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Despite the rapid growth of machine learning (ML) and its far-reaching applications in various felds such as healthcare, fnance, and
urban heat management, there are still some unresolved challenges in the feld of climate change. Reliable subseasonal forecasts of
summer temperatures would be a great beneft to society. Although numerical weather prediction (NWP) models are better at
capturing relevant sources of predictability, such as temperatures, land, and sea surface conditions, the subseasonal potential is not
fully exploited. One such challenge is accurate subseasonal temperature forecasting using cutting-edge ML technology. Tis study
aims to assess and predict the changes in subseasonal temperature during the summer season (fromMarch to June) in Senegal on 2-
weeks time scales. Six ML techniques, including linear regression (LR), decision tree (DT), support vector machine (SVM), artifcial
neural network (ANN), long short-term memory (LSTM), and gated recurrent units (GRU), are used. Te experiments utilize
a multivariate approach by incorporating variables of the ERA-5 dataset from 1981 to 2022. Te results compared all the per-
formances of the methods to assess their overall efectiveness in forecasting air temperature (t2m) values over 2weeks. Our analysis
demonstrates that the GRU model outperforms the other ML models, achieving a Nash–Sutclife efciency (NSE) score of 74.68%
and a mean absolute percentage error (MAPE) of 2.51%. Te GRU model efectively captures long-term dependencies and exhibits
superior performance in temperature forecasting. Furthermore, a comparison between the observed and predicted values confrms
the accuracy of the GRUmodel in aligning with actual temperature trends. Overall, this study contributes an impactful deep learning
model to the feld of subseasonal temperature forecasting in West Africa (Senegal), which ofers local authorities the capability to
anticipate climatic events and enact preventive measures accordingly.

1. Introduction

Monitoring and forecasting subseasonal temperature play
a crucial role in investigating future climate patterns. Te
impacts of climate change and global warning have been
identifed as the greatest global health threat of the twenty-
frst century, exposing billions of people live to risks [1, 2],
increasing the risks of water-related disasters (e.g., foods
and severe droughts) [3, 4], afecting the water quality in

many regions in the world [5], and might also have an
impact on the urban climate environment, which can afect
the urban climate, environment, and sustainable develop-
ment [6–8].

Consequently, it requires a reassessment of how we
address the protection of vulnerable populations [9, 10]. Te
World Health Organization (WHO) acknowledges the
negative health impacts associated with climate change [11].
Moreover, regions with weaker healthcare systems face
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greater challenges in adapting, preparing, and responding to
the escalating health risks arising from a changing climate
[12, 13].

One of the manifestations of climate change is the in-
crease in average temperatures and the occurrence of ex-
treme temperature events, commonly referred to as heat
waves [14]. Tis rise in temperature has been observed
around the world and is expected to become more intense
and frequent due to human activities [15, 16]. However, in
less-developed countries like Senegal, there is a lack of
comprehensive studies on extreme temperatures and their
specifc health impacts [17]. Senegal, a country in West
Africa, is facing the efects of climate change, which have
a signifcant impact on the health of its population [18, 19].
Sweltering temperatures, which are becomingmore frequent
and intense, represent one of the most evident impacts of
climate change [20]. Tey can cause health problems such as
heat strokes, dehydration, cardiovascular and respiratory
diseases, and even death, especially among the most vul-
nerable individuals, such as the elderly and children [21].
According to the literature, an intensifcation and exacer-
bation of prolonged periods of extreme temperatures could
be expected in the coming years, making the study and
understanding of these phenomena crucial for preventing
harmful efects on human health [22].

Accurate forecasting of summer temperatures with
subseasonal lead times has become increasingly important
for various applications, including agriculture, energy de-
mand, and, most notably, public health [23]. Subseasonal
prediction can provide valuable insights for planning and
decision-making processes, especially in protecting vul-
nerable populations from heat-related risks [24]. Terefore,
forecasting such temperatures with 100% might not be
possible, but the prediction error or computational speed
can be minimized [25].

In the past, machine learning (ML) methods have proven
to be the most promising tools for their capabilities in cap-
turing complex patterns, nonlinearity, and accuracy to predict
natural phenomena such as temperature, precipitation,
drought, food, and soil temperature [2–4, 26–28]. ML-based
neural networks such as WNN have also proven their ability
to model photovoltaic power plants [29]. Subseasonal tem-
perature forecasts allow for estimating temperatures for the
upcoming weeks, ofering the opportunity to proactively plan
prevention and adaptation measures.

Linear regression (LR) is one of the oldest and most
common ML methods used in diferent areas for regression
tasks. LR is applicable to single or multiple variable problems
[30–32]. Decision tree (DT) regression is another common
ML method used in the literature to solve regression
problems [33, 34]. Support vector machine (SVM) re-
gression is also a well-known and typical ML method for
determining the link between features and targets
[32, 35–37]. Artifcial neural network (ANN), one of the
most popular ML methods, has been used to solve many ML
problems in diferent areas [38–41]. It is capable of iden-
tifying nonlinear patterns in the functional connection
between features and targets. Deep neural network methods,
named long short-term memory (LSTM) and gated

recurrent unit (GRU), also used in this study, have proven
efective in time series prediction by capturing patterns from
sequential data and retaining them in internal state variables
[42–44]. Te ability of these methods to retain crucial in-
formation over time enables them to efectively classify,
process, and predict complex dynamic sequences.

Te aim of this study is to demonstrate the capability and
efectiveness of ML methods for modeling subseasonal
summer temperatures in the Sahel (Senegal). Although most
studies have already been conducted using traditional com-
plex approaches and single machine learning methods for
temperature prediction, few studies have discussed the impact
of changes in summer air temperatures on a subseasonal scale.
Furthermore, these studies discussed the change in summer
temperature using a univariate approach, the numerical
weather prediction (NWP) approach, simple ML methods
(e.g., RF and LR), or simply used artifcial neural networks
(e.g., ANN) to predict air temperature. Among these studies,
only a few researchers have combined multiple ML methods,
compared their performance, or used deep learning methods
with multivariate approaches.

Forecasting changes in summer temperature on a sub-
seasonal scale using diferent (advanced) ML models is
therefore a new and crucial task. In this investigation, this
topic is further investigated on the basis of previous studies.
Tis study primarily improves the detection and forecasting
of subseasonal temperatures during the summer season
from March to June (MAMJ) in the Senegal region by
comparing the performance of six machine learning and
deep learning models, including LR, DT, SVM, ANN, LSTM,
and GRU based on multivariate approaches.

Te remainder of this paper is summarized as follows:
Section 2 reviews related work. Section 3 describes the study
area, the data, the methods, and the evaluation metrics used.
Section 4 describes the experiments and results. Section 5
describes the discussion of the results, and Section 6 draws
some conclusions and suggestions for future work.

2. Related Work

Machine learning, especially deep neural networks, has
emerged as a powerful tool for subseasonal forecasting, as it
can efectively capture complex and nonlinear relationships
between climatic variables [45]. Recent studies such as
Guigma et al. [46] and Domeisen et al. [47] have examined
the ability to forecast heat waves or extreme temperatures in
the Sahel with subseasonal lead time and the importance of
atmospheric tropical variability modes using reanalysis data
from the European Center for Medium-Range Weather
Forecasts (ECMWF). Tey found that temperatures in the
Sahel can be predicted up to 3-4weeks in advance with better
accuracy and that the predictive capacity can be improved by
incorporating atmospheric tropical variability modes such as
the Madden-Julian Oscillation (MJO) and the African
Easterly Jet (AEJ) [46, 48, 49].

Van Straaten et al. [50] and Benet et al. [51] used ma-
chine learning-based explainable forecasting (random for-
est) to discover subseasonal drivers of high summer
temperatures in western and central Europe.Tey found that
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atmospheric circulation patterns, soil moisture, and sea
surface temperature anomalies are important predictors of
high summer temperatures [52]. Zhang et al. [44] demon-
strated the efectiveness of artifcial neural networks (ANN)
in predicting LULC and land surface temperature (LST).

Benet et al. [51] investigated the subseasonal forecasting
of summer heat waves in Central Europe using linear and
random forest (RF) machine learning models. Tey found
that the RF model outperformed the linear model and that
anomalies in sea surface temperature were important pre-
dictors of central European summer heat waves. Sharaf and
Roy [53] and Anjali et al. [54] analyzed the performance of
multilinear regression (MLR), support vector machine
(SVM), ANN, and regression tree methods to predict daily
temperature values using data collected from Mumbai
Chhatrapati Shivaji Airport (2001–2016) and Central Kerala
(2007–2015). Tey compared the results based on mean
squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), and correlation coefcient
metrics. ANN and MLR revealed the best performances on
the Mumbai (MSE� 3.46) and Central Kerala datasets,
respectively.

Te linear regression (LR), random forest (RF), gradient
boosting machine (GBM), decision tree (DT), ANN, and
SVM regression methods have also shown their capability in
estimating the daily air temperature [55]. Among these ML
models, GBM showed the best performance (coefcient of
determination R2 � 0.68, MAE� 1.60, and RMSE� 2.03).
Zhang et al. [56] developed a seasonal forecasting of the
frequency of heat waves or extreme temperatures in the
Eurasian summer using convolutional neural networks
(CNN). Tey showed that the deep learning model can
predict the frequency of heat waves with high accuracy up to
3months in advance and that the North Atlantic Oscillation
and the Western Pacifc Subtropical High are important
predictors of the frequency of heat waves in the Eurasian
summer [57]. Lu et al. [58] developed a data-driven global
subseasonal forecast model (GSFM) for intraseasonal os-
cillation components using deep learning. Tey found that
GSFM outperformed the traditional statistical model and
that the MJO is a key driver of intraseasonal oscillation [48].

Weyn et al. [59] investigated subseasonal forecasting
with a large ensemble of deep learning weather prediction
models. Te results of their study showed that the ensemble
model outperformed the individual models and that sea
surface temperature anomalies were important predictors of
subseasonal weather. In summary, the literature suggests
that deep learning models can efectively predict subseasonal
summer temperature and that the inclusion of additional
predictors such as atmospheric circulation patterns, soil
moisture, sea surface temperature anomalies, and intra-
seasonal oscillations can improve prediction accuracy.

More research is needed to investigate the optimal
combination of predictors and deep learning (DL) models
for subseasonal summer temperature forecasting in specifc
regions, such as West Africa (Senegal). Such a study has not
yet been investigated in this particular area using advanced
machine learning techniques. Terefore, the main contri-
bution of this work is to compare six machine learning

techniques named LR, DT, SVR, ANN, LSTM [60], and
GRU [61, 62] based on the multivariate approach to forecast
summer temperature in the region of West Africa (Senegal).

In the following sections, further explanation about the
data and methods, experiments, and results is provided,
followed by a discussion and conclusion with future work.

3. Study Area, Data, and Methods

3.1. StudyArea. Senegal, located on the West coast of Africa
[63], serves as a captivating study area for our research
focused on the prediction of subseasonal summer temper-
atures with machine learning (ML) techniques. With a di-
verse landscape ranging from the arid regions of the Sahel to
the verdant Casamance in the south, Senegal has unique
climatic conditions that make accurate temperature pre-
diction difcult. It is important to be able to anticipate these
climate events and take the appropriate measures. Te study
seeks to leverage advanced ML techniques to enhance our
understanding of subseasonal variations in summer tem-
peratures, exploring patterns, trends, and infuencing fac-
tors. Te implications of successful prediction models
extend beyond meteorological understanding, encompass-
ing applications in agriculture, water resource management,
and climate change adaptation. As Senegal grapples with the
impacts of a changing climate, this research aims to con-
tribute valuable information on the dynamics of subseasonal
temperature, ultimately aiding in the development of more
resilient and adaptive strategies for the region. Additionally,
health authorities constantly require information on heat
conditions, preferably with a lead time of at least 7 days to
one month, in order to implement necessary measures to
protect vulnerable populations [64]. Figure 1 highlights the
location of the study area.

3.2. Data. Te data used for this study are from the ERA-5
dataset provided by the European Center for Medium-Range
Weather Forecasts (ECMWF, [65]). Te parameters used,
which are given in Table 1, were collected in the ERA-5
database from 1981 to 2022. Te data with the highest cor-
relation are selected using the Pearson correlation coefcient
[66] and entered into the prediction model. Figure 2(a) shows
the development of temperatures from 1981 to 2022 in the
form of stripes, which show an exponential rise in temper-
ature over West Africa (Senegal). Figure 2(b), on the other
hand, shows the distribution of temperatures according to
monthly averages. Tis distribution clearly shows that April,
May, and June are the hottest months of the year. Tis is the
reason why we have chosen the months of March to June for
the predictions. Figure 3 shows the anomaly of the temper-
ature, the trends, and the climatological reference in Senegal
from 1981 to 2022, which is interpreted as follows:

(i) Te blue curve represents the temperature anomaly
compared to the climatology (1991–2020). It shows
how temperatures vary relative to the climatic av-
erage during this period. Positive values indicate
temperatures above the average, while negative
values indicate temperatures below the average.
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(ii) Te horizontal dashed line at y � 0 represents the
climatological reference. Points above this line in-
dicate temperatures higher than the climatic average,
while points below indicate temperatures lower than
the average.

In summary, the fgure illustrates how temperatures in
Senegal have evolved over the years, highlighting variations
compared to the climatic average and indicating the general
trend using the linear regression.

3.3.Machine LearningMethods. Machine learning (ML) can
improve subseasonal forecasts by incorporating large
amounts of historical data and learning patterns that can be
used to make more accurate predictions. ML techniques [67]
can capture predictability on subseasonal time scales and can
outperform climatological baselines [51]. Machine learning
models, called linear regression (LR), decision tree (DT),
support vector machine (SVR), artifcial neural network
(ANN), long short-term memory (LSTM), and gated re-
current unit (GRU), are used for prediction with a dataset of
size 2749026, using data from 1981–2010, 2010–2015, and
2015–2022 for training, validation, and test sets, respectively.
For these datasets, we use the shift function to transform the
time series data into a supervised learning problem. Figure 4
shows an overview and a simple representation of the ML
models (LR, DT, SVR, and ANN).

3.3.1. Linear Regression (LR). Linear regression (LR) is the
most common predictive machine learning (ML) model to
fnd a linear relationship between one or more predictors.
Te LR, described by equation (1), can be single regression or
multilinear regression [30, 31]. Te single regression min-
imizes a single objective function based on the single
variable.

y � βx + ϵ, (1)

where y is the dependent variable, which can be either
a continuous or categorical value, and x is the independent
variable.

In this case, multilinear regression (MLR), also known as
multiple regression, is used. MLR is the most common form
of linear regression analysis. In contrast to simple linear
regression, MLR establishes the relationship between the
response variable (target) and the predictors. With multiple
variable regression, the method not only uses a single ob-
jective function but also combines the individual objective
functions of each variable using a weighting scheme [68].
Te parameters L1 and L2 are used to measure the elasticity
in the weighting scheme. When confgured, the approach
minimizes the diference between the line and the best-ft
criterion, yielding the best-ft line for prediction. Multiple
regression is represented by the following equation:

yi � b0 + b1x1,i + b2x2,i + · · · + bkxk,i + ϵ, (2)

where y is the number of observations xi is the number of
inputs b0 is the constant or intercept coefcient for the frst
and nth explanatory variables b1, b2, . . . , bk are the slope
coefcients for the frst and nth explanatory variables.
yi, x1,i, . . . , xn,i represent the ith observation of each variable
y, x1, . . . , xk,i, respectively. ϵ is the remaining unexplained
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Figure 1: Map of the study area in West Africa (Senegal).

Table 1: Variables description of ERA-5 data.

Variable Description Unit
Div200 Divergence at 200 hpa s− 1

Div700 Divergence at 700 hpa s− 1

Div850 Divergence at 850 hpa s− 1

Rh1000 Relative humidity at 1000 hpa %
t2m Air temperature at 2m °C
td Dew-point temperature at 2m °C
t850 Temperature at 500 hpa °C
z500 Geopotential at 500 hpa m2s− 2

vent10 Wind at 10m ms− 1
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noise in the data, i.e., a random error term representing the
remaining efects on y of variables not explicitly included in
the model b0 and bi are unknown and, therefore, are esti-
mated from the data. So, these values b0 and b1, b2, . . . , bk are

estimated by employing the least square criterion with
minimum sum of square of error terms (MSS); this allows to
fnd the values b0, b1, b2, . . . and bk that minimize MSS.

MSS �
1
n
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Figure 2: Evolution of Senegal’s temperatures, 1981–2022. (a) Evolution of Senegal’s temperatures. (b) Distribution of Senegal’s
temperatures.
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y represent the observation yipred: simulated values
b0, b1, b2, . . . , bk must satisfy the following equation:

zMSS
zbj

� 2

n

i�1
ei

zei

zbj

, j � 0, 1, . . . , k. (4)

Diferent values of the hyperparameter alpha are tested
during the training of the LR model and the values alpha � 7
are selected for the fnal model.

3.3.2. Decision Tree Regression (DTR). Te decision tree
regression (DTR) model [69] is a machine learning algo-
rithm used for predicting continuous numerical outcomes.
DTR works by recursively partitioning the dataset into
subsets based on the values of input features, creating a tree-
like structure [70]. At each internal node of the tree, a de-
cision is made based on a specifc feature, and the dataset is
split into two or more branches [71].Tis process is repeated
until a stopping criterion, such as maximum depth or
a minimum number of samples per leaf, is reached. Te leaf
nodes of the tree represent the fnal predicted values. Te
prediction for a new instance is then the average of the target
values in the leaf node to which it belongs.

3.3.3. Support Vector Machine. Support vector machine
(SVM) regression, a machine learning technique, fnds the
hyperplane that best separates the optimal trade-of between
ftting the data closely and maintaining a margin. Te vector
lengths and variance between the feature and the plane are
minimized. Additionally, SVM regression can incorporate
kernel functions to map the input features into a higher-
dimensional space, allowing it to capture nonlinear re-
lationships. Te kernels include Euclidean, Gaussian, Ex-
ponential, and Dirichlet kernels [72].Te following equation
describes the general form of SVR. Te SVR method is
trained with four diferent kernels: linear (k(x, z) � xTz),
rbf (k(x, z) � exp(− (x − z)2/σ2)), poly, and sigmoid. Te
rbf kernel is then selected for the fnal model.

f(x) � μ + w
T
X, (5)

where μ is the base or bias w is the weight X is the number of
inputs y � f(x) is the target

Equation (5) is also called the equation of a hyperplane.
Te SVR model is trained by solving the optimization
problem states in equation (6) according to the constraints
described in equations (7)–(9).
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min
1
2
‖w‖

2
+ C 

I

i�1
ξi + ξi

∗
( ⎛⎝ ⎞⎠, (6)

subject to

yi − w
Tϕ xi(  − b≤ ϵ + ξi, i � 1, . . . , I, (7)

− yi − w
Tϕ xi(  + b≤ ϵ + ξi

∗
, i � 1, . . . , I, (8)

ξi, ξ
∗
i ≥ 0, i � 1, . . . , I, (9)

where w controls the smoothness of the model ξi, ξi
∗ are

slack variables ϕ is the function of projection of the input
space to the feature space b is the parameter of bias yi is the
target value to be estimated

3.3.4. Artifcial Neural Network (ANN). Te artifcial neural
network (ANN) is a machine learning technique commonly
used in temperature prediction [38, 44, 54]. Te error
backpropagation learning algorithm, commonly known as
the least-mean-square algorithm (L.M.S. algorithm) [30, 73]
is used by the ANN to capture the nonlinear pattern between
the input and target series. Te widely used multilayer feed-
forward ANN, called a multilayer perceptron (MLP) which
consists of one input layer, one or more hidden layers of
computational nodes, and one output layer, is used in this
study due to its popularity [74–76]. Te ANN trained with
a hidden layer (equation (10)) size of {(50, 50)}, the ReLu
(relu(x) � max(0, x)) activation function, and the widely
used ADAM optimizer [77] is selected as the fnal model
confguration.

�yk(t) � ϕ0 

m

j�1
wkj ∗ϕ 

N

i�1
wijxi + bj0 + bk0

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (10)

where �yk(t) is the predicted kth output (t2m) at time step t. wji
is the weight that connects the ith neuron in the input layer and
the jth neuron in the hidden layer. ϕ0 is the activation function
for the output neuron. ϕ is the activation function of the hidden
neuron. wkj is the weight that connects jth neuron in the
hidden layer and the kth neuron in the output layer. bj0 is the
bias for the hidden jth hidden neuron. bk0 is the bias for the kth
neuron. m is the number of hidden neurons. N is the number
of samples. xi(t) is the ith output variable at the time step used.

3.3.5. Recurrent Neural Networks (RNNs). Te RNNs
[78, 79], one of the deep learning (DL) methods, are deep
forward neural networks (DFNN) with one-way in-
formation fow during the training phase. Some experience
([80]) has shown that RNNs can encounter signifcant
challenges when training sequences with long-term de-
pendencies, where temporal information between input and
output sequences spans a long period of time. Accordingly,
this can lead to difculties related to backpropagation errors
as the time span of long-term dependencies increases. As
a result of the vanishing gradient problem in RNN training,
updates to the weights become insignifcant when the error
is backpropagated [81].

Unlike canonical RNN, the LSTM (Section 3.3.6) and
GRU (Section 3.3.7) models do not have these difculties
because they have extended memory components, such as
memory cells and gates, that store long sequences of in-
formation over long periods of time. For time series, as in its
generality, a simple encoder-decoder for multilevel fore-
casting with RNNs such as LSTM and GRU is used. Let us
assume a set of N time series. Te setting consists of
a multivariate time series (xt, yt), t � 1, . . . , T, with a feature
vector xt ∈ R

N and a target variable yt ∈ R. Assuming that
at time t, the values at the time points
(t + 1, . . . , t + HORIZON) that depend on the previous T
values in the time series are predicted. Let us denote D �

(Xi, Yi)
N
i�1 as the training dataset. Te input feature matrix

Xt+1 contains all past and current features xi
t+1
i�1 , as well as all

past targets yi
t+1
i�1 . Tus, the function to approximate is given

by the following equation:

Yt � f yt+k− 1, . . . , yt+k− 1, Xt− 1, . . . , Xt− T( , (11)

where yt is the t2m at point t and Xt is the additional re-
gressor at point t. For this case study, T � 25 and k � 1, 2{ }.
Te architecture of our deep neural network models (LSTM
3.3.6 and GRU 3.3.7) derived from the general structure of
RNN is given in Figure 5.

3.3.6. Long Short-Term Memory (LSTM). Te LSTM unit
[60, 82, 83] has three diferent gates, namely, the input gate,
the forget gate, and the output gate. Te forget gate de-
termines what relevant information is required from the
previous steps. Te input gate determines what relevant
information can be added from the current step, and the
output gate completes the next hidden state. Te internal
structure of an LSTM unit cell according to [84] is shown in
Figure 6. Te LSTM cell model is defned by the following
mathematical functions:

ft � sig xtWf + ht− 1Uf + bf ,

it � sig xtWi + ht− 1Ui + bi( ,

ot � sig xtWo + ht− 1Uo + bo( ,

Ct � tanh xtWc + ht− 1Uc + bc( ,

Ct � tanh ft ∗Ct− 1 + it ∗ Ct ,

ht � ot ∗ tanh Ct( ,

(12)

where t is the time step; xt ∈ R
d is the input; ht ∈ (− 1, 1)h is

the hidden state vector (output vector of the LSTM unit);
ht− 1 is the previous hidden state; bi is the bias vector at t. Wf

is the weight matrix between forget gate and input
gate. it ∈ (0, 1)h is the input gate at t; ot ∈ (0, 1)h is the
output gate activation vector at t; 

Ct∈ (− 1, 1)h is the cell
activation vector or value generated by tanh; ct ∈ R

d is cell
state information; Wp and Up contain the weights of the
input and recurrent connections, where the subscript p

refers to the input gate i, the output gate o, the forgetting
gate f, or the memory cell unit c. In addition, W ∈ Rh×d,
U ∈ Rh×h, and b ∈ Rh are weighting matrices and bias
vector parameters to be learned during the training phase,
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where the indices d and h refer to the number of input
features and the number of hidden units. ∗ denotes element-
wise multiplication. sig() and tanh() are the logistic sigmoid
and hyperbolic tangent functions with the following
mathematical formula:

sig(x) �
1

1 + exp(− x)
,

tanh(x) �
exp(x) − exp(− x)

exp(x) + exp(− x)
.

(13)

3.3.7. Gated Recurrent Unit (GRU). Te gated recurrent
unit (GRU) introduced by [61, 62] is like a special type of
LSTM-based recurrent neural network that has fewer pa-
rameters than the LSTM [85]. Its internal unit is similar to
the internal unit of the LSTM [62, 86] except that it has
a separate cell state Ct; it has only one hidden state (ht) and
is faster to train due to its simpler architecture. Terefore,
other new systems based on GRU models have been de-
veloped, such as the multi-GRU prediction system after the
study of the authors in [87]. Te GRU [82, 83] helps avoid
the vanishing gradient problem that usually occurs in
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Figure 5: Simple encoder-decoder for multistep forecast.
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LSTM and requires less computation to update the external
states. Te update gate determines how much of the pre-
vious state’s information is retained in the current state,
while the reset gate determines whether to combine the
current state with the previous information. Te structure
of the GRU unit cell [88] is shown in Figure 7. Te
mathematical functions used to characterize the GRU unit
are as follows:

zt � σ xtWz + ht− 1Uz + bz( ,

rt � sig xtWr + ht− 1Ur + br( ,

ht � tanh xtW + rt ∗ ht− 1U + b( ,

ht � 1 − zt ∗ ht + zt ∗ ht− 1 ,

(14)

where σ is the sigmoid activation function; zt is the update
gate; rt is the reset gate, 

ht: denotes the candidate hidden
layer; Wz, Wr, and W are the weighting matrices for the
corresponding connected input vector; Uz, Ur, and U are the
weighting matrices of the previous time step; bz, br, and b are
biases. Te following paragraph describes the approach to
model development.

3.3.8. Multivariate Approach. Te machine learning
framework with linear regression (LR), decision tree (DT)
regression, support vector machine (SVM) regression, arti-
fcial neural networks (ANN), recurrent neural networks
based on long short-term memory (LSTM), and gated re-
current units (GRU) ofers multilevel predictions that are
generated for two time steps (horizons� 2weeks). According
to [89], forecasting is the prediction of time series from past
data into future data on a longer time scale. Tus, in our
multivariate approach, data from the entire West African
(Senegal) study region are used to examine the relationship
between the diferent futures. Tus, the selection of Pearson
correlation features ([66]) is examined to characterize the
degree of correlation of each feature with the target feature, air
temperature (t2m). Based on the result of the Pearson cor-
relation matrix, six features are selected. Ten, using the past
information, the next two weeks are predicted.

3.3.9. Model Training. Te LR, DT regression, SVM re-
gression (SVR), and ANN are implemented using the
Sklearn framework. Tese models are trained and tested
several times using the parameters and their value ranges
provided in Table 2. Te LSTM and GRU frameworks are
written in Python and implemented using the Keras ap-
plication of TensorFlow [90, 91]. Te dataset is divided into
a training set to train the model (1981–2010), a validation set
(2010–2015) to improve model performance by fne-tuning
the model after each epoch, and a test set (2015–2022) to
determine the fnal result after training (Figure 8). Te
architecture of the deep learning models consists of one
input layer, two bidirectional layers for LSTM and GRU,
with ffty and hundred neurons in the hidden layers, re-
spectively, and an output layer. All deep learning model
confgurations are trained several times with diferent ac-
tivation functions (e.g., linear, tanh), numbers of

epochs (e.g., 20, 50, 100), and neurons (e.g., 50, 100, 150).
Additionally, the adaptive moment optimizer (Adam) is
used for the following reasons:

(i) Faster convergence
(ii) Computational efciency
(iii) Low memory requirement
(iv) Invariant to diagonal rescaling of gradients
(v) It is well suited for problems with large data or

parameters, according to the authors in [77].

Te linear activation function is used for dense layers in
deep learning methods. To evaluate the model’s perfor-
mance, the mean squared error (MSE) is used as a loss
function that quantifes the squared diference between the
observed and predicted values. However, the overftting
phenomenon may occur during the testing phase because of
the large starting weight of the network. Hence, to overcome
this issue, optimizing the model by using the early stopping
approach might be necessary, which automatically stops
training at the step when performance on the validation set
starts to degrade. Ensuring each experiment with LSTM and
GRU models starts with a unique set of weights and biases
representing the LSTM and GRU model parameters, en-
abling the model to deal with nonstationarity in the data.
Tables 2 and 3 show the hyperparameters used for each
method and their value ranges.

3.4.Model Evaluation. Te training set and the independent
test set are evaluated to assess the performance of the applied
machine learning models. However, the following evalua-
tion metrics are most commonly used: (1) coefcient of
determination (R2), (2) mean absolute error (MAE), (MSE),
(3) root mean square error (RMSE), (4) mean absolute
percent error (MAPE), (5) Pearson correlation, and (6)
Nash–Sutclife Efciency (NSE).Te R2 measures the degree
of correlation between the observed and predicted values;
the MAE provides the absolute error information; the RMSE
(square root of the MSE) measures the average magnitude of
the errors between the predicted and actual values and how
the residuals are distributed; the MAPE quantifes the ab-
solute diference between the observed and predicted values
divided by the observed values; and the NSE measures the
magnitude of the residual variance with respect to the
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Figure 7: Te cell structure of GRU unit.
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Table 2: Summary of parameters used and range of values for LR, DT, SVM, and ANN models in this study.

Models Parameters Values

LR Alpha 1, 2, 3, . . ., 50
Solver “Auto,” “svd,” “cholesky,” “lsqr,” “sparse_cg,” “sag,” “saga,” “lbfgs”

DT

Splitter “Best,” “random”
Max_depth 1, 3, 5, 7, 9, 11, 12

Min_samples_leaf 1, 2, . . ., 10
Min_weight_fraction_leaf 0.1, . . ., 0.9

Max_features “Auto,” “log2,” “sqrt,” none
Max_leaf_nodes None, 10, 20, 30, 40, 50, 60, 70, 80,90

SVR

Kernel “linear,” “poly,” “rbf,” “sigmoid”
C 1, 5, 10

coef0 0.001, 0.01, 0.4, 0.5
Gamma “auto,” “scale”

ANN

Hidden_layer_sizes (50, 50), (100, 50), (100, 1)
Activation “Relu,” “tanh,” “logistic,” “identity”
Alpha 0.0001, 0.001, 0.01, 0.05, 0.1

Learning_rate “Constant,” “adaptive”
Solver “Adam,” “sgd,” “lbfgs”
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Figure 8: 2 m air temperature time series, including the training, the validation, and the test sets.

Table 3: Summary of hyperparameters used for both LSTM and GRU models in this study.

Model hyperparameters Values
LSTM 4
GRU 4
Activation function (hidden layer) Tanh
Activation function (dense layer) Linear, ReLU
Neurons 50, 100
Optimizer Adam
Epochs 50, 100
Regularization L2
Batch size 60
Loss function MSE
Validation metrics MAE
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variance of the observed t2m values. Te models with the
highest NSE and the lowest {MAPE,RMSE} show the best
performance. Tese statistical performances are defned by
the following equations:
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(15)

where n is the number of samples used in the test set, yt are
the observed t2m values, ŷt are the predicted t2m values, and
�yt is the mean value of the observed t2m values.

Table 4 outlines the criteria for the previously mentioned
statistical methods used in the search for a better
prediction model.

4. Experiments and Results

Tis section describes the experiments carried out to con-
frm the ability of machine learning (ML) models, especially
neural network models, to learn.Te results for each method
are investigated more in detail.

4.1. Feature Correlations. Before the learning algorithm can
be applied to the dataset, specifc characterizations of the
data must be confrmed. Because the current investigation
is based on information from the samples, the idea of
presenting the correlation that exists among the variables
arose. Terefore, an examination of the visualization and
analysis of the characteristic variables is carried out on the
basis of the Pearson correlation coefcient (r) in the range
between − 1 and 1 [66]. Te information describing the
relationship between features is then stored in Pearson’s
correlation matrix (Figure 9a), where 0< r≤ 1 means
positive correlation, r � 0 no correlation, and − 1≤ r< 0
negative correlation.

Figure 9(a) reveals that the features are correlated be-
tween themselves and with the target. Some variables have
a high correlation, whereas others have a low correlation.
Tis fgure shows a (high) positive correlation between the
features (rh1000, td, and z500) and the target. Te t500 and

t850 are also correlated and remain within the accepted
range (r> 0.3). However, other variables have a lower
correlation with the target.Te fve most correlated variables
(rh1000, td, t850, t850, and z500) are selected for multi-
variate model development in the entire study region.

4.2. Assessment of Machine Learning Models. In this part of
the study, models are developed to predict subseasonal
temperatures over West Africa (Senegal) for the period
March to June (MAMJ) using ERA-5 data and applied
machine learning (ML) methods to gain a better un-
derstanding of the predicted results. Tere are six diferent
ML models, including linear regression (LR), decision tree
(DT), support vector regression (SVR), artifcial neural
networks (ANN), long short-term memory (LSTM), and
gated recurrent unit (GRU). Te developed ML and deep
neural network models are used to predict the air tem-
perature (t2m) pattern in Senegal using the provided dataset.
Te dataset contains 2749026 records of daily t2m, dew
point, temperature, relative humidity, and geopotential from
1981 to 2022. Te training set (1981–2015) is split into two
parts: 80% for training and 20% for validation.Te data from
1/06/2015–29/06/2022 are used for testing to decide on the
best model. Approximately, the past three weeks were used
to predict the next two weeks. Figure 9(b) shows the dis-
tribution of the data. From this histogram, it appears that the
data follow the Gaussian distribution.

Te Python packages Sklearn and Keras were used to
train the ML and neural network models, respectively.
Firstly, the data are split into training, validation, and test
sets. Secondly, the training and validation data are ingested
into the models, and the training process starts. Diferent
model confgurations were tested in the training using the
error in order to obtain the best training confguration (best
model). Finally, after obtaining the best training result, the
test set is introduced to the trained models, and the results
are then compared to the observed values.

Te following statistical indicators were used to evaluate
the relationship between the observed and predicted values:
the coefcient of determination (R2), the root mean squared
error (RMSE), the mean absolute percentage error (MAPE),
the mean absolute error (MAE), Pearson’s correlation
(Pearson’s r), and the Nash–Sutclife efciency (NSE). Te
detailed results for each model are given in Table 5, which
shows the implementation and efectiveness of the de-
veloped models in the summer air temperature (t2m) es-
timation for West Africa (Senegal) with n_shift equal to 25
and two time steps ahead (yt+1 and yt+2), i.e., the next
2 weeks. Te optimal hyperparameters values for ML al-
gorithms are obtained using hyperparameters tuning with
GridSearchCV.

Te frst ML approach used to predict t2m values is LR
with l2 regularization. Te optimal value for alpha is 7, and
the solver used is lsqr. Figure 10(a) shows the correlation
(regression line) between the observation and the prediction
of the LR method. Te plot shows a slightly better ft, but the
accuracy (NSE and R2) of the t2m prediction is lower
(Table 5).
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Te second ML method applied is DT. Te following
values are used for this study: max depth � 5, max_features�

“auto”, max_leaf_nodes = 10, max leaf nodes � 10, and
splitter� “best”. Figure 10(b) shows the regression line between
the observed values and the test results of the DT method.
Table 5 and Figure 10(b) indicate that the DTmodel provided
the worst accuracy than the LRmodel. As can be seen from the
picture, DT has problems predicting the t2m pattern.

Another ML method used is SVR. Te kernel
function, the radial basis function (RBF), the kernel co-
efcient (gamma � auto), the optimization tolerance
(tol � 0.001), and the regularization parameter (C � 1.0)

were the optimal hyperparameters selected for this study.
Figure 10(c) indicates the correlation between the ob-
served values and the predicted results of the SVR model
in the test set.

Te ANN method used in this study is a multilayer
perceptron (MLP) with backpropagation, which is com-
monly used for the prediction of temperatures [38, 54].
Te ReLU activation function, the Adam optimizer, the
alpha value of 0.1, and the hidden size of 50 were used to
obtain the best test results. Table 5 and Figure 10(d) show the
correlation between the observed values and the predicted
values of the ANN model in the test set.

Table 4: General performance ratings of the statistical indices.

Performance rating
Range

RMSE MAE MAPE NSE Pearson’s r
Very good <0.009 0 0 0.75∼1 0.8∼1
Good 0.009∼0.08 Not defned Not defned 0.65∼0.75 0.6∼0.79
Satisfactory 0.08∼0.5 Not defned Not defned 0.5∼0.65 0.3∼0.59
Unsatisfactory >0.5 1 ∞ <0.5 <0.29
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Figure 9: Pearson correlation of all variables and KDE of selected variables. (a) Correlation matrix, displaying the correlation between all
variables. (b) Data distribution with kernel density estimate (KDE) for selected variables from 1981–2010.

Table 5: Statistic performance on the test set: RMSE, MAE, R2, Pearson’s r, and NSE values, as well as MAPE reported for all the machine
learning models.

Method MSE RMSE MAE MAPE R2 Pearson’s r NSE
LR Alpa: 7 0.0190 0.1381 0.1 0.27 0.4493 0.6752 0.4493
DT Max_depth: 5 0.0203 0.1425 0.105 0.2907 0.4132 0.6492 0.414
SVR Kernel: rbf 0.0202 0.1422 0.0984 0.2683 0.416 0.6545 0.416
ANN A: ReLU, solver: Adam 0.018 0.134 0.0948 0.2561 0.4814 0.6968 0.516

LSTM

A: ReLU, E: 50, N: 50 0.0098 0.099 0.0676 0.0257 0.6852 0.8626 0.7294
A: linear, E: 100, N: 50 0.0100 0.1 0.0706 0.0267 0.6319 0.8607 0.716
A: ReLU, E: 100, N: 50 0.0103 0.1015 0.0717 0.0271 0.6622 0.8648 0.714
A: ReLU, E: 50, N: 100 0.0108 0.1039 0.0753 0.0283 0.5511 0.854 0.7005

GRU

A: ReLU, E: 50, N: 50 0.00 2 0.0 5 0.0653 0.0251 0.6 54 0.8707 0.7468
A: ReLU, E: 100, N: 50 0.0096 0.098 0.0679 0.0259 0.6885 0.8605 0.7353
A: linear, E: 100, N: 50 0.0096 0.098 0.0673 0.0258 0.6804 0.866 0.7371
A: ReLU, E: 50, N: 100 0.0098 0.099 0.0683 0.0261 0.658 0.8556 0.7304

Te best performance is marked in bold. Here, A� activation, E� epoch, and N�number of units.
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Te deep learning models used in this study are LSTM
and GRU. Diferent model confgurations are tested. Te
number of epochs, the neurons, and diferent activation
functions (Figure 5) were tested through these confgu-
rations to obtain the best result for the test set. All LSTM
and GRU model confgurations were trained with the
Adam optimizer. So, the best test results were obtained for
the model confguration with 50 epochs, 50 neurons, tanh
activation function in the hidden layers, and ReLU acti-
vation function in the dense layer. Table 5 and
Figures 10(e) and 10(f ) show the correlation between the
observed and predicted t2m values of the LSTM and GRU
models on test data. Te plots show a better ft, and the

results are highly accurate. Tese models performed ap-
proximately well, with NSE values of 72.74% and 74.68%,
respectively.

However, the GRU model (ReLU activation function, 50
epochs, and 50 neurons) shows the best predictions of t2m
values (NSE � 0.7468, MAPE � 0.0251, Pearsons’r� 0.8707)
compared to the LSTM model (ReLU activation function, 50
epochs, and 50 neurons) with R2 � 0.6852, NSE � 0.7294,
MAPE � 0.0257, and Pearsons’r� 0.8626. Overall, the GRU
model with low variance is the best performing deep learning
algorithm for n_sift� 25 (≈3 weeks) in this study of summer
temperature prediction (next 2weeks) over West Africa, es-
pecially Senegal.
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Figure 10: Correlation between the observed and the simulated output on the test set for (a) LR, (b) DT, (c) SVR, (d) ANN, (e) LSTM, and
(f) GRU.
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4.3.Visualizationof Predictions:ComparisonofObservedwith
PredictedValues. As can be seen from Table 5 and Figure 10,
deep learning methods such as long short-term memory
(LSTM) and gated recurrent units (GRU) are well trained
and show acceptable test performance compared to other
ML methods. Te ANN method performs relatively better
than LR, DT, and SVR, but it still underperforms LSTM and
GRU. Among all the methods, GRU (MAPE � 0.0251,
NSE � 0.7468, and Pearsons’r� 0.8707) and DT
(MAPE � 0.2907, NSE � 0.414, and Pearsons’r� 0.6492)
show, respectively, the best and the worst performance. Te
GRU model is capable of predicting temperatures over 20
degrees Celsius, in contrast to the DT model.

Figure 11 shows the comparison of the predicted t2m
values with the observed values for the GRUmodel.Te fgure
reveals how the GRU model performs better in estimating
summer air temperatures. Although the performance of most
LSTM models was pretty good and accurate, the GRU model
(with ReLu activation, 50 epochs, and 50 units) provides the
best results for temperature predictions (MAPE� 2.51%,
NSE� 74.68%) and is able to capture long-term dependencies
and provide predicted t2m values that are consistent with the
observed values than the other models. Table 6 shows the
ranking of the models based on the performance of the
prediction steps. Overall, the GRU model ranks frst among
all models, followed by the LSTM model.

Tus, as mentioned in the previous section, the model
with the GRU algorithm provides the best prediction for
the t2m value compared to the observed values, using the
past 25 days (≈3 weeks) to predict the next 1-2 weeks, with
a low RMSE, a low MAPE, and a higher NSE according to
the performance indices shown in Table 5. Overall, the
GRU model showed a better ability to predict the t2m
than the other models and can therefore be considered
a useful method for modeling subseasonal summer
temperatures and keeping the population safe from the
risks associated with natural phenomena caused by high
temperatures.

Te results of this study show that, compared to other
modern machine learning methods, deep learning algo-
rithms are one of the best, most efcient, and most powerful
tools that can be used for subseasonal summer temperature
prediction on large datasets [51, 54]. However, these analyses
show that when using diferent variables such as relative
humidity, dew point, temperature, and geopotential data,
there is a better possibility for t2m values with high accuracy.

5. Discussion

It is indeed possible to validate the efectiveness of deep
networks for predicting time series data based on state-of-
the-art studies. Tanks to the development of new models and
advances in computing power, the feld of prediction using deep
neural networks for forecasting has grown rapidly. Machine
learning (ML) approaches such as linear regression (LR), de-
cision tree (DT), support vector machine (SVM), and artifcial
neural network (ANN) are commonly used for climate mod-
eling, especially in temperature modeling. Deep neural net-
works (LSTM and GRU) models, two of the best subseasonal
forecasting models, are growing in popularity, althoughmost of
the top models have more traditional architectures.

Te GRU network, a modifed and improved version of
LSTM, is capable of supporting a higher resampling rate and
can be trained on smaller and larger datasets. Terefore, our
experiments carried out on more than 1.5 million training
sets have indicated that

(i) GRU neural network, which is easier and faster to
train, is the best model that provided good results

(ii) A deep neural network GRU with encoder and de-
coder layers has high performance and the ability to
forecast subseasonal temperatures (next 1-2weeks)
with 2.51% MAPE precision

Based on the recent work in the literature, GRU showed
promising results and was considered a good predictor
[92–94]. However, we recall that these studies were performed
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Figure 11: Comparison of the GRU results with the observed values.
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using a univariate approach and not multivariate approaches.
Furthermore, Park et al. [95] and Du et al. [96] have proposed
the LSTM model with encoder and decoder layers but not
compared to the GRU model. Benet et al. [51], Van Straaten
et al. [50], Sharaf and Roy [53], and dos Santos [55] have also
proposed machine learning models (LR and RF) for sub-
seasonal time series forecasting but not deep neural networks.
Terefore, the present investigation compares LR, DT, SVR,
ANN, LSTM, and GRU methods for subseasonal forecasting
based on a multivariate approach to predict summer tem-
peratures for the next 2weeks. Tis multivariate approach for
multistep subseasonal forecasting has not been investigated
yet in recent work for West African regions.

Our experiments performed with the Adam optimizer,
linear and tanh activation functions in the encoder and
decoder layers, 50 epochs, and 50 units have shown the GRU
neural network to be the best predictor with smaller pre-
diction errors (MAPE� 2.51%, MAE� 0.0653,
RMSE� 0.0959) than those indicated by the other ML
methods (MAE� 1.60 and RMSE� 2.03) [53, 55]. Because
the GRU neural network is more resistant to exploding or
vanishing gradient problems, it can learn in a larger variety
of confgurations or long-range dependencies. Te DT and
SVR models demonstrated more unsatisfactory results and
were therefore considered the worst models.

6. Conclusion

Nowadays, in many felds such as agriculture, meteorology,
hydrology, and water resource management, the fore-
casting of subseasonal temperatures is of crucial impor-
tance [67]. Terefore, this study investigated the ability of
state-of-the-art machine learning methods to estimate the
subseasonal temperatures (1 to 2 weeks) for the summer
(MAMJ) season.

Te major contribution of this study is to compare the
ability of diferent machine learning (ML) techniques to
forecast subseasonal temperatures in West Africa, especially in
the Senegal region. In addition, this study adds to the existing
body of knowledge by providing insights into model perfor-
mance, comparing diferent methods, considering region-
specifc factors, assessing subseasonal forecasting skills, and
potentially introducing methodological advancements [97].

In this paper, six ML methods are used, including LR,
DT, SVR, ANN, long short-term memory (LSTM), and
gated recurrent unit (GRU) [62]. Tis study used data from
02/03/1891 to 29/06/2022. Data from 02/03/1981 to 31/05/
2015 were selected for training, and 20% of the training set
was used for validation.Te remaining data from 01/06/2015

to 29/06/2022 were selected to test the ML models. Te test
results show that the deep neural network (LSTM and GRU)
models were better trained and accurate than the other ML
models (LR, DT, SVR, and ANN). Te evaluation metrics,
including RMSE, MAE, MAPE, R2, Pearson’s r, and NSE,
help select the best model. However, these performance
indicators reveal that deep neural network (LSTM andGRU)
methods are the most suitable. Overall, the experiment
results show that the GRUmodel is one of the most powerful
deep learning methods for subseasonal time series fore-
casting in West Africa, with a precision of approximately
2.51% MAPE and 0.0959 RMSE, 87.07% Pearson’s r, and
74.68% of the NSE score.

In summary, ML methods, especially deep neural net-
works, a promising direction for future research in sub-
seasonal forecasting, are shown to help extend the prediction
time of summer temperature to subseasonal. Terefore,
these contributions enhance our understanding of sub-
seasonal climate forecasting, especially in the context of
predicting summer temperatures in West Africa (Senegal).

Although deep neural networks have shown great
promise, there are still more studies to be done in this area.
Due to limited resources, the author of this article was
unable to investigate studies in diferent regions of West
Africa. For further research, one might plan to

(i) Investigate the previous model over very long time
scales or long-horizon forecasting (up to 6weeks
lead time)

(ii) Build a global model and expand the study to other
areas in West and Central Africa, especially in the
Sahel regions

(iii) Improve the accuracy of subseasonal temperature
predictions during the rainy seasons

(iv) Investigate the attention-basedmodels and compare
their performances with the previous model

However, these methods have limitations when it comes
to subseasonal temperature forecasting, especially in the
context of climate. Tis is because the climate is constantly
changing and models may not have the capacity to capture
the full extent of climate change, which can often lead to
extreme phenomena occurring under previously stable
conditions [98].
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Te data supporting the current study are available from the
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Table 6: ML and DL methods ranking based on their performance.

Rank RMSE MAE MAPE R2 Pearson’s r NSE Overall
1 GRU GRU GRU GRU GRU GRU GRU
2 LSTM LSTM ANN LSTM LSTM LSTM LSTM
3 ANN ANN LSTM ANN ANN ANN ANN
4 SVR SVR LR LR LR LR LR
5 SVR LR LR SVR SVR SVR SVR
6 DT DT DT DT DT DT DT
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