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Wireless technologies are growing unprecedentedly with the advent and increasing popularity of wireless services worldwide.
With the advancement in technology, profound techniques can potentially improve the performance of wireless networks.
Besides, the advancement of artifcial intelligence (AI) enables systems to make intelligent decisions, automation, data analysis,
insights, predictive capabilities, learning, and adaptation. A sophisticated AI will be required for next-generation wireless
networks to automate information delivery between smart applications simultaneously. AI technologies, such as machines and
deep learning techniques, have attained tremendous success in many applications in recent years. Hances, researchers in academia
and industry have turned their attention to the advanced development of AI-enabled wireless networks. Tis paper compre-
hensively surveys AI technologies for diferent wireless networks with various applications. Moreover, we present various AI-
enabled applications that exploit the power of AI to enable the desired evolution of wireless networks. Besides, the challenges of
unsolved research in this area, which represent the future research trends of AI-enabled wireless networks, are discussed in detail.
We provide several suggestions and solutions that help wireless networks be more intelligent and sophisticated to handle
complicated problems. In summary, this paper can help researchers deeply understand the up-to-the-minute wireless network
designs based on AI technologies and identify interesting unsolved issues to be pursued in their research in a fast way.

1. Introduction

Wireless technologies are growing fast due to the potential
increase in applications and the rapid expansion of com-
munication infrastructures. Te next generation of sophis-
ticated communication networks integrates a larger number
of connected devices coupled with sensors requiring massive

data with low latency. Te increasing number of connected
wireless devices is an indicator of massive global mobile
trafc growth, which is expected to reach 11.5 billion and
31.6 billion at the end of 2020 and 2023, respectively [1, 2].
Te recent ffth-generation (5G) cellular networks provide
higher data rates and low end-to-end latency, allowing more
real-time access from various technologies. However, 5G
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cellular networks practically consume more power to op-
timize and analyze the huge data volume rising from
massively connected devices. Consequently, it is essential to
address this issue to automate and manage the complexity of
5G cellular networks. From the very beginning, 5G cellular
networks are designed to ofer three types of services
according to ITU-R: enhanced mobile broadband (eMBB),
ultrareliable low latency service (URLLC), and massive
machine-type communications (mMTC) [3]. First, eMBB
strives to achieve exceptionally rapid data rates, addressing
the burgeoning demand for high-speed data access inherent
in emerging services. Second, mMTC focuses on achieving
heightened connection density, coupled with low data rates
and minimal power consumption, thereby catering to the
requirements of sensor networks in smart cities, the Internet
of things (IoT), and wearable device networks. Tird, the
URLLC realm is dedicated to furnishing wireless services
marked by unparalleled reliability and minimal latency
(<1ms), primarily tailored for control networks encom-
passing domains such as high speed, train management,
smart meters, remote medical surgical services, transport
safety control, and industrial robotic control.

In addition to 5G cellular networks, sixth-generation
(6G) wireless communication is currently being researched
and developed to surpass the capabilities of 5G technology. It
aims to provide unprecedented levels of connectivity and
performance, revolutionizing the way we communicate and
interact with our devices. Te key focus areas of 6G cellular
networks include faster data speeds, ultralow latency,
massive device connectivity, enhanced energy efciency, and
intelligent network management [4]. With data rates ex-
pected to reach terabits per second, 6G promises to enable
transformative technologies such as holographic commu-
nication, advanced virtual reality (VR), augmented reality
(AR), and immersive gaming experiences. Additionally, 6G
aims to leverage new frequency bands, such as terahertz
(THz) frequencies, to accommodate the ever-increasing
demand for bandwidth and enable innovative applications
[5]. As the future of wireless communication, 6G holds the
potential to shape various industries, from healthcare and
transportation to education and entertainment, paving the
way for a hyper-connected and intelligent society [6, 7]. In
addition, 6G-enabled edge AI for the metaverse is making
eforts to establish connections among billions of users,
fostering a unifed environment where the boundaries be-
tween the virtual and real worlds merge together [8].

Artifcial intelligence (AI) ofers mobile operators the
potential to operate their networks more organic and cost-
efciently. Deploying AI will improve next-generation
systems to be more robust, high performance, and less
complex [9]. Besides, integrating AI into networks is a way
to address network complexity, where about 53% of service
providers are expected to fully integrate AI into their net-
works by the end of 2020 [10]. AI has been used to do
sophisticated tasks such as optimization, classifcation, and
clustering, which are implemented in numerous felds and
industries, including transportation, education, healthcare,
and more. Efective AI mechanisms are required to be de-
veloped to collect, analyze, andmake decisions for enormous

data volumes. AI integration will be fundamentally more
efcient in optimizing network performance than focusing
on network management and scheduling. Besides, AI
technology reduces manual interventions in network
trafc management and aims to enhance customer expe-
rience, improve customer service, and ofer personalized
services. Moreover, machine learning (ML) and deep
learning (DL) stand as two sophisticated AI technologies
that have garnered signifcant attention for their potential
to address the complexities associated with the manage-
ment of 5G cellular network trafc [11, 12]. In this context,
recent advancements in ML and AI are some of the most
robust solutions in terms of privacy, security, and per-
formance gains for wireless systems [13, 14]. Besides, DL is
recognized as a promising tool to handle the complex
dynamics in communication networks and their potential
to optimize wireless systems. Furthermore, deep AI and
ML expect to make wireless systems more resilient towards
new sophisticated threats and attacks with dynamic
characteristics [15].

To our knowledge, no comprehensive survey provides AI
technologies, techniques, and applications and highlights the
open issues in wireless networks. Terefore, this survey
paper comprehensively focuses on AI technology and its
benefts in the next generation of wireless networks. Tis
survey provides the researchers’ guidelines and an excellent
platform to further their research in AI for wireless net-
works. It provides a detailed discussion of their imple-
mentation and improvement in network performance.
Finally, we highlight the challenges and opportunities of AI-
enabled and then remark on several points for future re-
search directions. Te contributions of this survey paper can
be summarised as follows:

(i) We provide an overview of several AI technologies
that will facilitate readers’ understanding of AI and
the fundamental idea of AI technology.

(ii) We present various AI-enabled wireless networks
that ofer assistance and enhancements in overall
system performance.

(iii) We present the 5G/6G emerging wireless technol-
ogies that are currently leading the forefront of
technological progress.

(iv) We highlight several research challenges and po-
tential future directions of AI in 5G and 6G wireless
networks. Tis contributes to the advancement of
this research feld.

Te organization of this article follows a hierarchical
approach, depicted in Figure 1. We begin by presenting
several related works using various types of publications:
surveys, magazines, and research papers (Section 2). Section
3 provides background on AI classifcations. In Section 4,
various types of AI-enabled wireless networks are discussed.
Section 5 presents 6G emerging technologies. Several AI
applications in mobile and wireless communications are
discussed in Section 6. Te challenges that face the con-
sidered architecture and open issues that should be in-
vestigated in the future are discussed in Section 7. Finally,
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Section 8 brings the article to a close with conclusive
remarks.

2. Related Work

Several notable studies have explored the relationship be-
tween AI approaches and 5G wireless communications,
ofering valuable insights into their interplay and implica-
tions. Various AI types and wireless technologies have been
discussed in several works. Ma et al. [16] discussed that AI
approaches involved autonomous vehicles (AVs)-related
and its primary applications. Tey have provided insights
into potential opportunities of AI that could be used with
other emerging technologies, such as 5G communication for
connected AVs, enhanced simulation platforms for (AR/
VR) and big data, high-defnition maps, and high-
performance computing. Sheraz et al. [17] focused pri-
marily on AI-based caching techniques in wireless networks
using ML algorithms such as supervised, unsupervised re-
inforcement, and transfer learning (TL). Tey have provided
the existing challenges that must be addressed in future
generations. Tong et al. [18] presented an emerging para-
digm of AI for vehicle-to-everything (V2X). Tey provided
some details on AI techniques such as logical AI, swarm
intelligence, expert systems heuristic techniques, and fuzzy
logic language processing. Another work [19] reviewed
related works on deep integration between AI and fog
computing (FC) technologies within the future V2X net-
works. Besides, the authors presented AI-enabled, fog-
assisted V2X use cases that accommodate necessary FC
capabilities and exploit AI to enable the desired evolution of
vehicular networks. Lin and Zhao [20] provided a survey on
the role of AI-based resource management and presented
challenges and open issues of deploying AI in future wireless
networks.

Chen et al. [21] presented a survey of AI-empowered
path selection based on ant colony optimization for static
and mobile wireless sensor networks. In [22], the authors
designed to efectively identify attacks in wireless sensor
networks within IoTnetworks using a whale-optimized gate

recurrent unit. Te framework utilizes the whale algorithm
to optimize deep long short-term memory (LSTM) hyper-
parameters, achieving low computational overhead and
strong performance. Mao et al. [23] described DL applica-
tions in wireless networks based on diferent layers: the
physical layer, data link layer, network layer, and upper
layers. Besides, they have discussed methods of DL imple-
mentation that have been performed in wireless networks. In
terms of privacy and security, authors in [24] surveyed ML
and privacy, focusing on aspects such as privacy violation
and privacy protection in incoming 6G networks. Also, they
highlighted several applications of ML that can protect
privacy and violate. Te work in [25] presented a systematic
review of IoT security protection based on AI algorithms
(i.e., ML and DL) that can provide new powerful capabilities
to meet IoT’s security requirements. In [26], the authors
provided an overview of AI-driven intelligent security for
wireless networks, specifcally focusing on 5G and beyond. It
thoroughly examines various research studies that explore
integrating AI capabilities into wireless networks to enhance
security measures and address potential vulnerabilities
arising from future technologies at both the physical and
network levels. Moreover, the paper strives to uncover
potential avenues for future research that can contribute to
developing robust security and privacy frameworks for
upcoming 6G networks. Using AI techniques in an end-
to-end security design is crucial in 6G networks. Sir-
iwardhana et al. [27] focused on exploring the role of AI in
enhancing the security framework for 6G networks. Tey
discussed numerous opportunities and challenges associated
with integrating intelligent security and privacy provisions
into the role of AI within 6G systems. Similarly, Bandi and
Yalamarthi [28] presented a taxonomy of various security
and privacy concerns associated with AI- and ML-enabled
applications in the context of 6G networks.

In [29], the authors explored the potential efects of AI
on the design and standardization of the air interface in
wireless communication systems. Tey examined the AI-
enabled network architecture and discussed a detailed
analysis of the impact of AI capabilities on the design of
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Figure 1: General diagrammatic view of the survey structure.
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higher-layer protocols, physical layer confgurations, and
cross-layer optimizations. Li et al. [30] examined AI ap-
plications and blockchain technology within 6G wireless
networks. Initially, the architecture of 6G, characterized by
its integration of space, air, ground, and underwater com-
ponents into a four-tier network, has been introduced.
Subsequently, two specifc AI applications, namely, indoor
positioning and AVs, have been extensively explored. A
detailed analysis has also been conducted to highlight the
growing signifcance of data security in AI applications,
supported by a comprehensive case study. Letaief et al. [31]
presented a vision for scalable and reliable edge AI systems
that incorporate integrated designs of wireless communi-
cation strategies and decentralized ML models. Also, they
outlined novel design principles for wireless networks,
optimizationmethods for service-driven resource allocation,
and a comprehensive end-to-end system architecture to
support edge AI. Also, in [32], the authors examined the
prospective technologies that can facilitate mobile AI ap-
plications in the context of 6G. Additionally, they explored
the methodologies enabled by AI for the 6G network design
and optimization and delved into the key trends driving the
evolution towards 6G. In [33], the authors highlighted and
categorized nine challenges that require attention from the
interdisciplinary felds of AI/ML and wireless communi-
cations, specifcally concerning 6G wireless networks. Te
challenges encompass computation in AI, learning, dis-
tributed neural networks, and semantic communications. In
[34], a network slicing architecture designed specifcally for
6G networks is introduced. Tis architecture focuses on AI
integration, allowing for the seamless combination of AI and
network slicing. Te aim is to enable intelligent network
management and provide the necessary support for
emerging AI services within the network.

In [35], the authors focused on the intelligence aspects,
security and privacy concerns, and energy efciency chal-
lenges encountered by swarms of unmanned aerial vehicles
(UAVs) operating within the context of 6Gmobile networks.
Trough a comprehensive review, the article presented an
integrated approach that combines blockchain technology
and AI/ML techniques within UAV networks, leveraging the
capabilities of the 6G ecosystem. Te work in [36] em-
phasized enhancements in the multilevel architecture
through the integration of AI in URLLC, ofering a novel
approach to wireless network design. Additionally, this
research paper discussed existing multilevel architectures
and provided further ideas on several research gaps using DL
in 6G networks. Te authors in [37] provided a new concept
of “zero-touch management,” which refers to a network
management solution that operates autonomously with
human supervision. Tey focused on a connection point
between zero-touch management and research on mobile
and wireless networks, addressing a gap in the existing
literature review between these two domains.

Li et al. [38] highlighted the most fundamental features
among the intelligence techniques in the 5G cellular net-
works in terms of mobility management, radio resource
management, and provisioning management. Besides, they
discussed some open issues and challenges regarding

exploiting AI to turn conventional 5G cellular networks into
intelligent networks. Kamble and Shaikh [39] emphasized
a range of resource allocation methodologies and algorithms
that utilize DL techniques such as convolutional neural
networks (CNN), deep neural networks (DNN), Q learning,
deep Q learning, RL, and actor-critic. Tese methodologies
and algorithms are discussed briefy. Te goal is to dy-
namically optimize the allocation of resources in real time,
leading to enhanced overall system performance. Sangeetha
and Dhaya [40] explored the background of 6G wireless
communication and examined the signifcant role of DL in
advancing 6G wireless technologies. Tey also highlighted
potential avenues for future research in DL-driven wireless
technologies. Besides, the authors in [41] presented a com-
prehensive survey covering a range of ML techniques that
can be applied to 6G wireless networks. Additionally, they
identifed and listed research challenges that are currently
open and need timely solutions. In [42], the authors dis-
cussed several aspects of 6G vehicular intelligence: com-
munications, networking, intelligence, and computing.
Troughout the entirety of this paper, AI technology per-
vades and forms the basis of vehicular intelligence. Tis
integration of AI has a benefcial infuence on the realization
of diverse network functionalities, ultimately enhancing the
network’s proactivity and intelligence to a signifcant extent.

Fu et al. [43] investigated the new characteristics of 5G
cellular network trafc and discussed their challenges for 5G
trafc management. However, in [44], the researchers tried
to enable the imminent and future demands of 5G and
beyond by presenting a cross-layer AI-based framework.
Also, it demonstrated some AI-enabled 5G use cases to
support and accommodate the capabilities of 5G cellular
networks. In [45], the authors discussed the challenges and
perspectives of the AI paradigms for customer experience
management (CEM) in 5G cellular networks. CEM’s chal-
lenges were elaborated with respect to business requirements
and network operators, and autonomous CEM framework
guidelines were provided for next-generation networks.
Additionally, AI ofers mobile network operators to improve
network performance in time and operating expenses [46].
In this regard, Shafn et al. [46] presented a possible roadmap
to utilize AI-enabled cellular networks in the next genera-
tions, overcoming technical barriers in performance, com-
plexity, and robustness. Te authors in [47] demonstrated
several case studies for optimizing wireless physical and
MAC layers based on explainable AI algorithms to simul-
taneously automate information delivery for human-
machine interfacing and targeted healthcare. Te sum-
mary of existing surveys andmagazine papers is presented in
Table 1.

3. Background on AI

Tis section provides a general overview of AI, focusing on
the fundamentals of AI in terms of evolution, components,
and algorithms. AI cheats and improves the behavior of
humans and carries out tasks more efectively. Te AI ap-
proach is widely used in various felds and illustrates its
powerful ability in diverse networks and systems.
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Researchers aim to improve some essential specifcations in
next-generation wireless networks, such as connectivity,
capacity, and speed. Improving these parameters is a key
challenge and requires denser base stations (BSs) with wide
band frequency. Wireless communication systems pave the
way for various systems such as IoT, robots, and self-driving
vehicles. Tese wireless systems and mobile networks face
various drawbacks, such as ultralow latency and big data.
Te importance of AI comes from the view that it is fexible
and can be embedded in the overall loop of systems. AI
successfully challenges various types of problems in diferent
systems, such as military defense systems and natural lan-
guage processing.

Due to the complex network performance and envi-
ronments, traditional methods are no longer suitable; hence,
designing and optimizing wireless communication systems
have become more challenging, and advanced methods and
algorithms are required to solve complex problems. De-
signing and optimizing modern advanced systems has be-
come very challenging regarding the extreme range of
communication systems. One of the successful and robust
methods that has been widely used in recent years is AI,
which learns from located surroundings and massive
datasets generated from systems. Due to the big data and
generation of unprecedented trafc, researchers believe
that AI methods can adjust to meet the users’ re-
quirements. Tis algorithm can adapt network protocols
and resource management of new generation systems
where some predefned goals can be enhanced success-
fully. It can solve intractable drawbacks in wireless
communication systems and improve the performance of
future wireless systems in 5G and 6G wireless networks
that are expected to infuence the diferent service re-
quirements in diverse aspects of our daily lives. Te AI
methods are illustrated to be more practical in many
application areas, such as resource management, wireless
signal processing, and channel modeling for optimizing
physical layer design, network management, and resource
optimization roles in networks.

Five aspects have been discussed in [9], as shown in
Figure 2, that bring AI technologies beyond 5G wireless
networks: physical-layer research, networkmanagement and
optimization, channel measurements, AI algorithms and
applications, and standard developments. Hence, AI andML
can potentially revolutionize the future beyond 5G wireless
networks by addressing complex and unstructured chal-
lenges.Teir ability to adapt, learn from data, andmake real-
time decisions will help address the complex and evolving
challenges that arise in these advanced networks, ultimately
leading to more robust, efcient, and user-centric com-
munication systems.

AI methods are important because of the following
reasons. One is the ability to predict and detect performance
that can comfort network scheduling. Second, AI ap-
proaches are intelligent methods that can model the systems
more accurately than conventional methods. Finally, it can
provide new possibilities for constructing the updatedmodel
as trafc patterns [49]. Tese methods are generally used to
optimize the determined design specifcations and fnd the

best solutions quickly. In manufacturing, these methods are
used to provide safe processes and reduce costs with in-
creasing revenue.

3.1. Classifcation of AI. AI, along with its pivotal compo-
nents ML and DL, has garnered signifcant interest within
wireless communications, where it is used as a data-driven
approach for addressing wireless communication issues
[50]. ML techniques are mainly classifed as supervised,
unsupervised, and RL approaches. Te frst category is su-
pervised learning, which is also divided into two sub-
categories (classifcation and regression). It uses a labeled
dataset intending to map each input into one of the labeled
sets. However, it is very hard to fnd the available labeled
dataset in real-world applications, which makes it not ap-
plicable to some applications. As a result, the second cat-
egory (unsupervised learning) comes to fgure out the data
patterns and their hidden structures by learning from an
unlabeled data set. Unsupervised learning often relies on the
widely used Bayesian learningmethod, typically employed in
clustering and dimension reduction tasks. Another category
is the RL approach, which empowers an agent to discover
optimal actions through interactions with the environment.
Te RL aims to maximize the reward using trial-and-error
interactions instead of determining latent structure. Besides,
AI approaches include deep reinforcement learning (DRL)
methods that are applied to improve the performance of
wireless communication systems in terms of latency, re-
liability, power consumption, and area convergence.

3.1.1. Neural Network (NN). Te architecture of an NN is
derived from the structure and functionality of biological
neural networks. Like neurons in the human brain, NN
comprises neurons organized into diferent layers. A
prevalent type is the feed-forward NN, which involves an
input layer for receiving external data, an output layer for
providing solutions to problems, and a hidden layer that
acts as an intermediary, separating the layers. Connec-
tions between adjacent neurons span from the input layer
to the output layer, forming acyclic arcs. During training,
the NN employs an algorithm to adjust neuron weights
based on the discrepancy between desired and actual
outputs. Generally, the backpropagation algorithm is
utilized as the training method to learn from datasets.
Tere are several common NN types: feedforward neural
networks (FNN), CNN, recurrent neural networks
(RNN), LSTM networks, gated recurrent units (GRU),
and generative adversarial networks (GAN). Table 2
provides a brief description of these types.

NNs are trained through a process that entails feeding
input data into the network and iteratively adjusting its
internal parameters (weights and biases) to minimize the
diference between predicted and actual outputs. Tis can be
accomplished by using a loss function that quantifes the
model’s prediction error. Te backpropagation algorithm is
then employed to calculate gradients and update weights,
making the model’s predictions gradually converge toward
the actual values. Te network’s architecture, including the
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number of layers and neurons, is determined based on the
problem’s complexity and the data’s characteristics.

Hyperparameters are crucial settings that govern the
learning process of an NN. Achieving optimal

hyperparameters involves experimentation and validation.
Techniques like grid search or random search are used to
explore diferent combinations of hyperparameter values,
such as learning rates, batch sizes, and regularization

Beyond 5G
AI and Wireless

Networks

AI
Algorithms and

Applications

Physical-layer
Research

Network Management
and Optimization

Channel
Measurements and

Modelling

Standard
Developments

(3GPP,5GPP, ITU)

Figure 2: Five aspects propelling AI beyond 5G in wireless networks.

Table 2: A brief description of NN types.

Type Description

FNN

(i) Also known as multilayer perceptron (MLP)
(ii) Consists of an input layer, one or more hidden layers, and an output layer
(iii) Neurons in one layer are connected to neurons in the next layer
(iv) Each neuron applies a weighted sum of inputs followed by an activation
function
(v) Often used for tasks such as classifcation and regression

CNN

(i) Primarily designed for processing grid-like data, such as images and videos
(ii) Employs pooling layers to reduce spatial dimensions and learn invariant features
(iii) Uses convolutional layers to automatically learn spatial hierarchies of features
(iv) Well-suited for tasks like image classifcation, object detection, and image
generation

RNN

(i) Designed to handle sequential and time-series data
(ii) Contains loops to allow information to be passed from one step of the network
to the next
(iii) Can sufer from vanishing gradient problems when sequences are long
(iv) Often used for tasks like natural language processing, speech recognition, and
time-series prediction

LSTM

(i) A type of RNN designed to address the vanishing gradient problem
(ii) Contains specialized memory cells to remember information over long
sequences
(iii) Suitable for tasks that require modeling long-range dependencies in sequences

GRU

(i) Similar to LSTM but with a simpler architecture
(ii) Contains gating mechanisms to control the fow of information
(iii) Balances the ability to capture long-range dependencies and computational
efciency

GAN

(i) Comprises a generator and a discriminator network
(ii) Discriminator’s goal is to diferentiate between real and generated data
(iii) Generator aims to produce data that is indistinguishable from real data
(iv) Used for tasks such as image generation, style transfer, and data augmentation
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strengths.Tese values are evaluated using validation data to
identify the confguration that yields the best performance.
Hyperparameter tuning aims to strike a balance between
model complexity and generalization ability.

Te accuracy of a NN is assessed using various metrics,
mainly when dealing with classifcation tasks. Common
metrics include accuracy, precision, recall, F1-score, con-
fusion matrix, mean square error (MSE) or mean absolute
error (MAE), receiver operating characteristic (ROC), and
under-the-curve (AUC).

Training and constructing neural networks involve it-
eratively adjusting weights to minimize prediction errors
while experimentation optimizes hyperparameters. Accu-
racy is measured using a range of metrics, each providing
specifc insights into the model’s performance.

3.1.2. Distributed AI. Distributed AI (DAI) refers to the
concept of employing AI techniques and algorithms across
a network of interconnected devices or nodes. In this par-
adigm, AI tasks are distributed and processed locally on
individual devices rather than relying on a centralized
system, allowing for collaborative decision-making and
resource sharing. Tis approach enables efcient processing,
real-time responses, and the ability to handle large-scale data
across interconnected devices, making it particularly useful
for applications in edge computing, IoT, and decentralized
networks. In [51], the authors explored the state of the art in
DAI, outlining the opportunities and challenges associated
with ofering DAI as a service.

Several of the mentioned types of DAI are utilized in
wireless communications to enhance efciency, adaptability,
and decision-making. In [52], the authors conducted
a comprehensive survey of newly introduced distributed ML
techniques, thoroughly analyzing their distinctive attributes
and potential advantages. Te primary emphasis was placed
on scrutinizing the most infuential papers within this do-
main. Te authors in [53] also critically examined various
distributed ML architectures and designs, emphasizing their
concentration on communication optimization, resource
allocation, and computation. Some of the most relevant
types of wireless communications include the following.

3.1.3. Federated Learning (FL). FL, known as collaborative
learning, is an ML technique that brings AI models to the
data source and constructs an algorithm over multiple
decentralized edge devices. In this type of learning, the
training data are not transmitted across diverse sections;
only the updated data related to the model can be made over.
Te objective of this approach is to aford users the ad-
vantage of accessing an extensive pool of data without the
necessity of central storage. Numerous applications in-
corporating intelligent functionalities within the mobile
domain, such as image categorization, language models, and
speech recognition, exemplify the earlier qualities. Indeed,
users remain susceptible to risks even when transmitting
anonymized data to the central data repository. Conversely,
in the context of FL, only the essential information required
for model enhancement is communicated, mitigating these

risks efectively. Figure 3 shows the FL framework with the
federated averaging (FedAvg) process [52]. Te main FL
process elements are FL communication, local FL device
processing, and the FedAvg process at a centralized FL
server.

3.1.4. Multiagent Reinforcement Learning (MARL).
MARL is a subfeld of AI and ML that focuses on training
multiple agents to make decisions in interactive environ-
ments. InMARL, each agent learns through trial and error to
maximize a cumulative reward by taking actions based on its
observations and the actions of other agents. Te agents
interact with each other and the environment, and their
individual actions can afect their own rewards and the
rewards of other agents. MARL algorithms aim to fnd
optimal strategies for each agent, considering both co-
operative and competitive interactions. Cooperative MARL
involves agents working together to achieve a shared goal,
while competitive MARL focuses on agents competing
against each other to maximize their individual rewards.Te
challenge lies in striking a balance between cooperation and
competition to achieve desirable outcomes. Figure 4 dem-
onstrates the diference between single RL and MARL. In
MARL, multiple agents interact with a common environ-
ment where each agent has its own three-tuple parameters:
state s1,2,3,...n, reward r1,2,3,...n, and action a1,2,3,...n. Te
combination of these actions constitutes the collective a.

Numerous challenges within wireless communication
can be efectively addressed by employing RL techniques, as
they can model sequential decision-making scenarios. Given
the prevalence of multiagent environments in wireless
setups, where agents’ interactions and decisions infuence
one another, MARL emerges as a promising solution for
a wide array of problems. Recent advancements in DL-based
approximations, operations research, and multiagent sys-
tems have fueled the surge of interest in MARL over the last
decade [54]. MARL confgurations can be categorized into
three primary groups based on agents’ interactions [55]. In
fully cooperative settings, agents collaborate harmoniously
to optimize shared goals or reward signals, often yielding
similar rewards. Alternatively, agents vie against each other
in fully competitive scenarios, prioritizing individual reward
maximization, potentially resulting in a net reward sum of
zero. Hybrid MARL systems also exist, encompassing both
cooperative and competitive agents to accommodate varied
dynamics.

4. AI-Enable Wireless Communications

4.1. Probabilistic ML and Bayesian Inference. ML techniques
are categorized into three distinct groups: supervised
learning, unsupervised learning, and RL techniques. Su-
pervised learning, in particular, excels at capturing the in-
tricate connections between input and output data by
refning cost function weights. Tis model can label the
dataset at the output. In contrast to supervised learning,
unsupervised learning does not predict the output’s label,
and it should underline any hidden layers in the input. In the
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reinforcement method, there is a feedback mechanism op-
posite to the supervised and unsupervised learning, and this
method can represent the relationships between the input and
output data. In cellular networks, URLLC is a crucial com-
munication service in 5G and 6G cellular networks, serving
various mission-critical applications. To address the distinct
quality of service (QoS) requirements of these URLLC ap-
plications, ML solutions show great potential and promise for
use in future 6G networks [56]. In [57], the authors focused
on ten essential ML roles within joint sensing and commu-
nication, communication-aided sensing, and sensing-aided
communication systems. It elaborates on the reasons and
methods behind leveraging ML in these areas and identifes
crucial avenues for further research.

4.2. Deep Learning. Today, communication systems gener-
ate large amounts of data trafc where advanced ML
methods are required for designing and managing the
communication components. Regarding the availability of
large datasets in communication systems, DNNs dealing
with this amount of data are required to solve complex tasks.
DL, like ML, can be divided into three groups: supervised
learning, unsupervised learning, and RL. DNNs include
many hidden layers (more than two) representing the re-
lationships between the input and output layers. Each layer
can consist of neurons where the activation function might
be sigmoid function, rectifed linear unit (RELU), threshold,
and softmax. Tere are two popular algorithms in DNN,
which are either feed-forward or back-propagation

Environment

Agent

s, r a

(a)

Environment

Agent N

Agent 3

Agent 2

s1, r1

s2, r2

s3, r3

a1

a2

a3

aN

a

Agent 1

sn, rn

(b)

Figure 4: RL schemes: (a) single RL and (b) MARL.

FL Server

Global Model FedAvg

FL communication
(Global Model Updates)

FL communication
(Local Model Updates)

Local Dataset

Local Processing

Local ML Model

Figure 3: FL framework with federated averaging [52].
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algorithms. Due to the strong prediction and ability to
analyze data, AI methods, including DNN, tackle the
problems of conventional methods [58].

Researchers are increasingly facing challenges with real-
time optimization in 6G cellular networks due to the
complexity of hybrid beamforming. In [59], the authors
examined diferent DNN structures to address beamforming
challenges in the THz band, specifcally for ultramassive
multiple-input multiple-output (UM-MIMO) systems.
Additionally, they explore the mathematical modeling
context of these DNN architectures. Also, in [60], a DL
algorithm is designed to decode spheres, aiming to address
the detection problem in multiple-input multiple-output
(MIMO) receivers.

Te work in [61] introduced a hybrid DL-based con-
gestion control mechanism that combines LSTM and sup-
port vector machine (SVM).Te goal is to resolve challenges
related to load balancing, network slice failure, and the
provision of alternative slices when failures or overloading
occur. To validate its efectiveness, the proposed model is
tested through simulations over a week, incorporating
multiple unknown devices and various slice failure and
overloading conditions. A hybrid quantum DL model is
suggested in [62], combining the functionalities of CNN and
RNN. Within this model, the CNN handles tasks such as
resource distribution, network reconfguration, and slice
collection, while the RNN is employed to manage error
proportion, load balancing, and other relevant operations.
Te study in [63] explored important concerns and potential
remedies concerning DL-based wireless channel estimation
and channel state information (CSI) feedback in the context
of 6G. Tis includes topics such as DL model selection,
acquiring training data, and designing neural networks for
improved performance. In [64], the authors presented
a novel approach that leverages a feedback algorithm called
argute distributed uplink beamforming which is combined
with an ofine-trained DL model to achieve efcient and
dynamic distributed uplink beamforming for 6G-enabled
Internet of vehicles applications.

4.3. Reinforcement Learning. Te advent of 6G technologies
has led to more intelligent and sophisticated networks. RL
employs multiple agents, which collaborate with service
stations in the cellular network to learn the best pro-
gramming parameters and improve the quality of service.
Tis learning approach can be seen as a balance between
supervised and unsupervised learning, with previous
knowledge providing indirect control over the system’s
optimal performance. Te agent’s objective is to maximize
the long-term accumulated reward. Many wireless chal-
lenges, including resource allocation, can be formulated as
RL problems. Utilizing various DRL architectures can help
resolve multiple wireless network issues, leading to the
development of advanced networking systems in 6G.

In [65], the authors introduced a two-level RAN slicing
approach based on an open radio access network (O-RAN)
to allocate communication and computation RAN resources
to URLLC end devices. For each level of RAN slicing, the

resource allocation problem is formulated as a single-agent
Markov decision process, and then, a DRL algorithm is
utilized to address it. In addition, the authors in [66]
conducted an extensive experiment to assess the efective-
ness of employing TL to expedite the convergence of RL-
based RAN slicing in the given scenario. Tey also in-
troduced a novel predictive approach to further enhance the
TL-based acceleration by identifying and reusing the most
optimal saved policy.

In [67], the authors presented an extensive overview of
research endeavors that have integrated RL and DRL al-
gorithms for managing vehicular networks, focusing par-
ticularly on vehicular telecommunications matters.
Vehicular networks have garnered signifcant attention in
research due to their unique characteristics and applications,
encompassing standardization, efective trafc management,
road safety, and infotainment. Te work in [68] ofered
a thorough survey of RL-enabled mobile edge computing
(MEC) and valuable perspectives for advancing this feld.
Moreover, it identifes the MEC challenges related to free
mobility, dynamic channels, and distributed services that
various RL algorithms can efectively address.

Regional satellite networks play a crucial role in the 6G
communication system, providing denser coverage and
more reliable communications in the target area. To opti-
mize resource utilization, virtual network embedding (VNE)
enables various virtual network requests (VNRs) to share the
same substrate network resources. In [69], the authors in-
troduced a DRL-assisted load-balanced VNE algorithm
(DRL-LBVNE) tailored for regional satellite networks.
Initially, we construct a cost-efective regional satellite
network scenario and establish its multifold coverage con-
straints. Besides, the rate-splitting multiple access (RSMA)
technique is used to handle extreme interference caused by
nonorthogonal transmission, making it highly efective in
addressing spectrum scarcity in the future 6G low earth
orbits (LEO) satellite communication system.Te authors in
[70] focused on the power allocation problem in LEO sat-
ellite networks using the RSMA mechanism and applied
a DRL technique to tackle this challenge. Additionally, the
authors in [71] suggested using UAVs as aerial backhauling
and relay mediums in a marine communication network
complemented by satellites and coastal BSs. Te research
focused on examining the power allocation strategy for
multisatellites in a 6G network context. Due to the non-
convex nature of the power allocation problem, we employ
DRL as an alternative to conventional optimization tech-
niques to solve it.

4.4. Federated Learning. FL brings applications such as edge
computing and on-device learning to 5G wireless networks;
however, these applications are vulnerable to poisoning and
membership inference attacks, which are key threads [72].
For instance, in [73], the authors proposed a dedicated FL
blockchain to ensure secure FL and create a marketplace for
solving federated learning problems. Te study in [74] in-
tegrated the FL into the 3GPP 5G data analytics architecture
for much lower communication. In [75], the authors
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explored combining an intelligent refecting surface (IRS)
and UAV to form an aerial IRS system, providing com-
prehensive 360-degree panoramic full-angle refection and
fexible deployment of the IRS system. To address the
challenges associated with providing high-quality, wide-
spread network coverage while meeting data privacy and
latency constraints, the authors propose an innovative so-
lution known as FL network via over-the-air computation
for IRS-assisted UAV communications. In [76], the authors
examined the signifcance of UAVs connected to 6G net-
works as aerial users, utilizing ML algorithms for advanced
applications such as object detection and video tracking.
Traditionally, ML model training takes place at the BS,
creating high communication overhead and possible privacy
concerns. Distributed learning algorithms such as FL and
split learning were introduced as solutions to overcome
these hurdles by training ML models using shared model
parameters exclusively.

Te authors in [77] proposed an innovative solution to
accelerate training processes in FL environments. Tis
scheme focused on optimizing training efciency by for-
mulating a problem that takes into account training loss,
resource consumption, and device heterogeneity through
convergence analysis. Additionally, to address the straggler
efect resulting from diversity and resource constraints in
edge devices, the authors introduce the IFBA searching
algorithm. Tis algorithm seeks to fnd an optimum in-
exactness of local models and frequency band allocation for
edge devices, thus improving FL performance overall. Te
study in [78] highlighted how FL was being used to analyze
the infuence of imperfections in uplink and downlink
links using FL technology. Tese researchers focused on
a multiuser massive multi-input-multioutput (m-MIMO)
6G network and explored its estimation errors for weights
for each round using zero-forcing and minimum mean
squared error techniques. Te authors in [79] introduced
an innovative FL framework with an incentive mechanism
based on the one-side matching theory. Tis mechanism’s
primary goal is to encourage and select users who will
actively take part in FL, with the ultimate aim of short-
ening FL convergence times while increasing proft for
participating users.

Te researchers in [80] addressed improving federated
learning within wireless mesh networks by taking into ac-
count the wide variety of communication and computing
resources available to routers and clients. To do this, a novel
framework is proposed in which each intermediate router
conducts in-network model aggregation before transmitting
data to its next hop. Tis approach seeks to minimize
outgoing data trafc, enabling the aggregation of more
models despite limited communication resources. In [81],
the authors provided a study on using distributed FL
techniques to improve road user/object classifcation using
Lidar data. Te authors present a novel decentralized ap-
proach to FL called consensus-driven FL, designed specif-
ically to work with deep ML architectures compliant with
PointNet and enable efcient LiDar point cloud processing
for road actor classifcation. In [82], the authors showcased
their work involving the development of three distinct case

studies, one of which is the smart airport scenario.Tese case
studies encompass eight diferent scenarios, exemplifed by
the concept of federated learning, and these scenarios, in
turn, involve nine distinct applications and AI delivery
models. Some examples of these models include smart
surveillance. Additionally, the study encompasses a sub-
stantial array of 50 sensor and software modules, with an
instance being the object tracker module.

5. 6G Emerging Technologies

6G wireless communications bring about many innovative
new technologies that push the limits of connectivity, data
rates, latency, and applications [83]. Collectively, these
emerging technologies create the landscape of 6G wireless
communications, though their exact form and eventual
deployment remain to be determined. Since 6G remains in
its conceptual/early research stage, however, several
emerging technologies have already been proposed as po-
tential inclusion in its ecosystem:

5.1. Terahertz (THz) Communication. Terahertz frequencies
ofer impressive data rates due to their extensive bandwidth.
THz communication could even allow multi-terabit-per-
second connections, making this technology perfect for
applications that demand bandwidth-intensive connections
such as HD video streaming or AR. THz ultramassive
MIMO has the capability of creating highly amplifed, highly
focused beams using advanced beamforming technologies
[84]. THz communications stands out among various po-
tential solutions as an exceptionally potent technology to
facilitate 6G and subsequent generations. With its ability to
enable terabit-per-second transmissions for emerging ap-
plications, its signifcance cannot be denied. In [85], the
authors delved deeply into the pivotal areas necessary for
developing comprehensive THz communications systems,
specifcally physical, link, and network layers, providing the
primary areas of study.

Understanding the fundamental characteristics of
THz wireless propagation channels serves as the cor-
nerstone for developing robust THz communication
systems and applications [86]. In [87], the authors
thoroughly investigated AI integration within cutting-
edge THz communications, considering its challenges,
prospects, and limitations associated with this integration.
Furthermore, they also explored existing platforms for
THz communications, from commercial options and
testbeds to public simulators and simulators available
publicly. Te researchers in [88] presented an innovative
endeavor designed to facilitate adaptable and secure THz
communications. Tey marked an experimental in-
vestigation into modulation and bandwidth classifcation
at THz frequencies using deep DL techniques. In [89], the
authors conducted an in-depth exploration of recent
studies pertaining to THz frequency communication
between UAVs and THz frequencies, providing insight
into its various facets and distinguishing features. Fur-
thermore, this investigation explores challenges and
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prospects related to the physical layer of THz-UAV
communication, providing greater knowledge of its
complex nature.

5.2. Holographic Beamforming. Advanced beamforming
techniques using holography could allow for more precise
and efcient beamforming, providing highly targeted
adaptive signal transmission and improving both spectrum
efciency and network coverage. Real-time holographic
video communications provide opportunities for immersive
encounters within advanced video services in the coming
metaverse era. However, creating high-fdelity holographic
videos requires signifcant bandwidth and computational
power, surpassing current 5G network capabilities in terms
of transmission capacity [90]. In [91], the authors introduced
an innovative LSTM-based scheme that can accurately as-
certain both zenith and azimuth angles to enable accurate
localization of users. Tis will ultimately allow accurate
determination of present user locations. Tese users include
those directly served by holographic MIMO (HMIMO)
systems and those taking advantage of refective and re-
fractive channels emanating from intelligent omnisurface
technology. Te authors in [92] implemented HMIMO
communications using intelligent metasurfaces stacked to
eliminate radio-frequency chains that would otherwise need
to be utilized. Creating an efective channel model is one of
the primary research challenges associated with wireless
systems employing multiuser holographic MIMO (MU-
HMIMO) technology. Tis challenge is made more formi-
dable due to the complex interactions arising from having
numerous nearby patch antennas [93]. In [94], the authors
explored the sum-rate analysis of MU-HMIMO systems and
recent advances in holographic beamforming techniques.

5.3. Quantum Communication. Quantum communication
provides unparalleled security through quantum essential
distribution methods that prevent data transmission from
eavesdropping. Integrating quantum principles into 6G
networks could bring additional privacy and data protection
measures into play. Quantum technology integration im-
proves system performance while increasing security and
dependability; its potential is unrealized in future com-
munication systems. Fundamental concepts related to
quantum communication, information processing, design
goals, visions, and protocols have been presented in [95].
Also, in [96], the researchers provided a visionary and
technology-focused account and exploration of how
quantum information technology may be leveraged for the
advancement of future 6G wireless networks. In [97], the
authors discussed in-depth examination, analysis, and
prospective outlook of quantum communications and
networking compared to conventional Internet. Discussion
topics of quantum networks cover fundamental concepts,
technological innovations, and challenges associated with
them. Te authors in [98] also introduced an innovative
examination of quantum communication network (QCN)
performance, using an innovative, physics-oriented ap-
proach derived from quantum physical principles governing

various QCN components. Te necessity for this physics-
based approach is examined for its importance as part of
practical designs within various realms of ongoing research.

5.4. Reconfgurable Intelligent Surfaces (RIS). RIS technology
involves employing arrays of small, programmable refectors
that manipulate radio waves in real time for enhanced signal
quality, coverage extension, and interference mitigation.
RISs are expected to transform the propagation environ-
ment, creating an intelligent radio environment with dy-
namic capabilities for 6G wireless communications
applications. Tis transformation could radically reshape
wireless communications landscapes and enable un-
precedented capabilities and functionalities. In [99], the
authors conducted a systematic exploration of emerging
technology, covering its fundamental components as well as
nine pivotal issues related to it, providing comparisons
between massive MIMO and RISs and outlining one crucial
challenge. Tis comprehensive overview ofers an in-depth
examination of RIS technology, covering its key principles,
critical considerations, and areas of signifcance. In [100], the
authors presented an in-depth examination and innovative
proposal for the beyond diagonal RIS model. Tis model
breaks free from conventional diagonal phase shift matrices
to provide a unifying framework to harmonize diverse RIS
modes and architectures. In [101], the authors explored an
engaging scenario related to RIS-assisted communication
systems. Teir study focused on situations in which
complete phase error elimination is beyond the capabilities
of the RIS, and user locations have an uncertain distri-
bution. At present, ML algorithms deployed within RIS
systems have seen considerable uptake, as has their use by
DL-based algorithms aimed at increasing constrained
channel estimation performance within these communi-
cations aid systems [102]. Additionally, such an imple-
mentation could potentially yield substantial cost-cutting
opportunities [103, 104].

5.5. Integrated Satellite and Terrestrial Networks (ISTN).
Seamless integration of satellite and terrestrial networks can
provide global coverage and reliable connectivity, bridging
the digital divide in remote and underserved areas. Te
concept of an ISTN holds great promise in delivering
worldwide broadband access to users of all kinds. Tis
notion has garnered signifcant interest from both academia
and industry stakeholders. Several articles, such as
[105, 106], provided a review of ISTN in terms of archi-
tectures and key techniques and highlighted its charming
potential in the 6G era. In [107], the authors outlined an
intelligent strategy that utilizes IRS to augment the capa-
bilities of uplink transmission, aiming to enhance both
coverage and efciency within the ISTN context. In [108],
the authors introduced an exploratory analysis of a semi-
grant-free transmission approach. Tis strategy is designed
to ofer versatile connectivity options for diverse user cat-
egories within the framework of ISTN. In terms of AI, RL
was utilized to enable intelligence in nonterrestrial-based
communications [109], DL with diferential privacy for
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integrated terrestrial and nonterrestrial networks (ITNTs)
[110], and utilizing a multiagent approach in DRL for the
purpose of user association and resource allocation is ex-
plored within the context of ITNTs [111].

5.6. Hyperconnected Edge Computing. Edge computing in-
frastructure combined with URLLC will facilitate real-time
processing of data at the edges of networks—critical for
applications such as AV, AR, and industrial automation
systems. AI-enhanced edge devices will process data locally
to reduce latency and relieve core network trafc while
supporting applications such as IoT and AR. Hyper-
connected edge computing could transform 6G cellular
networks. Te core of the system lies in AI-powered edge
devices which will not only process data but also drive
transformative applications [112–114]. Tis approach holds
promise to overcome latency issues and network congestion
issues associated with IoTand AR applications, among other
requirements. AI-powered edge devices serve as local data
processing hubs. By processing data closer to its source,
these devices signifcantly decrease latency and relieve strain
on core networks—an architectural shift especially essential
when responding to real-time experiences or time-sensitive
IoTapplications. AI and edge computing work hand in hand
to provide cutting-edge analytics and decision-making at the
edge. AI algorithms can rapidly analyze streaming data
streams in real time to extract meaningful insights that lead
to intelligent local actions. Hyperconnected edge computing
encapsulates AI with network architecture in an innovative
solution for efciency enhancement and mission-critical
application support. Hyperconnected edge computing also
stands as proof that AI and network architecture converge.
6G networks can leverage AI’s rapid processing abilities to
support an ever-more-connected world and unleash IoT,
AR, and other emerging applications’ full potential while
ofering users seamless experiences that respond instantly
and smoothly.

6. AI Applications in Wireless Networks

Tis section provides a comprehensive overview of the
application in the era of 5G wireless communications. AI
technology is necessary for obtaining cognitive resource
management in wireless communication systems [44, 115].
AI methods can generate channel modeling autonomously
without the need for theoretical analysis [116]. Besides with
the light of AI techniques such as DNNs, more reliable
channel information can be provided by predicting the
future channel information by using the past measurements
[117]. In [118], the DNN method is applied for dimmable
optical wireless communication systems to tackle the
problems that appear from signal-dependent optical chan-
nels. Also, in [119], the DRL method is applied for capturing
and estimating system dynamics for solving the difculties of
resource allocation and also making the arrangement in the
backhaul of millimeter wave (mm-wave) networks. AI
method is also applied in multiaccess edge computing
(MaEC) topic [120], where, in [121], the stochastic online

learning method is presented for the concept use of MaEC.
In this section, various use cases in wireless communication
systems are presented by applying AI-enabled methodolo-
gies. With the iniquitousness of smart mobile gadgets and
the revival of artifcial intelligence, various AI-empowered
mobile applications are emerging. In this section, we present
how AI applications strengthen future wireless networks.

6.1. Big Data Analytics. Leveraging big data analytics within
6Gwireless networks involves harnessing its immense power
for insights and performance optimization and improving
various aspects of communication and network adminis-
tration. 6G technology promises signifcant advancements in
terms of data speed, capacity, latency, and connectivity.
Tese advancements produce vast quantities of data from
various sources such as user devices, IoT devices, sensors,
and network infrastructure [122]. Big data analytics entails
collecting, processing, and examining large volumes of in-
formation to discover useful patterns, trends, and correla-
tions that reveal meaningful meaning. As urban areas
continue to expand and technology progresses, smart cities
have emerged to address resource management, urbaniza-
tion, and environmental sustainability. Integrating advanced
wireless networks and big data analytics plays a pivotal role
in realizing smart environments and sustainable cities [123].
In [124], the authors introduced an approach utilizing re-
liable mobile FL classifcations tailored for mobile devices
within an intelligent source distribution system that in-
tegrates big data analytics and AI techniques for efective
source distribution. Tis system’s primary goal is data ef-
fciency distribution using these resources efciently.

6.2. Data Caching. Data caching has grown increasingly
valuable with the rising need for fast, low-latency services in
5G/6G wireless networks. Caching refers to storing fre-
quently requested content nearer end users through various
network locations so as to meet this higher demand for fast
services. Caching mechanisms within these networks often
employ sophisticated algorithms and AI and ML techniques
to anticipate user demand patterns and determine what
content needs to be stored in their caches. Te researchers in
[125] categorized mobile edge caching solutions using RL
techniques. Tis provided invaluable insight into the eco-
system of mobile edge caching while also revealing in-
novative caching strategies utilizing RL with enhanced
potential. Besides, an in-depth examination of cutting-edge
intelligent data caching methodologies powered by learning
mechanisms is presented in [125]. Tis review ofered an
invaluable roadmap through the complex world of AI-
powered data caching, providing strategies that efectively
balance storage needs with network efciencies. In [126], the
authors focused specifcally on caching at a small SB level in
an attempt to minimize data access delays.Tey proposed an
innovative data caching solution powered by intelligence
that utilizes an RL framework in AI to signifcantly shorten
retrieval timelines for small cell networks while improving
efciency overall. In [127], the researchers presented an in-
novative caching and computing ofoading scheme to enhance
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system performance in smart home environments. By
employing the deepQ network algorithm, this study generated
optimal ofoading and caching decisions designed to mini-
mize system latency. Furthermore, another work presented in
[128] investigated content distribution within hotspot regions.
Te main contribution of this work is the deployment of
several cache-enabled UAVs designed to reduce congestion
within dense cellular networks, thus providing promising
paths towards optimizing content delivery and network
performance through dynamically incorporating UAVs.

6.3. Mobility Management. Mobility management is the
function of communication networks that enables mobile
systems to work. In other words, mobility management can
create mobility options to enhance the efciency and af-
fordability of various systems. Long-term evolution (LTE)
stands as a fourth-generation (4G) wireless standard that
delivers enhanced network capacity and speed for mobile
phones and other cellular devices, surpassing the capabilities
of third-generation (3G) technology. In the new radio
nonstandalone, this LTE carrier is applied for handling
mobility management tasks. Hence, mobility management
has important efects on the performance of the system, and
intelligent methods are required for controlling the various
responsibilities. Several works on 5G mobility management
have presented various techniques to improve network
performance [129–133]. However, integrated AI-based
methods and optimizations will pave the way for 5G/6G
performance requirements by decreasing the latency for the
new emerging applications, leading to work at low- and
high-frequency bands. Most importantly, using the AI
methods improves the continuous connectivity to the mo-
bile user equipment. In [134], the authors introduced a range
of prevalent ML types and mobility management techniques
aimed at enhancing network performance. In [135], the
authors presented a novel strategy that combines centralized
and MARL approaches to achieve optimal performance
levels. Also, the authors in [136] introduced a handover
technique satellite-ground integrated network that leverages
the adaptive learning rate with momentum framework
within the deep Q-network. Tis approach not only en-
hances the precision of decision-making but also elevates the
efectiveness of the learning process.

6.4. Intelligent Resource Management. Intelligent resource
management represents a remarkable development for
wireless networks, optimizing resource allocation in order to
meet the growing connectivity demands in today’s fast-
changing global environment. AI algorithms play a piv-
otal role in wireless network efciency and adaptability,
providing seamless connectivity while opening up potential
avenues of innovation across industries. Tis development
showcases AI’s transformative potential within connectivity.
Researchers published evidence in [137] supporting the
potential value of using an AI engine with multiple AI al-
gorithms for comprehensive life cycle management of
network slices, showing its ability to maximize both slice
performance and efciency by employing various techniques

from AI. In [138], authors explored resource management
through an optimization policy, DL, and ensemble learning
techniques designed to simultaneously optimize resource
element refection coefcients, transmit power allocation for
BS, wideband THz resource block allocations, and allow
coexistence between URLLC and eMBB systems. Te au-
thors in [139] provided an in-depth exploration into net-
work slicing resource management, underscoring its
importance, especially with tenants requesting multiple
slices at once. Tis research explored key stages in resource
management and evaluated RL/DRL algorithms at each
phase for autonomous behavior to increase network slicing
efciency. Also, in [140], the authors have devised an
adaptive learning framework tailored for resource and load
prediction within data-driven beyond 5G/6G wireless net-
works using insights gained through transformal TL, cre-
ating an innovative network slicing architecture that
promises to redefne advanced wireless systems for years
to come.

6.5.MassiveMIMOandBeamforming. One of the features of
the next generation is the MIMO method, which is able to
multiply the capacity of a radio link by getting the beneft of
multiple transmissions and receiving antennas [141, 142]. AI
methods can be applied for an accurate estimating of the
channel [143], mapping channels in space and frequency
[144], and also for allocating power in massive MIMO [145].
In communication systems, the base station requires valid
and accurate CSI for precoding [146, 147] and scheduling
operations in the vast MIMO systems. For this case, in order
to improve the spectrum efciency, in [148], DL is used for
tackling the problems in device memories at the user
equipment. Channel estimation with received signal-to-
noise ratio (SNR) feedback is another important factor in
MIMO systems. Te study in [149] utilized received SNR
feedback to estimate coefcients of the MIMO channel at
a transmitter side. Additionally, the downlink channel re-
construction scheme can be optimized using DL for massive
MIMO systems where high accuracy parameters can be
estimated [150]. In the presentedmethod, the channel model
parameters are trained instead of the channel matrix by
using the neural networks. Terefore, various benefts of AI
methods have been demonstrated where, in comparison
with traditional methods, more accurate outcomes and
satisfactory performance can be achieved, for example, in
estimating channels and reducing the number of pilots in
communication systems.

6.6. Channel Coding. In wireless communication systems,
channel coding can be one of the methods for improving the
overall system performance. Some of the parameters that can
be considered in the channel coding scheme are the bit error
rate, packet error rate, and computational complexity that
afects the overall performance. Channel coding can be
applied for detecting errors or for correcting errors. Te
error detection coding is known as automatic repeat request,
where the receiver is able to petition a transmission repeat
with two-way communications. Te error correction coding
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is the forward error correction coding in that the receiver is
detecting errors, and by using the feedback, errors are
corrected. AI methods are also applied for the channel
coding (encoder and decoder) of wireless communications.
Tese methods are more powerful in mapping the non-
linearities in various aspects, such as computational com-
plexity, processing latency, coding performance, and power
consumption [151]. In [152], the authors provided several
current trends in DL-aided channel coding. In [153], the AI
method is used for designing error correction codes, and it is
proved that improved outcomes are achieved in the case of
list decoding for polar codes by learning the parameters of an
optimal code. Figure 5 shows the logic of error correction
using the AI method.

Te researchers in [154] introduced an innovative
communication system in which a neural network forms the
foundation.Within this framework, both the channel coding
and modulation components are represented as neural
networks. Tis novel architecture amalgamates the turbo
autoencoder approach with feed-forward neural networks
dedicated to modulation tasks. In another work, a novel
channel estimation approach by utilizing residual deep NN
is developed in [155] to exhibit a remarkable advantage of
over 2 dB compared to the conventional minimal MSE
channel estimation. Also, several works have been discussed
on deep joint source-channel coding using DL for CSI
feedback [156], wireless image transmission [157], low delay
[158], and wireless multipath fading channels [159].

6.7. Network Management. Networks across hybrid envi-
ronments are growing in credibility, and management is
getting more diverse challenges. Networking is a promising
technology that can provide efcient computational re-
sources for optimization methods. Due to the advanced era
of integration and analytics, network innovation and evo-
lution are becoming difcult from theoretical and industry
aspects. A very clear example of this development is the
Internet, where network operators are working continuously
in both wired or wireless types in the application of network
security and so on. Te application of networks with respect
to the required specifcations can be diferent; thus, ad-
vanced methods such as AI approaches are needed for
supporting modern network operations. AI methods can be
applied for interference and spectrum management, link
adaptation, and trafc congestion. Network management
can provide stabilization of input from multiple manage-
ment platforms [160]; thus, developing a framework uti-
lizing ML algorithms can assist in creating an autonomous
network management system. Te primary goal of this
framework is to transition from traditional human-centered
approaches to managing networks to a new paradigm where
machines take a more central role in managing and opti-
mizing network operations [161]. Te presented concept in
[162] suggests an architectural integration of the network
data analytics function and the intent-based networking
concept, synergizing them with ML techniques for the
analysis of monitoring data. Tis innovative approach cul-
minates in the establishment of a system capable of

seamlessly ofering automated validation and enhancement
functionalities for the 6G core networks. In [35], the authors
explored the integration of network management, UAVs,
and emerging technologies such as blockchain and AI/ML in
the context of 6G networks. It emphasizes the challenges
faced by UAV swarms in terms of security, privacy, in-
telligence, and energy efciency within the 6G mobile
network.

7. Challenges and Future Trends in 6G
AI-Enabled Wireless Communications

7.1. Challenges and Complexities

7.1.1. Massive Data Handling. 6G networks will generate and
process massive volumes of information, creating storage,
processing, and bandwidth demands which must be managed
efciently in order to stay competitive in today’s globalized
society. 6G mobile technology could revolutionize data
handling as more devices contribute information. AI plays an
invaluable role in managing this data infux [7, 163, 164].
High-speed 6G networks have the capability to transmit large
volumes of IoT device and vehicle-generated information
quickly and reliably. AI storage solutions also play an integral
part in prioritizing and classifying this data to reduce latency,
with edge computing providing local processing support that
further optimizes latency management. AI analytics help sift
through this vast amount of data in search of insights that
enable real-time decision-making—for example, optimizing
trafc or resource allocation decisions. AI allows for real-time
adjustments such as optimizing trafc or resource allocation
and real-time threat detection and privacy protection of
personal information privacy. Network management stands
to gain greatly from AI’s predictive abilities, with AI/6G’s
combination being potentially disruptive across industries
and daily life by efciently meeting volumetric, speed, and
security concerns.

7.1.2. AI Algorithm Complexity. Implementing sophisti-
cated AI algorithms across 6G networks in real time requires
considerable computational power and hardware efciency;
their complexity presents an insurmountable obstacle.
Advanced AI algorithms must be designed and deployed
seamlessly across these networks in real time. AI develop-
ment requires substantial computational power and opti-
mized hardware, with more complicated AI algorithms
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Figure 5: Logic of error correction using AI method [153].
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emerging as 6G networks expand to handle massive amounts
of data. As 6G networks take shape to handle such loads more
seamlessly. Tese algorithms, ranging from DL-NN and RL
models, demand signifcant processing power and must be
carefully designed and optimized in order to guarantee
seamless real-time performance. In order to guarantee this goal,
hardware must also be tailored towards these algorithms in an
efort to deliver maximum real-time efciency. Due to the
demanding nature of AI computations, efcient hardware
becomes critical to their success. High-performance graphics
processing units (GPUs), dedicated AI accelerators, and even
quantum computing technologies may all help address in-
tricate computations efciently. Hardware’s ability to efciently
process parallel tasks and execute complex matrix operations
will have a direct bearing on an algorithm’s efectiveness, and
power efciency should also be an issue of concern. Due to the
mobility of 6G networks, energy-efcient hardware becomes
crucial in order to prevent excessive battery drain in user
devices and network infrastructure. Given AI algorithm
complexity is prevalent within 6G networks, an approach
towards hardware design and optimization must also be
strategically applied in this endeavor. Real-time computation
demands of AI algorithms require hardware that balances
performance, power consumption, and scalability if we want to
unlock their full potential in next-generation mobile networks.

7.1.3. Interference Management. Interference management
poses one of the greatest obstacles to 5G networks and beyond.
Due to an explosion of devices and technologies, interference
issues have grown increasingly complex over time. HetNets
and femtocells can provide efective solutions, yet cotier in-
terference remains an obstacle [165]. Furthermore, HetNets
ofer better spatial spectrum reuse and QoS performance
compared with homogeneous networks. Efective resource
management is crucial in HetNets in order to prevent in-
terference and enable spectrum sharing [166]. Te new net-
work design incorporates various technologies such as IoT,
device-to-device (D2D) communication, mm-wave, beam-
forming,M-MIMO, and relay nodes that need to be compatible
with traditional networks. However, simultaneous use of dif-
ferent technologies has led to signal interference issues [167].
Addressing such complexity requires the integration of ad-
vanced AI techniques that promote efective coordination and
optimization. 6G networks present unique challenges due to
multiple devices sharing one frequency spectrum simulta-
neously, from smartphones and IoT sensors through AV and
industrial equipment, all coexisting side by side on one network
and often leading to interference that compromises network
performance and user experience. Traditional methods for
managing interference between devices may prove inadequate
due to their sheer scale and heterogeneity; ML algorithms ofer
real-time management by learning dynamic interference pat-
terns in real time and adapting accordingly. By analyzing large
volumes of data, these algorithms are capable of anticipating
and mitigating interference by dynamically adjusting param-
eters such as transmitting power allocation and resource al-
location. AI also facilitates intelligent scheduling to ensure
devices with diverging communication needs are coordinated
efciently.

7.1.4. Energy Efciency. Energy efciency remains a top
challenge, particularly when integrating power-hungry AI
algorithms into wireless devices and infrastructure. As smart
devices become ever more common and the IoT takes shape,
wireless communication has emerged as a signifcant force
driving social transformation. Edge intelligence can provide
an important solution for improving user experiences with
limited resources. However, efectively managing in-
dependent yet interconnected edge nodes to maximize
decentralized learning approaches can present daunting
challenges [168]. Energy efcient computing in today’s 6G
networks involves increased resource use with reduced
energy usage, shifting away from traditional perceptions of
networks as being only transmission conduits. To address
this challenge, an energy-efcient in-network computing
paradigm for 6G mobile HetNets is being created by in-
corporating network functions onto a universal computing
platform that integrates network functions efciently. Te
computing loads will be alleviated as transmission overhead
decreases while data center energy consumption declines
[169]. Furthermore, efcient network management plays an
equally critical role when meeting stringent QoS re-
quirements, especially within its complex and densely
packed mobile HetNet framework with regard to tasks re-
lated to variousML approaches [170]. Researchers are driven
by an eagerness to conserve energy to conduct multiple
studies that promote eco-friendly communication practices.
Even with signifcant technological progress, energy ef-
ciency remains a formidable obstacle, particularly when
integrating AI algorithms that require large amounts of
power into mobile networks such as 6G. Combining ad-
vanced AI with the energy constraints of wireless devices and
infrastructure presents an intricate dilemma. 6G networks,
with their expanded connectivity, ofer immense promise to
support an array of applications from AR to autonomous
systems. However, the implementation of sophisticated AI
algorithms necessitating substantial computational power
may lead to higher energy use as efciency is of the utmost
importance due to mobility factors inherent in 6G networks.

7.1.5. Privacy and Security. AI and ML play an invaluable
role in shaping 6G landscapes, providing it with themeans to
gain knowledge from unpredictable, ever-evolving envi-
ronments. However, this collaboration of AI with 6G brings
with it both advantages and drawbacks akin to two sides of
a double-edged sword. AI technology may improve the
privacy and security aspects of 6G in several ways; on the one
hand, AI ofers great promise to advance these aspects, yet,
on the other, it introduces risks related to security breaches
that pose signifcant threats to its future [171]. As AI-enabled
networks open a new era of connectivity, they raise legiti-
mate concerns regarding data privacy, security vulnerabil-
ities, and ethical considerations of AI insights generated.
Concerns also persist surrounding 6G applications driven by
AI/ML [28]. Tese concerns include protecting sensitive
data, restricting unwarranted access, and mitigating po-
tential vulnerabilities that might compromise AI-powered
systems in 5G environments and beyond. Although these
networks hold promises of transformational benefts,
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potential risks must also be carefully considered to create
a responsible and secure digital landscape. Innovation must
coexist with protecting against risks to ensure the greatest
gains can be realized without endangering the privacy, se-
curity, or well-being of both individuals and societies alike.

Data privacy has become a top concern as AI algorithms
collect and process increasingly large volumes of user data.
Any failure in managing personal information properly
could result in possible breaches. Securing individual privacy
through strong encryption, user consent, and transparent
data handling practices is vital in protecting individual
identity. Security breaches pose another signifcant danger.
6G and AI can have both security and privacy-enhancing
capabilities and potential safety concerns when combined.
Underlying future networks’ end-to-end automation are
proactive threat detection, implementation of intelligent
mitigation techniques, and realizing self-sustaining 6G
networks [27]. As part of these activities, ethical guidelines,
regulations, and safeguards to avoid the misuse of AI-
generated insights are imperative in maintaining trust
from both users and stakeholders alike.

7.1.6. Regulatory and Ethical Issues. Integrating AI tech-
nologies into wireless networks requires new regulatory
frameworks that address safety, privacy, and ethics issues. In
this regard, 6G networks ofer unprecedented connectivity
and innovation potential. All progress requires robust
regulatory and ethical frameworks that protect safety, pri-
vacy, and other aspects of moral considerations. As AI
continues its rise as an infuential force within 6G networks,
new regulations must be put in place in order to ensure its
safe usage—such regulations must address issues related to
data privacy, user consent, and transparency. Maintaining
a balance between using user data for improved services
while upholding privacy rights will be crucial to building
trust with AI implementation projects, not forgetting any
ethical considerations involved. AI algorithms may cause
bias, discrimination, or unexpected results, which require
careful examination by regulatory bodies and technology
developers alike. Guidelines must be established by both in
order to mitigate risks and promote equitable results for
everyone involved. Artifcial intelligence and wireless net-
works require close cooperation among legal, technological,
and ethical specialists in order to be used efectively as
engines of progress within society. By considering ethical
considerations while following legal regulations, 6G net-
works can harness AI for positive efects within our soci-
ety—benefting individuals, industries, and society at large.

7.2. Future Trends

7.2.1. Intelligent Spectrum Management. Intelligent spec-
trum management will play a pivotal role in 6G networks,
using AI-powered services to revolutionize how spectrum
resources are allocated and utilized [7, 172]. Faced with
rising connectivity requirements and an oversaturated radio
frequency environment, AI’s role in dynamically optimizing
network performance and mitigating interference becomes

all the more crucial. Spectrum allocation has historically
been static, thus leading to inefciency and underutilization.
AI has transformed networks by making real-time adjust-
ments based on fuctuating demand and interference pat-
terns. AI algorithms are capable of processing various
sources of data relating to user behaviors, device types, and
environmental conditions to make informed decisions re-
garding spectrum allocation decisions. AI-powered systems
can use smart frequency assignment to ensure efcient use of
spectrum usage, thus limiting congestion and increasing
data throughput. AI can detect interference sources and
dynamically adjust transmission power and frequency pa-
rameters to reduce network performance impacts; its in-
tegration into spectrum management holds great promise.
Intelligent spectrum management enables coexistence
among various wireless technologies and the deployment of
applications that rely on seamless and reliable connectivity
and ensures optimal use of this scarce spectrum resource for
the maximum potential of 6G networks and improved
wireless experience for users and devices.

7.2.2. AI-Driven Beamforming and Antenna Arrays.
Advanced AI beamforming techniques will maximize signal
transmission, increase coverage, and address any specifc
challenges presented by mm-wave frequencies. Explorations
into various strategies for 6G wireless networks have begun
in earnest as specifcations for 5G are close to fnalization. Of
all the potential technologies for service providers of this
generation of 6G networks, RISs stand out. Tese surfaces
allow a system to shape wireless channels with un-
precedented degrees of freedom, giving it the capability of
customizing each channel’s characteristics as required.
However, to fully comprehend radiation pattern attributes,
an in-depth knowledge of how a metasurface behaves across
all possible operational situaitions is required [173]. Both
analytical models and exhaustive wave simulations can be
utilized to gain more insight into radiation pattern attri-
butes; each has limitations in certain situations while de-
manding signifcant computational resources.

7.2.3. Autonomous Networks. 6G networks will shift to-
wards greater autonomy with AI-powered self-healing, self-
organizing, and self-optimizing features. Mobile networks
have come under immense strain due to new applications
and services coming online rapidly and widespread mobile
device use. Managing these demands, however, can be ex-
tremely complex given the heterogeneity of networks that
increase heterogeneity over time, but embracing innovative
network automation solutions may prove efective here, with
zero-touch management methods being one approach [37].
Blockchain-based smart systems can be utilized as part of an
architecture for zero-touch pervasive AI as a service in 6G
networks, creating platform architecture aimed at stream-
lining its deployment across application and infrastructure
domains, relieving users of worrying about costs, security, or
resource allocation requirements while meeting 6G’s
stringent performance criteria [174]. Tis platform would
need to meet standardization of PAI at every level and
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unifcation interface so as to facilitate service deployment
across application and infrastructure domains and meet
stricter performance criteria of 6G networks simultaneously.

As many 6G services are mission-critical applications or
directly impact human lives, ethical responsibility and
trustworthiness of autonomous systems are both necessary
for their successful deployment and integral parts of en-
suring their long-term viability [175]. Multiple factors
should be taken into consideration to assess ethical re-
sponsibility including automatic testing and monitoring,
ethical principles, moral theory, blockchain implementation,
and explainability to create an ethically accountable au-
tonomous system in 6G.

7.2.4. Quantum-Assisted AI. Quantum-assisted AI promises
to open new horizons for optimization, cryptography, and
solving intricate wireless network challenges. Quantum
computing and AI represent a powerful combination with
enormous potential to radically revolutionize wireless
communications [96, 176]. Quantum computing’s ability to
perform complex calculations at rapid speeds makes it the
perfect partner for AI’s data processing abilities. Synergies
between these technologies promise breakthroughs in
solving optimization problems, providing more efcient
network management, resource allocation, and spectrum
utilization across 6G networks. Quantum-assisted AI could
add another level of protection against cyber threats by
strengthening encryption processes. Quantum algorithms have
the potential to strengthen encryption protocols by making
them more resilient against attacks from powerful quantum
computers and providing data privacy and security within an
increasingly connected 6G landscape. Besides, quantum-
assisted AI has the ability to address difcult wireless com-
munication challenges that conventional computing methods
cannot. Integrating leading-edge technologies has the power to
ofer unheard-of solutions once thought unobtainable—from
mitigating interference, optimizing signal processing, and
simulating complex network scenarios.

As quantum-assisted AI continues to advance, it will
challenge conventional assumptions regarding 6G networks
and what can be accomplished within them.Tis partnership
could revolutionize not only wireless communications but
also industries dependent upon an unobstructed fow of
information and intelligence. Emerging applications that
rely heavily on data, including tactile Internet, immersive
experiences (virtual or AR), autonomous mobility, and
industrial automation, pose unprecedented difculties when
it comes to reaching URLLC within 6G networks.
Employing various machine intelligence techniques such as
DL, RL, and FL assists in developing new approaches that
maintain robust 6G URLLC capabilities amidst continuous
streams of training data [177]. However, their inherent
constraints pose difculties in meeting the demanding 6G
URLLC criteria.

7.2.5. AI-Enabled Satellite Networks. 6G networks will in-
tegrate AI into satellite communications systems to increase
global coverage, disaster response times, and cross-network

integration—marking an enormous advancement for 6G
technology [178–180]. AI’s integration into satellite com-
munication systems promises to revolutionize global cov-
erage, disaster response, and integration—with one potential
advantage being enhanced global connectivity. Utilizing AI
for optimization and adaptive resource allocation, satellites
are now capable of adaptively altering their coverage areas
and frequencies depending on real-time demand and pro-
viding uninterrupted communication in remote or un-
derserved regions. AI-powered satellite networks provide
swift disaster response capabilities during times of crisis. AI
can quickly evaluate and process data to quickly detect areas
afected by disasters, optimizing communication resources
and supporting emergency services and relief activities in
real time. AI can play an instrumental role in more efcient
disaster management and network integration. Satellites
may seamlessly blend in with terrestrial 6G networks, IoT
devices, and edge computing systems for an interconnected
system in which AI-assisted analysis enables data-based
decision-making through satellite observations. Conse-
quently, AI technology integrated into satellite networks for
6G would signifcantly expand worldwide connectivity,
revolutionize disaster response processes, and facilitate
convergence across diverse network infrastructures. Re-
alizing its vast potential would produce benefcial societal
efects while creating revolutionary advancements to revo-
lutionize global collaboration.

7.2.6. AI for Environmental Sustainability. AI will play an
increasingly prominent role in 6G networks to maximize
resource usage, lower energy usage, and support green
communication solutions. As demand for energy-efcient
communication networks escalates, faster data rates and
expanded capacities for supporting an ever-increasing
amount of trafc are required [181]. Increased attention is
being focused on the negative outcomes associated with
climate change, scarcity of raw materials and rising energy
costs, and unequal and biased utilization of technology.
Terefore, in addition to traditional performance indicators,
it is crucial to account for ecological impact assessments,
energy usage analysis, and resource allocation as well as
inclusiveness and impartiality when planning future strat-
egies and performance evaluation. Consequently, AI in-
tegration in 6G networks presents an opportunity to address
concerns related to inclusiveness and impartiality. Tis
could be accomplished by developing intelligence algo-
rithms that take account of users’ various requirements
while eliminating bias in resource distribution. Further-
more, 6G networks also promise to contribute towards
digital divide reduction by providing equal access to com-
munication services. Besides, AI algorithms assist in the
adjustment of network confguration under energy avail-
ability and environmental conditions, resulting in eco-
conscious communication infrastructures.

7.2.7. AI-Enhanced Network Slicing. AI-powered network
slicing will deliver customizable network slices tailored spe-
cifcally to various industries and applications as required.
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AI-powered network slicing will likely play a pivotal role in 6G
networks, providing adaptable solutions tailored to specifc
industries or applications [34, 182, 183]. Network slicing refers
to the practice of partitioning one physical network in-
frastructure into multiple virtual ones that cater specifcally for
specifc use cases. Based onAI technology, this approach has the
capability of rapidly adapting and improving in response to
users’ evolving requirements, meeting all aspects of users’ re-
quirements efectively. AI-powered network slicing enables
precise customization of networks to suit a range of applica-
tions, such as AV, smart cities, and industrial IoT services. AI
algorithms analyze trafc patterns, user behavior, and real-time
network demands to allocate resources intelligently for optimal
performance thus increasing resource utilization while im-
proving user experiences. An AR network slice may place
greater focus on minimizing latency, while IoT slices may
prioritize conserving energy use. AI integration within network
slicing is central to 6G’s ability to meet various use cases and
accommodate complex usage situations. AI-powered network
slicing could radically revolutionize network provisioning and
management. It allows companies to more quickly meet cus-
tomer demands with fexibility and accuracy while taking a 6G
capability approach which provides customized high-
performance connectivity that enables an intelligent future.

7.2.8. Distributed ML for Communications. Future wireless
networks require large-scale distributed ML to power mobile
AI applications, with communication being the major bot-
tleneck to scaling training and inference across cloud services,
network edges, and customers or end-user devices. Exploration
of potential technologies that enable mobile AI applications
within 6G networks is necessary for success. Cloud-based
solutions have proven inefective due to signifcant time de-
lays, power consumption concerns, and security and privacy
risks associated with interconnecting wireless devices that
generate large volumes of data at network edges [184]. In-
tegrating edge computing and AI ofers the chance to stra-
tegically deploy efcient computing servers near network edges
for maximum performance and convenience. Tis confgu-
ration enhances the capabilities of advanced AI applications
such as video and audio surveillance as well as personalized
recommendation systems by providing intelligent decision-
making at the precise moment data generation occurs exactly
when needed. Distributed machine learning ofers another
beneft. By eliminating large datasets being transmitted over
the cloud-based centralized learning, distributed ML reduces
potential privacy breaches inherent to cloud-based centralized

Table 3: Abbreviations list.

Symbol Description
4G Fourth generation
5G Fifth generation
6G Sixth generation
AI Artifcial intelligence
AR Augmented reality
AV Autonomous vehicle
BS Base station
CEM Customer experience management
CNN Convolutional neural network
CS Communication system
CSI Characteristic stability index
D2D Device to device
DAI Distributed AI
DL Deep learning
DNN Deep neural network
DRL Deep reinforcement learning
eMBB Enhanced mobile broadband
FC Fog computing
FL Federated learning
FNN Feedforward neural network
GAN Generative adversarial network
GRU Gated recurrent units
GPU Graphics processing unit
HMIMO Holographic multiple-input and multiple-output
IoT Internet of things
IRS Intelligent refecting surface
ISTN Integrated satellite and terrestrial network
ITNT Integrated terrestrial and nonterrestrial network
LEO Low earth orbits
LSTM Long short-term memory
LTE Long-term evolution
MaEC Multiaccess edge computing
MARL Multiagent reinforcement learning
MDP Markov decision process
MEC Mobile edge computing
MIMO Multiple-input and multiple-output
ML Machine learning
mMTC Massive machine-type communications
MSE Mean square error

MU-HMIMO Multiuser holographic multiple-input
multiple-output

NWDA Network data analytics
QCN Quantum communication network
QoS Quality of service
RAN Radio access network
RELU Rectifed linear unit
RKHS Reproducing kernel Hilbert space
RL Reinforcement learning
RNN Recurrent neural network
RSMA Rate-splitting multiple access
SNR Signal-to-noise ratio
SON Self-organizing networks
SVM Support vector machine
THz Terahertz
TL Transfer learning
UAV Unmanned aerial vehicle
UM-MIMO Ultramassive multiple-input multiple-output
URLLC Ultrareliable low latency service

Table 3: Continued.

Symbol Description
V2X Vehicle-to-everything
VNE Virtual network embedding
VNR Virtual network requests
VR Virtual reality
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learning. Integration of AI techniques for end-to-end com-
munications is becoming an increasing focus due to their
potential to improve overall performance. Tus, AI and
wireless communications forming an intricate relationship
have produced what are known as native AI wireless networks.

 . Conclusion

AI has proven its advanced benefts over wireless tech-
nologies recently; hence, this method has gained the at-
tention of engineers for employment in their designs. Te
evolution of AI, its classifcation, and the requirement of
diferent components to develop AI-based wireless
communication systems are discussed in detail in the
present study. Technical details of various AI-enabled
technologies for future wireless communication have
been presented. In the present study, AI-enabled appli-
cations for addressing diferent aspects of 6G mobile
communication, including intelligent mobility and net-
work management, channel coding, massive MIMO, and
beamforming, have been discussed. It has been studied
that, enabled by AI techniques, the 6G system can au-
tomatically control network structure and various re-
sources, including slices, computing, caching, energy, and
communication, to fulfl changing demands. With the
application of AI in future wireless systems, network
optimization can be automated. AI can enhance the in-
telligence of 6G networks to achieve self-management,
self-protection, self-healing, and self-optimization. Fi-
nally, we highlighted several challenges and promising
future research directions for AI-enabled 6G networks.
AI-enabled 6G wireless communications face challenges,
including massive data handling, algorithm complexity,
interference management, energy efciency, privacy, and
regulatory concerns. Future trends include intelligent
spectrum management, AI-driven beamforming, autono-
mous networks, quantum-assisted AI, AI-enabled satellite
networks, environmental sustainability, AI-enhanced net-
work slicing, and distributed ML for communications,
promising transformative advancements in connectivity,
efciency, and network customization. Addressing these
challenges and embracing these trends will shape a more
intelligent, connected, and sustainable era for 6G wireless
communications, propelling the evolution of networks
towards unprecedented capabilities and enhancing user
experiences. As these technologies mature, the digital
landscape of the future is expected to undergo a profound
transformation.

9. Abbreviations List

Table 3 features the abbreviations list, providing readers with
quick reference and enhanced comprehension of shortened
forms and acronyms used throughout this article for quick
reference and better understanding.
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