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To reduce diesel emissions and fuel consumption and improve DPF regeneration performance, a multiobjective optimization
method for DPF regeneration conditions, combined with nondominated sorting genetic algorithms (NSGA-III) and a back
propagation neural network (BPNN) prediction model, is proposed. In NSGA-III, DPF regeneration temperature (T4 and T5),
O2,NOx, smoke, and brake-specifc fuel consumption (BSFC) are optimized by adjusting the engine injection control parameters.
An improved seagull optimization algorithm (ISOA) is proposed to enhance the accuracy of BPNN predictions. Te ISOA-BP
diesel engine regeneration condition prediction model is established to evaluate ftness. Te optimized fuel injection parameters
are programmed into the engine’s electronic control unit (ECU) for experimental validation through steady-state testing, DPF
active regeneration testing, and WHTC transient cycle testing. Te results demonstrate that the introduced ISOA algorithm
exhibits faster convergence and improved search abilities, efectively addressing calculation accuracy challenges. A comparison
between the SOA-BPNN and ISOA-BPNNmodels shows the superior accuracy of the latter, with reduced errors and improved R2

values. Te optimization method, integrating NSGA-III and ISOA-BPNN, achieves multiobjective calibration for T4 and T5
temperatures. Steady-state testing reveals average increases of 3.14%, 2.07%, and 10.79% in T4, T5, and exhaust oxygen con-
centrations, while NOx, smoke, and BSFC exhibit average decreases of 8.68%, 12.07%, and 1.03%. Regeneration experiments
afrm the efciency of the proposed method, with DPF regeneration reaching 88.2% and notable improvements in T4, T5, and
oxygen concentrations during WHTC transient testing. Tis research provides a promising and efective solution for calibrating
the regeneration temperature of DPF, thus reducing emissions and fuel consumption of diesel engines while ensuring safe and
efcient DPF regeneration.

1. Introduction

With industry development, the energy crises and environ-
mental pollution have been paid more attention [1]. Diesel
engine performance optimization and emission control are
the main research topics in the diesel engine feld [2, 3]. As
emissions requirements for diesel engines have become more
stringent, diferent after-treatment technologies have been
introduced to the market [4, 5]. DPF is considered one of the
most efective after-treatment technologies due to its simple

and efcient work. Upon accumulating a designated quantity
of particulate matter, the DPF necessitates active regeneration
cleaning [6]. Te critical aspect of the active regeneration
process is maintaining a sufcient interior temperature within
the DPF. Optimizing control parameters is essential for re-
ducing diesel fuel consumption and ensuring efcient DPF
regeneration.

Previous research has focused on optimizing control
parameters, especially in normal engine mode [7]. However,
systematic methods to optimize the temperature of DPF
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during regeneration are rarely studied. Te crucial factor in
controlling the regeneration process of the DPF is ensuring
that the inlet temperature meets the requirements [8, 9].
During the thermal regeneration process of the DPF, the
exhaust temperature at the DPF inlet needs to be heated up
to above 500°C to oxidize the accumulated soot particles
efciently.Te DPF inlet gas temperature must be accurately
controlled to ensure efcient regenerations. Terefore, the
combustion parameters of the regeneration mode must be
optimized during the development of the diesel electronic
control unit (ECU). However, the signifcant increase in the
number of diesel engine control parameters brings tre-
mendous challenges to optimizing diesel engine control
parameters. Traditional manual calibration has been unable
to meet the demand. Terefore, it is necessary to seek an
advanced optimization method to solve the optimization
problem of DPF regeneration conditions. Tis study pro-
poses a multiobjective optimization method for controlling
parameters in the diesel engine’s DPF regeneration mode.

During DPF regeneration, multiple factors should be
considered, such as DOC and DPF inlet temperatures,
smoke, NOx,O2 concentrations, and fuel consumption.
Terefore, it is necessary to introduce a multiobjective
optimization method to seek the “balance point” among
multiple objectives. Optimizing the control parameters to
achieve the optimal regeneration temperature of the DPF is
a multiobjective optimization problem. Various optimiza-
tion methods, including multiobjective PSO [10], NSGA-II
[11], GA [12], and hybrid approaches [13], have been
employed in studies to enhance the performance of internal
combustion engines. Tese methods focus on optimizing
critical parameters to achieve improvements in emissions,
fuel consumption, and overall efciency. Tis is important
for controlling the DPF regeneration process.

However, all previous studies need to formulate a new
single-objective optimization problem to deal with the
multiobjective optimization problem [14]. Te optimization
problem of diesel engine operating parameters is charac-
terized by high dimensionality, nonlinearity, uncertainty,
and noise interference [15]. Tese factors can lead to low
accuracy and slow convergence of optimization algorithms.
NSGA-III is an improved algorithm based on NSGA-II,
which can ensure the calculation speed and make the results
closer to the theoretical optimal value [16]. In multiobjective
optimization, multiple operating conditions of the diesel
engine need to be evaluated, and the parameter search needs
to be performed to determine the impact on engine per-
formance [7]. Te assessment of these operating conditions
is impractical through engine bench tests alone. Terefore,
many predictive models have been developed for engine
research and optimization.

In recent years, model-based virtual calibration tech-
nology has been widely studied in the diesel engine feld. At
present, the mathematical model of the diesel engine can be
divided into the volume method [17, 18], the average value
method [19, 20], and the machine learning algorithm
method [21]. It is challenging to describe the diesel engine
with simple data formulas and physical models [22, 23].
Traditional diesel engine modeling makes it difcult to

satisfy the requirements for prediction accuracy and real-
time. Machine learning has become increasingly popular in
recent years [24]. Kin et al. [25], Francesco et al. [26], Kumar
et al. [27], and Ağbulut et al. [28] have demonstrated that
machine learningmodels exhibit higher prediction accuracy,
reduced calibration time, and increased efciency in pre-
dicting diesel engine performance. However, the ANN may
converge to the local minimum and face the problem of
overftting after training with a large amount of data [29].
GA [30], ant colony algorithms [31], and simulated
annealing algorithms [32] are often used to optimize the
model parameter. Experiments are conducted to verify the
validity of the optimized parameters. However, these opti-
mization algorithms have problems such as low theoretical
complexity, slow model prediction speed, and premature
convergence. Terefore, this study aims to improve the
optimization algorithm. Te complex DPF regeneration
temperature calibration involves multiple control parame-
ters and response values. Using machine learning for pre-
diction models can enhance the efciency of optimization,
reducing calibration costs while ensuring the accuracy of the
results.

Tus, this study needs to address the following: (1)
ensure that the DPF efciently removes accumulated par-
ticles during the regeneration process, maintaining its
normal functionality and reducing particulate emissions
from diesel engines, (2) optimize multiple control param-
eters during DPF regeneration mode to balance objectives
such as DOC inlet temperature, DPF inlet temperature,
emission concentration, economy, and fuel consumption,
(3) enhance accuracy and efciency in diesel engine re-
generation mode to avoid issues such as overftting in ANN,
and (4) choose an appropriate multiobjective optimization
algorithm to address challenges in optimizing control pa-
rameters for diesel engines, considering high dimensionality,
nonlinearity, uncertainty, and noise interference.

Terefore, a multiobjective optimization method of DPF
regeneration condition based on NSGA-III coupled with
ISOA-BP was proposed. Te aim is to optimize the re-
generation conditions of the DPF, ensuring safe and efcient
regeneration while minimizing diesel engine emissions and
fuel consumption. Based on the experimental data, the
performance prediction model of BPNN in diesel engine
regeneration mode was established. Te SOA algorithm is
introduced to optimize the initial weight and threshold of
BPNN. In addition, to ensure the precision of both the
BPNN model and optimization outcomes, a novel en-
hancement algorithm, ISOA, is introduced to optimize the
initial parameters of BPNN. ISOA is employed to optimize
the model structure parameters, ensuring that the model’s
predictive accuracy aligns with the optimization criteria.Te
optimization objectives during diesel particulate flter (DPF)
regeneration include DOC inlet temperature, DPF inlet
temperature, exhaust oxygen concentration, economy, and
emissions. Ten, combined with the optimization model of
NSGA-III for multiobjective optimization, the optimal in-
jection parameters are obtained. ISOA-BP is used to evaluate
the ftness of the Pareto optimal solution. Te optimal
control parameters are determined from the Pareto optimal
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solution set by dynamically adjusting the weights. Finally,
three experimental methods are employed to validate the
obtained results.

Te research novelty of the proposed work is described
as follows: (1) a multiobjective optimization method for DPF
regeneration condition is proposed. Integrating NSGA-III
with a BPNN prediction model enables simultaneous op-
timization of multiple parameters including DPF re-
generation temperature, O2,NOx, smoke, and BSFC, leading
to comprehensive improvements in emissions and fuel
consumption, (2) based on the SOA optimization algorithm,
the ISOA algorithm is proposed, which can quickly converge
and fnd the global optimal solution, and (3) the use of an
ISOA enhances the accuracy of the BPNN prediction model,
resulting in a more precise evaluation of ftness for opti-
mized fuel injection parameters.

2. Experimental Design and Methods

2.1. Experimental Design for DPF Predictive Modeling.
Te optimization of DPF regeneration conditions includes
the calibration of DOC inlet temperature (T4) and DPF inlet
temperature (T5). A simplifed schematic of T4 and T5 is
shown in Figure 1. DOC inlet temperature calibration is to
raise the diesel engine exhaust temperature by adjusting the
fuel system control parameters and the intake system control
parameters. Te aim is to bring the DOC up to the starting
ignition temperature. Te DPF inlet temperature increase
mainly depends on the diesel secondary injection to provide
additional HC.TeDOC raises the DPF inlet temperature by
oxidative warming to ensure a high enough temperature
inside the carrier during DPF regeneration.

During the regeneration of the DPF, the goal of T4
optimization is to attain a temperature of 200°C. Tis
temperature is crucial to ensure the efective oxidation of the
DOC.Te objective of T5 optimization is to supply a suitable
quantity of HC for DOC oxidation heating, which will lead
to increased temperature of T5 and ensure efcient and safe
regeneration of DPF.

In order to optimize the DPF regeneration conditions,
a total of eight control parameters were selected for cali-
bration: preinjection timing, preinjection fuel quantity, main
injection timing, rear injection 2 timing, rear injection 2 fuel
quantity, rear injection 1 fuel quantity, intake volume de-
mand value, and rail pressure. According to the initial
control MAP in the regeneration mode of the diesel engine,
the range settings of the eight control parameters in the
selected speed interval are shown in Table 1. Te optimal
control parameters for extreme conditions at the edge of the
diesel section may be outside the setting range in Table 1. In
order to make the DPF regeneration condition prediction
model accurately predict the diesel engine’s performance
near the marginal operating conditions, the preinjection
timing, main injection timing, and rear injection 2 timing
were increased by 2∼3°CA. Te rear injection 2 and rear
injection 1 fuel ranges were appropriately increased by
1∼2mg/cycle during the test design. T4,T5,O2,BSFC,NOx,
turbine front-end temperature, and smoke data were col-
lected for the experiment.

To construct the DPF regeneration temperature pre-
diction model, sample data of injection control parameters
corresponding to T4,T5,O2,BSFC,NOx, turbine inlet
temperature, and smoke are essential for model learning and
training. Te diesel engine experiments were conducted in
regeneration mode. Due to the addition of two rear in-
jections, the exhaust temperature will be higher than the
normal mode. In the experiment, the diesel engine speed
range of 1000 r/min∼2800 r/min and torque range of
0∼400Nm were selected for DPF regeneration temperature
calibration. To facilitate the experimental design, the speed
and torque are selected as the operating parameters. Te
diesel engine torque should be limited to the external
characteristic range. Te external characteristic curve in the
selected speed range of the diesel engine is shown in Figure 2.

A total of 10 characteristic values are involved in the
design of the space-flling test. Te rail pressure is not ap-
plied in the space-flling test design but is obtained through
the bench monitoring system. Te experimental design of
nine characteristic control parameters was completed by the
Sobol space-flling method. At the same time, 10 operating
points were set for each speed and torque, and 100 simple
test design points were added. Experiments were performed
from small to large in turn according to torque at each speed.
Other eight characteristic values and each output response
value were recorded to improve and verify the model’s
accuracy. A total of 720 test points in the test program were
used to construct the DPF regeneration performance pre-
dictionmodel. To ensure the accuracy of the test results, each
test point must be repeated three times, and the fnal results
are taken as the average of the three tests. Te design points
of the Sobol sequence space-flling experiment are shown in
Figure 3.

2.2. Experimental Equipment. A four-cylinder diesel engine
was used in the experiment. Tables 2 and 3 show the pa-
rameters of the engine, dynamometer, and related in-
struments. Eddy current dynamometer and related
instruments were used to measure the speed and torque of
the engine in the experiment; engine fuel temperature and
pressure, coolant temperature, intake temperature and
pressure, exhaust pressure, atmospheric humidity, tem-
perature, and pressure were measured by the engine state
parameter tester. Te altitude of the diesel engine bench test
environment is 2000 m. Te temperature of the test envi-
ronment is 25°C, atmospheric pressure is 80 kPa, atmo-
spheric humidity is about 50%, fuel temperature is
maintained at 30°C, oil temperature is controlled at about
90°C, and cooling water temperature is about 90°C. Te
diagram of the diesel engine bench is shown in Figure 4. Te
physical diagram of the diesel engine bench equipment is
shown in Figure 5. Table 4 shows some experimental data.

2.3. Uncertainty Analysis. All experimental measurements
are subject to some error or uncertainty. Te uncertainty in
the experimental results will arise from the condition, cal-
ibration, sensor selection, test procedure, and observation.
Uncertainty analysis calculations can improve the accuracy
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Figure 1: Simplifed diagram of T4 and T5.

Table 1: Control parameter range setting.

Control parameter Range (unit)
Preinjection timing 3∼45 (°CA)
Main injection timing −10∼15 (°CA)
Rear injection 2 timing −48∼−14 (°CA)
Preinjected fuel quantity 1.5∼2 (mg/cyc)
Rear injection 2 fuel quantity 0∼9.5 (mg/cyc)
Rear injection 1 quantity 0–9 (mg/cyc)
Rail pressure 38∼182 (MPa)
Intake volume 400∼1600 (mg/cyc)
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Figure 2: Te full-load lug curve of the diesel engine.
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of experimental measurement data, which is crucial for
improving diesel engine prediction models. Te uncertainty
percentage can be calculated by using the following
equation:

ER �
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Ra � L1, L2, L3, · · · Ln􏼈 􏼉, (2)

where Ra is the independent variable function of
L1, L2, L3, . . . , andLn and u1, u2, . . . , and un are the in-
dependent variable uncertainties, respectively.

Te overall uncertainty in the experimental procedure
can be derived from the following equation.

Tus, the overall experimental uncertainty TE is
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(3)

3. Prediction Model

3.1. BPNN Model. BPNN is commonly utilized for super-
vised training, given the random initialization of network
weights and biases during the initial phase. Te DPF per-
formance prediction model of the diesel engine has 10
characteristic inputs and 7 response outputs. Te prediction
model topology is shown in Figure 6.

Te normalization formula of sample data is as follows:

y �
x − xmin

xmax − xmin
, (4)
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Figure 3: Space-flling test design point.

Table 2: Basic parameters of D25TCI diesel engine.

Parameter Value
Cylinder diameter (mm) 92
Stroke (mm) 94
Displacement (L) 2.5
Rated power (kW) 120
Rated speed (r/min) 3600
Maximum torque (N·m) 400
Maximum torque speed (r/min) 1600–2800
Maximum burst pressure in the cylinder (bar) 160
Compression ratio 17.5

Table 3: Specifc model of test equipment.

Equipment Specifcation
Coolant control system FEV CoolCon LS
Fuel control system FEV FuelCon
Fuel consumption meter FEV FuelRate
Oil conditioning system FEV LubConLS
Pressurized intercooling temperature control
system FEV CoolSIM

Signal acquisition box FEV InterRate
Dynamometer Dyna craft 250HS
Measurement and control system TOM/TCM/TEM
Emission analyzer MEXA-7500DEGR
Smoke meter AVL 415
Mass fowmeter Sensyfow
Exhaust back pressure control system FEV ExCon LS
Calibration interface module ETAS ES592
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where x and y are the sample values before and after nor-
malization and xmin and xmax are the maximum and min-
imum values of samples, respectively. Te neuron node
input is x � [x0, x1, x2, . . . , xn], where each input node and
the node corresponding weights are w � [wi0, wi1,

wi2, . . . , win]. In the forward propagation process, the input
of each node is summed by a weighted sum and then cal-
culated by an activation function to get the corresponding
output. Te mathematical description of the process is as
follows:
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Figure 4: Diesel engine bench structure.

Figure 5: Test equipment of the engine bench.

Table 4: Partial experimental data.

Speed
(r/min)

Torque
(Nm)

Preinjection
quantity (mg)

Rear
injection 1
quantity
(mg)

Rear
injection 2
quantity
(mg)

Rear
injection 2
timing
(°CA)

Main
injection
timing
(°CA)

Preinjection
timing (°CA)

Intake
demand
(mg/cyc)

T4 (°C) T5 (°C)

1 1000 20 1.66 7.26 2 −33.19 0.044 11.426 681 308.16 502.86
2 1400 180 1.84 4.10 0.00 0.00 10.50 39.13 1409.0 514.66 600.06
3 1600 360 1.60 3.20 2.50 −33.00 −4.00 8.50 980.0 415.26 488.66
4 1800 20 1.60 8.00 5.00 −29.99 −2.00 11.01 650.0 305.76 598.86
. . . . . . . . .

597 2800 45 1.88 3.16 8.76 −40.30 1.69 15.97 775.0 485.06 582.86
598 2600 270 2.10 4.30 3.00 −29.99 9.01 28.02 1440.0 510.66 608.26
599 2400 225 1.84 5.70 2.10 −26.77 10.00 34.30 1520.0 492.06 607.26
600 2800 360 1.86 3.98 5.20 −29.99 6.00 20.81 522.0 406.46 609.26
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neti � 􏽘
n

j−1
wijxj − θ + bi � xw + bi, (5)

yi � f neti( 􏼁 � f xw + bi( 􏼁, (6)

where when x0 � −1, wi0 is θ; bi is the threshold value at the
ith neuron node; f(∗) is the activation function; and yi is
the output value of this neuron node.

Te training error of BPNN is a function of the diference
between the expected output and the actual output and the
model error formula is

Ep �
1
2

􏽘

n

j−1
ti − yi( 􏼁

2
, (7)

where ti is the expected output value of the ith neuron node
and yi is the actual output value of the ith neuron node. Te
learning rate given for error Ep is η, and the range of η is
(0, 1).

BPNN constantly improves the model’s accuracy
through forward propagation and reverse transmission of
error correction weights and thresholds, which is the
model’s training process. When the model accuracy reaches
the requirement, or the algorithm reaches the maximum
number of iterations, the algorithm terminates the iteration
and outputs the fnal result. Te details about the ANN
theory can be found in [33, 34].

3.2. SOA Optimization and Improvement. BPNN has the
problem of overftting and falling into local optimal solu-
tions, which leads to low prediction accuracy. In order to
improve the training speed and prediction accuracy of the
prediction model and ensure the accuracy of DPF re-
generation temperature calibration, the BPNN optimization
can improve the prediction accuracy. SOA is introduced to
solve the above problems, improve the SOA, and propose
ISOA. ISOA optimizes the initial weights and thresholds of
BPNN. ISOA optimizes the initial weights and thresholds
of BPNN.

3.2.1. SOA. Te SOA is a new swarm intelligence algorithm
proposed by Gaurav Dhiman according to seagull’s mi-
gration and predation rules. SOA has the advantages of
simple structure, fast convergence, and high optimization
precision. Te gull algorithm can be divided into migration
(global search) and predation (local search).

(1) Migration Process (Global Search). During migration,
seagulls must avoid collisions between each individual so
that each population renewal does not produce duplicate
individuals. Te convergence factor A is used to control the
position update of each individual. Te position update
formula is as follows:

Cs(t) � A × Ps(t), (8)
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Figure 6: Prediction model topology.
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where Cs(t) is the position that does not confict with other
individuals, Ps(t) is the current position of an individual
seagull, and t is the number of iterations.

Te convergence factor A describes the movement of
a seagull in the solution space and the expression is

A � fc × 1 −
t

T
􏼒 􏼓, (9)

where T is the maximum number of iterations and fc is the
control factor, and its value is usually set to 2. Seagull in-
dividuals will move towards the optimal individual after
updating their position. Te direction the seagull moves
toward the optimal individual is represented as

Ms(t) � B × Pbs(t) − Ps(t)􏼂 􏼃, (10)

where Pbs(t) is the position of the current optimal indi-
vidual, Ms(t) is the relative direction between the seagull
individual and the optimal individual, and B is the variable
that balances global search and local search, and the ex-
pression is

B � 2 × A
2

× R, (11)

where R is the random number in [0, 1]. Individual seagulls
are constantly moving and arrive at a new location before the
global search is over.

DS(t) � | CS(t) + MS(t) | . (12)

(2) Predation Process (Local Search). Seagulls attack when
they get close to their prey (optimal individuals). A seagull in
the air will fy in a spiral trajectory toward its prey and
constantly change speed and angle. Te mathematical de-
scription of this process is as follows:

x � r × cos(θ)

x � r × sin(θ)

z � r × θ

r � u × e
θv

,

(13)

where r is the spiral radius, θ is the random number in [0,
2π], and u and v are spiral shape parameters. Seagulls hover
down in the air and eventually reach their prey.

P(t) � Ds(t) × x × y × z + Pbs(t). (14)

3.2.2. Algorithm Improvement. Te initial population of
seagulls is randomly generated in the solution space, and it is
impossible to control that each generated population is
evenly distributed throughout the solution space. When the
algorithm falls into the local optimal, there is no operation
out of the local optimal, and the fnal output result is not
globally optimal. If the algorithm cannot fnd the global
optimal solution, the optimal connection weights and
thresholds of the BPNN cannot be found. Tere is

a signifcant error in predicting the DPF regeneration
performance parameters of the diesel engine. Tus, ISOA is
proposed to address the abovementioned issues.

When the initial population is not uniformly distributed,
it can lead the algorithm to a local optimum. Chaotic
mapping is widely used in optimization because of its
randomness and global stability. Chaotic mapping can re-
place random number generators to generate chaotic se-
quences to initialize the population with good results. Te
tent map is one of the most common chaotic maps. It has
a uniform distribution function and good correlation. It can
generate an evenly distributed population at population
initialization. Its expression is as follows:

xk+1 �

xk

a
, xk ∈ [0, a),

1 − xk( 􏼁

(1 − a)
, xk ∈ [a, 1],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where xk is the chaos value generated by the kth iteration
and a is the random number in [0, 1].

Te distribution of 1000 chaos values generated by the
tent chaosmapping in the interval [0, 1] is shown in Figure 7.
Te chaos value is generated iteratively according to the
mapping formula. When a and k are constant, the chaos
number generated each time is the same and can be evenly
distributed in the whole solution space. Terefore, chaotic
mapping initialization can efectively avoid the problem of
SOA’s uneven initial population distribution.

In order to achieve sufcient global search and local
search in the iterative process, the hyperbolic tangent
function is introduced, and the convergence factor A is
treated nonlinearly.Te hyperbolic tangent function tanh(x)
can be expressed as

tanh(x) �
e

x
− e

−x

e
x

+ e
−x. (16)

Te tanh(x) function is stretched, symmetric, and shifted
over the interval [−3, 3], and by substituting formula (6) into
it, we get

A � tanh
3
2
fc − 3fc ·

t

T
􏼒 􏼓 + 1. (17)

Te comparison of the convergence factor A before and
after the improvement is shown in Figure 8. Te value of A
decreases slowly in the frst iteration, which is conducive to
increasing the search range of the seagull in the solution
space. A fast decline can accelerate algorithm convergence in
the middle stage of iteration. In the late iteration period, the
value of A is small and changes slowly, increasing the al-
gorithm’s searchability in the local scope.

When the ftness value of the seagull individual is smaller
than the population, to enhance the algorithm’s optimiza-
tion ability in the late iteration period, adaptive inertia
weight is introduced to balance the global search and local
search. Te inertia weight formula is as follows:
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ω(t)i � ω2 +
ω2 − ω1

T
·

f(t)i − f(t)avg

f(t)max − f(t)min
, f(t)i <f(t)avg,

(18)

where ω(t)i is the weight of the ith seagull individual in the t
search, ω1 and ω2 are the initial minimum and maximum
weights, and f(t)avg, f(t)max, and f(t)min are the mean
value, maximum value, and minimum value of population
ftness in the t-th iteration.

After introducing adaptive inertia weight, the expression
of variable B is

B � 2 × ω(t)i × A
2

× R. (19)

Cauchy variation can increase population diversity and
accelerate the movement of seagulls toward the global op-
timal solution. Gaussian variation can enhance the local
search ability of the algorithm to avoid getting into a local
optimum dilemma and strengthen the ability of the algo-
rithm to jump out of the local optimum. Te equations of
Cauchy variation and Gaussian variation are as follows:

Ps(t) � Ps(t) + Ps(t) × Cauchyrd

Ps(t) � Ps(t) + Ps(t) × Gaussianrd,
(20)

where Cauchyrd is a random number obeying Cauchy
distribution and Gaussianrd is a random number con-
forming to Gaussian distribution.

Te optimal ftness change rate of the population
was introduced to determine when the algorithm carried
out Gaussian variation. When the rate of change of
the optimal ftness of the gull population is less than
a threshold α for n consecutive generations, the algo-
rithm performs a Gaussian variation. Te decision
formula is

|
f Pbs(t)( 􏼁 − f Pbs(t − n)( 􏼁

f Pbs(t)( 􏼁
| ≤ α, t> n, (21)

where f(Pbs(t)) is the optimal ftness value of the seagull
population, n� 10, and the threshold α is 0.0001.
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3.2.3. Performance Comparison before and after Algorithm
Improvement. In order to verify the ISOA performance, the
SOA and ISOA were compared with diferent single-peak
test functions and multipeak test functions. Te single-peak
test has only one strict, extreme point in the solution space,
which can efectively test the global search ability of the
algorithm. Te multimodal test function encompasses
multiple extreme points within the defned solution space.
Tis characteristic allows for a more comprehensive eval-
uation of the algorithm’s convergence rate and calculation
accuracy while also serving to assess whether the algorithm is
susceptible to local optima. Te algorithm test function is
shown in Table 5. TF1–TF4 is a single-peak test function and
TF5–TF8 is a multipeak test function.

Te convergence curves of SOA and ISOA under 8 test
functions are compared, as shown in Figure 9. ISOA can
converge to the optimal value faster in the calculation
process. Te calculation accuracy of ISOA is higher. ISOA
requires fewer iterations than SOA when the computational
results are the same. In the TF8, the optimal ftness value of
ISOA is able to stop and hold around the theoretical optimal
value. However, the optimal ftness value of SOA exhibits
rapid fuctuations without converging near the theoretical
optimum. Te algorithm persists in iterative processes,
potentially converging into a local optimum.Tus, the ISOA
algorithm exhibits superior global and local search capa-
bilities during computation. Te ISOA enhances global
search and local search capabilities, speeds up the algo-
rithm’s convergence, and adds the operation of jumping out
of the local optimum to the algorithm.

3.3. Model Evaluation

3.3.1. Model Evaluation Index. Te predictive ability of the
training model is verifed by using the test set in the model
performance evaluation. Te mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage
error, and ftting coefcient (R2) are used to evaluate the
model’s accuracy. Te calculation formula for each evalu-
ation index is

MAE �
1
n

􏽘

n

i�1
| xi − x |

RMSE �

������������

1
n

􏽘

n

i�1
xi − x( 􏼁

2

􏽶
􏽴

MAPE �
1
n

􏽘

n

i�1

| x − xi |

x
× 100%,

R
2

� 1 −
􏽐

n
i�1 xi − x( 􏼁

􏽐
n
i�1 xi − �x􏼐 􏼑

,

(22)

where n is the number of samples and xi, x, �x are, re-
spectively, the predicted values, test values, and average

values of the 7 parameters including T4 temperature, T5
temperature, original smoke emission, O2 concentration,
NOx, BSFC, and turbine inlet temperature.

3.3.2. Model Evaluation. SOA is applied to optimize the
initial weights and thresholds of the BP neural network
prediction model, aiming to enhance the accuracy of the
DPF regeneration condition prediction model. SOA and
ISOA optimized the initial weight and threshold of BPNN,
respectively, and the prediction accuracy of both models was
compared. Te algorithm population was set to 50, and the
maximum number of iterations was set to 500. Te ftness
function is the test set’s average RMSE of T4 temperature, T5
temperature, O2 concentration, NOx, smoke, BSFC, and
turbine inlet temperature parameters. Te specifc steps are
shown in Figure 10:

In order to avoid the contingency of model prediction
results, the K-fold cross-validation method was used to
verify the model. A total of 720 data samples were used to
train and verify the model. Te ratio of the training set to the
test set of the model is 9 :1. Te K-fold cross-validation is
selected as the model validation method. Te prediction
accuracy of SOA-BP and ISOA-BP models was compared
and analyzed. Te performance of the two models in pre-
dicting T4,T5,O2,NOx, smoke, BSFC, and turbine inlet
temperature is compared in Figure 11.

Te X-axis and Y-axis represent the experimental data
and predicted values, respectively. R2 represents the ftting
degree of the model.Te closer the R2 value is to 1, the closer
the output value of the prediction model is to the experi-
mental target value. Te higher the R2, the higher the
model’s prediction accuracy and generalization ability. Both
models accurately predict T4, T5, smoke, O2 concentration,
NOx, and BSFC. However, the BPNN model still has large
errors in predicting O2 and smoke even after SOA opti-
mization. R2 of the model before improvement is 0.94 in
predicting both O2 concentration and smoke. Although the
linear ftting and A�P are very close, the whole line presents
a parallel state. Terefore, the model can predict the trend of
O2 concentration and smoke intensity. However, the pre-
diction accuracy is insufcient, and the linear ftting degree
is slightly poor. Te model’s MAPE for smoke prediction is
61.43%. Most predicted values are distributed on both sides
of the linear ftting line, and the linear ftting line has de-
viated from line A�P. Te irregularity in the sample data
and the presence of noise points pose challenges to the
model’s training, contributing to the suboptimal smoke
prediction performance. Due to the small order of magni-
tude of smoke, the smoke value is below 0.1 FSN in many
operating conditions. Even though the model’s predicted
value is close to the test value, there is a large gap of orders of
magnitude between the two values, resulting in a large
fnal error.

However, the ISOA-BPNN model can solve the problem
of low accuracy in O2 and smoke degree prediction.
Meanwhile, the prediction accuracy of other parameters is
improved. Te R2 values of ISO-BPNN for T4, T5, O2
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Table 5: Test functions.

Function number Function name Domain of defnition Teoretical optimal value
TF1 Sphere (−100, 100) 0
TF2 Schwefel’s P2.22 (−10, 10) 0
TF3 Schwefel’s P1.2 (−100, 100) 0
TF4 Rosenbrock (−1.28, 1.28) 0
TF5 Rastrigin (−5.12, 5.12) 0
TF6 Ackley (−32, 32) 0
TF7 Griewank (−600, 600) 0
TF8 Schwefel’s P2.26 (−500, 500) −12569.50
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Figure 9: Continued.
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concentration, NOx, smoke, BSFC, and turbine inlet tem-
perature are 0.97, 0.99, 0.95, 0.99, 0.96, 0.99, and 0.98, re-
spectively. Te prediction error of ISOA-BP is smaller than
that of SOA-BP. Te prediction efect of ISOA-BP on O2
concentration and smoke is signifcantly improved. ISOA
improves the linearity of the ft of the BPNN model and
reduces the ftting error. Terefore, the prediction efect of
ISOA-BPNN is better than SOA-BPNN. ISOA efectively
optimizes the initial connection weights and thresholds of
BPNN, making it closer to the theoretical optimal weights
and thresholds at the beginning of the algorithm iteration.

4. Multiobjective Optimization Method

Many control parameters afect the regeneration tempera-
ture of DPF. Te calibration eforts must align with the
demands of multiple objectives, encompassing consider-
ations such as economy, emission levels, power perfor-
mance, and safety. Finding a set of control parameters to
make all optimization objectives reach the optimal level is
difcult. Terefore, diferent optimization objectives need to
be balanced to obtain a set of compromise control pa-
rameters. To address the inefciency and high costs
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Figure 9: Comparison of optimal ftness before and after improvement. (a) TF1. (b) TF2. (c) TF3. (d) TF4. (e) TF5. (f ) TF6. (g) TF7. (h) TF8.
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associated with the conventional manual calibration
method, an intelligent optimization algorithm is employed
to optimize multiple control parameters infuencing the
conditions of DPF regeneration. Te optimization of DPF
regeneration conditions includes the calibration of re-
generation temperature T4 and regeneration temperature
T5. A multiobjective optimization problem between the
control and performance parameters of the DPF re-
generation temperature is investigated in this section based
on NSGA-III.

4.1. Constraint Condition. DPF regeneration condition
optimization is a process of multiobjective optimization of
control parameters. Te primary purpose is to ensure that
the temperature entering the DPF is high enough to burn the
particles in the DPF thoroughly. Te optimization of DPF
regeneration conditions is to calibrate the T4 temperature
and T5 temperature while ensuring O2 concentration in the
exhaust. By adjusting the control parameters of the fuel
system and air system, T4 and T5 can reach the target
demand temperature to ensure that the DPF regeneration
process can be conducted efciently. Te required tem-
perature of T4 is 500± 50°C. When the exhaust temperature
is low at low speed and low load, the requirements can be
relaxed, but the temperature must be greater than 200°C to
ensure the normal ignition of DOC. Te demand temper-
ature for T5 is 620± 20°C.

Te condition of DPF regeneration is not only tem-
perature but also sufcient O2 to participate in the oxidation
reaction. Terefore, ensuring enough O2 in the exhaust gas
entering the retreatment system is necessary. In the re-
generation mode, the O2 concentration of exhaust is re-
quired to be greater than 4%–5%. At low speed and high
load, due to the small air-fuel ratio, the remaining oxygen in
the cylinder combustion is less, so the requirement of O2
concentration can be appropriately reduced by 2%∼3%.

During the T4 calibration, the fuel can burn as thor-
oughly as possible in the cylinder. On the one hand, the
leaked HC will oxidize in DOC, resulting in a sharp rise in
the DOC temperature and even destroying the DPF. On the
other hand, the increase in exhaust temperature caused by
the leaking HC is uncontrollable. It will interfere with the
controller’s thermal management process in the after-
treatment system and will cause oil dilution. Terefore,
the temperature rise of DOC is required to be less than
100°C.

During the calibration process, adjustments to fuel in-
jection and intake control parameters can alter the air-fuel
ratio and combustion temperature within the cylinder,
leading to increased particulate matter emission. Terefore,
the maximum limit of the smoke exhaust degree is set to
2 FSN, which can be set to 2.5 FSN at low speed and high
load. A high temperature in the cylinder and oxygen-rich
combustion will also lead to increased NOx emissions.
Terefore, NOx emissions should also be considered in the
calibration process. In the T5 calibration process, the turbine
inlet temperature control is an essential process of re-
generation condition calibration. If the exhaust temperature
exceeds the limit (750°C), the excessive temperature which
spikes inside the DPF may melt down the flter. During
calibration, the turbine inlet temperature is controlled
within 720°C.

Terefore, the purpose of the DPF regeneration cali-
bration is to ensure that the exhaust O2 content reaches the
required value while the T4 and T5 temperatures reach the
required value. Te rise in DOC temperature is slight, the
vortex front temperature is lower than the set value, and
smoke, BSFC, and NOx are as low as possible.

4.2. Objective Function. Te objective function is the ftness
function of multiobjective optimization of DPF regeneration
conditions. Te objective function is a tool to evaluate the

ISOA-BP Predicted
A=P
Linear fitting

M
ea

su
re

d 
(°

C)

MAE=12.24
RMSE=16.05
MAPE=2.36%
R2=0.98

400 500 600 700 800300
Predicted (°C)

300

400

500

600

700

800

SOA-BP Predicted
A=P
Linear fitting

MAE=11.91
RMSE=16.05
MAPE=2.19%
R2=0.98

400 500 600 700 800300
Predicted (°C)

M
ea

su
re

d 
(°

C)

300

400

500

600

700

800

(g)

Figure 11: Comparison of model performance before and after improvement. (a) T4. (b) T5. (c) O2. (d) NOx. (e) Smoke. (f ) BSFC.
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quality of each individual in the iterative process of the
NSGA-III algorithm. Te cost function of T4 calibration is

CT4 X
T

􏼐 􏼑 � c1 X
T

􏼐 􏼑, c2 X
T

􏼐 􏼑, c3 X
T

􏼐 􏼑, c4 X
T

􏼐 􏼑, c5 X
T

􏼐 􏼑􏽨 􏽩
T
,

X
T

� x1, x2, x3, x4, x5, x6, x7, x8, x9, x10􏼂 􏼃
T
,

(23)

where c1(XT)∼c5(XT) are the corresponding objective
functions of T4, exhaust O2 concentration, NOx, smoke, and
BSFC, respectively, and XT is the point of speed, torque,
preinjection timing, preinjection fuel quantity, main in-
jection timing, rear injection 2 timing, rear injection 2 fuel
quantity, rear injection 1 fuel quantity, rail pressure, and
intake gas demand value in the 10-dimensional space.

Te constraint conditions in the T4 calibration process
are

G1 X
T

􏼐 􏼑 � g1 X
T

􏼐 􏼑 − g1lim ≥ 0

G2 X
T

􏼐 􏼑 � g2 X
T

􏼐 􏼑 − g2lim ≥ 0

G3 X
T

􏼐 􏼑 � g3 X
T

􏼐 􏼑 − g3lim ≤ 0

G4 X
T

􏼐 􏼑 � g4 X
T

􏼐 􏼑 − g4lim ≤ 0

g6 X
T

􏼐 􏼑 � g1 X
T

􏼐 􏼑≤ 50

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (24)

where g1(XT)∼g4(XT) are the model predicted outputs
corresponding to T4, exhaust O2 concentration, NOx, and
smoke; g6(XT) is the model prediction output corre-
sponding to T5; and g1lim∼g4lim are the limits of T4, exhaust
O2 concentration, NOx, and smoke.

Te cost function of T5 multiobjective optimization is

CT5 X
T

􏼐 􏼑 � c5 X
T

􏼐 􏼑, c6 X
T

􏼐 􏼑􏽨 􏽩
T
, (25)

where c6(XT) is the target function corresponding to T5.
Te constraint conditions in the calibration process of

T5 are

G5 X
T

􏼐 􏼑 � g5 X
T

􏼐 􏼑 − g5lim ≤ 0

G6 X
T

􏼐 􏼑 � g6 X
T

􏼐 􏼑 − g6lim ≥ 0

⎫⎪⎬

⎪⎭
, (26)

where g5(XT) is the model output of BSFC and g5lim and
g6lim are the limits corresponding to BSFC and T5.

Te optimization of the DPF regeneration condition
solves the control parameter combination corresponding to
the minimum of each object. Terefore, the multiobjective
optimization problem of DPF regeneration conditions can
be transformed into the problem of solving the minimum
value of the cost function C(X). Te mathematical de-
scription of the optimization problem is

F X
T

􏼐 􏼑 �
min CT4 X

T
􏼐 􏼑􏼐 􏼑

min CT5 X
T

􏼐 􏼑􏼐 􏼑.

⎧⎪⎨

⎪⎩
(27)

After optimization by the NSGA-III algorithm, the
Pareto optimal solution set corresponding to the minimum
cost function Cmin(X) is generated. Each point in the so-
lution set represents a set of optimal control parameter
combinations XT. Te fnal calibration results can be se-
lected from the optimal control parameter combination set
according to the requirements of diferent operating
conditions.

4.3. Te Multiobjective Optimization Method Based on the
NSGA-III Coupledwith ISOA-BP. Te optimal calibration of
DPF regeneration conditions is based on ISOA-BP and
NSGA-III. Te ISOA-BP prediction model verifes the op-
timal set of NSGA-III. Suppose the error of the optimization
results does not meet the requirements; the new data of the
engine model will be integrated with the training data of the
previous cycle of the optimization process. Ten, the ISO-
A-BPmodel is trained again with the new integrated training
data. Tis optimization training method can be defned as
the cyclic optimization method. Te ISOA-BP model is
trained repeatedly with the increase of training data. Once
the error is satisfed, the fnal Pareto optimal set will be
obtained by the fnal ISOA-BP model. Te cyclic optimi-
zation method streamlines the workload, simultaneously
enhancing model prediction accuracy and precisely iden-
tifying the optimal operating parameters. In the ISOA-BP
model, the input corresponds to the parameter targeted for
optimization, and the output represents the performance
evaluation parameter.Te optimization of DPF regeneration
conditions includes the calibration of regeneration tem-
perature T4 and regeneration temperature T5. During cal-
ibration, the original control parameter is used as the
reference point. Tis default reference point is considered as
the optimal control parameter, and the search is conducted
for the best control parameter close to the reference point.
Te scope is then expanded and the search continues if the
optimal control parameter is not found. After iterative
calculation, the Pareto optimal solution set satisfying all
optimization objectives is fnally obtained.

DPF regeneration conditions are optimized for the speed
range of 1000 r/min–2800 r/min and the load range of 10%–
90%. According to the speed interval (every 200 r/min, an
operating point) and the load interval (every 10%, an op-
erating point), 100 calibration working points are set. After
setting the initial search range of all parameters, the auto-
matic calibration of scanning points can be started one by
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one. After the calibration is completed, the calibration re-
sults will be checked. Te search range will be reset before
calibration if the results do not meet the calibration re-
quirements. Te steps of the multiobjective optimization
program are shown in Figure 12.

Te fnal output of the NSGA-III algorithm is a solution
set.Terefore, it is necessary to select a set of optimal control
parameters. For example, at 1600 r/min speed and 100%
load, the three sets of data from the calibration results are
shown in Table 6. Te smoke and NOx emissions in group 1
are more signifcant than those in the other two groups, and
the O2 concentration is lower, but the T4 temperature is the
highest. Elevating the T4 temperature is associated with
increased smoke and NOx emissions while concurrently
reducing the O2 concentration. Achieving the optimal target
for all these parameters is challenging due to these inter-
connected efects. Tere is a contradiction between each
calibration target under diferent working conditions.
Terefore, it is necessary to determine the optimal solution
from the solution set based on the actual situation and the
demand of each target.

In order to fnd the optimal solution in the solution set,
each target is assigned a weight ω. Te weighted summation
of each target parameter is calculated. Te fnal result is the
control parameter corresponding to the smallest value after
the weighted summation in the nonsolution set. Te
weighted summation formula is

S � 􏽘
n

i�1
ωi

gi X
T

􏼐 􏼑 − gmin i X
T

􏼐 􏼑

gmax i X
T

􏼐 􏼑 − gmin i X
T

􏼐 􏼑
, (28)

where ωi is the weight of each target in the calibration
process of T4 and T5. |ωi|≤ 1, that is, the sum of the absolute
values of the weights is equal to 1. gmax i(XT) and gmin i(XT)

are the maximum and minimum values of the target pa-
rameters in the noninferior solution set, respectively.

We then input the optimized parameters into the pre-
dictive model for simulation validation. Due to the abun-
dance of optimized operating points, only one steady-state
operating condition is presented here for simulation vali-
dation. A comprehensive experimental validation of the
simulation results across all operating conditions will be
conducted in the next chapter. Te parameters and response
changes of the engine before and after optimization under
the operating conditions of 1800 r/min and 120Nm are
shown in Table 7

After optimization, the most signifcant change in fuel
injection parameters is observed in the quantity of rear
injection 2, which decreased by 21.1%. Rear injection 1’s
quantity increased by 20.5%c. Both the main injection
timing and preinjection quantity have slightly advanced. T4
and T5 temperatures have increased, with T5 experiencing
a slightly lower increase. O2 concentration has risen by 1.8%.
NOx and smoke emissions have decreased by 80.82 ppm and
0.31 FSN, respectively. BSFC has decreased by 27 g/kW·h.
After optimization, emissions and fuel consumption have
been reduced while satisfying DPF regeneration re-
quirements, achieving emission reduction goals, and im-
proving fuel efciency.

5. Results and Discussion

5.1. Steady-State Experiments Based on the Mapping Char-
acteristics for Validation. Te NSGA-III algorithm is
employed to optimize the global calibration of the fuel in-
jection MAP at varying engine speeds from 1000 to
2800 r/min and under loads ranging from 0% to 100%.
Subsequently, the optimizedMAP values are written into the
original ECU using calibration software to validate the ef-
fectiveness of the multiobjective optimization results. A
comparison before and after T4 temperature optimization is
shown in Figure 13. Te variation trend of T4 before and
after optimization is the same. In the DPF regeneration
mode, T4 improved signifcantly at low speed and low load.
T4 minimum temperature increased from 222°C to 270°C.
At low speed and low load, the increase in T4 temperature
means that DOC has better ignition conditions. In the diesel
engine speed range of 1200 r/min∼1600 r/min, after opti-
mization, the T4 temperature at high load reached the
optimal temperature (500± 50°C), and the optimal T4
temperature area covered more operating points than before
optimization. Te T4 temperature reaches above 500°C at
more operating points at high speed and load in diesel
engines. T4 temperature is improved at medium and high
speeds so that the additional HC provided by the rear in-
jection can be oxidized more efciently during the re-
generation of DPF. Te average value of T4 in all operating
conditions increased from 446°C to 460°C, with an overall
increase of 3.14%.

A comparison of exhaust oxygen concentrations before
and after optimization is shown in Figure 14. Te O2
concentration at low speed and high load before the opti-
mization is lower than the required value at some operating
points, which is not conducive to the oxidation reaction of
the after-treatment system. After optimization, the oxygen
concentration in the low-speed and high-load areas is im-
proved, and the minimum oxygen concentration is in-
creased from 1.05% to 2.91%. At low-speed and high-load
conditions, the O2 concentration of the exhaust exceeds the
requirement limit by more than 2%–3%, and the O2 con-
centration in other conditions is greater than 4%–5%. All the
optimized operating points meet the calibration re-
quirements. Te average O2 concentration in all operating
conditions increased from 5.19% to 5.75%, with an overall
increase of 10.79%.

Te comparison before and after NOx optimization is
shown in Figure 15. Te optimization efect of NOx is more
evident at the high-load condition in the speed range of
1200 r/min∼2400 r/min. Te operating point with NOx
emission higher than 1300 ppm is signifcantly reduced.
After optimization, the NOx emission contour showed an
upward trend compared with that before optimization, and
the overall NOx emission was reduced. Te average NOx
emission in all operating conditions decreased from
788.86 ppm to 720.39 ppm, with an overall decrease of
8.68%.

Te comparison before and after smoke optimization in
the regeneration mode is shown in Figure 16. After opti-
mization, the smoke intensity signifcantly improves in low-
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speed and high-load areas and the range of the red regions
with smoke emissions greater than 2 FSN is signifcantly
reduced. Te maximum smoke emission decreased from
2.78 FSN to 2.42 FSN. Te smoke emission of medium and
low loads is signifcant. After calibration and optimization,
the smoke emission of this part of operating conditions is
reduced, especially when the speed is 1600 r/min-
∼2400 r/min and the load is 25%–50%. Te average smoke
density in all operating conditions decreased from 0.58 FSN
to 0.51 FSN, with a decrease of 12.07%. Figure 17 shows the

DOC temperature rise verifcation after T4 calibration. Te
optimized parameters meet the requirements of DPF re-
generation conditions. Te overall temperature increase of
the DOC remains below the maximum limit, ranging be-
tween 0°C and 40°C.

A comparison of the regeneration temperature T5 before
and after optimization is shown in Figure 18. Te T5
temperature of medium-load and high-load conditions at
low rotational speed increased to more than 550°C, signif-
icantly improving compared to before calibration. Te

Start

Define the objective
function

Set search scope

NSGA-III Search for
optimization

Fitness evaluation

Output result

Yes

No

Figure 12: Multiobjective optimization steps.

Table 6: Partial calibration results at 1600 r/min and 100% load.

Smoke (FSN) O2 (%) NOx (ppm) T4 (°C)
1 0.71 2.84 1398 491
2 0.63 4.38 1287 477
3 0.17 5.84 1084 448

Table 7: Comparison of parameters and responses before and after optimization.

Parameter Before optimization After optimization Percentage change
Preinjection quantity (mg) 1.90 1.80 −5.23%
Rear injection 1 quantity (mg) 3.84 4.36 20.5%
Rear injection 2 quantity (mg) 8.88 7.00 −21.1%
Rear injection 2 timing (°CA) −42.47 −43.88 −1.41
Main injection timing (°CA) 9.25 8.92 −3.5%
Preinjection timing (°CA) 18.06 13.60 −20.7%
T4 (°C) 433.06 474.32 9.5%
T5 (°C) 592.56 600.19 1.3%
O2 (%) 4.44 5.24 18.5%
NOx (ppm) 428.57 347.75 −18.8%
Smoke (FSN) 1.17 0.86 −26.5%
BSFC (g/kW·h) 326.00 353.00 8.3%
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Figure 13: Comparison of T4 temperature (a) before and (b) after optimization.
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Figure 14: Comparison of O2 temperature (a) before and (b) after optimization.
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optimal operating interval of T5 is 620°C± 20°C, and more
operating points are in the optimal operating area of T5 after
optimization. During the DPF regeneration, the soot can be
cleaned efciently in more operating conditions.Te average
regeneration temperature T5 in all operating conditions
increased from 580°C to 592°C, with an increase of 2.07%.

Te comparison of BSFC before and after optimization is
shown in Figure 19. Te contour line with BSFC of
250 g/kW·h moves down obviously. Terefore, the BSFC is
reduced to a certain extent under high load, and the BSFC is
improved when T5 is not reduced. Te average value of all
operating conditions of BSFC decreased from 317.89 g/kW·h
before optimization to 314.63 g/kW·h after optimization,
with a decrease of 1.03%.

Te optimized turbine inlet temperature is shown in
Figure 20. Te maximum value of turbine inlet temperature
is 720°C, and DPF can normally regenerate when the turbine
inlet temperature is lower than the value. After calibration

and optimization, the turbine inlet temperature does not
exceed the limit in all operating conditions, and the max-
imum temperature is 714°C.Terefore, the DPF can be safely
regenerated under all operating conditions.

5.2. Experimental Verifcation of DPF Regeneration. In order
to verify the infuence of the optimized parameters on the
actual DPF regeneration process, DPF active regeneration
experiments were carried out on the engine test bench. Te
loading condition is 1000 r/min and 100% load. Active re-
generation experiments were conducted on the engine test
bench to assess the impact of the optimized parameters on
the actual DPF regeneration process. For comparison re-
sults, the regeneration was performed under the operating
conditions of 1400 r/min and 350Nm, which represent the
area with the most noticeable improvement in T4. Two
groups of injection parameters before and after optimization

0.75
1.25 1.25

1.00

1.00

1.25

1.00

0.25

0.50

0.75

0.75
0.50 0.25

Smoke (FSN)
To

rq
ue

 (N
·m

)

1600 2000 2400 28001200
Speed (r/min)

50

100

150

200

250

300

350

400

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

(a)

Smoke (FSN)

To
rq

ue
 (N

·m
)

50

100

150

200

250

300

350

400

1600 2000 2400 28001200
Speed (r/min)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

(b)
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Figure 18: Comparison of T5 temperature (a) before and (b) after optimization.
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Figure 19: Comparison of BSFC (a) before and (b) after optimization.
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were written into the ECU, and two active regeneration
experiments were carried out. Te regeneration time was
1200 s. Te regeneration efect is evaluated for the param-
eters before and after optimization, and the regeneration
efciency is defned as η as follows:

η �
Ma − Mb

Ma − M
× 100%, (29)

where Ma and Mb are the carrier mass before and after
regeneration, respectively, and M is the carrier net mass.

Figure 21 shows the active regeneration efciency and
maximum carrier temperature before and after optimiza-
tion. After optimization, the DPF regeneration efciency
reaches 88.2%, which is 18.9% higher than before. Since the
optimization not only increases the temperature of T4 and
T5 but also increases the O2 concentration, it regenerates in
the best operating area. According to 21 (b), compared with
before optimization, not only is the peak temperature of the
carrier increased but also the temperature rise rate is in-
creased. Te maximum temperature of the carrier is 711.8°C
before optimization and 780°C after optimization.Terefore,
the injection parameters after multiobjective optimization
can improve the DPF regeneration efciency and increase
the carrier’s combustion temperature under the condition of
carrier safety. Terefore, it is proved that the multiobjective
optimization method is efective in the actual DPF re-
generation process.

5.3. WHTC Cycle Test Verifcation. To verify the transient
DPF regeneration conditions and engine performance after
optimization, the worldwide harmonized transient cycle
(WHTC) was used to verify the engine regeneration per-
formance after optimization. Each cycle consists of 1800
transient test cycles, with conditions changing every second.
Te speed and torque changes of WHTC during operation
are shown in Figure 22. Te engine was confgured in re-
generative mode, andWHTC tests were carried out based on
the fuel injection control parameters before and after op-
timization. Tus, the engine regeneration performance
under transient conditions was analyzed and verifed.

Te comparison of T4 and T5 before and after opti-
mization is shown in Figure 23. After optimization, there
is a noticeable enhancement in both T4 and T5 temper-
atures, particularly under idle low-load conditions where
T4 temperatures were previously lower. Before optimi-
zation, T4 temperature is mainly distributed between
180°C and 350°C. After optimization, there is a signifcant
overall temperature increase, with most operating points
now distributed between 250°C and 420°C. Te average
temperature of the whole cycle increased from 261°C to
342°C.Te average temperature of T4 in the transient state
is lower than that in the steady state. Since most of the
WHTC is in the low-temperature area of low load, the
average T4 temperature is low. T5 is promoted more
obviously in the low-speed and high-load operation areas,
most of which are between 550 and 600°C. Tis ensures
that carbon inside the carrier is efciently cleaned during
DPF regeneration. Te T5 optimization efect is not

apparent at the high engine speed and torque operating
point. Te optimization successfully raises the average
temperature of the entire cycle from 577°C to 592°C,
ensuring improved emissions control and fuel efciency,
especially meeting the requirements for T5. Te com-
parison of O2 concentration before and after optimization
is shown in Figure 24. Before optimization, O2 concen-
tration in some operating conditions is low, which is not
conducive to DOC oxidation reaction. After optimization,
the O2 concentration in low O2 concentration conditions
is signifcantly increased, and thus all conditions meet the
demand for regeneration.

Since the condition changes rapidly in the WHTC cycle,
the recorded results change second by second.Terefore, the
AVL414 smoke meter used in a steady state is inaccurate in
measuring the transient smoke change. Te AVL415 smoke
meter intercepts particulate matter using flter paper and
then utilizes laser illumination on the flter paper to calculate
smoke opacity based on its light transmittance. Terefore,
the AVL483 smoke meter is used in the WHTC cycle test. It
can directly measure soot content in exhaust gas by acoustic
wave theory and accurately record the soot content during
transient changes. A comparison of soot before and after
optimization is shown in Figure 25. Te optimization efect
is noticeable when the soot emission is higher. Te average
soot decreased from 0.062 g/h to 0.054 g/h. A comparison of
NOx before and after optimization is shown in Figure 26.
Te optimization efect is evident in high NOx emission
conditions, especially in high-load operation conditions at
medium and high speed. Tere is a noticeable reduction in
NOx emissions when it exceeds 1300 ppm. Te average NOx
emissions throughout the cycle decreased from 356 ppm to
319 ppm.

Real-timemonitoring of fuel consumption can be seen in
Figure 27. After optimization, the fuel consumption in the
high fuel consumption condition is reduced, while the fuel
consumption in the low fuel consumption condition is
slightly increased. Tis is consistent with the multiobjective
optimization strategy. While ensuring a sufciently high
temperature for efcient DPF regeneration, fuel consump-
tion is minimized. Te DPF pressure drop comparison
before and after optimization is shown in Figure 28. Te
pressure drop trend aligns with that of T5, with regeneration
being carried out during periods of relatively high T5
temperatures. After complete regeneration, the DPF pres-
sure drop remains in a lower state for specifc durations,
which are 200 seconds, 400 seconds, 800 seconds, and
1200 seconds, respectively. With the increase of T5 tem-
perature after optimization, the regeneration efciency of
DPF is improved, and the residual carbon smoke in the
carrier is less. Terefore, the DPF pressure drop after op-
timization is lower than before. Te average WHTC cycle
values of regeneration conditions, emissions, and fuel
consumption before and after optimization are shown in
Table 8. Overall, the optimization of DPF regeneration
conditions is evident. Te proposed multiobjective opti-
mization method proves efective in real-world transient
applications, as demonstrated by the WHTC cyclic
transient test.
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Tus, under steady-state conditions, this method has
resulted in an average increase of 3.14% in DPF regeneration
temperatures (T4 and T5) and exhaust oxygen concentration
by 2.07% and 10.79%, respectively. Concurrently, there has
been an average reduction of 8.68%, 12.07%, and 1.03% in
NOx, smoke, and BSFC, ensuring the efcient and secure
regeneration of the DPF. Results from regeneration exper-
iments indicate a DPF regeneration efciency of 88.2%,
accompanied by a temperature increase from 711.8°C to
780°C. During WHTC transient testing, there are signifcant
improvements in T4, T5, and oxygen concentrations, with
respective increases of 26%, 3.1%, and 0.5%. In addition,

there are notable reductions of 10.4% and 0.8% in NOx and
smoke emissions and a 3.5% decrease in fuel consumption.
Tese results highlight the success of the proposed cyclic
optimization method, showcasing improved regeneration
under steady-state conditions and signifcant performance
gains under transient conditions. It is proved that the
ISOA-BP prediction model and the NSGA-III multi-
objective optimization method have apparent advantages
and feasibility compared with manual calibration and
provide a practical and feasible method for DPF re-
generation temperature calibration and other diesel engine
performance multiobjective optimization problems.
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Figure 21: (a) Active regeneration efciency and (b) maximum carrier temperature before and after optimization.
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6. Conclusion

Te optimization method presented in this study ofers
a promising solution for improving DPF regeneration ef-
fciency, reducing emissions, and enhancing fuel efciency
in real-world applications. It provides an efective and viable
approach for DPF regeneration temperature calibration and
other multiobjective optimization challenges in diesel engine
performance. Te signifcant fndings of this work are as
follows:

(1) Even after SOA optimization, the BPNN model still
has a signifcant error in predicting O2 and smoke
degrees. Before the improvement, the prediction of
O2 concentration and smoke R2 was 0.94, and the
smoke MAPE was 61.43%. Te correlation of sample
data is not strong, and there are noise points that
interfere with the model’s training and learning. In
addition, the O2 concentration and smoke level are
small in the order of magnitude. Terefore, the
model prediction accuracy is reduced.

(2) Based on the SOA optimization algorithm, im-
provements were made in four aspects: population
initialization, convergence factor, iterative weight,
and population mutation, resulting in the proposal
of the ISOA optimization algorithm. Te results
demonstrate that ISOA enhances both global and
local search capabilities, accelerates the convergence
rate of the algorithm, and incorporates operations to
escape local optima within the algorithm.

(3) Te ISOA-BPNN model can solve the problem of
low accuracy in O2 and smoke prediction. Mean-
while, the prediction accuracy of other parameters is
improved. Te ISOA-BPNN model demonstrated
superior accuracy compared to the existing
SOA-BPNN model. It exhibited reduced errors and
higher R2 values across critical parameters. Te R2

values of ISO-BPNN for T4, T5, O2 concentration,
NOx, smoke, BSFC, and turbine inlet temperature
are 0.97, 0.99, 0.95, 0.99, 0.96, 0.99, and 0.98, re-
spectively.Te improved model MAPE is reduced by
0.01%, 0.38%, 0.81%, 0.08%, 7.14%, 0.36%, and
0.17%. On the existing research foundation, the
accuracy of diesel engine performance prediction has
been improved.

(4) Te cyclic optimization method was proposed, fa-
cilitating multiobjective calibration for T4 and T5
temperatures based on NSGA-III and ISOA-BPNN.
In steady-state conditions, T4, T5, and exhaust O2

concentrations increased by 3.14%, 2.07%, and
10.79% on average. NOx, smoke, and BSFC de-
creased by 8.68%, 12.07%, and 1.03% on average. In
addition, the turbine inlet temperature does not
exceed the limit at all operating points, ensuring the
efcient and safe regeneration of DPF. Tis is due to
the improvement of fuel injection parameters, thus
improving the diesel engine regeneration perfor-
mance. Building upon the extant optimization
methodologies for diesel engine performance, the
research efectively refned the regeneration condi-
tions and performance during diesel engine
regeneration mode.

(5) Results from regeneration experiments indicate
a DPF regeneration efciency of 88.2%, accompanied
by a temperature increase from 711.8°C to 780°C.
During the WHTC transient testing, there are sig-
nifcant improvements in T4, T5, and oxygen con-
centrations, with respective increases of 26%, 3.1%,
and 0.5%. In addition, there are notable reductions of
10.4% and 0.8% in NOx and smoke emissions and
a 3.5% decrease in fuel consumption. Tese results
highlight the success of the proposed cyclic opti-
mization method, showcasing improved re-
generation under steady-state conditions and
signifcant performance gains under transient
conditions.

In future research, further investigations could explore
the integration of additional optimization techniques and
the development of advanced control strategies to optimize
DPF regeneration under varying operating conditions.

Abbreviations

NSGA: Nondominated sorting genetic algorithms
DPF: Diesel particulate flter
BPNN: Backpropagation neural network
BSFC: Brake-specifc fuel consumption
T4: DOC inlet temperature
T5: DPF inlet temperature
SOA: Seagull optimization algorithm
ISOA: Improved seagull optimization algorithm
MAPE: Mean absolute percentage error
ECU: Electronic control unit
GA: Genetic algorithm
PSO: Particle swarm optimization
ANN: Artifcial neural network
R2: Te correlation coefcient

Table 8: Comparison of WHTC cycle average before and after optimization.

Parameter Before optimization After optimization Percentage change (%)
T4 (°C) 261 342 31.0
T5 (°C) 577 592 2.6
O2 (%) 5.78 5.81 0.5
NOx (ppm) 356 319 −10.4
Soot (g/h) 0.062 0.054 −0.8
Fuel consumption (kg/h) 5.65 5.56 −1.6
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MAE: Mean absolute error
RMSE: Root mean square error.
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