,d < Lower bound􏽮 􏽯.

(16)

Te best location for the food is determined by the jellyfsh,
where the quantity of food is more. As a result, an algorithmic
replacement programmodel is created that replicates the ocean
jellyfsh’s search patterns and movement. Due to the c (t)
functions, it takes more iterations to track the maximum
power, as it must fnd a new direction in every iteration.

3. Results and Discussion

For the analysis purpose and comparison purposes, two
modules of diferent specifcations are taken such as 1Sol-
tech-1STH-215P (case 1) and SolarWorld Industries GmbH
Sunmodule plus SW 245 poly panel (case 2) that is available
in MATLAB R2021a software. Four modules are connected
in series to design a panel.With the help ofMinitab software,
a regression equation or objective function is obtained in
terms of voltage and current values obtained from the P-V

curves at STC under step-change of irradiance and PSC
condition. For step-change of irradiance conditions, dif-
ferent irradiation values are taken at constant temperatures
at diferent time frames.

A similar environmental condition for STC is considered
in the simulation model, having an air mass of 1.5, maxi-
mum irradiation of 1000W/m2, and a fxed temperature of
25°C. For PSC, a set of irradiations is taken and operated
simultaneously, and the irradiation dataset values lie be-
tween 100W/m2 and 1000W/m2. Te efect of air pressure,
dust, humidity, and other losses are neglected in this paper.
A simulation model is made with the help of MATLAB
software. Te panel output is taken in terms of Vmax, Imax,
and Pmax, and the comparison of the optimization algorithm
is based on parameters such as maximum iterations, number
of populations, number of iterations to achieve the GMPP,
execution time (sec), tracking efciency, and RMSE.
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3.1. Case Study 1: 1Soltech-1STH-215P Module. For analysis
and comparison purposes, a single PV module of
213.15watts is considered to form a panel; its specifcations
are given in Table 2. Four modules are taken and connected
in series to form a panel with an output of approximately
852.6 watts, with a maximum voltage and current rating of
116 volts and 7.35 amperes to improve the power rating of
the PV system.

Te simulation model of a panel (four series connected
modules) has irradiation and temperature as input pa-
rameters (Figure 6). Te irradiation values are taken in such
a way that the change in the response (I-V and P-V curves)
can be analysed at STC (1000watt/m2), and for step-change
of irradiance (200, 400, 500, 600, 700, 800, and 1000watt/m2)
at a constant temperature of 25°C. Te I-V and P-V curves
for the same is given (Figures 7(a) and 7(b)). Te efect of
change in irradiation is given in terms of maximum voltage,
current, and power (Table 3). Te curve at 1000W/m2

represents the STC condition of the panel Vmax, Imax, and
Pmax reading for the STC and step-change of irradiances
(Table 3 and Figures 7(a) and 7(b)).

From the results, it can be observed that with the change
in the value of irradiation, there is a signifcantly less
fuctuation in the Vmax value, but a signifcant variation is
found in the Imax and Pmax values, which shows that the
panel’s Imax and Pmax values are more sensitive toward the
irradiation value.

Irradiance variations afect the overall performance of
solar cells/modules/panels. Te power the PV panel receives
from the sun varies with the time of the day, which impacts
solar cell efciency and its fll factor (FF). For analysing the
efect on the panel under step-change of irradiance, in the
model (Figure 6), the irradiation values are changed con-
tinuously with the time period of 0, 2, 3, 4, and 5 secs for the
irradiation value of 500, 700, 800, and 1000 corresponding to
the curves shown in Figures 8(a) and 8(b). In addition, the
Pmax, Vmax, and Imax values are given in Table 3 for the step-
change of irradiance conditions. Te partial shading con-
dition (PSC) arises when panels are subjected to diferent
irradiation levels caused by nonuniform shading. As a result,
the PV array’s unshaded module receives higher solar ir-
radiation, while the shaded module receives lesser solar

Set the initial
particle velocities 0

Set the initial
particle velocities 0

Begin

Initialize PSO
Algorithm

i = 1

Generate randomly
a Power for each

particle i

Calculate the
Power Ppv

No

No

YesFitness Check
Update Pbest and

Gbest

Update particles phase

Convergence
criteria met? i = i + 1;

Yes

End

(a)

Start

Define the Objective Function in term of Power

Initialize the Population, Calculate the food at
each location, Set the current the best

location,initialize time (t)=1

set i=1

Calculate the Time control c (t)

Yes

Yes

Check for
c (t)>=0.5 No

Calculate
the ocean
current

Rand (0,1)>
(1-c (t)

calculate
New

position
Calculate direction
and position using

Check the boundary condition for Unknown Parameters, calculate
the new position and best location

i = i + 1

i<=Npop Update the
time = t+1

YesStopping
Criteria

Best output or optimized value fitted to objective
function

End

No

Yes No

No

(b)

Figure 5: Flowchart for (a) PSO [17] and (b) JFO-based optimization technique [44].
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irradiation. From an analysis point of view, a panel is
designed by connecting four modules (1Soltech-1STH-215P)
in series with the help of a bypass diode (Figure 9). Ten, its
I-V and P-V curves are analysed for PSC. Irradiation values
range from 400W/m2 to 1000W/m2 (Figures 10(a) and
10(b)). In PSC, the input is in terms of irradiation values, and
its output is in terms of Vmax, Imax, and Pmax values (Table 4)
for diferent cases. For case 4, irradiation values of 400, 500,
700, and 1000W/m2 have been considered, for which each
module is given diferent irradiation while showing the
shading condition. Te P-V curve for the PSC condition is
shown in Figure 10(b).

Optimization techniques are well-known for solving
nonlinear problems under step-change of irradiance and
PSC. So, for performance and comparison purposes, a few
well-known optimization techniques, such as PSO, GA,
ABC, and the proposed JFO technique, are used to track the
panel’s maximum power. First, the “Minitab” software
calculates the regression equation (objective function). Te
predictor’s coefcients, along with the p values, the co-
efcient of correlation (R), the coefcient of determination
(R2), and the root mean squared error (RMSE) are de-
termined. Summary statistics are taken in terms of R2, R2

(adj.), p values, and VIF performance score with the values

of 0.9, 0.98, 0.01e− 10, and 0.23, which shows that the data
collected are reliable and regression analysis is possible on
the chosen date of the P-V curve. With the help of the
regression equation, a MATLAB code is written for dif-
ferent optimization techniques to solve this regression
equation calculated for STC, step-changing irradiation,
and PSC.

Te regression equation values for STC condition, under
step-change of irradiance, and PSC condition can be ob-
tained by choosing the voltage and current values as input
variables and the output in terms of the maximum power
generated at a particular irradiation value. Equation (17)
represents the regression equation for the STC taken from
the P-V curve for 1000W/m2 irradiation (Figure 7(b)).
Equation (18) represents the regression equation for the
step-change of irradiance values taken from the P-V curve
(Figure 8(b)), and equation (19) gives the regression
equation for PSC taken from the P-V curve for case 4
(Figure 10(b)).

Te regression equation at STC condition is

Fx � −1156.53 + 8.02827. ∗x1 + 146.739. ∗ x2. (17)

Te regression equation for the condition is

Table 2: Module/panel (1Soltech-1STH-215P) specifcation [2].

Parameters Symbols Units Single module specifcation Panel specifcation
OC voltage Voc Volts 36.8 147.2
SC current Isc Ampere 7.84 7.84
VoltageMaximum Vmax Volts 29 116
CurrentMaximum Imax Ampere 7.35 7.35
PowerMaximum Pmax Watts 213.15 852.6
İdeality factor α — 0.98119 0.98119
Shunt resistance Rsh Ohm 313.0553 313.0553
Series resistance Rs Ohm 0.39381 0.39381

Irradiance
(W/m2)2

Gpowergui

I-V Graph

Irradiance
(W/m2)1

P-V Graph

Temperature PV Panel (4*1 combination) VOLTAGE

CURRENT

POWER

Figure 6: A simulation model of a panel (1Soltech-1STH-215P and SolarWorld Industries GmbH Sunmodule plus SW 245 poly).

International Journal of Intelligent Systems 11



Fx � −480.50 + 3.6935.∗x1 + 121.030.∗ x2. (18)

Te regression equation for the partial shading condition is

Fx � −689.5 + 5.781.∗x1 + 103.32.∗x2, (19)

where x1 represents the voltage and x2 represents the
current of the PV panel. As per the best knowledge, constant
parameters [14, 19, 23, 25, 44] are assigned for diferent
optimization techniques (Table 5). Equations (17)–(19) are
the three objective functions for STC, under step-change of
irradiance and PSC, that need to be maximized using ABC,
PSO, GA, and JFO.

As the parameters are set (Table 5) for ABC, GA, PSO,
and JFO, few of the parameters are kept the same, i.e., the
number of populations, maximum iteration, and lower and
upper limit boundary conditions so that the comparison can
bemade in terms of maximum power (Pmax) and the number
of iterations at which the maximum power is obtained.

Te graphical results and magnifed view of maximum
power tracked vs. maximum iterations for the diferent
optimization techniques for the STC condition are shown in
Figure 11. Te response is taken in terms of the maximum
iteration at which the maximum power is obtained with the
total execution time (Table 6). From the results, it can be
concluded that the JFO technique gives the desired maxi-
mum power of 851.986watts in less than 0.0391 sec, with
a tracking efciency of 99.8%. PSO attained the maximum
power of 850.987watts in a time period of 0.0506 sec. Still, it
could not track the desired output of the panel, which was
852.4 watts, where ABC takes much execution time
(1.0287 sec.) compared to other techniques. From the point
of view of overall performance, JFO> PSO>ABC>GA.

Te graphical results of the diferent optimization
techniques for the step-change of irradiance conditions are
shown in Figure 12. As per the results obtained (Table 7), it
can be concluded that the JFO-based optimization technique
can track the maximum power of approximately
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Figure 7: (a) I-V curve. (b) P-V curve under step-change of irradiance (1Soltech-1STH-215P panel).

Table 3: Output values at STC and under step-change of irradiance.

Irradiation (W/m2) Max.
voltage (Vmax) (volts)

Max.
current (Imax) (ampere)

Max.
power (Pmax) (watts)

200 116.35 1.479 172.1
400 117.925 2.956 348.5
500 118 3.692 435.7
600 117.9 4.427 521.7
700 117.525 5.16 606.5
800 117.1 5.892 689.9
1000 (STC) 116 7.348 852.4
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835.274watts with a signifcantly less time of 0.086 sec. In
contrast, PSO was able to track the maximum capacity of
836.114watts in 10 iterations.

Te efciency of PSO is slightly less than that of JFO,
where ABC could track 826.346watts, and the total exe-
cuting time of the algorithm was 0.983 seconds, the highest
of all algorithms. GA has the least maximum power with an
execution time of 0.091 sec. Considering that the tracking
efciency and maximum power are attained in less time, the
JFO performance is more accurate and efcient than other
optimization techniques. Te performance shows the
tracking efciency of JFO>PSO>ABC>GA for step-
change of irradiance values.

Te partial shading condition can be obtained by taking
four series connected modules (Figure 9). To analyse the
response of PSC, case 4 has been considered (Figure 10(b)).
Equation (19) is the partial shading condition’s regression
equation or objective function. Te response of diferent
optimization techniques is given in Figure 13. Te results
(Table 8) show that JFO can track the maximum power of
359.460watts/m2 in less than 0.1219 sec. In contrast, the
execution time of other optimization techniques is more
than JFO, and the maximum power is less than JFO. Re-
garding performance, it can be concluded that JFO can track
the maximum power in less time with maximum power
tracking efciency.
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Figure 8: (a) I-V curve and (b) P-V curve at STC and under step-change of irradiance values (500, 700, 800, and 1000W/m2).
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3.2. Case Study 2: SolarWorld Industries GmbH Sunmodule
plus SW 245 Poly Panel. Te panel must operate at its Pmax
point to achieve maximum output in the PV system.
Multiple PV modules can be connected in series or parallel
combinations to increase the system’s power rating to form

a panel. Te simulation model (Sunmodule plus SW 245
poly panel) of the panel having a single module can obtain
the maximum power of 245.168watts at STC conditions.Te
SolarWorld Industries GmbH Sunmodule plus SW 245 poly
specifcation for module and panel (four series connected) is
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Figure 10: (a) I-V and (b) P-V curves for PSC for diferent cases.

Table 4: Output values for 1Soltech-1STH-215P (panel).

Case Module 1 (W/m2) Module 2 (W/m2) Module 3 (W/m2) Module 4 (W/m2) Vmax (volts) Imax (amp.) Pmax (watts)
1 1000 1000 1000 1000 116.05 7.341 852
2 500 1000 1000 1000 86.24 7.339 632.9
3 400 500 1000 1000 56.54 7.324 414.1
4 400 500 700 1000 126.4 3.071 388.1

Table 5: Parameters set for ABC, PSO, GA, and JFO-based optimization techniques [14, 19, 23, 25, 45].

Parameters Symbols ABC PSO GA JFO
Dimension D 2 2 2 2
Lower limit Lb 0, 0 0, 0 0, 0 0, 0
Upper limit (STC and dif. irradiation, case 1) Ub 116, 7.348 116, 7.348 116, 7.348 116, 7.348
Upper limit (PSC case 1) Ub 126.4, 3.071 126.4, 3.071 126.4, 3.071 126.4, 3.071
Upper limit (STC, dif. irradiation, case 2) Ub 123.2, 7.96 123.2, 7.96 123.2, 7.96 123.2, 7.96
Upper limit (PSC, case 2) Ub 131.8, 3.22 131.8, 3.22 131.8, 3.22 131.8, 3.22
Number of populations Npop 8 8 8 8
Maximum iterations IteMax 100 100 100 100
Coefcient position update λ [−1, 1] — — —
Selection probability φ 0.5 — — —
Cognitive acceleration factor C1 — 1.5 — —
Social acceleration factor C2 — 1.5 — —
Inertia weight W — 0.4 — —
Mutation rate (uniform) Pc — — 0.1 —
Cross-over probability Pm — — 0.9 —
Selection rate S — — 0.1 —
Time control function Co — — — 0.5
Logistic chaotic constant α′ — — — 4.0
Motion coefcient c — — — 0.1
Distribution coefcient β — — — 3
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given in Table 9. Te I-V and P-V curves for the panel are
provided for diferent irradiation values in Figure 14(a) and
14(b).

We suppose that the confguration (Figure 6) is a four
series connected module. In that case, the maximum power
tracking capability increases to 980.6watts with the maxi-
mum voltage and current rating of 123.2 volts and 7.96 amps.
Te response for the single module and the panel (4-series
connected) for diferent irradiation values, i.e., 400, 500, 700,
800, 900, and 1000W/m2, is given in Table 10. Te maximum
power for a panel with a maximumwattage is 980.6watts. For
analysing the panel for step-change of irradiance, in the
model (Figure 6), the irradiation values are changed con-
tinuously with the time of 0, 2, 3, 4, and 5 secs, for the ir-
radiation values of 500, 700, 800, 1000, and 1000
corresponding to the I-V and P-V curves shown in

Figures 15(a) and 15(b). In addition, the panel’s Pmax, Vmax,
and Imax values are given in Table 10 for the step-change of
irradiance conditions.

A PSC is created by choosing the diferent irradiations,
i.e., 400, 500, 700, and 1000W/m2, falling on the panel, i.e.,
four series connected modules (Figure 9), in such a way that
multiple peaks can be obtained in the I-V and P-V curves
(Figure 16) if nonuniform irradiation falls on the panel at the
same time (shaded). Case 1 refers to STC, while cases 2, 3,
and 4 refer to PSC (see Table 11). Te PV module should
operate at GMP for better panel performance. Cases 1 and 4,
which represent the STC and PSC conditions (Figure 16(b)),
are analysed.

Te regression equation for the STC, PSC, and step-
change of irradiance values can be obtained by choosing two
input parameters, voltage and current. In contrast, the
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Figure 11: Response of ABC, GA, JFO, and PSO at STC condition (equation (17)).

Table 6: Maximum power and efciency tracked at STC (Case Study 1).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec) Tracking efciency

(%)

ABC 100 8 84 850.987 1.0287 99.82403
GA 100 8 92 839.924 0.1107 98.53355
JFO 100 8 68 851.986 0.0391 99.94134
PSO 100 8 11 850.987 0.0506 99.82403
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output is in terms of power from the panel. Te Minitab
software is used to derive the regression equation for STC,
PSC, and step-change of irradiances.

Equation (20) represents the regression equation for the
STC obtained from the PV curve at 1000W/m2

(Figure 15(b)). Equation (21) represents the regression
equation for the step-change of irradiance values
(Figure 15(b)) for the step-change of irradiances condition,
and equation (22) represents the regression equation for
a PSC from the P-V curve for case 4 (PSC) (Figure 16(b)).

Te regression equation for STC is

Fx � −1316.06 + 8.6682.∗x1 + 154.483.∗ x2. (20)

Te regression equation for the step-change of irradiance
values is

Fx � −516.04 + 4.2334.∗x1 + 115.207.∗x2. (21)

Te regression equation for PSC is

Fx � −569.2 + 5.205.∗ x1 + 89.97.∗x2. (22)

In the abovementioned equations (20–22), x1 represents
the panel voltage, x2 represents the panel current, and Fx is
the maximum power obtained from the panel under dif-
ferent environmental conditions. All the dependent pa-
rameters for ABC, PSO, GA, and JFO algorithms are given in
Table 5, in which many of the parameters are kept the same
as it was in case study 1 (1Soltech-1STH-215P module),
except the upper limit taken for the case study 2 (SolarWorld
Industries GmbH Sunmodule plus SW 245 poly) at STC,
PSC, and step-change of irradiances. Voltage and current
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Figure 12: Response of ABC, GA, JFO, and PSO for step-change of irradiance (equation (18)).

Table 7: Maximum power and efciency tracked at step-change of irradiance (Case Study 1).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec) Tracking efciency

(%)

ABC 100 8 90 826.346 0.983 96.9
GA 100 8 64 801.989 0.091 94.0
JFO 100 8 81 837.274 0.086 98.2
PSO 100 8 10 835.114 0.2205 97.9
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Table 8: Maximum power and efciency tracked at PSC (Case Study 1).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec) Tracking efciency

(%)

ABC 100 8 20 358.51 1.0135 98.0
GA 100 8 51 328.4649 0.1300 89.8
JFO 100 8 58 359.4606 0.1219 98.3
PSO 100 8 18 357.633 0.2701 97.8

Table 9: Module/panel specifcation (SolarWorld Industries GmbH Sunmodule plus SW 245 poly).

Parameters Symbols Units Single module specifcation Panel specifcation (four
modules in series)

OC voltage Voc Volts 37.5 150
SC current Isc Ampere 8.49 8.49
VoltageMaximum Vmax Volts 30.8 123.2
CurrentMaximum Imax Ampere 7.96 7.96
PowerMaximum Pmax Watts 245.168 980.672
İdeality factor α — 1.0531 1.0531
Shunt resistance Rsh Ohm 352.2121 352.2121
Series resistance Rs Ohm 0.24184 0.24184
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Figure 14: (a) I-V and (b) P-V curves for the SolarWorld Industries GmbH Sunmodule plus SW 245 poly panel (four series connected
modules).

Table 10: Output values at diferent irradiations (SolarWorld Industries GmbH Sunmodule plus SW 245 poly panel).

Irradiation (W/m2)
Panel (four series connected modules)

Vmax (volts) Imax (amps.) Pmax (watts)
400 121.7 3.19 388.2
500 122.4 3.987 487.9
700 123.1 5.578 686.5
800 123.2 6.373 785.2
900 123.2 7.168 883.2
1000 123.2 7.96 980.6
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Figure 15: (a) I-V and (b) P-V curves at step-change of irradiance values for SolarWorld industries GmbH Sunmodule plus SW 245
poly panel.
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values express the upper limit (Ub) at STC, PSC, and step-
change of irradiances.

By utilizing equation (20) for the STC condition and
putting the parameters of diferent optimization techniques
(Table 5), an optimal solution in terms of maximum power
tracked by the panel versus the number of iterations can be
plotted for ABC, GA, PSO, and JFO-based algorithms (Fig-
ure 17). Te response of diferent algorithms is taken in terms
of maximum iterations, number of populations, number of
iterations to achieve the GMP, maximum power tracked, time
to reach GMPP, and the tracking efciency (Table 12).

Te fndings indicate that the JFO approach ofers su-
perior tracking performance with much shorter execution
times, i.e., 0.0386 sec, to reach the global maximum power
point of 980.4watts, with a total efciency of 99.9%. However,
PSO takes only fve iterations. Still, the execution time
(0.1233 sec) is higher than JFO and reached the maximum
power of 975.992watts, where ABC’s tracking power is higher
(979.8014watts) than PSO, but the execution time
(2.1722 sec) is more than PSO. GA was unable to track the
GMPP in a given time period. Regarding tracking maximum
power, JFO>ABC>PSO>GA. In terms of executing time,
JFO>PSO>ABC>GA. Regarding tracking efciency,
JFO>PSO>ABC>G.A. Te overall analysis and perfor-
mance show that JFO is better than PSO, ABC, and GA.

Regarding step-change of irradiances, equation (21) is
the regression equation (objective function) used to compare
ABC, PSO, GA, and JFO algorithms. Te algorithm’s re-
sponse is given in Table 13 and Figure 18. Te results prove

that JFO is more efcient than the other optimization
techniques, PSO, ABC, and GA, in tracking the maximum
power of 960.43watts in less than 0.0767 seconds. PSO and
ABC have tracked the maximum power of 958.727watts and
952.5 watts at 12 and 32 iterations, but they could not track
the desired maximum power of 980.6 watts. Te fndings
indicate that the JFO approach ofers superior tracking
performance with much shorter execution times than other
optimization techniques. In terms of overall performance,
JFO>PSO>ABC>GA, and in terms of execution time,
JFO>PSO>ABC>GA at step-change of irradiance.

In the case of the partial shading condition, equation (22)
is the regression equation (objective function) used for all
diferent optimization techniques. PSO, ABC, GA, and JFO
responses were obtained as shown in Figure 19 and Table 14.
Te results prove that the new bioinspired jellyfsh opti-
mization technique is more efcient in tracking the maxi-
mum power of 415.699watts with a signifcantly less
execution time of 0.041 sec than the PSO, ABC, and GA.
PSO, ABC, and GA have tracked the maximum power of
414.7002watts, 412.677watts, and 395.42 at 13, 32, and 97
iterations. Still, they could not track the desired maximum
power of 415.7 watts. Te results indicate that the JFO
performs better than PSO, ABC, and GA. In terms of overall
performance, JFO>PSO>ABC>GA. Regarding execution
time, JFO>PSO>ABC>GA at PSC.

Te overall performance of the JFO was better in both
the case studies in all environmental conditions, i.e., at STC,
step-change of irradiance, and PSC conditions (Figure 20

Table 11: Output of P-V curve (SolarWorld Industries GmbH Sunmodule plus SW 245 poly panel).

Case Module 1 (W/m2) Module 2 (W/m2) Module 3 (W/m2) Module 4 (W/m2) Vmax (volts) Imax (amp.) Pmax (watts)
1 1000 1000 1000 1000 123.2 7.96 980.6
2 500 1000 1000 1000 91.68 7.953 729.1
3 400 500 1000 1000 60.16 7.938 477.6
4 400 500 700 1000 131.8 3.22 437.9
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Figure 16: (a) I-V and (b) P-V curves for the SolarWorld Industries GmbH Sunmodule plus SW 245 poly panel showing PSC condition.
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and Table 15). Performance analysis and comparison are
made on the following outcome, i.e., maximum power
tracked, the execution time of an algorithm, iteration at
which the maximum power is tracked, efciency, and RMSE.
Te RMSE value of JFO (0.594) is much less than PSO, ABC,

and GA (Table 16). Module/panel specifcations for testing
1Soltech-1STH-215P and SolarWorld Industries GmbH
Sunmodule plus SW 245 poly were considered (Tables 2 and
9). Te efect of irradiation on the module/panel for STC,
under step-change of irradiance and PSC, is shown in
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Table 12: Maximum power and efciency tracked at STC (Case Study 2).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec.) Tracking efciency

(%)

ABC 100 8 16 978.8014 2.1722 99.8
GA 100 8 16 926.189 0.1278 94.4
JFO 100 8 83 980.4 0.0386 99.9
PSO 100 8 5 975.992 0.1233 99.5

Table 13: Maximum power and efciency tracked at step-change of irradiances (Case Study 2).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec.) Tracking efciency

(%)

ABC 100 8 32 952.5 0.980 97.2
GA 100 8 98 951 0.0386 97.0
JFO 100 8 59 960.43 0.0767 98.0
PSO 100 8 12 958.727 0.0547 97.8
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Tables 3, 4, 10, and 11. Te PSC-supported MPP techniques
are compared based on the selection parameters (Table 17),
which helps to determine the most suitable method.

Te comparison of diferent optimization techniques,
JFO, PSO ABC, and GA, is given for case study 1
(Tables 6–8) and case study 2 (Tables 12–14). From these
diferent comparison tables, it can be concluded that the JFO
technique is better than the other three optimization
techniques in terms of tracking maximum power, less ex-
ecution time, and higher efciency. JFO tracking efciency
in all environmental conditions lies from 98 to 99.9% with
a signifcantly less execution time of 0.0386–0.1219 sec.,
which proves that the JFO technique can be utilized for
tracking the maximum power in all environmental condi-
tions. Te JFO technology can also be used for various
applications, such as MPPT techniques with converters,
stand-alone solar systems, hybrid solar systems with diesel
generators, wind turbines, and grid-connected systems.

Findings of other related research work on diferent PV
solar modules are given in Table 16. Te results are not
compared with other researchers’ work because of the dif-
ferent specifcations of solar modules from the ones available
in the literature. According to the authors in [16, 17], PSO
has better ftness value and efciency than ABC. According
to the authors in [14, 43], PSO has a better response than GA.
In [11], a comparison between ABC, PSO, and GA has been
made, and the ABC algorithm performs better than PSO in
tracking speed and efciency, and PSO shows better re-
sponse than GA.

As per the study, analysis, and comparison performed in
this paper, among the diferent optimization techniques for
obtaining the GMPP with higher efciency and tracking
time, JFO is relatively better in tracking the maximum power
with higher accuracy and efciency, with very less execution
time than PSO, GA, and ABC algorithms at step-change of
irradiance and for PSC. JFO tracking efciency in all

Table 14: Maximum power and efciency tracked at PSC (Case Study 2).

Algorithm Max. iteration Number of
population

Number of
iterations to
achieve the
GMPP

Maximum power
(watts) Time (sec.) Tracking efciency

(%)

ABC 100 8 32 412.677 0.877 98.0
GA 100 8 97 395.42 0.175 93.9
JFO 100 8 80 415.699 0.041 98.7
PSO 100 8 13 414.702 0.130 98.5
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Table 15: Comparison of diferent algorithms.

Case study 1: 1Soltech-1STH-215P Case study 2: Sunmodule plus SW 245 poly panel

STC Under step-change
of irradiance PSC STC Under step-change

of irradiance PSC

Time
(sec)

Efciency
(%)

Time
(sec)

Efciency
(%)

Time
(sec)

Efciency
(%)

Time
(sec)

Efciency
(%)

Time
(sec)

Efciency
(%)

Time
(sec) Efciency (%)

JFO 0.0 91 99.941 0.086 98.2 0.1219 98. 0.0 86 99.9 0.0767 98 0.041 98.7
ABC 1.0287 99.824 0.983 96.9 1.0135 98 2.1722 99.8 0.98 97.2 0.877 98
GA 0.1107 98.533 0.091 94 0.13 89.8 0.1278 94.4 0.0386 97 0.175 93.9
PSO 0.0506 99.824 0.2205 97.9 0.2701 97.8 0.1233 99.5 0.0547 97.8 0.13 98.5
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environmental conditions lies from 98 to 99.9% with sig-
nifcantly less execution time of 0.0386 to 0.1219 sec. As per
the result obtained in the paper, the performance of
JFO> PSO>ABC>GA proves the efectiveness of the JFO
technique over other techniques. As every researcher has
used diferent specifcations of panels and diferent envi-
ronmental conditions, only a few parameters, such as ef-
ciency, execution time, maximum power tracked, number of
iterations needed to track the power, and RMSE, have been
considered as the comparison parameters.

Table 17 compares the proposed jellyfsh optimization
with some existing techniques. Diferent users have used
diferent parameters and specifcations to prove that their
technique is better than the existing one, so diferent com-
parison parameters are considered such as tracking time [16],
RMSE [14, 15, 18], efciency [13, 17, 22, 24, 27, 29, 31, 34–36],
MAE [20], accuracy [41], reduced rise time [21], settling time/
tracking time [21, 29, 35], and maximum power [28, 35, 36].
In this paper, maximum power tracked, maximum efciency,
total execution time, convergence speed, complexity, pa-
rameter, steady-state oscillation, stability, sensitivity, tracking
ability, and economy have been compared [10, 12, 13, 23, 27];
FPA performs better with a small margin than PSO in terms
of maximum power [28]. In comparison to a recent 2023
research article [13], M-PSO has the highest efciency of
99.87, [22] RAS 99.85%, and [29] PSO-BOA 99.7% with
0.47 sec tracking time. As per the proposed JFO algorithm,
they have attained the highest efciency of 99.941% with
a tracking time of 0.0386 sec; in terms of RMSE, the error
between the predicted and calculated value of JFO was found
to be signifcantly less than 0.5940 in comparison to PSO,
ABC, and GA that has been calculated for 100 points at
steady-state value (Table 16).

4. Conclusions

Tis paper comprehensively analyses the bioinspired
method used for tracking the GMPP. Comparison and
analysis are made under diferent environmental conditions,
such as STC, step-change of irradiance, and partial shading
conditions. Tis paper validates the recently developed
jellyfsh optimization technique by comparing its perfor-
mance with PSO, ABC, and GA for smaller population size
(Npop � 8) for 100 iterations (IteMax). Tese algorithms were
implemented to track the maximum power for diferent case
studies and environmental conditions. Minitab software was

used to obtain regression equation (objective function) and
check the data’s reliability. Summary statistics are taken in
terms of R2, R2 (adj.), p values, and VIF performance re-
gression that comes out to be 0.9, 0.98, 0.01e− 10, and 0.23,
which shows that the data collected are reliable. Regression
analysis is possible on the chosen date of the P-V curves for
STC, step-changing irradiation, and PSC. MATLAB/simu-
lation software was used to assess the efectiveness of these
algorithms. Te comparison and analysis are made in terms
of tracking capability, total time of execution, tracking ef-
fciency, accuracy, and RMSE value. Te result shows that
JFO is relatively better in tracking the maximum power with
higher accuracy and efciency, with signifcantly less exe-
cution time than PSO, GA, and ABC algorithms in all en-
vironmental conditions, i.e., at STC conditions, at step-
change of irradiance and PSC. Te RMSE value of JFO is
much less than that of other optimization algorithms. PSO
and ABC were close to the desired value of the panel but
were less efcient than JFO. GA was unable to track the
desired output with higher efciency. JFO tracking efciency
in all environmental conditions lies from 98 to 99.9% with
very less execution time of 0.0386–0.1219 sec. In terms of
overall performance, JFO>PSO>ABC>GA. Te results
obtained from all three cases showed the superiority of the
proposed novel algorithm over the other MPPT algorithms.

Abbreviations

ABC: Artifcial bee colony
ACO: Ant colony optimization
ALO: Antlion optimizer
AO: Aquila optimizer
AOA: Arithmetic optimization algorithm
AVOA: African vultures optimization algorithm
BOA: Butterfy optimization algorithm
BWS: Black widow spider
CS: Cuckoo search
DE: Diferent evolution
DGBCO: EVO dynamic group-based optimization

algorithm energy valley optimizer
FPO: Flower pollination optimization
GA: Genetic algorithm
GMPP: Global maximum power point
GOA: Grasshopper optimization algorithm
GRNN-
OPA:

General regression neural network orca
predation algorithm

Table 17: Comparison among the PSC-supported methods ABC, GA, and PSO [10, 12, 13, 23, 27, 43].

Properties GA ABC PSO JFO
Convergence speed Fast Fast Fast Fast
Complexity Low High Low Medium
Parameter V, I V, I V, I V, I
Steady-state oscillation High Medium Medium Medium
Stability Stable Stable Stable Stable
Sensitivity Moderate Low High High
Tracking ability Medium High Medium High
Economy Expensive Low Medium Medium
Efciency Medium High High Very high
Efcient in PSC Medium High High High
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GWO: Grey wolf optimization
HHO: Harris Hawk’s optimization
INR: Incremental resistance
I-V: Current-voltage
JFO: Jellyfsh optimization
LMPP: Local maximum power point
LFO: Levy fight optimization
MFO: Moth-fame optimization
MRO: Mud ring optimization algorithm
MSFLA: Modifed shufed frog leaping algorithm
NN_ML: Neural network-trained machine learning
P and O: Perturb and observation
PSC: Partial shading condition
PSO: Particle swarm optimization
P-V: Power voltage
RSA: Reptile search optimization algorithm
RMSE: Root mean square error
SIOA: Swarm intelligence optimization algorithm
SOA: Seagull optimization algorithm
SSA: Salp swarm algorithm
SSA: Squirrel search algorithm
STC: Standard test condition
TLABC: Teaching-learning and artifcial bee colony
TSO: Tuna swarm optimization
VIF: Variance infation factor
YSGA: Yellow saddle goatfsh algorithm
SHTS: Simultaneous Heat transfer search algorithm
C1/n1: Cognitive acceleration factor
C2/n2: Social acceleration factor
C0: Time control function
D: Dimension
Imax: Maximum current
Isc: Short-circuit current
IteMax: Maximum iterations
Lb: Lower limit
Npop: Number of populations
Pc: Mutation rate (uniform)
Pm: Cross-over probability
Pmax: Maximum power
Rs: Series resistance
Rsh: Shunt resistance
S: Selection rate
Ub: Upper limit
Vmax: Maximum voltage
Voc: Open circuit voltage
W: Inertia weight
A: İdeality factor
α′: Logistic chaotic constant
Β: Distribution coefcient
Γ: Motion coefcient
Λ: Coefcient position update
Φ: Selection probability.
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