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To address the challenge of parameter adjustment in complex environments, this paper introduces a transfer learning-based
parameter control framework via deep reinforcement learning for multiobjective evolutionary algorithms (MOEAs). To avoid the
requirement for accurate Pareto front information, this framework is proposed with comprehensive global-state information,
including basic problem features, the relative position of individuals, the distribution of ftness value, and the grid-IGD. Building
on this framework, four reinforced multiobjective evolutionary algorithms (r-MOEAs) are proposed and tested on four DTLZ
benchmarks and eight WFG benchmarks. Te results of the comparative analyses reveal that compared with the original MOEAs,
the four r-MOEAs exhibit faster convergence and stronger robustness. It is also confrmed that our proposed parameter control
framework has the capability to learn knowledge from diferent experiences and improve the performance of MOEAs.

1. Introduction

Multiobjective optimization problems (MOPs) are common
in practical applications, such as margin trading [1], energy
system design [2], scheduling [3], and water resources
management [4]. Tere are two signifcant characteristics in
MOPs. Instead of one optimization objective, where only
one goal is preferred, two ormore optimization goals need to

be considered in multiobjective optimization. Moreover,
these objectives cannot be optimized at the same time. Te
optimization of one goal is at the cost of the degradation of
the other goals with the intrinsic internal conficts between
targets. To depict these characteristics and formulate these
practical requirements by mathematical expression, MOPs
are modeled by the following formula:

minF(x) � f1(x), . . . , fn(x) , x ∈ ω,

s.t.
gi(x)≤ 0, i � 1, . . . , q,

hj(x) � 0, j � q + 1, . . . , p,

⎧⎨

⎩

(1)

where F(x) is the objective function with n objectives
conficting against each other and gi(x) and hj(x) are
constraints for solution x. Diferent from the single

optimum solution for single-objective optimization prob-
lems (SOPs), MOPs hold a set of optimal solutions (Pareto
optimal solutions). Terefore, how to adjust parameters to
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fnd more Pareto optimal solutions becomes one of the key
problems.

Addressing this issue, traditional approaches typically
necessitate repeated testing for each algorithm or to
transform MOPs into SOPs with one weighted objective.
However, these methods are difcult to obtain Pareto op-
timal solutions. Meanwhile, multiobjective evolutionary
algorithms (MOEAs) are capable of identifying multiple
Pareto optimal solutions in a single execution. Based on this
advantage, MOEAs have attracted many scholars’ attention,
and many famous MOEAs have been proposed since 2002,
such as multiobjective particle swarm optimization
(MOPSO) [5], multiobjective bacterial foraging optimiza-
tion (MBFO) [6], nondominated sorting genetic algorithm II
(NSGA-II) [7], multiobjective evolutionary algorithm based
on decomposition(MOEA/D) [8], multiobjective diferential
evolution(MODE) [9], and multiobjective ant lion optimizer
(MOALO) [10]. Tese MOEAs are still widely used in many
practical applications, e.g., scheduling [11], electric power
[12], and telecommunication [13].

Most single-objective or multiobjective optimization
algorithms typically have problem-specifc parameters.
Currently, these are mainly the following methods for pa-
rameter tuning: using common parameter tuning algorithms
such as parameter tuning with chess rating system (CRS-
Tuning) [14], F-Race [15], and REVAC [16] or incorporating
diferent strategies during the evolutionary iteration process
to adapt the parameters to the problem or iteration process.
For anMOP, uncertainty can occur in the objective function,
decision variables, and function parameters [17]. Over the
years, there have been several attempts to improve evolu-
tionary algorithms by making parameters adaptive to the
problem or to the iterative process. Basically, they can be
organized into the following three categories which are rule-
based, iteration memory-based, and learned knowledge-
based. Te frst one is the rule-based parameter control
method. Tis kind of method specifes a fxed way of
changing certain parameters in an EA. For example, pa-
rameters are designed by raising or declining with iterations,
such as [18, 19]. Te second one is the iteration memory-
based parameter control method. Tis kind of method re-
cords information such as the success rate of the policy, such
as [20, 21].Te above twomethods control the parameters in
a single iteration, and the information retention and sub-
sequent infuence also stay in the single iteration process.
Te third is the learned knowledge-based parameter control
method. Tis kind of method maintains the information
learning from diferent problems to formulate a decision
model. Every time a new problem has been solved, the model
will be updated. For now, reinforcement learning (RL) and
deep reinforcement learning (DRL) are used to store such
experiences, and both of them belong to learning artifcial
intelligence methods. Tis type of method retains past in-
formation and learns from diferent problems. After
training, it can select appropriate parameters for specifc
problems in diferent circumstances. In recent years, this
kind of method has been discussed in [22–24]. Most ref-
erences considered the single-objective problem, such as
[22, 23]. While few references extended this idea towards

MOEA [24]. Te combination of the learned knowledge-
based parameter control method and MOEA is still in its
infancy, and a comprehensive framework is an urgent
requirement.

For this article, we mainly focus on developing an
MOEA parameter control framework based on DRL. Tis
learned knowledge-based parameter control framework can
be applied to diferent MOEAs and improves algorithms’
efciency and robustness on diferent optimization prob-
lems. Te contributions of this article can be concluded as
follows:

(i) First, we propose a novel learned knowledge-based
parameter control framework via deep re-
inforcement learning for MOEAs. Tis framework
simplifes complex parameter tuning steps for
MOEA by embedding parameter control strategies
in both the training stages and testing stages.

(ii) Second, we extract comprehensive global-state in-
formation based on universal information including
basic problem features, the relative position of in-
dividuals, the distribution of ftness value, and the
grid-IGD. Tis state information provides valuable
insights for the agent to make efective decisions.
Tese state features are all obtained from the current
state and do not require information about accurate
PFs. Moreover, feedback rewards with memories for
MOEA are proposed based on the general charac-
teristics of MOEA. Furthermore, the designed re-
ward increases the number and quality of the Pareto
front solutions.

(iii) Tird, four reinforced algorithms are separately
proposed by combining the most prestigious
MOEAs with the designed framework. Te supe-
riority of our proposed framework is provided
through the comparisons between the original
MOEAs and the reinforced versions.

Te remainder of this article is arranged as follows.
Section 2 presents the related work. Ten, we introduce RL
as the preliminaries for parameterized knowledge repre-
sentation in Section 3. Section 4 proposes the framework of
parameter control. Section 5 illustrates the efciency of the
proposed framework through comparisons between the
reinforced algorithms against corresponding original MOEAs.
Section 6 summarizes this article.

2. Related Work

2.1. Rule-Based Parameter Control Method. Tis category
can be further divided into two subcategories. Te frst
involves parameters changing with iterations, which is
a usual dynamic parameter-changing strategy. For instance,
the authors of [18] proposed a framework that adjusts the
parameters in MOPSO for individual particles based on
knowledge extracted from the belief space. Te authors of
[25] proposed time variant MOPSO, where the acceleration
coefcients and inertia weights vary with iterations. Te
second subcategory involves updates by a fxed formula,
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emphasizing inherent rules. Te authors of [26] proposed
MOEA/D-AWA with the adaptive weight vector adjustment
strategy.

Te shared characteristic of these two subcategories is
that the scheme of parameter control is formulated before
the iteration process and does not interact with the in-
formation in the iteration process. Te advantage is that the
randomness of the parameters is increased, and diferent
parameter values are assigned in diferent iteration stages to
better adapt to the problem and the iterative process. Te
disadvantage is that this kind of parameter control method
requires a continuous trial and error to fnd a suitable
control strategy. At the same time, for diferent problems,
the specifc strategy also needs to be adjusted to meet the
requirements.

2.2. Iteration Memory-Based Parameter Control Method.
Tis kind of method restores the information from a single
run and uses this information to adjust subsequent pa-
rameters. Te commonly used frst-order reference in-
dicators for MOEA are the changes in dominance
relationship.

In [27], a binary space partitioning tree structure was
selected to store the evaluated solutions’ positions and ftness
values with a fast ftness function. In this algorithm, the
variational operator is parameter-free and adapted
according to the current state. Te author of [28] took
feedback from the current state to modify the parameters.
Moreover, the authors of [29] dynamically adjusted pa-
rameters based on average feedback. Te author of [30]
recorded the parameter values of the successful crossover
and variation operators and updated the parameter values of
the next generation by averaging the feedback of the suc-
cessful parameter values. Moreover, an adaptive velocity
strategy based on the evolutionary state for PSO was pro-
posed in [31], which realizes adaptive control for trafc
signals.

Te advantage of this type of method is that it can make
full use of the information during the iteration process and
accordingly make real-time and specifc adjustments to the
parameters of the next generation or the next individual.
Since the information is extracted based on the experience
within the iteration process, it cannot be saved or transferred
to new scenarios. For diferent problems, the parameters
have to be rearranged to adapt to diferent characteristics.

2.3. Transfer Learning-Based Parameter Control Method.
Te transfer learning-based parameter control method re-
stores and transfers knowledge learned from diferent
problems. Tese methods take full advantage of re-
inforcement learning or deep reinforcement learning and
learn from past information.

Te authors of [24] applied q-learning on MOPSO to
optimize primary control parameters, including the cogni-
tive acceleration coefcient, inertia weight, and social ac-
celeration coefcient. Similarly, the authors of [32] also
combined q-learning with MOPSO to realize parameter
control, and the distance between the previous best position

and the best position of the current population is used as the
state for parameter selection. Based on NSGA-II, the authors
of [33] utilized q-learning to adjust the crossover and
mutation probabilities with population diversity, evolu-
tionary iteration number, and average ftness, thereby en-
hancing population diversity. Te authors of [34] proposed
a general framework of parameter control with re-
inforcement learning for single-objective evolutionary
computation. Tis framework designed parameter sets in
advance for each evolutionary algorithm, and q-learning will
help choose one parameter-based state in each iteration. Te
authors of [35] combined DRL with MOEA for solving
constrained multiobjective optimization problems, which
took into account both population’s convergence and di-
versity in their inputs to DRL.

Te advantages of these methods can be concluded as
follows. First, it can restore and summarize the past
experience of adjusting parameters in diferent states and
transfer the summarized experience to diferent prob-
lems. Second, for a new optimization problem, the pa-
rameters can be updated directly according to the current
iteration information and past experience, improving
the efciency and accuracy of the parameter selection
process.

Remark 1. Te relationship between the state and these
three methods is incrementally coupled. Te methods are
designed from complete random to state-based. Meanwhile,
the third class of methods, transfer learning-based param-
eter control method, has the ability to process high-
dimensional evolutionary states and is more scalable and
transferable in terms of problem characteristics.

3. Preliminaries

Reinforcement learning (RL) belongs to a machine learning
method. Unlike supervised learning or unsupervised
learning, RL interacts and learns from the environment to
obtain an optimum policy that can maximize the reward. RL
mainly contains the following contents: state s, action a,
reward r, and transition probability p. All the above ele-
ments are also known as a Markov decision process (MDP)
[36] and denoted as 〈s, a, r, pa〉. Te processes for a typical
RL algorithm are listed as follows:

(i) Te agent performs an action a to interact with the
environment.

(ii) After action, the state transforms from s to a new
state s′.

(iii) Ten, the agent will be rewarded ra according to the
action a and the rule of rewarding.

(iv) With the reward ra, the agent will recognize whether
the action selection holds a positive or negative
efect.

(v) If the positive reward is returned, the agent will
perform that action with more probability, or else
the agent will try another action to obtain better
reward under the state s.
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Deep learning (DL) has gained achievements in natural
language processing (NLP), image classifcation, and many
other felds. Te representational power of deep learning
relies heavily on multilayer neural networks with neurons
[37] as the basic units. Te perceptron [38] is the earliest
prototype of the neural network and is known as the single-
layer neural network (without hidden layers). It can only
perform the simplest linear classifcation tasks. Improve-
ments in computational power and data processing tech-
niques have gradually made deep learning the most popular
branch of machine learning in recent years in both academia
and industry. With the birth of some famous network
structures, such as the convolutional neural network (CNN)
[39], generative adversarial network (GAN) [40], and re-
current neural network (RNN) [41], DL has further ex-
panded its applications in diferent felds.

Deep reinforcement learning (DRL) combines RL and
DL. For DRL, the NNs are embedded in RL and commonly
used to restore knowledge from an environment and make
a preferred decision based on the current situation.Te deep
q-learning network [42, 43] pioneered this kind of algo-
rithm, and it can be applied in many areas [44], such as game
[45] and design of vehicle network [46]. Ten, their variant
DDQN [47] was proposed to overcome the drawback that
overwhelms the q value (defned by the expected return
starting from state s, taking action a, and then following
policy π). To reduce complexity and improve training ef-
fciency, the continuous deep q-learning network with
model-based acceleration (CDQN) was proposed in [48] by
extending DRL from discrete to continuous space. Based on
the advantage of CDQN, we propose the learned knowledge-
based parameter control framework to realize parameter
automatic tuning and improve the efciency of MOEAs. At
the same time, considering the temporal properties of the
states in the evolutionary process, since RNNs have the
ability to learn and perform complex transformations of data
over long time scales, we choose it to handle the state during
evolution. Figure 1 shows the graphical representation for
RNN. In the fgure, It represents the value of the input layer
of the tth generation, the St is the hidden layer of the tth
generation, and Ot represents the value of the output layer of
the tth generation.

Te notations utilized in this paper are stated in Table 1.

4. Learned Knowledge-Based Parameter
Control Framework via Deep
Reinforcement Learning

4.1. Te General Framework of Parameter Control. For
MOEA, the parameter is usually set before iteration. After
initialization, the population will be evaluated by the ob-
jective function, also known as a ftness value function.Ten,
the population starts an evolutionary process based on
various designed methods. After that, the population will be
evaluated again and generate a new Pareto set. Ten, if the
termination condition is not satisfed, the population will
begin the next iteration. Tis represents the general process
of MOEAs, although some specifc MOEAs may slightly

deviate from these steps. Te fowchart of MOEAs is pre-
sented in Figure 2(a).

In this article, we embed DRL into the general process of
MOEAs, as illustrated in Figure 2(b). Te steps preceding the
frst termination condition assessment are similar to the
general process, with the parameter for this round determined
before iteration. After that, the population information is
transferred to DRL. DRL will learn from this information and
choose proper parameter sets for the next population Pt+1 or
individual xi+1

t . Ten, the chosen parameter set will be applied
in the next iteration. In this process, the information trans-
ferred to DRL is defned as the state, and the chosen parameter
sets are actions. Fitness evaluation and Pareto set generation are
considered as the environment. Subsection 4.2 will introduce
the details of the parameter control process and model the
general evolutionary algorithm as an MDP.

4.2. Modeling the Parameter Control Process to MDP. Tis
subsection clears the components needed in the parameter
control process and provides evidence for every feature used
in the proposed framework.

4.2.1. Environment. Te environment includes an evolu-
tionary computation process and a set of optimization
problems (training functions). Te optimization problems
which are represented by objective functions are used to
evaluate the performance of the optimizer. Note that these
objective functions should have some common features such
as the number of objectives and whether it is an integer or
continuous programming problem. Tese common features
could help to learn and apply.

4.2.2. State S. Te state is used as the feature to describe the
evolution process and provide evidence for the agent to
choose the proper parameters. In real-world problems, the
scope of decision space and Pareto fronts (PFs) are difcult
to obtain. In this article, we select feature and process in-
formation that does not require prior knowledge about
decision space and PFs for parametric decision-making.

I

S

O

=

It-1

St-1

Ot-1

It

St

Ot

It+1

St+1

Ot+1

Figure 1: Compressed (left) and unfolded (right) basic recurrent
neural network.

Table 1: Te notations.

N Te population size
n Te dimension of objective function
f(x) Te objective function
xi

t ∈ R
n Te ith individual in the tth generation

Pt ∈ RN×n Te population of the tth generation
Ft ∈ RN Te ftness value of the tth generation
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Except for some basic information about considered
problems, we choose the relative position in decision space,
the distribution of the ftness value for this individual in the
past n generations, and the grid-based inverted generational
distance (grid-IGD) [49] of this individual.

(1) Te Basic Information about Considered Problems. Tis
kind of feature includes the number of objectives and the
number of dimensions. Te above information helps clarify
the difculty of the problems.

(2) Te Relative Position of xi
t. It is the basic feature of the

state. Te relative position in the decision space can be
described by (xi

t − xu)/(xu − xl), where xu and xl, re-
spectively, mean the upper and lower bounds of the
decision space.

(3) Te Distribution of Fitness Value. Tis value is refected
by the distribution of ftness values of the whole population
in the past n generations.Tis index divides [fmin, fmax] into
n equal parts and counts the number of individuals on the
PFs in each part, respectively. fmin and fmax separately
represent the minimum and maximum ftness values found
in the current round. Tis feature helps clarify the scope of
the ftness space.

(4) Grid-IGD. Grid-IGD is introduced to steer the evo-
lutionary direction for unknown PF problems. Grid-IGD
generated a set of reference points to estimate the PFs of
the considered problem. Since grid-IGD generated
representative nondominated solutions in the gird en-
vironment, it can help the agent to know the quality of
the current solution set without knowing the true
Pareto sets.

4.2.3. Action A and Policy π. For an MDP, the agent can
sample or choose an action from the policy π defned as
a probability distribution p(At | St; θ

r) under the state St,
where θr is the parameter for the policy. In this article, the
action Ai

t is the proper parameter set in the tth generation for
the ith individual. For diferent MOEAs, the parameters that
need to be adaptively modifed are diferent. For Ai

t, the
number and scope for each parameter are defned before
training and should keep the same while testing on real
problems.

Te policy π is a distribution among actions under
diferent states. It can be described by the following formula:

π(a | s) � P[A � a | S � s]. (2)

EA Process

Initialization

Fitness Evaluation
Pareto Set Generation

Fitness Evaluation
Pareto Set Generation

Termination?

Start

End

Yes

No

(a)

DRL

EA Process

Initialization

Fitness Evaluation
Pareto Set Generation

Fitness Evaluation
Pareto Set Generation

Termination?

Start

End

Action

State & Reward

Yes

No

Environment

(b)

Figure 2: Te fowchart of MOEA with and without parameter control. (a) Te general fowchart of MOEA. (b) Te fowchart of MOEA
with parameter control.
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4.2.4. Reward R. Te reward for MDP can be described by
formula (3), in which Ra

s means the expected reward gained
under the state s with the action a:

R
a
s,t+1 � E Rt+1 | St � s, At � a . (3)

For multiobjective optimization problems, when a so-
lution transfers from an nondominated solution to a dom-
inated one, this situation will be considered a success and

should be given a reward. At the same time, if the number of
dominated solutions in the archive at this iteration increases,
this situation should also be awarded. We take into con-
sideration these two factors and design feedback reward with
memory. Te rewards not only consider the situation for
now but also compare it with history memory. Tus, the
reward proposed in this article is described by the following
formula:

R
i
t �

10, if the ith individual becomes dominated solution in the tth generation,

5, else if the ith individual keeps dominating in the tth generation,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Te reward designed in (3) encourages the agent to keep
the individual nondominated and try to evolve more non-
dominated solutions.

4.2.5. Transmission Probability P. Te transmission prob-
ability P represents the probability transferred from the state
s to a new state s′, and it can be described by the following
formula:

Pss′ � P St+1 � s′ | St � s . (5)

In this article, since the state space of MOPs is too large
to measure, P is hard to forecast. Tus, we need to choose
model-free reinforcement learning methods to make de-
cisions under diferent circumstances.

4.3. Embedding Continuous q-Learning with Normalized
Advantage Functions

4.3.1. Training Phase. Te model-free RL method is suitable
for problems where the environment is unknown or the
environment is difcult to accurately describe and explore. It
has been developed to policy value functions and large
neural networks, which makes it possible to directly pass raw
representations as input to neural networks to access policies
for complex problems. In this article, based on the feature of
state space and continuity features of the parameters, we
choose CDQN as the parameter controller, identifying the
environment and making parametric decisions.

With the embedded CDQN, Algorithm 1 presents the
pseudocode for the proposed framework at the training
phase. Lines 1–7 fnish the process of initialization, in-
cluding CDQN and the evolutionary algorithm. Ten, the
parameter sets ai

t will be chosen by μmodel, and the action
that maximizes the expected reward is always given by
μ(x | θμ). Ten, the evolutionary algorithm will update the
individual xi

t according to ai
t. Ten, the state and reward

will be updated. After that, the target network will be
updated according to updated θQ, which is in lines 16-17.
In this process, the termination condition can be decided
by the demand for testing or training. For example, the

termination condition could be defned by the number of
iterations, the maximum number of evaluations, or the
length of time.

4.3.2. Testing Phase. Since the knowledge from the training
phase will be utilized in the testing phase, the procedure for
the testing phase will load the parameters of CDQN obtained
in the training stage. Te pseudocode is summarized in
Algorithm 2. Te parameters for CDQN obtained from the
training stage will be loaded before the start moment of the
testing stage. However, compared with the training stage, the
parameter will not be updated through the iterations.

4.4. ReinforcedMOEAs. In this subsection, we will apply the
proposed framework to four classical MOEAs to realize
adaptive parameter control, namely, reinforced-NSGA-II
(R-NSGA-II), reinforced-MOEA/D (R-MOEA/D),
reinforced-MOPSO (R-MOPSO), and reinforced-MODE
(R-MODE). Te rationale for the four algorithms will be
presented, followed by a description of the parameters in-
corporated into framework tuning. Te framework of four
reinforced algorithms is summarized in Figure 3.

4.4.1. Reinforced-NSGA-II. Diferent from NSGA-II [7],
where crossover probability ηc andmutation probability ηm are
mainly set before iteration, the proposed R-NSGA-II sets the
above two parameters based on the proposed framework to
realize adaptively tuning. In R-NSGA-II, the evolutionary
process is mainly according to the mutation operator and
crossover operator, in which themutation operator changes the
components of the individual according to the crossover
probability ηc, and the crossover operator is randomly selected
by the individuals after mutation according to the crossover
probability ηm. After each iteration, the retained individuals are
selected by sorting based on the nondominant rank value and
the degree of crowding distance. Tis algorithm divides the
population into a group of Pareto nondominant sets. An in-
dividual in a nondominant set is not dominated by any in-
dividual in the current or later nondominated set. Te method
is to select all nondominant individuals that are not dominated
by any other individual each time, delete a nondominant set
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from the population, and then repeat the process of the
remaining until termination condition meets. Ten, the pop-
ulation is arranged by crowd distance, which is the sum of the
distance between adjacent individuals in each dimension.

4.4.2. Reinforced-MOEA/D. Reinforced-MOEA/D is con-
structed based on MOEA/D [8] and the proposed frame-
work. In R-MOEA/D, the multiobjective problem is divided

into a set of single-objective subproblems or several mul-
tiobjective subproblems. Ten, the framework is utilized to
adjust the parameters in the simulated binary crossover
(SBX) operators and polynomial mutation (PM) operators.
After that, Pareto front is approached by optimizing the
subproblems in collaborative ways with the neighborhood
relationship between subproblems. In SBX, the two ofspring
are created using the following equations:

Input: Te population size N, the times of iteration T, trained parameter of network θ
Output: Te Pareto sets of MOP

(1) Initialize normalized Q network with fxed weight θ
(2) Initialize target network Q′ with fxed weight θQ′←θQ

(3) Initialize replay bufer
(4) for episode � 1, M do
(5) Initialize a random process N for action exploration
(6) Initialize the population P randomly
(7) Receive initial observation state s11 ∼ p(x1

1)

(8) for t � 1, T do
(9) for i � 1, N do
(10) Select action ai

t � μ(si
t|θ

μ) + Ni
t

(11) Apply ai
t to update the individual

(12) Evaluate population and selection
(13) i � i + 1
(14) end for
(15) t � t + 1
(16) end for
(17) episode � episode + 1
(18) end for

ALGORITHM 2: Pseudocode for the proposed framework of the testing phase

Input: Te population size N, the times of iteration T, the times of episode M, the discounting rate τ
Output: Trained parameters of network θ.

(1) Initialize normalized Q network Q(s, a|θQ) randomly
(2) Initialize target network Q′ with weight θQ′←θQ

(3) Initialize replay bufer
(4) for episode � 1, M do
(5) Initialize a random process N for action exploration
(6) Initialize the population P randomly
(7) Receive initial observation state s11∼p(x1

1)

(8) for t � 1, T do
(9) for i � 1, N do
(10) Select action ai

t � μ(si
t|θ

μ) + Ni
t

(11) Apply ai
t to update the individual xi

t

(12) Evaluate population and selection
(13) Store transition (si

t, ai
t, ri

t, si+1
t ) in R

(14) Sample a random mini-batch of m transitions from R

(15) Set yi
t � ri

t + cV′(si+1
t |θQ′ )

(16) Update θQ by minimizing the loss L � 1/N  (yi
t − Q(si

t, ai
t|θ

Q))2

(17) Update the target network θQ′

t+1←τθ
Q
t + (1 − τ)θQ′

t

(18) i � i + 1
(19) end for
(20) t � t + 1
(21) end for
(22) end for

ALGORITHM 1: Pseudocode for the proposed framework of the training phase

International Journal of Intelligent Systems 7



u
ika �

1
2

(1 + β)p
ika +(1 − β)p

ik
b ,

u
ik
b �

1
2

(1 − β)p
ika +(1 + β)p

ik
b ,

(6)

where uika and uik
b are the ofspring after the SBX, pika and pik

b

are randomly selected parent individuals, β is the random
number of expansion factors, and the value of β is de-
termined by the following equation:

β �

(2r)
1/ηc+1

, if r≤ 0.5,

1
2(1 − r)

 

1/ηc+1

, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where r is a random value between [0, 1] and ηc represents
the distribution index in SBX tuned by the proposed
framework. When ηc is larger, the ofspring will be more
similar to their parent. Conversely, when the value of ηc is
smaller, the ofspring will tend to be diferent from their
parents. Te formula for polynomial mutation is shown as
follows:

v
i
t � p

i
t + δ × ut − lt( , (8)

where pi
t is the individual before the mutation, vi

t is the
individual after the mutation, and ut and lt denote the upper
and lower bounds of the individual, respectively:

δ �
2r +(1 − 2r) 1 − δ1( 

ηm+1
 

1/ηm+1
− 1, if r≤ 0.5,

1 − 2(1 − r) + 2(r − 0.5) 1 − δ2( 
ηm+1

 
1/ηm+1

, if r> 0.5,

⎧⎪⎨

⎪⎩
(9)

CDQN

Update according to 
operators of each algorithm:

NSGA-II: mutation and 
crossover operator

MOEA/D: eq.(6) and eq.(8)
MOPSO: eq.(10) and eq.(11)
MODE: eq.(12) and eq.(13)

Initialization

Fitness Evaluation
Pareto Set Generation

Fitness Evaluation
Pareto Set Generation

Termination?

Start

End

Action
Parameter tuned of each algorithm

• NSGA-II: ηc and ηm
• MOEA/D: ηc and ηm
• MOPSO: r1 and r2
• MODE: F and CR

State
• The basic information
• The relative position of xi

t
• The distribution of fitness value
• The grid-IGD

Yes

NO

Environment

Reward
 • 10, becomes dominated 
 • 5, keeps dominating
 • 0, else

Figure 3: Te fowchart of the reinforced framework.
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where r is a random value between [0, 1], ηm represents the
distribution index in PM tuned adaptively by the parameter
control framework, δ1 � (pi

t − lt)/(ut − lt), and δ2 � (ut−

pi
t)/(ut − lt).

4.4.3. Reinforced-MOPSO. R-MOPSO is proposed by
combiningMOPSO [5] with the proposed parameter control
framework. In R-MOPSO, the position and velocity of each
particle are separately described by the following equations:

Vt � w × Pt + r1 × P
best
t − POPi

t 

+ r2 × REP(h) − POPi
t ,

(10)

Pt+1 � Pt + Vt, (11)

where w is the inertia weight, r1, r2 ∈ [0, 1] are dynamic
parameters adjusted by the proposed framework, Pbests(i) is
the best position of the particle i, REP(h) is a value that is
taken from the repository, and the index h is selected by the
following method: assigning a ftness value to those hy-
percubes containingmore than one particle and dividing any
number (greater than zero) by the number of particles that
they contain.

4.4.4. Reinforced-MODE. R-MODE is composed of the
original MODE [9] and the proposed parameter control
framework. Similar to MODE, the main idea of R-MODE is
to balance the degree of exploration and exploitation in the
evolution process by selecting the learning particles and the
learning ratios. Te mutation operator and the crossover
operator are utilized to create the ofspring. Te individual
formulated through mutation can be expressed by the fol-
lowing equation:

v
i
t � p

i
t + F × 

2

k�1
p

ika
t − p

ik
b

t , (12)

where F is the scaling factor of disturbance which is
adaptively tuned in the parameter control framework, pika

and pik
b are randomly selected from parent individuals, and

vi
t is the generated particle after mutation.

Binomial crossover is one of the frequently used
crossover operators and can be described by the following
equation:

u
i
t+1 �

v
i
t, if r andi[0, 1]≤CR,

x
i
t, otherwise,

⎧⎨

⎩ (13)

where randi[0, 1] is a uniformly distributed random num-
ber. When it is less than the crossover rate CR, the individual
generated by the mutation operator will be chosen; other-
wise, the original individual xi

t is retained.
For MODE, F and CR are the parameters related to the

algorithm’s efciency.We apply the framework to adaptively
tune the parameters according to the state.

5. Experimental Study

In this section, the implementation details are presented
frst. Te comparison results against classical MOEAs and
their reinforced ones are presented afterwards. (Te code
will be published in https://github.com/velvet999 after the
paper is accepted.)

5.1. Test Functions. ZDT [7], DTLZ [50], and walking fsh
group (WFG) [51] benchmarks are used to train and test the
proposed framework. Specifcally in this article, we choose
ZDT1-ZDT4 and ZDT6 as the training sets and DTLZ1-
DTLZ4 and WFG1-WFG8 as the testing sets.

5.2. Measure Metrics. Two widely used performance in-
dicators, the inverted generational distance (IGD) [52] and
hypervolume (HV) [53], are used to evaluate the quality of
the obtained nondominated solution set, which can be able
to account for both convergence (closeness to the true Pareto
front) and the distribution of the achieved nondominated
solutions.

5.2.1. Inverted Generational Distance. IGD is an integrated
performance evaluation index that can evaluate the distri-
bution and convergence of solutions simultaneously. IGD
mainly evaluates the distribution performance and con-
vergence performance of the algorithm by calculating the
point (individual) to the individual settings from the real
Pareto front side to the algorithm. Te better the compre-
hensive performances of the algorithm, the smaller the value
of IGD:

IGD �


n
i�1 di




n
. (14)

5.2.2. Hypervolume. Te HV indicator (or s-metric) is
a performance metric that indicates the quality of a non-
dominated approximation set, where it is described as the
“size of the space covered or size of dominated space”:

HV f
ref

, x  � Λ ∪
xn∈P

f1 xn( , f
ref
1  × · · · × fm xn( , f

ref
m  , (15)
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where HV(fref , x) resolves the size of the space covered by
an approximation set x, fref

m ∈ R refers to a chosen reference
point of the mth dimension, fm(xn) is the ftness value of the
individual n of the mth dimension, and Λ(.) refers to the
Lebesgue measure.

5.3. Algorithms and Parameter Settings. In this subsection,
the general parameters are stated frst, and then, we list the
specifc parameters used in the experiment for each com-
parison function. After that, the parameters of the proposed
framework used in the experiment are provided.

5.3.1. Common Parameter Settings

(1) Number of variables and objectives: Te number of
the objectives for both DTLZ andWFG is 3, which is
a common setting in multiobjective experiments.
Te number of variables of DTLZ is 30 and that of
WFG is 10. Te diferent number of variables can
also test the adaptability and robustness of the
algorithm.

(2) Statistical approach: Due to the heuristic charac-
teristics of evolutionary algorithms, each algorithm
independently performed 30 iterations on each
function to overcome randomness. Te Man-
n–Whitney–Wilcoxon rank-sum test [54] is
employed for this purpose, and its signifcance level
is 5%.

(3) Population size and the number of evaluations: Te
number of evaluations and population size are the
same. Te population size N is 100, and the maxi-
mum number of evaluations (MAXNFE) is 10,000.

5.3.2. Parameter Settings for Classical MOEAs. All of the
code and details of comparison algorithms can be found in
pymoo [55] which is a multiobjective optimization tool in
Python.

For NSGA-II, the crossover probability is specifed as
1.0, with the mutation probability 1/n where n is the variable
number.

For MOEA/D, SBX is chosen for crossover, and its
probability is 0.9; polynomial mutation is used with a dis-
tribution index of 20 and a probability of 0.2.

For MOPSO, c1 and c2 are set to 1.49618 and
ω � 0.729844. Te polynomial mutation with a mutation
index μm � 20 and probability 1/N, where N is the
population size.

For MODE, the crossover rate is 0.7, the mutation rate is
1/30, and the child variability factor is 0.7.

5.3.3. Parameter Settings for r-MOEAs. Since the parameter
of r-MOEAs is randomly generated at frst and adaptively
adjusted by the agent during the process, Figure 4 gives the
detail of CDQN, which is the parameter controller in the
proposed framework.

5.4.Comparison. In this section, we present the results of the
DTLZ benchmark generated by the comparison algorithms
and the proposed framework-embedded algorithms. Te
statistical results of the IGDmetric on 4 DTLZ test problems
and 8 WFG test problems are summarized in Table 2, while
those of HV are summarized in Table 3. Te mean values,
standard deviation values, and results of the Man-
n–Whitney–Wilcoxon rank-sum test (in parenthesis) are
provided. For each testing problem, the Man-
n–Whitney–Wilcoxon rank-sum test is performed on the
results obtained by one algorithm’s original version and
reinforced version instead of the results in the whole table.
For example, the rank-sum test of NSGA-II is performed
between the values of metrics obtained by NSGA-II and R-
NSGA-II.

As Table 2 shows, the average IGDs obtained by rein-
forced algorithms are smaller than those by their original
version. Since IGD is used to measure the quality of solution
and uniformity of distribution of solutions, this indicates
that the solution obtained by the reinforced version is more
close to the real Pareto front. R-MOEA/D achieves the best
performance on DTLZ1 and 4th place among 4 original and
4 reinforced algorithms, while R-NSGA-II achieves the best
on DTLZ3. For the WFG benchmark, R-MOEA/D also
achieves the best among 8 problems on 5 problems, while
there are 8 questions in total. Te other reinforced

Policy Gradient Loss Temporal Difference Loss

Concat

Q (st, a) Q′ (st+1, a)

MLP (25x3x1) MLP (25x3x1)

MLP (50x3x1) Action (st)

Critic

Actor

State

Reward

Serve

RNN

MLP (100x6x10)

Input Layer

Figure 4: Te structure of the neural network used in CDQN.
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Table 2: Means and standard deviation of IGD obtained by NSGA-II, MOEA/D, and their reinforced versions on DTLZ and WFG.

Problems NSGA-II R-NSGA-II MOEA/D R-MOEA/D
DTLZ1 3.35E− 02± 2.99E− 03(−) 8.63E− 03± 6.04E− 03 2.56E+ 00± 2.83E− 01(−) 2.03E+ 00± 2.53E− 01
DTLZ2 2.92E− 02± 1.62E− 02(−) 2.63E− 02± 1.46E− 02 3.13E− 02± 1.76E− 02(−) 6.27E− 03± 3.52E− 03
DTLZ3 8.57E+ 00± 6.99E− 01(−) 7.37E+ 00± 7.34E− 01 2.41E+ 01± 3.83E− 01(−) 2.14E+ 01± 2.17E+ 00
DTLZ4 9.70E− 01± 1.63E− 02(−) 8.25E− 01± 4.94E− 02 7.11E− 02± 5.55E− 17(−) 6.02E− 02± 3.55E− 03
WFG1 1.56E+ 00± 2.18E− 01(−) 1.33E+ 00± 4.58E− 02 1.59E+ 00± 1.72E− 01(−) 1.38E+ 00± 1.59E− 01
WFG2 1.56E+ 00± 1.55E− 01(−) 1.38E+ 00± 4.71E− 02 5.37E− 01± 4.10E− 02(−) 4.80E− 01± 1.70E− 02
WFG3 3.49E− 01± 3.08E− 01(−) 7.94E− 02± 6.89E− 02 9.66E− 01± 3.14E− 01(−) 1.59E+ 00± 3.93E− 01
WFG4 3.43E− 01± 2.92E− 02(−) 3.03E− 01± 1.14E− 02 3.00E− 01± 3.00E− 02(−) 2.44E− 01± 2.82E− 02
WFG5 3.52E− 01± 4.71E− 02(−) 2.91E− 01± 1.14E− 02 3.16E− 01± 1.89E− 02(−) 2.76E− 01± 8.88E− 03
WFG6 3.57E− 01± 2.56E− 02(−) 3.35E− 01± 2.42E− 02 3.39E− 01± 2.18E− 02(−) 3.02E− 01± 1.17E− 02
WFG7 4.62E− 01± 3.19E− 02(−) 4.05E− 01± 1.41E− 02 2.70E− 01± 2.07E− 02(−) 2.38E− 01± 8.83E− 03
WFG8 6.04E− 01± 1.12E− 01(−) 5.31E− 01± 9.67E− 02 6.02E− 01± 1.11E− 01(−) 5.26E− 01± 9.60E− 02
+\≈\− 0\0\12 0\0\12
Problems MOPSO R-MOPSO MODE R-MODE
DTLZ1 3.33E− 02± 2.48E− 03(−) 8.48E− 03± 5.08E− 03 1.44E− 02± 9.89E− 03(−) 1.12E− 02± 5.04E− 03
DTLZ2 3.31E− 02± 1.90E− 02(−) 2.98E− 02± 1.71E− 02 2.86E− 02± 1.93E− 02(−) 1.43E− 02± 1.52E− 02
DTLZ3 2.49E+ 01± 5.85E+ 00(−) 2.29E+ 01± 5.39E+ 00 2.72E+ 01± 2.96E+ 00(−) 2.38E+ 01± 3.18E+ 00
DTLZ4 7.19E− 01± 1.39E− 01(−) 6.05E− 01± 1.22E− 01 7.59E− 01± 1.68E− 01(−) 6.52E− 01± 1.50E− 01
WFG1 1.89E+ 00± 1.22E− 01(−) 1.14E+ 00± 7.60E− 02 3.27E+ 00± 3.15E− 01(−) 1.41E+ 00± 9.79E− 02
WFG2 2.91E− 01± 8.44E− 02(−) 2.47E− 01± 6.48E− 02 2.59E+ 00± 3.04E− 01(−) 1.97E+ 00± 1.89E− 01
WFG3 2.35E− 02± 1.13E− 02(−) 5.19E− 03± 2.55E− 03 3.53E− 01± 1.21E− 01(−) 6.21E− 01± 1.53E− 01
WFG4 7.59E− 01± 1.44E− 01(−) 4.37E− 01± 8.81E− 02 1.26E+ 00± 2.56E− 01(−) 5.45E− 01± 1.08E− 01
WFG5 1.35E+ 00± 1.95E− 01(−) 8.29E− 01± 1.17E− 01 2.36E+ 00± 3.26E− 01(−) 1.04E+ 00± 1.44E− 01
WFG6 7.01E− 01± 1.01E− 01(−) 4.02E− 01± 5.91E− 02 8.76E− 01± 1.29E− 01(−) 5.04E− 01± 7.31E− 02
WFG7 8.04E− 01± 1.04E− 01(−) 4.67E− 01± 6.36E− 02 1.33E+ 00± 2.05E− 01(−) 5.83E− 01± 7.66E− 02
WFG8 1.08E+ 00± 2.53E− 01(−) 6.26E− 01± 1.51E− 01 1.81E+ 00± 4.47E− 01(−) 7.84E− 01± 1.84E− 01
+\≈\− 0\0\12 0\0\12
Bold value represents the best performance for each problem.

Table 3: Means and standard deviation of HV obtained by NSGA-II, MOEA/D, and their reinforced versions on DTLZ and WFG.

Problems NSGA-II R-NSGA-II MOEA/D R-MOEA/D
DTLZ1 5.51E− 01± 3.20E− 01(−) 4.21E− 01± 2.10E− 01 4.49E− 01± 3.64E− 01(−) 2.15E− 01± 2.64E− 01
DTLZ2 5.55E− 01± 7.05E− 04(−) 5.20E− 01± 7.05E− 04 5.32E− 01± 3.89E− 03(−) 6.32E− 01± 3.29E− 03
DTLZ3 0.00E+ 00± 0.00E+ 00(≈) 1.34E− 01± 2.20E− 03 0.00E+ 00± 0.00E+ 00(≈) 0.00E+ 00± 0.00E+ 00
DTLZ4 3.86E− 01± 3.49E− 01(−) 4.66E− 01± 2.10E− 01 5.05E− 01± 9.09E− 01(−) 6.75E− 01± 1.09E− 01
WFG1 5.83E− 01± 5.87E− 02(−) 6.46E− 01± 3.22E− 02 6.95E− 01± 4.64E− 02(−) 9.24E− 01± 4.55E− 02
WFG2 8.22E− 01± 3.56E− 02(−) 9.12E− 01± 5.18E− 03 9.06E− 01± 5.31E− 03(−) 1.19E+ 00± 5.31E− 03
WFG3 2.83E− 01± 3.54E− 02(−) 3.58E− 01± 7.89E− 03 3.77E− 01± 8.98E− 03(−) 5.66E− 01± 8.62E− 03
WFG4 4.92E− 01± 6.72E− 03(−) 5.32E− 01± 3.14E− 03 5.01E− 01± 4.65E− 03(−) 6.62E− 01± 4.23E− 03
WFG5 4.79E− 01± 5.55E− 03(−) 5.07E− 01± 4.15E− 03 4.80E− 01± 5.29E− 03(−) 7.11E− 01± 5.29E− 03
WFG6 4.43E− 01± 1.90E− 02(−) 4.79E− 01± 1.75E− 02 4.48E− 01± 1.83E− 02(−) 6.58E− 01± 1.65E− 02
WFG7 4.23E− 01± 2.68E− 02(−) 5.37E− 01± 2.92E− 03 5.12E− 01± 5.42E− 03(−) 7.01E− 01± 4.99E− 03
WFG8 4.10E− 01± 1.51E− 02(−) 4.45E− 01± 3.72E− 03 4.25E− 01± 5.00E− 03(−) 5.99E− 01± 4.65E− 03
+\≈\− 0\1\11 0\1\11
Problems MOPSO R-MOPSO MODE R-MODE
DTLZ1 0.00E+ 00± 0.00E+ 00(−) 0.00E+ 00± 0.00E+ 00 6.75E− 01± 1.20E− 01(−) 5.91E− 01± 2.21E− 01
DTLZ2 4.30E− 01± 3.53E− 02(−) 5.30E− 01± 2.13E− 02 2.15E− 01± 4.05E− 04(−) 5.85E− 01± 6.15E− 04
DTLZ3 0.00E+ 00± 0.00E+ 00(≈) 0.00E+ 00± 0.00E+ 00 0.00E+ 00± 0.00E+ 00(≈) 0.00E+ 00± 0.00E+ 00
DTLZ4 4.33E− 01± 7.90E− 02(−) 8.75E− 01± 4.10E− 02 3.19E− 01± 1.88E− 01(−) 6.69E− 01± 1.38E− 01
WFG1 1.73E− 01± 3.01E− 02(−) 2.30E− 01± 2.92E− 02 3.83E− 01± 8.41E− 02(−) 5.14E− 01± 4.83E− 01
WFG2 8.39E− 01± 1.69E− 02(−) 1.10E+ 00± 1.64E− 02 8.81E− 01± 2.75E− 02(−) 1.32E+ 00± 1.30E+ 00
WFG3 1.78E− 01± 3.49E− 02(−) 2.48E− 01± 3.32E− 02 3.27E− 01± 2.28E− 02(−) 4.78E− 01± 4.30E− 01
WFG4 3.69E− 01± 2.22E− 02(−) 5.02E− 01± 2.06E− 02 4.95E− 01± 2.89E− 02(−) 7.92E− 01± 7.13E− 01
WFG5 1.25E− 01± 1.91E− 02(−) 1.72E− 01± 1.73E− 02 4.83E− 01± 1.59E− 02(−) 6.49E− 01± 6.49E− 01
WFG6 3.58E− 01± 2.63E− 02(−) 5.01E− 01± 2.56E− 02 4.29E− 01± 4.24E− 02(−) 6.96E− 01± 6.89E− 01
WFG7 3.25E− 01± 4.41E− 02(−) 4.77E− 01± 4.05E− 02 4.91E− 01± 4.37E− 02(−) 5.46E− 01± 5.07E− 01
WFG8 2.50E− 01± 1.69E− 02(−) 3.67E− 01± 1.70E− 02 4.11E− 01± 2.75E− 02(−) 7.16E− 01± 6.51E− 01
+\≈\− 0\1\11 0\1\11
Bold value represents the best performance for each problem.
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algorithms may not achieve the best on the problems, but
they can also obtain better results than their original ones.
For DTLZ3, a multimodal problem, all algorithms do not
perform exceptionally well, indicating that while the
framework can enhance the performance of algorithms, this
improvement has limitations on problems that the algorithm
inherently struggles with.

Figures 5 and 6 show the boxplot of metrics IGD ob-
tained by 30 runs. It can be observed that IGD obtained by
reinforced algorithms owns more stability and superiority
than their classical ones. For all problems, the reinforced
algorithm obtained the best results. From the fgures, we can
clearly observe that the scope of IGD obtained by the
reinforced algorithm is smaller than that by the original
ones, which shows that the reinforced algorithm is more
stable during the 30 runs.

HV can measure the convergence and diversity of an
algorithm simultaneously. Te means and standard de-
viation of HV obtained by four classical algorithms and
their reinforced version on DTLZ and WFG over 30 runs
are presented in Table 3. Te reinforced algorithms get
promoted on most problems compared with their
original ones.

In addition to verifying the transferability of the
framework on diferent problems, we further validated its
performance on the same problem but with the diferent
number of variables. We choose NSGA-II, MOPSO, and
their reinforced algorithms to run onWFG of 5 (6 forWFG2
and WFG3), 20, and 30 variables. Te results are summa-
rized in Table 4. From Table 4, we can see that the reinforced
algorithms are more likely to achieve success on the same
problem even with diferent variables.

Meanwhile, we also applied the Friedman test [56] to the
results. Table 5 and Figure 7 summarize the average ranking
of each of the eight algorithms on all problems from the two
test suites, where diferences in their performance are de-
tected. Te lower the ranking, the better the performance of
an algorithm. It is worth noting that the Man-
n–Whitney–Wilcoxon rank-sum test is used to compare the
performance of only two algorithms at a time, while the
Friedman test is applied to rank all algorithms based on their
overall performance. Te reinforced algorithms show better
performance than their classical ones clearly.

5.5. Further Analysis. From the boxplot, it is not hard to
observe that the algorithm with the embedded framework is
better than the original algorithm on both the mean value and
the standard deviation value. Tis further validates the gen-
erality and fexibility of the proposed framework. From this
perspective, the algorithm framework is a meaningful in-
novation. Deep reinforcement learning can make the right
choice under complex circumstances during the iteration
process. Compared with the rule-based parameter control
method or iterationmemory-based parameter control method,
this framework with deep reinforcement learning holds more
scalability and fexibility and can be further adjusted according
to specifc problems and algorithms. At the same time, it can be
further concluded that with the designed framework, auto-
matically selected parameters will improve both the conver-
gence and robustness of the algorithm.

While training does require a certain amount of time and
computational resources, early ofine training has an en-
hancing efect on the results in subsequent applications. In
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Figure 5: Te boxplot of IGD obtained by four original algorithms and their reinforced version on DTLZ.
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Figure 6: Te boxplot of IGD obtained by four original algorithms and their reinforced version on WFG.

Table 4: Means and standard deviation of IGD obtained by NSGA-II, MOPSO, and their reinforced versions onWFG of diferent variables.

Function Variables NSGA-II R-NSGA-II MOPSO R-MOPSO

WFG1
5 2.84E− 01± 2.84E− 02(+) 3.13E− 01±−1.61E− 01 1.35E+ 00± 2.51E− 01(−) 1.11E+ 00±−3.28E− 02
20 8.27E− 01± 6.87E− 02(−) 6.61E− 01±−2.02E− 01 1.85E+ 00± 5.55E− 02(−) 1.76E+ 00±−5.85E− 02
30 1.06E+ 00± 7.45E− 02(+) 1.17E+ 00±−1.56E− 01 1.88E+ 00± 8.15E− 02(−) 1.80E+ 00±−8.06E− 02

WFG2
6 2.16E− 01± 1.03E− 02(−) 1.30E− 01±−2.89E− 01 2.02E− 01± 9.47E− 03(+) 4.82E− 01±−6.29E− 02
20 2.40E− 01± 1.32E− 02(−) 1.92E− 01±−9.00E− 02 2.50E− 01± 1.12E− 02(+) 7.13E− 01±−6.49E− 02
30 2.75E− 01± 5.82E− 02(−) 2.48E− 01±−5.90E− 02 2.74E− 01± 1.27E− 02(≈) 2.66E− 01±−4.70E− 02

WFG3
6 9.18E− 02± 1.35E− 02(−) 8.26E− 02±−2.10E− 02 2.50E− 01± 9.47E− 02(−) 1.41E− 01±−1.52E− 02
20 1.83E− 01± 2.41E− 02(+) 2.01E− 01±−7.05E− 02 3.52E− 01± 6.74E− 02(+) 5.17E− 01±−5.91E− 02
30 2.40E− 01± 3.15E− 02(−) 1.68E− 01±−3.67E− 02 4.10E− 01± 8.75E− 02(≈) 4.00E− 01±−3.52E− 02

WFG4
5 2.69E− 01± 8.19E− 03(−) 2.42E− 01±−2.93E− 02 3.60E− 01± 3.63E− 02(−) 3.41E− 01±−3.57E− 02
20 2.89E− 01± 8.91E− 03(−) 1.74E− 01±−1.96E− 02 4.21E− 01± 5.20E− 02(+) 4.78E− 01±−9.39E− 03
30 3.02E− 01± 1.17E− 02(−) 1.81E− 01±−2.06E− 02 4.18E− 01± 4.32E− 02(+) 4.81E− 01±−2.81E− 02

WFG5
5 2.79E− 01± 8.30E− 03(−) 2.51E− 01±−3.26E− 02 3.64E− 01± 3.49E− 02(−) 2.39E− 01±−3.20E− 02
20 2.95E− 01± 1.10E− 02(−) 1.77E− 01±−6.80E− 02 9.76E− 01± 5.96E− 02(−) 3.86E− 01±−3.63E− 02
30 3.09E− 01± 1.08E− 02(≈) 3.08E− 01±−3.46E− 02 1.10E+ 00± 6.34E− 02(−) 4.64E− 01±−4.64E− 02
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practical application scenarios, such as drones and irregular
fight recovery, it is feasible to obtain past data, and the time
requirement for ofine training is not rigorous. Terefore, at
the training level, it is feasible to train the model based on
our proposed reinforced algorithms. While at the applica-
tion level, DRL can assist the evolutionary algorithm in
choosing the right parameters for better results in specifc
problem optimization.

As for computation time in the testing phase, with the
embedding of DRL, the computation time has increased. But
in some practical scenarios, such as power system

optimization [57] and supply chain management [58], ac-
curacy is more important than timeliness. At the same time,
with the increase in computing power, it also provides more
chances for pursuing accuracy.

6. Conclusion

Tis paper presents a novel parameter control framework for
MOEAs. Te framework utilizes the ability of deep re-
inforcement learning to choose proper parameters under high-
dimensional state features. We clear every component of the
Markov decision process including the environment, state,
action, reward, and transmission probability and employ
a classic and recognized deep reinforcement learning algorithm
to process the state and make choices in continuous space.

We introduced four reinforced MOEAs based on classical
MOEAswith the proposed framework to verify the universality
and validity of the designed framework. R-MOEA/D, R-
MOPSO, R-NSGA-II, and R-MODE are trained and compared
with their original algorithms. Te experimental results
demonstrate that the proposed framework can adapt to dif-
ferent algorithms, improving their efciency and robustness on
various testing problems after training. As observed from the
boxplot, the efciency of the improved algorithm is always
better than that of their original algorithm.Tat further proves
the universality of the proposed framework.

Regarding future studies, the applicability of the pa-
rameter control framework for diferent kinds of problems,
such as integer optimization, will also be studied. Moreover,
some real-world problems will be considered as the training
and testing sets. Since real-world problems are more
complex, it will be a challenge for state feature design.
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