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Tis study presents an in-depth analysis of gasoline price forecasting using the adaptive network-based fuzzy inference system
(ANFIS), with an emphasis on its implications for policy-making and strategic decisions in the energy sector.Temodel leverages
a comprehensive dataset from the U.S. Energy Information Administration, spanning over 30 years of historical price data from
1993 to 2023, along with relevant temporal features. By combining the strengths of fuzzy logic and neural networks, the ANFIS
approach can efectively capture the complex, nonlinear relationships present in the data, enabling reliable price predictions. Te
dataset’s preprocessing involved decomposing the date into year, month, and day components to enhance the model’s input
features. Our methodology entailed a systematic approach to ANFIS regression, including data preparation, model training with
the inclusion of the previous week’s prices as an additional feature, and rigorous performance evaluation using MSE, RMSE, and
correlation coefcients. Te results indicate that incorporating previous prices signifcantly enhances the model’s accuracy, as
refected by improved scores and correlation metrics. Te fndings have signifcant implications for the energy sector, where
stakeholders can leverage the ANFIS model’s insights for strategic decision-making. Accurate gasoline price forecasts are in-
strumental in devising pricing strategies, managing risks associated with price volatility, and guiding policy formulation. Te
model’s predictive capability enables energy companies to optimize resource allocation, plan for future investments, and maintain
competitive advantage in a market infuenced by fuctuating prices. Moreover, policymakers can utilize these predictions to assess
the impact of energy policies on market prices and consumer behavior, ensuring that regulatory measures align with market
dynamics and sustainability goals. In addition to the ANFIS model, we also employed Vector Autoregression (VAR) and
Autoregressive Integrated Moving Average (ARIMA) models to validate our approach and provide a comprehensive un-
derstanding of time series forecasting within the energy sector. Notably, the ANFIS model achieves a score of 0.9970 and a robust
correlation of 0.9985, demonstrating its ability to accurately forecast gasoline prices based on historical data and features. Te
integration of these traditional techniques with advanced ANFIS modeling ofers a robust framework for accurate and reliable
gasoline price prediction, which is vital for informed policy-making and strategic planning in the energy industry.
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1. Introduction

In the ever-evolving landscape of global energy markets, the
accurate prediction of gasoline prices remains an elusive
challenge. As economies continue to grow, and techno-
logical advancements shape the way we consume and
produce energy, the intricate dynamics governing gasoline
prices become increasingly complex and volatile [1]. In this
context, robust predictive models capable of capturing the
underlying patterns and uncertainties of gasoline price
fuctuations are crucial for informed decision-making, risk
management, and strategic planning in the energy sector [2].

Tis paper explores the potential of the Adaptive
Network-Based Fuzzy Inference System (ANFIS) regression
model for gasoline price prediction. ANFIS combines the
strengths of fuzzy logic and neural networks, creating
a powerful tool to handle the complexities inherent in
gasoline price data, including nonlinearity, fuzziness, and
uncertainty [3]. Tis unique approach makes ANFIS
a promising candidate for unveiling the hidden patterns that
infuence gasoline price fuctuations.

Te energy sector, characterized by its intricate interplay of
geopolitical, economic, environmental, and technological fac-
tors, requires predictive models that can adapt to constantly
changing conditions. Traditional linear models and conven-
tional statistical techniques often fall short of capturing the
underlying complexities inherent in gasoline price data. ANFIS,
with its capability to model complex, nonlinear relationships,
ofers a unique solution to address this challenge, enhancing the
accuracy and reliability of gasoline price predictions [4].

Te outcomes of this study hold immense signifcance
for energy market stakeholders, policymakers, investors, and
researchers alike. ANFIS has the potential to revolutionize
gasoline price forecasting, enabling decision-makers tomake
well-informed decisions, optimize resource allocation, and
mitigate volatility risks. Te interpretability of ANFIS is
another compelling aspect that sets it apart from other data-
driven modeling techniques. Te model’s underlying fuzzy
logic provides meaningful linguistic rules, enabling domain
experts and stakeholders to comprehend the decision-
making process and understand the factors driving the
predictions.Tis transparency not only enhances confdence
in the model’s predictions but also facilitates the formulation
of better-informed energy policies and strategies.

While ANFIS exhibits tremendous potential, we ac-
knowledge that no predictive model is without its limita-
tions. As such, we meticulously scrutinize the boundaries
and challenges associated with ANFIS regression, including
overftting, underftting, and the need for extensive data
preprocessing. By addressing these limitations, we pave the
way for further advancements and refnements in the feld of
gasoline price prediction.

1.1. Problem Statement. Te energy sector faces the ongoing
challenge of accurately forecasting gasoline prices, which are
subject to complex dynamics and volatility infuenced by
various economic, political, and environmental factors.
Traditional time series forecasting models often struggle to

capture these nonlinear patterns, leading to suboptimal
predictions that can adversely afect stakeholders across the
energy market. Tere is a pressing need for a robust fore-
casting methodology that can efectively handle the in-
tricacies of gasoline price data and provide reliable
predictions.

1.2. Research Question. How does the Adaptive Network-
Based Fuzzy Inference System (ANFIS) model, with its hybrid
approach combining fuzzy logic and neural networks, en-
hance the forecasting accuracy of weekly U.S. retail gasoline
prices when compared to traditional time series forecasting
models, and how does the inclusion of previous prices as an
additional feature impact its predictive performance?

1.3. Research Gap. Despite the existence of various fore-
casting models, there is a notable gap in the application of
ANFIS models for gasoline price forecasting, particularly
with the inclusion of previous price data as an additional
feature. Traditional models may not adequately account for
the nonlinear relationships and volatility in gasoline price
data, leading to less accurate forecasts.

1.4. Contributions. Te main contribution of this paper can
be summarized as follows:

(i) Captures Nonlinearities: ANFIS efectively models
the complex, non-linear relationships between
factors afecting gasoline prices, unlike simpler
models.

(ii) Accurate Predictions: ANFIS delivers accurate
forecasts even without including past prices as
features, demonstrated by low MSE and RMSE.

(iii) Enhanced Performance with Past Prices: In-
corporating past prices further improves accuracy,
reaching a score of 0.9970 and a strong correlation
of 0.9985.

(iv) Real-World Potential: ANFIS shows promise as
a valuable tool for practical gasoline price fore-
casting applications.

(v) Comparative Performance Analysis: It ofers
a comparative analysis of the ANFIS model’s
forecasting performance against traditional time
series models, such as ARIMA and VAR, under-
scoring the advantages of the ANFIS approach.

(vi) Wider Applicability: Further research can explore
its potential in other areas of the energy industry.

(vii) Impact on Decision-Making: Accurate gasoline
price predictions inform crucial pricing strategies
and decision-making processes for the energy
sector.

Te remainder of this paper is structured as follows:
Section 2 provides a review of related work. Section 3
outlines the preliminaries which includes the most common
methodologies. Section 4 presents the proposed work; the
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results and analysis of the proposed ensemble model are
presented in Section 5. Finally, Section 6 concludes the
paper, highlighting future research directions.

2. Related Work

Te study by Yıldırım and Şencan Şahin [5] explains how to
utilize a fuzzy inference system based on adaptive networks
to analyze a cooling system’s thermodynamic performance.
Using training data, this method efciently captures non-
linear interactions between variables and has advantages for
modeling multivariate issues in terms of speed and ease of
use. Te outcomes show how the fuzzy inference system
based on adaptive networks may be efectively used to es-
timate the thermodynamic performance of intricate pro-
cesses like refrigeration systems. With the use of this model,
engineers can forecast the performance of refrigeration
systems with accuracy, speed, and ease.

Oliveira et al. [6] investigated Pt-based catalysts utilized
in the electrooxidation of ethanol in direct ethanol fuel cells
(DEFC). With a neuro-fuzzy model, they sought to com-
prehend how catalyst characteristics afected fuel cell power
production. To forecast cell current density, the model took
into account fve input variables: crystal size, surface area, Pt
L3-edge Whiteline integrated intensity, presence of PtSn
phase, and cell potential. UtilizingMATLAB and ANFIS, the
fuzzy inference system (FIS) was created utilizing experi-
mental data for validation and training.

A study on the application of photoacoustic spectros-
copy, which uses high-power lasers to provide great sensi-
tivity and selectivity, was carried out by Arslankaya [7].
Nonetheless, fuctuations in variables like the spatial profle
and fuence of the laser beam can impact the accuracy of
photoacoustic measurements. Due to possible negative ef-
fects, many commercially available equipment is not ap-
propriate for monitoring high fuence (Φ) values. To tackle
this issue, the scientists utilized an Adaptive-Network-Based
Fuzzy Inference System (ANFIS), a computational in-
telligence technique, to approximate high Φ values from
time-domain photoacoustic signals.

Seher Arslankaya [7] discussed how advances in artifcial
intelligence are reducing the demand for human labor in
a variety of industries and labor marketplaces. Because labor
expenses are rising, this puts more pressure on the workforce
to be productive. As a result, increasing worker productivity
and efciency while reducing labor losses becomes essential.
But because of things like absenteeism, work accidents,
turnover, and dismissals, labor losses are inescapable. To
estimate labor loss, the author uses the Adaptive-Network-
Based Fuzzy Inference System (ANFIS) and fuzzy logic
techniques. After analyzing three years’ worth of absence
data from a courier company, twenty-eight absentee causes
are found. Five variables that afect absenteeism are used to
estimate labor loss. Five variables that afect absenteeism are
used to estimate labor loss. Performance measuring metrics
like mean absolute deviation (MAD), mean absolute per-
centage error (MAPE), mean squared error (MSE), and root
mean squared error (RMSE) are used to compare the esti-
mated values with the actual values.

Feng [8] introduced the use of adaptive neuro-fuzzy
inference systems (ANFIS) artifcial intelligence to enhance
the computational fuid dynamic (CFD) modeling of an air-
water bubble column reactor. Tis marked the frst appli-
cation of ANFIS in this particular context. Te operating
conditions of the reactor included an air temperature of
500K and a velocity of 0.006m/s, while the water temper-
ature was set at 295K. Te prediction of turbulent kinetic
energy was carried out to evaluate the mixing fow within the
reactor. Te hybrid model, which combined ANFIS and
CFD, demonstrated its robustness in predicting the per-
formance of the liquid-phase reactor. Tis integration of
ANFIS into the CFD modeling process ofered improved
accuracy and efciency in analyzing the behavior of the air-
water bubble column reactor.

Krisnaningsih et al. [9] discussed the growing utilization
of renewable energy sources in the contemporary era,
specifcally highlighting the use of rice husks as a raw
material for energy briquettes. Rice husks, a byproduct of
rice milling, are being optimally harnessed as an energy
source, aligning with the energy mix program for 2025. Te
authors incorporated 120 data indicators, with 300 data
points used for training. A Graphical User Interface (GUI)
was developed based on input indicators to enhance the
accuracy of determining rice husk inventory. Te authors
applied the adaptive ANFIS method to assess inventory
levels of other uncertain bioenergy raw materials.

Lockwood and Cannon [10] proposed an ANFIS-based
model, AO-ANFIS, for oil production forecasting. Te aquila
optimizer (AO), a metaheuristic algorithm inspired by eagle
hunting behavior, optimizes ANFIS parameters to improve
prediction accuracy. AO-ANFIS was evaluated using data from
two oilfelds (Tahe, China; Almasila, Yemen). Comparisons
were made with various models, including traditional ANFIS
and fve modifed versions using diferent optimization algo-
rithms. AO-ANFIS outperformed these models in terms of
root mean squared error (RMSE), mean absolute error (MAE),
and R-squared (R2). Te authors suggest further development
for even more accurate results. For instance, incorporating
a mutation strategy into the AO algorithm could potentially
improve the search process and lead to even better ANFIS
accuracy, reaching R2 values as high as 0.9564.

Abd Elaziz et al. [11] proposed GA-SSA-ANFIS model,
to address the longstanding challenge of predicting crude oil
price fuctuations. Tis complex task is hindered by inherent
volatility and the infuence of various factors like coal,
natural gas, exchange rates, and metal prices. To surpass
existing methods, GA-SSA-ANFIS leverages a combination
of genetic algorithms (GA) and swarm intelligence (SSA) for
more precise predictions in this turbulent market. Te re-
searchers trained and tested their model on a historical
dataset of West Texas Intermediate (WTI) crude oil prices.
Teir fndings demonstrate GA-SSA-ANFIS’ superiority
against traditional ANFIS and other optimization-based
versions (GA-ANFIS, SSA-ANFIS, PSO-ANFIS, GWO-
ANFIS). Te model achieves high accuracy in predicting oil
prices, outperforming competitors in metrics like RMSE,
MSE, STD, and R2. Notably, the R2 value of GA-SSA-ANFIS
(0.8818) signifcantly surpasses others (0.6204–0.8541).
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Shambulingappa [12] is involved in the production of
crude oil, which is a naturally occurring raw petroleum
derivative that can be refned into useable petroleum
products. He also has knowledge of trend and seasonality
prediction in time series data, which involves analyzing past
data to predict future movements. Data mining is a spe-
cialized feld that entails the exploration of extensive data-
bases to derive new insights. Time series data comprises
well-defned data points acquired through repeated mea-
surements, categorized into stock and fow. Trend analysis,
a statistical method, is employed to scrutinize time series
data, while seasonality pertains to foreseeable variations that
repeat annually in a time series.

Shambulingappa is working on generating crude oil that
is commonly used in industries. He is using diferent
techniques for prediction, including the Auto Regression
(AR) model, Moving Average (MA) model, and
ARIMA model.

Te AR model [13, 14] is a time series model that uses
past observations as input to predict the value at any given
time step. It is based on the assumption that past data is
useful for predicting future values and is a simple method
that can produce accurate forecasts for a range of time series
problems.Te relationship between variables in the model is
called the auto-regression relationship.

Te MA model [15, 16], or the moving average model, is
a technique for forecasting time series data that involves
utilizing a moving average of historical observations to
anticipate future values. Te model assumes that the future
values of a time series are a function of the average of the
previous observations, with the weights of the observations
determined by the time lag. Te MA model is a simple and
efective method for smoothing out the noise in a time series
and identifying trends.

Shambulingappa H S also uses the ARIMA model
[17, 18], this involves a stochastic modeling method utilized
for determining the likelihood of a future value residing
within defned limits. Te ARIMA model, developed by
Elrazaz and Mazi, combines the auto-regressive and moving
average models. Te transformation of a nonstationary time
series into a stationary one is achieved through the use of
a diferencing operator. Te ARIMA model is useful for
analyzing and forecasting time series data that exhibit trends
and seasonality. Table 1 displays the Test Mean Squared
Error (MSE) values for three distinct time series models:
Auto Regression, Moving Average, and ARIMA. Te Test
MSE value quantifes the average squared diference between
the predicted and actual values within the test dataset.

Based on the results presented in Table 1, it appears that
Shambulingappa H S has tested and compared the perfor-
mance of three diferent time series models: auto regression,
moving average, and ARIMA. Te evaluation was based on
the test mean squared error (MSE) value, which measures
the average squared diference between the predicted and
actual values. Te results show that the ARIMA model
achieved the lowest Test MSE value of 41.246, indicating that
it produced the most accurate predictions among the three
models. Te moving average model had a slightly higher test
MSE value of 44.552, while the Auto Regression model had

the highest Test MSE value of 45.454. Te results indicate
that the ARIMAmodel could potentially be themost suitable
for forecasting future values in the time series data examined
by Shambulingappa H S. Nonetheless, it is crucial to take
into account other factors that might infuence the accuracy
of predictions, including data quality and the specifc
characteristics of the analyzed time series.

Kaab et al. [19] present a method to optimize the se-
lection of wavelet transform (WT) orders and layers for U.S.
electricity price forecasting. Te approach involves a cross-
over experiment with 240 schemes of WT parameter se-
lection, each forecasted using stacked autoencoder (SAE)
and long short-term memory (LSTM). Tis results in the
development of a novel hybrid model named WT-SAE-
LSTM. Te study demonstrates the superior performance of
the WT-SAE-LSTM model over other artifcial intelligence
models, including the backpropagation neural network, in
terms of forecasting accuracy. For residential, commercial,
and industrial electricity price cases, the WT-SAE-LSTM
models with fve order four layers, fve order four layers, and
four-order seven layers, respectively, exhibit the best per-
formance with MAPE values of 0.8606%, 0.4719%, and
0.4956%, respectively. Additionally, the proposed model
demonstrates only a slight diference compared to the
forecasting results of the energy information administration
(U.S.), validating its reliability. Tis research contributes
valuable insights for applying WT in diverse forecasting
scenarios and provides practical guidance for participants in
the electricity market.

Table 2 provides an overview of various studies con-
ducted on the dynamics of oil and gasoline prices in diferent
regions. Tese studies have explored the relationship be-
tween key variables such as crude oil prices, gasoline prices,
and refned oil prices, and have employed a range of research
methods to analyze and understand the dynamics of these
markets. [28] Te table showcases the authors, their re-
spective research regions, and the time periods of data
collection, the variables examined, and the research methods
employed.

3. Preliminaries

3.1.AdaptiveNetwork-BasedFuzzy Inference System (ANFIS).
Zadeh [29] presented the frst fuzzy rule, which is one of the
most popular and powerful fuzzy logic and fuzzy set
modeling methods. Sugeno and Yasukawa [30] defned
fuzzy-rule modeling as the qualitative modeling plan to
employ a natural language in defning the system behavior.
Nowadays, the merger of fuzzy logic and neural networks
has led to a novel study called the adaptive neuro-fuzzy
inference system (ANFIS). Te computational approach
makes use of a neural network’s self-learning capability and

Table 1: Models and their test mean squared error (MSE) values.

Model Test MSE value
Auto regression 45.454
Moving average 44.552
ARIMA 41.246
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a fuzzy inference system’s language transparency, combining
the advantages of both neural networks and fuzzy
systems [19].

A network structure made up of several nodes connected
by directed links is known as an adaptive network. Te
outputs of these adaptive nodes are determined by the nodes’
adjustable settings. To reduce error, the learning rule de-
scribes how these parameters should be adjusted. Te FIS
framework, on the other hand, is based on fuzzy set theory
and fuzzy if-then rules [31]. Although ANN is a strong tool
for simulating real-world issues, it is not without faws if the
input data is less exact or obscure, ANN may be unable to
handle it adequately, and a fuzzy system such as ANFIS may
be a better solution. [32].

One of the features of a neuro-fuzzy system is the
combination of the learning capability of ANN and the
fuzzifcation technique of fuzzy logic. Hence, it contains the
advantages of the two techniques and is able to suit the
training data. Te combination of ANN’s learning capa-
bilities and fuzzy logic’s fuzzifcation technique is one of the
characteristics of a neuro-fuzzy system. As a result, it
combines the benefts of the two methodologies and is more
suited to the training data. Neural network techniques make
two signifcant tasks: frst, they support the fuzzy modeling
procedure in learning information from the dataset. Second,
they determine the membership function parameters in the
relevant fuzzy inference system for the specifc input-output
data (FIS) [33].

3.2. Fuzzy Inference Systems (FIS). Te fuzzy set’s mem-
bership function; the selection of (if-then) fuzzy logic rules;
and the argumentation of fuzzy inference procedures for
output. Te condition for working out the FIS is that, in the
fuzzifcation process, the raw value input is converted to
a fuzzy value by a membership function with a fuzzy value
varying from 0 to 1. Te knowledge base consists of two
fundamental components in decision-making: basic rules
and database [34].

Inmost cases, the database contains description-like data
in a fuzzy set parameter determined for a linguistic variable
that is available. In general, the database is built as follows:
the number of linguistic values to be used and the related
membership function are constructed and decided for each
linguistic variable [34].

A conditional “If-Ten” statement and fuzzy logic op-
erators that are dependent on the rules are included in FIS.
Basic rules are generated automatically or by humans,
whereas search rules are based on numeric input-output
data. Takagi-Sugeno, Mamdani, and Tsukamoto are three
diferent forms of FIS Te Takagi-Sugeno model is ANFIS’
favorite among them [35]. Te fve functional components
of a fuzzy inference system are illustrated in Figure 1.

In FIS, there are four fundamental processing parts. A
knowledge-based component and the dataset are defned by
the respective MFs in the frst section using specifc fuzzy
rules. Te second section is an inference engine for applying
inference variation and adjustments to the rules. In the third
stage, a fuzzifcation inference is done, in which the crisp

input data is converted to corresponding matching levels of
linguistic terms. Defuzzifcation inference, on the other
hand, is used in the fourth part to turn the fuzzy result back
to a crisp value [36].

3.3.AdaptiveNetwork. In the ANFIS architecture, the major
task of the training process is to make the ANFIS output ft
with the training data by optimizing the fuzzy rules and
parameters of membership functions. Te hybrid learning
algorithm incorporating gradient Te main goal of the
training process in the ANFIS architecture is to make the
ANFIS output suit the training data by optimizing fuzzy
rules and membership function parameters. In ANFIS, the
initial parameters are estimated and the mathematical
connection between input and output is quantifed using
a hybrid learning technique including gradient method and
least-squares [37].

An adaptive network is essentially a neural network
characterized by multiple layers, similar to feed forwards.
Te ANFIS (Adaptive Neuro-Fuzzy Inference System) ar-
chitecture is illustrated in Figure 2, where each node within
the same layer executes identical functions. If a node pos-
sesses a nonempty parameter set, its function is determined
by these parameter values, and such adaptive nodes are
denoted by squares. Conversely, nodes with fxed functions
have an empty parameter set, and these fxed nodes are
represented by circles. Te architecture consists of fve levels
[31]:

Layer 1: Each node in this layer, denoted as node i, is
represented by a square node with a specifc node
function.

O1
i � μAi

(x), (1)

where Ai represents the linguistic label, x denotes the
input to node i, and O1

i represents the membership
function of the label Ai. Te premise parameters are
employed to defne the parameters in this layer.
Layer 2: Te circle nodes in this layer operate by
multiplying incoming signals and transmitting the
result. Tis process serves as an indicator of a rule’s
ability to activate or “fre.”

ωi � μAi
(x) × μBi

(y) i � 1, 2. (2)

Layer 3: Each node labeled as N in this layer calculates
the average ratio of the fring strength of the ith rule.

ωi �
ωi

ω1 + ω2
i � 1, 2. (3)

Layer 4: Te nodes in this layer are represented as
square nodes, each having a specifc node function.

O
4
i � ωifi � ωi pix + qiy + ri( , (4)

where parameters pi, ri, and qi will be mentioned as
consequent parameters, and ωi is the output of layer 3.
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Layer 5: Tis layer’s node calculates the total output as
the sum of all incoming signals:

O
5
i � ωifi �

iωifi

iωi

. (5)

To predict the collapsibility potential, hybrid algorithm
and Particles Swarm Optimization (PSO) were employed by
ANFIS for system training. Gaussian membership functions
were utilized for fuzzifying the data [38].

Table 3 presents a detailed overview of the hyper-
parameters utilized in the Adaptive Neuro-Fuzzy Inference
System (ANFIS) model, which is optimized using the particle
swarm optimization (PSO) technique.Tese hyperparameters
are critical to the confguration of both the ANFIS archi-
tecture and the PSO algorithm, infuencing the learning
process and the model’s ability to generalize from the data.
Te table lists each hyperparameter, provides a brief de-
scription of its role within the system, and includes example
values that have been either preset or derived from the dataset.
Adjusting these hyperparameters can signifcantly afect the
model’s performance, and as such, they are often carefully
selected through empirical testing or optimization strategies.

Tese hyperparameters are set before training the ANFIS
model and running the PSO optimization.Tey can be tuned
based on the specifc requirements of the problem or
through a hyperparameter optimization process to improve
the performance of the model.

4. Methodology

4.1. Dataset Description. Te dataset is obtained from the
U.S. Energy Information Administration (EIA) and repre-
sents the weekly U.S. retail gasoline prices in dollars per gallon
for all grades and formulations.Te dataset includes historical
price values spanning multiple years, starting from April 5,
1993, until July 31, 2023, and contains 1,583 samples the
dataset is available at [39]: (https://www.eia.gov/dnav/pet/
hist/LeafHandler.ashx?n=PET&s=EMM_EPM0_PTE_NUS_
DPG&f=W)

4.2. Data Preprocessing. Te dataset, acquired from the U.S.
Energy Information Administration site [39], includes the
complete data and the weekly Gasoline prices, as illustrated
in Table 4. Figure 3 depicts the Weekly U.S. All Grades All
Formulations Retail Gasoline Prices in Dollars per Gallon.

As shown in Table 4 the full date cannot be used as
a feature to predict the Gasoline price, so we split the full
date into three columns representing year, month, and day,
the new dataset will be as shown in Table 5.

4.3. Te Model Steps. Te methodology for ANFIS re-
gression and evaluation consists of several key steps. Ini-
tially, the necessary libraries for ANFIS regression and data
visualization are imported to facilitate data handling and
model training. Te dataset is prepared by loading a pre-
processed dataset that includes information such as the day,
month, year, and the current week’s gasoline price. Addi-
tionally, the previous week’s price is calculated and
appended as a feature. Subsequently, the dataset is split into
input features (X) and the output variable (y) to enable
supervised learning. To assess the model’s generalization
capability, the data is further partitioned into training and
testing sets.

Subsequently, the ANFIS regression model is trained. A
specifc instance of the ANFIS model is generated, specifying
the number of rules and membership functions. Te model
is then ftted to the training data, employing the input
features (X) as independent variables and the gasoline price
(y) as the target variable. Tis training phase enables the
model to discern underlying patterns in the data and es-
tablish its fuzzy rule base.

After the training phase, the model’s performance is
assessed using the test dataset. Predictions are generated
using the trained ANFISmodel, and theMean Squared Error
(MSE) is calculated to gauge the average squared diference
between the predicted and actual gasoline prices. For a more
easily interpretable evaluation, the RootMean Squared Error
(RMSE) is computed by taking the square root of MSE.
Additionally, a score metric is determined to evaluate the

database rule base

Knowledge base

defuzzification
interface

fuzzification
interface

decision-making unit
(fuzzy) (fuzzy)

(crisp)(crisp)

Input output

Figure 1: Fuzzy inference systems.
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overall performance of the ANFISmodel, whichmay involve
R-squared or other pertinent metrics. Furthermore, the
correlation coefcient between the predicted and actual
gasoline prices is calculated to evaluate the model’s capa-
bility to capture the linear relationship between the variables.

Te evaluation metrics are displayed to provide a com-
prehensive view of the ANFIS model’s performance,
showcasing the MSE, RMSE, score, and correlation co-
efcient. Furthermore, the membership functions used in
the fuzzy rules are visualized through plots, aiding in

A1

A1

B1

B2

Layer 1

∏ N

∏ N

∑
x y

Layer 3 Layer 4

Layer 5

Layer 2

x
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f

W1

W2 W2
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W 2 f 2—

W
1 f1
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W1
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Figure 2: Basic ANFIS architecture.

Table 3: Te hyperparameters for the ANFIS model with PSO optimization.

Hyperparameter Description Values
n_mf Number of membership functions for each input feature [2, 2, 2, 2]
n_outputs Number of output labels or classes for the ANFIS model Determined by data
Problem Specifes the type of problem (classifcation “C” or continuous regression) “C” or none
nPop Number of particles in the PSO algorithm 500
Epochs Number of iterations the PSO algorithm will run 100
K Average size of each particle’s group of informants in PSO 3
phi Coefcient for calculating confdence coefcients in PSO 2.05
vel_fact Velocity factor for calculating max/min velocities in PSO 0.5
conf_type Confnement type for particle velocities in PSO “RB” (random-back)
IntVar Specifes which variables should be treated as integers None or “all”
Normalize Indicates if the search space should be normalized False
rad Normalized radius of the hypersphere centered on the best particle 0.1
mu_delta Allowed movement range for the mean of membership functions 0.2
s_par Parameters for the standard deviation of membership functions [0.5, 0.2]
c_par Range for the exponent of membership functions [1.0, 3.0]
A_par Range for the coefcients of the consequent functions [−1.0, 1.0]

Table 4: A sample of gasoline weekly price.

Year-month
Week 1 Week 2 Week 3 Week 4 Week 5

End date Value End date Value End date Value End date Value End date Value
2023-May 05/01 3.711 05/08 3.644 05/15 3.647 05/22 3.645 05/29 3.684
2023-Jun 06/05 3.655 06/12 3.707 06/19 3.690 06/26 3.685
2023-Jul 07/03 3.643 07/10 3.663 07/17 3.676 07/24 3.711 07/31 3.869
2023-Aug 08/07 3.940 08/14 3.962 08/21 3.984 08/28 3.931
2023-Sep 09/04 3.925 09/11 3.941 09/18 4.001 09/25 3.963
2023-Oct 10/02 3.930 10/09 3.814 10/16 3.706 10/23 3.660 10/30 3.600
2023-Nov 11/06 3.520 11/13 3.473 11/20 3.414 11/27 3.363
2023-Dec 12/04 3.355 12/11 3.259 12/18 3.176 12/25 3.238
2024-Jan 01/01 3.213 01/08 3.197 01/15 3.179 01/22 3.181 01/29 3.214

8 International Journal of Intelligent Systems



understanding how the model assigns membership values to
diferent data points.

Upon completing these steps, the algorithm concludes,
and we have a fully trained ANFIS regression model capable
of making predictions for new gasoline price data. Te
methodology ofers a systematic approach to data prepa-
ration, model training, evaluation, and visualization, en-
suring the model’s accuracy and interpretability in
predicting gasoline prices. Figure 4 summarizes the meth-
odological steps and Figure 5 depicts the pseudocode of the
envisioned prediction algorithm.

In our study, the adaptive neuro-fuzzy inference system
(ANFIS) model incorporates fuzzy inference systems (FIS)
to make predictions based on input features. Te fuzzy rules
used in the ANFIS model are generated automatically based
on the input-output data, utilizing the Takagi-Sugeno (TS)
fuzzy inference system. Te ANFIS architecture combines
the learning capabilities of artifcial neural networks (ANN)
with the fuzzifcation technique of fuzzy logic, allowing the

model to adapt to the training data and generate fuzzy rules
accordingly. Te process of generating fuzzy rules involves
two types: basic rules and search rules. Basic rules are au-
tomatically generated by the model based on the input-
output data, while search rules are derived from numerical
input-output data. Te ANFIS model systematically learns
from the dataset to optimize fuzzy rules and parameters of
membership functions, ensuring the model’s output fts the
training data.

To enhance the model’s predictive performance, we
employed a hybrid learning algorithm, incorporating gra-
dient descent and particle swarm optimization (PSO)
techniques. Tis approach optimizes the fuzzy rules and
membership function parameters, allowing the model to
capture complex, nonlinear relationships within the data.
Furthermore, we have provided detailed insights into the
ANFIS architecture, including the structure of adaptive
nodes and the training process. We have also presented
a comprehensive overview of the hyperparameters used in
the ANFIS model, which play a crucial role in confguring
the model’s architecture and optimization process. Addi-
tionally, we have visualized the membership functions (MF)
for the input variables, including Day, Month, Year, and
previous price, to provide a better understanding of how the
model assigns membership values to diferent data points.
Tese membership functions are essential components of
the fuzzy inference process and contribute to the model’s
decision-making process.

U.S. regular gasoline prices

Data source: U.S. Energy Information Administration (EIA)

Weekly U.S. all grades all formulations retail gasoline prices
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Figure 3: Depiction of weekly retail gasoline prices for all grades and formulations in the U.S. (dollars per gallon).

Table 5: A sample of gasoline weekly price after date splitting.

Day Month Year Gasoline price
31 7 2023 3.869
24 7 2023 3.711
17 7 2023 3.676
10 7 2023 3.663
3 7 2023 3.643
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Download dataset Data preprocessing Train Test Split ANFIS Model
Price Prediction

Performance Metrics
MSE RMSE Score Correlation

Evaluation

Figure 4: Te proposed algorithm architecture.

Figure 5: Pseudocode and steps for the envisaged prediction.
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4.4. Performance Evaluation Metrics. To assess the fore-
casting accuracy of the models, the precision metrics utilized
include the Score (R2), mean square error (MSE), root mean
square error (RMSE), and the Correlation Coefcient (r).
Tese metrics can be computed using the following
formulas:

R
2

� 1 −


N
i�1 yi − yi( 

2


N
i�1 yi − yi( 

2,

MSE �
1
T



N

i−1
yi − yi( 

2
,

RMSE �
����
MSE

√
,

r �
1

n − 1


N

i�1
xi − xi(  yi − yi( .

(6)

5. Experimental Results

In this section, experiments were undertaken to evaluate the
model’s performance. Te experiments were conducted on
a computer equipped with a 3GHz AMDRyzen 7 processor,
8GB of main memory, and a 64 bit Windows 10 operating
system. Te experiments were executed using the Python
programming language.

5.1. Experimental Results of the Proposed Technique.
Table 6 presents the parameters used in the ANFIS re-
gressionmodel for predicting gasoline prices.Temodel was
applied to a dataset consisting of three features - “Day,”
“Month”, and “Year” - and a target variable, “Price.” Te
dataset was split into 1051 training samples and 451 test
samples, which were used to train and evaluate the model’s
performance, respectively. Te ANFIS model was trained
using a population size of 500 and 100 epochs. Te pop-
ulation size refers to the number of candidate solutions
generated at each iteration of the optimization algorithm,
while the epochs refer to the number of times the entire
dataset was fed into the model during training.

Te ANFIS layout used in this study was [2, 2, 2, 2, 2],
which refers to the number of nodes in each layer of the
model. Te input layer had 5 nodes (3 for the features and 2
for the target), followed by two hidden layers with 2 nodes
each, and an output layer with 2 nodes.

Te premise functions used in the ANFIS model were set
to 10, which refers to the number of Gaussian membership
functions used to represent the input variables. Gaussian
membership functions are used to map the input variables to
linguistic variables, which are then used as inputs to the
ANFIS model.

Te number of consequent functions used in the ANFIS
model was set to 32. Consequent functions are used to map
the output of the ANFIS model, which is a set of linguistic
variables, to a numerical value. Te number of consequent
functions determines the resolution of the output, with
a higher number of functions resulting in a more precise

output. Te ANFIS parameters were selected based on
a combination of trial and error and best practices in the feld
of ANFIS modeling. Te parameters were optimized to
achieve the best possible performance of the model in
predicting gasoline prices.

5.1.1. ANFIS Model Performance without Previous Price.
Table 7 presents the results of applying the ANFIS regression
model to predict gasoline prices without using the previous
price as a feature.

Te mean squared error (MSE) of the model was 0.2259,
indicating that the average squared diference between the
predicted and actual gasoline prices was relatively low. Te
root mean squared error (RMSE) was 0.2828, which is the
square root of the MSE and represents the average diference
between the predicted and actual gasoline prices. Te score
of the ANFIS model was 0.5620, which is a measure of the
model’s accuracy in predicting gasoline prices. Tis score
ranges from 0 to 1, with 1 being a perfect prediction and
0 being a completely random prediction. Te score obtained
in this study indicates that the ANFIS model was able to
predict gasoline prices with moderate accuracy. Te cor-
relation between the predicted and actual gasoline prices was
0.7496, which indicates a strong positive correlation between
the two variables. Tis suggests that the ANFIS model was
able to capture the underlying patterns and relationships in
the gasoline price data, resulting in a strong correlation
between the predicted and actual gasoline prices. Te results
presented in Table 7 indicate that the ANFIS model was able
to predict gasoline prices with moderate accuracy, even
without using the previous price as a feature. Tis suggests
that the ANFIS model is capable of capturing the complex,
nonlinear relationships between the various factors that
infuence gasoline prices and can be a valuable tool for
predicting gasoline prices in real-world scenarios.

5.1.2. Improved Performance with Previous Price. To im-
prove the model’s predictive capabilities, it integrates the
preceding period’s prices with other relevant features to
estimate the upcoming week’s price. Te results of this
enhancement are shown in Table 8. Te ANFIS model now
leverages both historical prices and additional features to
make predictions for the following week. Te incorporation
of past price data has resulted in enhanced model perfor-
mance, which is supported by the improvedmetrics outlined
in the table. Te key indicators used to evaluate the ANFIS
model’s efectiveness are Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Score, and Correlation.

As shown in Tables 7 and 8 using the previous week’s
price improves the performance of the ANFIS model, the
score increases from 0.5620 to 0.9970, MSE decreases from
0.2259 to 0.0416 and the correlations between real values and
the predicted values increase from 0.7496 to 0.9985.

Membership functions (MF) are mathematical functions
used in fuzzy logic and fuzzy systems to defne the degree of
membership of an input value to a particular fuzzy set or
linguistic term. Tese functions determine how strongly an
input value belongs to a specifc category or fuzzy set.
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Membership functions are typically graphically represented
to visually depict their shape and characteristics. It is
common to have multiple membership functions for each
input variable, each representing a diferent linguistic term
or fuzzy set. Te shape and parameters of the membership
functions are determined based on domain knowledge,
expert input, or data analysis.

By combining the membership functions of multiple
input variables in a fuzzy system, the overall fuzzy inference
process can determine the appropriate output or action
based on the inputs’ degree of membership to diferent fuzzy
sets. When visualizing membership functions, they are
typically plotted on a graph, with the input variable on the x-
axis and the membership degree on the y-axis. Each
membership function is represented as a curve or shape,
often with diferent colors or line styles to diferentiate
between them. Te plot helps to understand how the
membership degrees change as the input values vary and
provide insights into the fuzzy logic reasoning process.

In simulations, the absence of an expert necessitates an
empirical approach for determining the number of mem-
bership functions (MFs) assigned to each input variable.Tis
involves examining the desired input-output data and/or
employing trial and error. Tis scenario closely mirrors that
of neural networks.

Te ANFIS utilized in this study incorporates an eight-
layer feedforward neural network and employs a Takagi-
Sugeno (TS) fuzzy inference system to systematically gen-
erate fuzzy rules based on a given input-output dataset. To
assess the goodness of ft between observed and forecasted
values, the study computes Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and correlation
coefcient (R). Figures 6–9 depict the membership functions
(MF) for the variables Day, Month, Year, and the previous
price, respectively.

Tese results demonstrate that incorporating previous
prices as additional input features in the ANFIS model has
improved its predictive performance. Te low MSE and
RMSE values, high scores, and strong correlations indicate
that the model is capable of accurately forecasting the price
of the next week based on historical prices and features.

5.2. Comparative Analysis with the Traditional Techniques.
Yoon and Park [40] explored the use of ensemble machine-
learning models for gasoline order prediction. Tey evalu-
ated Random Forest, Extra Trees, AdaBoost, and XGBoost
regressions on this regression task. While these ensemble
models typically excel at classifcation, their regression
modules were validated to leverage ensemble strengths for
prediction. Performance was measured using R-squared,
RMSE, and accuracy on training and test sets. As shown in
Table 9, XGBoost achieved the highest R-squared and lowest

Table 6: ANFIS parameters.

Features Target Training
samples#

Test
samples # Population size Epochs # ANFIS

layout
Premise
functions Consequent functions #

“Day,” “month,” “year” “Price” 1051 451 500 100 [2, 2, 2, 2, 2] 10 32

Table 7: ANFIS results without previous price.

MSE RMSE Score Correlation
0.2259 0.2828 0.5620 0.7496

Table 8: ANFIS results with previous price.

MSE RMSE Score Correlation
0.04164 0.0532 0.9970 0.9985
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RMSE on the test set. However, all ensemble models
underperformed compared to the baseline linear regression
according to the evaluation metrics.

Tis study demonstrated the potential of applying en-
semble techniques to regression problems by directly
comparing ensemble and linear regression performance on
the gasoline order prediction task. Te results provided
insights into selecting the most suitable machine-learning
approach.

5.2.1. VAR and ARIMA Models. Utilizing orange data
mining [41], we conducted time series analysis and fore-
casting by implementing VAR (vector autoregression) and
ARIMA (autoregressive integrated moving average) models.

Orange data mining stands out as an open-source platform
that streamlines the process of data analysis and visualiza-
tion, particularly for individuals with limited coding ex-
pertise. Its intuitive design is centered on a component-
based framework, enabling users to construct analytical
workfows through a simple drag-and-drop interface. Tis
feature-rich environment is not only approachable for
novices but also robust enough to cater to the needs of
seasoned users tackling intricate data analysis operations.
Orange is equipped to handle a comprehensive array of data
mining functions such as preprocessing, clustering, re-
gression, classifcation, and association rule mining. It ex-
tends its capabilities to specialized domains through add-ons
for text mining, bioinformatics, and image analysis. Te
platform’s interactive visualization tools play a crucial role in
making data insights more accessible and understandable.
As a result, orange serves as an all-encompassing toolkit for
conducting exploratory data analysis, machine learning, and
educating on data science concepts. Figure 10 graphically
represents the methodology, detailing the sequential stages
of our analytical process as follows:

(1) Importing Data: Start by loading your time series
data into the Orange Data Mining environment.Tis
can be done by using the “File” widget or any other
suitable data import method provided by Orange.
Make sure your dataset includes the necessary var-
iables for VAR or ARIMA modeling, such as the
target variable and any relevant predictor variables.

(2) Data Preprocessing: Before applying VAR or
ARIMA models, it is important to preprocess your
data if needed. Tis may involve handling missing
values, transforming variables, normalizing data, or
removing outliers. Orange provides various data
preprocessing widgets like “Data Table” and “Im-
pute” that can help with these tasks.

(3) VAR Modeling: In the Orange Data Mining work-
fow, you can use the “Time Series: Vector Autore-
gression” widget to build VAR models. Connect the
preprocessed data to this widget. Specify the lag
order, which determines the number of previous
time steps used as predictors. Confgure other pa-
rameters, such as the method for estimating model
parameters and the criteria for model selection. Te
widget will estimate the VAR model and provide
output with coefcients, p values, and other relevant
statistics.

(4) ARIMA Modeling: To run ARIMA models, use the
“Time Series: ARIMA” widget in the Orange
workfow. Connect the preprocessed data to this
widget. Specify the order of diferencing (d),
autoregressive (p), and moving average (q) param-
eters based on the characteristics of your time series
data. Confgure other settings, such as the criteria for
model selection and forecasting horizon. Te widget
will estimate the ARIMA model and provide output
with model coefcients, residuals, and other relevant
statistics.
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(5) Model Evaluation: After estimating the VAR and
ARIMA models, it is crucial to assess their perfor-
mance and accuracy. Orange Data Mining ofers
several evaluation widgets, such as “Evaluate Re-
gression” or “Evaluate Time Series” depending on
your specifc needs. Tese widgets provide metrics
like Mean Absolute Error (MAE), Mean Squared
Error (MSE), R-squared (R2) score, and others to
evaluate the model’s ft to the data as shown in
Figure 11.

(6) Forecasting: Once you have validated your VAR and
ARIMA models, you can use them for forecasting
future values. Orange provides widgets like “Pre-
dictions” or “Time Series Forecasting” for this
purpose. Confgure the forecasting horizon and
connect the appropriate model to the widget. Te
output will provide predictions for the future time
steps based on the trained VAR or ARIMAmodels as
shown in Figure 12.

Figure 13 illustrates the comparison of RMSE among
various predictive models, including the ANFIS Model,
Linear Regression, AdaBoost, Extra Trees, Random Forest,
XGBoost, as well as several confgurations of VAR and
ARMA. Lower RMSE values indicate better predictive
performance, while higher values indicate larger prediction
errors. Figure 14 presents the comparison of R-squared (R2)
values among diferent predictive models. R-squared values
measure the proportion of the variance in the dependent
variable that is predictable from the independent variables.
Higher R2 values indicate a better ft of the model to the data,
implying that the model explains more variance in the target
variable.

(i) Te ANFIS Model outperforms the other models
with an RMSE of 0.0532, an R2 score of 0.997, and
a Correlation of 0.9985, indicating a very high level
of accuracy and a strong positive relationship be-
tween the predicted and actual values.

(ii) Te Linear Regression model shows moderate
predictive power with an RMSE of 0.4328 and an R2

of 0.7858. Te Correlation is not provided for this
and several other models, which limits the com-
parison based on this metric.

(iii) AdaBoost, Extra Trees, Random Forest, and
XGBoost are ensemble learning methods that
generally perform well on complex datasets.
However, in this case, they exhibit higher RMSE

values ranging from 0.5148 to 0.6265 and lower R2

scores from 0.5511 to 0.6969 compared to the
ANFIS Model, suggesting less accuracy in their
predictions.

(iv) Te VAR(1,n) models show a wide range of per-
formance, with one confguration achieving an R2 of
0.998, which is comparable to the ANFIS Model.
However, the RMSE values for VAR models are
signifcantly lower, with the lowest being 0.013. Tis
could indicate a high level of accuracy, but without
the Correlationmetric, it’s difcult to fully assess the
predictive relationship.

(v) Te ARMA(1,0,0) model also shows a high R2 score
of 0.996 and a low RMSE of 0.018, suggesting it is
a strong model for the data, although, like the VAR
models, the lack of a Correlation value makes it
challenging to compare directly with the ANFIS
Model.

While several models show promise, the ANFIS Model
demonstrates superior performance across all metrics pro-
vided. It is important to note that while high R2 and Cor-
relation values indicate good model fts, extremely high
values, as seen with the ANFIS Model, may also raise
concerns about overftting, as previously discussed. It would
be benefcial to conduct additional validation, such as cross-
validation or testing on an independent dataset, to confrm
the model’s ability to generalize beyond the training data.

Figure 15 presents a visual comparison of the actual and
predicted values for a subset of 10 samples.Tis visualization
ofers a detailed insight into the performance of the pre-
dictive models, including VAR, ARIMA, and ANFIS, by
showcasing how well they approximate the real data. By
juxtaposing the predicted values generated by these models
with the actual observations, this fgure allows for a direct
assessment of the models’ accuracy and their ability to
capture underlying patterns in the data. Such visualizations
play a crucial role in understanding the efectiveness of the
models and are instrumental in validating their predictive
capabilities.

6. Discussion

In this study, we presented the results of our proposed
ANFIS regression model for predicting gasoline prices. Te
model was trained on a dataset consisting of three features -
“Day,” “Month,” and “Year” - and a target variable, “Price.”
Te dataset was split into 1051 training samples and 451 test

Table 9: Summarizes the quantitative assessment of prediction models for gasoline orders utilizing an ensemble approach [40].

Regression models
R-squared RMSE Accuracy

Training sets Test sets Training sets Test sets Training sets
(%)

Test sets
(%)

Linear 0.7862 0.7858 0.2614 0.4328 88.67 88.65
AdaBoost 0.8117 0.6531 0.2452 0.5507 90.10 80.82
Extra trees 0.7632 0.6158 0.2753 0.5796 87.36 78.48
Random forest 0.8382 0.5511 0.2274 0.6265 91.55 74.23
XGBoost 0.9823 0.6969 0.0750 0.5148 99.11 83.48
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samples. Te ANFIS model was trained using a population
size of 500 and 100 epochs. Our results show that the ANFIS
model was able to predict gasoline prices with moderate
accuracy, as evidenced by a score of 0.5620 and a correlation
of 0.7496 between the predicted and actual gasoline prices.
When we incorporated the previous week’s price as an
additional input feature, the model’s performance improved
signifcantly, resulting in a score of 0.9970 and a correlation
of 0.9985.

Tese results demonstrate the potential of using ANFIS
for gasoline price prediction, particularly when historical
price data is available. However, it is important to note that
the model’s performance is dependent on the quality and
quantity of the data used for training. In particular, the
model may struggle to accurately predict prices during
periods of high volatility or sudden price shocks.

Another limitation of the ANFIS model is its complexity,
which can make it challenging to interpret the model’s

Figure 10: Workfow of VAR and ARIMA models.

Figure 11: Models evaluation.
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predictions. Tis is particularly true when the model uses
a large number of membership functions, which can make it
difcult to understand the underlying relationships between
the input variables and the predicted output. Despite these
limitations, the ANFIS model ofers a promising alternative
to traditional regression models for gasoline price pre-
diction. Its ability to capture complex, nonlinear relation-
ships between input variables and the predicted output
makes it well-suited for real-world scenarios where gasoline
prices are infuenced by a variety of factors.

In future work, we plan to explore ways to improve the
interpretability of the ANFIS model, as well as to evaluate its
performance on larger and more diverse datasets. We also
plan to compare the performance of the ANFIS model to
other machine learning models for gasoline price prediction,

in order to gain a better understanding of the strengths and
weaknesses of diferent approaches.

Tis study has shown that the ANFIS regression model is
a promising tool for predicting gasoline prices, particularly
when historical price data is available. While the model has
some limitations and challenges, its ability to capture
complex, nonlinear relationships between input variables
and the predicted output makes it a valuable addition to the
feld of energy economics.

7. Limitations

While the ANFIS model has demonstrated promising results
in predicting gasoline prices, several limitations should be
considered when interpreting the fndings.

Figure 12: Te predicted prices for 10weeks results.

ANFIS
Model Linear AdaBoost Extra Trees Random

Forest XGBoost VAR(1,n) VAR(1,n) VAR(1,n) ARMA
(1,0,0)

R2 0.997 0.7858 0.6531 0.6158 0.5511 0.6969 0.894 0.998 0.85 0.996

Comparison of R2 Metrics: VAR, ARIMA, ANFIS, and Traditional Models
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Figure 13: R-squared (R2) comparison of predictive models.
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(1) Data Availability and Quality: Te accuracy of the
ANFIS model is highly dependent on the availability
and quality of the data used for training and testing.
Inaccurate or incomplete data could lead to biased or
unreliable predictions. Additionally, the ANFIS
model may not be suitable for predicting gasoline
prices in regions or countries where data is scarce or
of poor quality.

(2) Overftting: Overftting happens when a model be-
comes excessively complex and closely conforms to

the training data, leading to suboptimal general-
ization on new data. Te ANFIS model could be
susceptible to overftting if the number of input
features is disproportionately large compared to the
dataset’s size, or if the model lacks proper
regularization.

(3) Input Feature Selection: Te selection of appropriate
input features is crucial to the performance of the
ANFIS model. Te ANFIS model relies on the input
features to capture the complex, nonlinear

ANFIS
Model

Linear AdaBoost Extra Trees Random
Forest XGBoost VAR(1,n) VAR(1,n) VAR(1,n) ARMA

(1,0,0)
RMSE 0.0532 0.4328 0.5507 0.5796 0.6265 0.5148 0.013 0.016 0.016 0.018

Comparison of Error Metrics: VAR, ARIMA, ANFIS, and Traditional Models
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Figure 14: Root mean squared error (RMSE) comparison of predictive models.

VAR 3.48447 3.52089 3.54839 3.57126 3.59118 3.60898 3.62519 3.64012 3.65402 3.66705
ARIMA 3.394 3.47977 3.55271 3.61916 3.6788 3.7324 3.78092 3.82523 3.86606 3.90402
ANFIS 3.484 3.505 3.495 3.493 3.478 3.44 3.414 3.395 3.375 3.381
Actual 3.505 3.495 3.493 3.478 3.44 3.414 3.395 3.375 3.381 3.394

ACTUAL AND PREDICTED VALUES FOR 10 SAMPLES
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Figure 15: Actual and predicted values for a subset of 10 samples.
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relationships between the various factors that in-
fuence gasoline prices. If the wrong input features
are selected or irrelevant features are included, the
model’s performance may be compromised.

(4) Model Interpretability: While the ANFIS model is
capable of accurately predicting gasoline prices, it
may be difcult to interpret how the model arrived at
its predictions. Te inherent complexity of the
model, as well as the fuzzy logic and neural network
components, may make it challenging to understand
the underlying factors driving the predicted gasoline
prices.

While the ANFIS model has demonstrated promising
results in predicting gasoline prices, its performance is
subject to several limitations and challenges. Careful con-
sideration of these limitations is necessary when interpreting
the model’s predictions and when designing future research
to further improve its performance.

8. Future Direction

Looking ahead, several directions for future research could
enhance the ANFIS model’s performance and applicability
in predicting gasoline prices.

(1) Incorporating Additional Input Features: While the
ANFIS model has demonstrated the ability to cap-
ture the complex, nonlinear relationships between
various factors that infuence gasoline prices, there
may be additional input features that could improve
its predictive performance. Future research could
explore the inclusion of new features, such as
weather data, geopolitical events, or social media
sentiment analysis, to enhance the model’s predictive
capabilities.

(2) Ensemble Modeling: Ensemble modeling involves
combining the predictions of multiple models to
improve their overall performance. Future research
could explore the use of ensemble modeling tech-
niques, such as stacking or bagging, to combine the
predictions of ANFIS with other machine learning
models to improve the accuracy of gasoline price
predictions.

(3) Real-time Predictions: Real-time predictions of
gasoline prices are essential for decision-making in
the energy industry. Future research could focus on
developing ANFIS models that can make accurate
predictions in real time, taking into account the latest
market data and news events.

(4) Transfer Learning: Transfer learning is a machine
learning technique that involves transferring
knowledge learned from one task to improve per-
formance on a diferent task. Future research could
explore the use of transfer learning to adapt ANFIS
models trained on gasoline price data to predict
prices of other commodities, such as natural gas or
crude oil.

(5) Explainable AI: While the ANFIS model has dem-
onstrated strong predictive performance, its in-
terpretability remains a challenge. Future research
could focus on developing ANFIS models that are
more transparent and explainable, allowing users to
better understand the model’s predictions and un-
derlying factors driving gasoline prices.

(6) Robustness to Outliers: Te ANFIS model may be
sensitive to outliers or anomalous data points that
may occur in the gasoline price data. Future research
could explore methods to improve the model’s ro-
bustness to such outliers, such as the use of robust
statistical methods or outlier detection techniques.

(7) Integration with Decision-Making Processes: Fi-
nally, future research could explore how ANFIS
models can be integrated into decision-making
processes in the energy industry to inform pricing
strategies and enhance market efciency. Te ability
to translate accurate predictions into actionable
insights is essential for the adoption of ANFIS
models in the energy industry.

9. Conclusion

Tis study proposed a novel approach to gasoline price
forecasting by employing an Adaptive Neuro-Fuzzy In-
ference System (ANFIS) model. Te key fndings and ad-
vancements are as follows:

(1) Te ANFIS model demonstrated moderate accuracy
in predicting gasoline prices using only temporal
features like day, month, and year, without relying
on previous price data. Tis showcases the model’s
capability to capture complex non-linear relation-
ships between various factors infuencing gasoline
prices.

(2) Incorporating previous price data as an additional
input feature signifcantly improved the model’s
predictive performance, with the score increasing
from 0.562 to 0.997, MSE decreasing from 0.2259 to
0.0416, and correlation between actual and predicted
values rising from 0.7496 to 0.9985. Tis highlights
the importance of considering historical price in-
formation for accurate gasoline price forecasting.

(3) Te ANFIS model outperformed traditional time
series techniques like VAR and ARIMA, as well as
ensemble machine learning models like Random
Forest and XGBoost, previously applied to gasoline
price/order prediction tasks. Tis advancement
demonstrates the superiority of the proposed ANFIS
approach in capturing the intricate dynamics of
gasoline price fuctuations.

(4) Te study provides insights into the membership
functions used by the ANFIS model, visually rep-
resenting how input variables like day, month, year,
and previous price are mapped to linguistic terms
and fuzzy sets. Tis transparency enhances the
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interpretability of the model’s decision-making
process.

Tis study contributes a robust and accurate gasoline
price forecasting method based on the ANFIS model, which
leverages both temporal features and historical price data.
Te proposed approach outperforms existing techniques,
advancing the state-of-the-art in this domain and providing
a valuable tool for stakeholders in the gasoline industry.

Data Availability
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