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Tis study identifes critical inefciencies within a dual-channel operationmodel employed by a fast fashion company, particularly
the independent operation of three logistics distribution systems. Tese systems result in high operational costs and low resource
utilization, primarily due to redundant vehicle dispatches to meet the distinct demands of retail store replenishment, online
customer orders, and customer return demands, as well as random and scattered return requests leading to vehicle un-
derutilization. To address these challenges, we propose a novel integrated logistics distribution system design and management
method tailored for dual-channel sales and distribution businesses. Te approach consolidates the three distribution systems into
one cohesive framework, thus streamlining the delivery process and reducing vehicle trips by combining retail and customer visits.
An optimization algorithm is introduced to factor in inventory and distribution distance, aiming to achieve global optimization in
pairing retail store inventory with online customer orders and unifying the distribution of replenishment products, online
products, and returned products.Te paper contributes to the feld by introducing a new variation of the Vehicle Routing Problem
(VRP) that arises from an integrated distribution system, combining common VRP issues with more complex challenges. A
custom Branch-and-Price (B&P) algorithm is developed to efciently fnd optimal routes. Furthermore, we demonstrate the
benefts of the integrated system over traditional, segregated systems through real-world data analysis and assess various factors
including return rates and inventory conditions.Te study also enhances the model by allowing inventory transfers between retail
stores, improving inventory distribution balance, and ofering solutions for scenarios with critically low inventory levels. Our
fndings highlight a signifcant reduction in total operating cost savings of up to 49.9% and vehicle usage when using the integrated
distribution system compared to independent two-stage and three-stage systems. Te integrated approach enables the utilization
of vacant vehicle space and the dynamic selection and combination of tasks, preventing unnecessary mileage and space wastage.
Notably, the integration of inventory sharing among retail stores has proven to be a key factor in generating feasible solutions
under tight inventory conditions and reducing operational costs and vehicle numbers, with the benefts amplifed in large-scale
problem instances.

1. Introduction

In recent decades, the development of e-commerce has
played an increasingly important role in global commerce.
As a result, some new e-commerce models focusing on the
sale of best-selling items emerge and become an important
part of e-commerce that cannot be ignored. Under these new
models, enterprises on the one hand make use of the ad-
vantages of online marketing and online shopping orders to
enrich sales channels and increase sales volume; on the other

hand, they follow the traditional ofine retail stores to
improve product publicity and customer experience.
Compared with the traditional ofine retail channels, the
retail stores under the new model not only serve the cus-
tomers directly in the store but also act as the front ware-
house. As a direct service customer, retail stores collect the
market reaction of best-selling products in diferent regions
and feed back to the headquarters to adjust the re-
plenishment and allocation strategy of subsequent retail
stores. As a front-loading warehouse, it follows the unifed
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arrangement of the headquarters to meet the needs of online
orders and improve the service level of ofine customers and
the delivery time of online customers.

As a typical application industry of dual-channel, an
increasing number of apparel companies are starting to take
the fast fashion route. Tey have established online direct
sales channels in addition to their traditional ofine chan-
nels. Companies can sell their products through dual
channels or even multiple channels, which can further en-
hance the brand’s visibility and infuence. Te relationship
between fast fashion and dual-channel is mutually rein-
forcing. Fast fashion brands can provide customers with
a more convenient and personalized shopping experience by
combining online and ofine channels. Customers can
browse the latest styles online, then try on and purchase in
a physical store, or choose items in-store and place an order
online. Dual-channel can help fast fashion brands manage
inventory more efciently. Trough real-time data analysis,
brands can adjust their inventory timely based on online and
ofine sales data, thus reducing overstock. Trough dual-
channel sales, fast fashion brands can collect a vast amount
of customer behavior data. Tese data help brands better
understand market trends, predict customer needs, respond
quickly, and thereby create products that more closely match
market demand. Dual-channel provides fast fashion brands
with more points of sale, whether to expand geographic
coverage or to ofer a 24/7 uninterrupted shopping expe-
rience, both of which can attract a broader customer base. A
successful dual-channel strategy can enhance brand image,
making the brand appear more modern and consumer-
friendly, especially for fast fashion customers who pursue
the latest trends. In summary, a dual-channel strategy
provides fast fashion brands with a robust framework that
leverages the organic integration of online and ofine
channels to increase efciency, expand touch points, opti-
mize customer experience, and ultimately strengthenmarket
competitiveness. However, this emerging dual-channel retail
system poses new challenges to enterprises’ logistics, re-
quiring them to redesign their logistics distribution systems
by taking into account key factors such as customer expe-
rience, business cost, and service efciency.Te new logistics
distribution system needs to break the original traditional
ofine fxed range distribution mode but absorb the ad-
vantages of online fexible distribution and coordinate and
integrate the replenishment distribution of retail stores and
online customer distribution [1].

However, while diversifed supply chainmodels drive the
rapid development of fast fashion apparel companies, they
also bring about some new challenges. Te product return
process caused by quality problems of the product itself or
negligence in the distribution process makes return a com-
mon phenomenon in online distribution channels [2]. Since
consumers cannot physically interact with products when
shopping online, their observation of the products may not
be as direct, leading to returns due to issues with color, style,
size, quality, etc. In addition, the process of returning goods
can lead to a poor customer experience due to long return
cycles and inconvenient procedures, which can signifcantly
impact the company’s revenue growth. Terefore, how to

improve the level of consumer return services and expedite
the return process has become a key issue for businesses to
address. Terefore, under the new e-commerce model, the
distribution system should not only integrate online order
distribution and ofine replenishment but also deal with
customer returns, which have become a new research di-
rection and a new hotspot.

Next, we will describe the dual-channel operation model
of a well-known large fast fashion company to illustrate the
problems studied in this paper. Te company has a central
warehouse in the suburbs and a number of scattered retail
stores downtown. In order to gain more customers and serve
them well, the company has established a dual-channel sales
and distribution system that supports both the online e-
commerce channel and the ofine retail channel. Depending
on their preferences, customers can either visit physical
retail stores to experience ofine purchases or order prod-
ucts online to enjoy home delivery services. In the actual
operation process, the headquarters decides the quantity of
products to be supplied to the retail stores from the central
warehouse according to the sales volume and the existing
inventory of the retail stores. Ofine orders are purchased
and returned directly by customers at retail stores. Online
orders are not delivered directly from the central warehouse.
Instead, a manual decision is made to select the retail store
nearest to the customer with inventory and prioritize the
consumption of the old batches of products in inventory.
And the product needs further processing and packaging in
retail stores before it can be delivered to customers. For
products returned by customers, the headquarters arranges
door-to-door service to collect them and return them to the
central warehouse for further inspection or renovation.
Terefore, the company’s logistics distribution system
consists of three parts, as shown in Figure 1:

(1) Retail store distribution system, replenishing prod-
ucts from the central warehouse to retail stores. Te
retail replenishment delivery plan is represented by
a blue arrow in Figure 1. Each plan includes a central
warehouse and multiple retail stores and arranges
specifc vehicles for distribution based on the actual
distribution tasks generated by the replenishment
plan. Tis is a typical Capacitated Vehicle Routing
Problem (CVRP), which considers the capacity
constraints of vehicles to arrange a reasonable
number of vehicles to minimize delivery costs.

(2) Online order distribution system, where products
ordered online are picked up from retail stores and
delivered to customers. Te online order pickup and
delivery plan is represented by a green arrow in
Figure 1. Each plan consists of multiple retail stores
and multiple customers, but a sales order has only
one retail store as the pickup point and one customer
as the delivery point. Ten specifc vehicles are
arranged for delivery based on the actual delivery
tasks generated by the sales orders confrmed by all
retail stores. Tis is a typical one-to-one Pickup and
Delivery Problem (PDP), where the order of pickup
and delivery is reasonably arranged to minimize the
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delivery cost while considering the capacity con-
straints of the vehicle.

(3) Return collection system, where returned products
are collected from customers and transported to the
central warehouse. Te return collection plan is
represented by an orange arrow in Figure 1. Each
plan consists of a central warehouse and multiple
customer points, and specifc vehicles are arranged
for collection operations based on the actual col-
lection tasks generated by all current return orders.
Tis is also a typical CVRP, which considers the
capacity constraints of vehicles to arrange a reason-
able number of vehicles to minimize delivery costs.

Although the fast fashion company adopts a dual-
channel operation model, the three logistics distribution
systems are currently operated independently, which will
lead to some problems of high operating costs and low
resource utilization. Firstly, in order to meet retail stores’
demand for replenishment, online customer order demand,
and customer order return demand, vehicles are arranged
for distribution, respectively, which is easy to cause excessive
number of vehicles. For example, the customer has the
operation demand of purchase and return at the same time,
which may need to be visited twice, resulting in lack of
fexibility and excessive vehicle operation costs. Secondly,
the return demand of customers is relatively random and
scattered, and the vehicles sent to pick up the returned
products are easy to lead to low load rate and waste of
resources. Finally, human decision making is limited in that
it does not achieve the optimal pairing of retail store in-
ventory with online customer orders at the global
optimization level.

Especially with the ferce competition among fast fashion
companies, it has become necessary to redesign a dual-
channel logistics distribution system to solve the above
problems for improving distribution system efciency and
save total logistics costs. Te new system must simulta-
neously meet the needs of retail replenishment, online
customer orders, and customer return demands, while
avoiding excessive vehicle numbers, low passenger capacity,
and resource waste. In addition, the model matched with the
new system can promote the optimal pairing of retail in-
ventory and online orders, generate optimal distribution
strategies, reduce operating costs, and increase competi-
tiveness in a dual-channel sales environment.

In order to overcome the above problems, the moti-
vation of this paper is to propose a design and management
method of logistics integrated distribution system to meet
the needs of dual-channel sales and distribution business.
On the one hand, the three distribution systems are in-
tegrated into one integrated distribution system. Tis
simplifes the delivery process and reduces the number of
vehicles by reducing the number of retail and customer
visits. On the other hand, the optimization algorithm is
introduced to comprehensively consider inventory and
distribution distance and other factors, so as to realize the
optimal matching between retail store inventory and online
customer orders and realize the unifed distribution of

replenishment products, online products, and returned
products.Tis can lead to higher load rates and lower overall
delivery miles, which can lead to improved transportation
efciency and lower service costs. In addition, from the
perspective of management, the integrated logistics distri-
bution system can more easily promote the implementation
of the headquarters supply chain strategy and promote the
sustainable development of enterprise business. Figure 2
shows an example of this integrated delivery system and
illustrates seven possible delivery scenarios: (1) transport
replenishment products from central warehouse to retail
stores, (2) go to the retail store to pick up the products
ordered online and deliver them to customers, (3) collect
returned products from customers and fnally return them
to the central warehouse, (4) combination of scenario (1)
and scenario (2), (5) combination of scenario (1) and sce-
nario (3), (6) combination of scenario (2) and scenario (3),
and (7) combination of scenario (1), scenario (2), and
scenario (3), where vehicles depart from the central ware-
house, then can deliver products to retail stores, or pick up
online ordered products from retail stores to customers, or
collect the return products from customers, and fnally
return to the central warehouse. In these scenarios, the
integrated distribution system includes a variety of PDP
scenarios. It has a one-to-many-to-one PDP scenario of
picking up goods from the warehouse and delivering them
to retail stores and picking up goods from returning cus-
tomers and returning them to the warehouse. It also has
a many-to-many PDP scenario where you select a certain
retail store to pick up the goods and then deliver them to
a certain online ordering customer. In these scenarios, the
integrated distribution system includes multiple VRPs or
PDPs. It has a typical CVRP that picks up the goods from the
warehouse and delivers them to the retail store, and there is
another typical CVRP that picks up the goods from the
returning customer and returns them to the warehouse. Te
combination of these two CVRPs forms a one to many to
one PDP. In addition, it also has many-to-many PDPs that
select a certain retail store to pick up the goods and then
deliver them to a certain online ordering customer. Tese
VRPs or PDPs are mixed together, which leads to a much
higher complexity of the problem and poses higher chal-
lenges to the design of the algorithm.

In order to make the above new logistics integrated
distribution system achieve the expected efect, it also brings
us new four research questions that need to be solved ur-
gently from the academic point of view. Te frst question is
how to construct a new variant model that expresses the VRP
of a new integrated distribution system based on the tra-
ditional VRP model. Te second question is how to design
a novel algorithm to efciently solve problems of diferent
scales corresponding to the newmodel. Te third question is
in what ways the integrated distribution system outperforms
the three individual distribution systems when evaluated
with real-world operational data. Te fnal question is how
allowing inventory transfers among diferent retail stores
afects the overall balance of inventory levels and the fea-
sibility of solutions, especially under tight inventory
conditions.
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Te novelty of this paper is manifold, as follows:

(i) Initially, it introduces a novel variation of the VRP
that emerges from an integrated distribution sys-
tem. Tis variant combines common VRP issues
such as CVRP, one-to-many-to-one PDP, and
many-to-many PDP, as well as various complex
issues resulting from the combination of these
issues.

(ii) Secondly, to address the proposed model, a branch-
and-price (B&P) algorithm is developed, featuring
a unique custom label-setting algorithm designed to
fnd optimal routes efciently.

(iii) Tirdly, the paper evaluates the advantages of the
integrated distribution system relative to the

traditional, segregated systems by utilizing real-
world operational data. It conducts a thorough
analysis of various factors, including return rates
and diferent inventory conditions, to assist in the
practical application of the integrated system.

(iv) Finally, the model is further enhanced by allowing
for inventory transfers between retail stores. Tis
enables a more balanced distribution of inventory
across stores and provides feasible solutions in
scenarios where inventory levels are critically low.

Te remainder of this paper is organized as follows.
Section 2 presents the literature review concerning related
topics. Section 3 outlines the problem descriptions and
mathematical formulations. Section 4 describes the
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Figure 1: Te operational procedures of the independent distribution system.
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Figure 2: An illustrative example of the integrated distribution system.
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proposed B&P algorithm. Te computational experiments
are conducted in Section 5. Finally, Section 6 concludes this
paper with some further research directions.

2. Literature Review

In this section, we will conduct literature analysis and review
from four research aspects related to the research content of
this paper. Te four aspects are (A) dual-channel, fast
fashion and order fulfllment, (B) product return, (C) vehicle
scheduling, and (D) solution methods. Te corresponding
research results are as follows.

2.1. Dual-Channel, Fast Fashion and Order Fulfllment. In
recent years, with the vigorous development of e-commerce
and the change of consumer behavior, dual-channel, fast
fashion and order fulfllment have attracted more and more
attention from academia and industry. Te fast fashion
apparel industry allows consumers to obtain the latest trendy
fashion products in real time. And it has distinct industry
characteristics, such as high frequency of product updates,
numerous distribution occurrences, and small quantities per
distribution. Dual-channel can help fast fashion brands
manage inventory. Te efcient and swift order fulfllment
process ensures that fast fashion company’s new products
are rapidly brought tomarket and reach consumers. And it is
not only about delivering goods but also processing returns
and exchanges to help maintain customer satisfaction and
brand loyalty. Te research on the relationship between
dual-channel, fast fashion and order fulfllment is a very
broad and hot research area, and there have been many
valuable research contents.

Te research on how dual-channel afects fast fashion
has attracted the attention of a large number of scholars, and
there have been a lot of relevant studies. Pentecost et al. [3]
discussed how the retail industry, especially the fast fashion
sector, adapts to the needs of consumers from diferent
generations and the use of online and ofine channels.
Frazer et al. [4] explored the impact of the integration of
online and ofine environments on retail, including the fast
fashion industry. Zlatica’s article [5] focused on the merger
of the omnichannel experience in marketing and digitiza-
tion, involving case studies related to fast fashion brands. Liu
et al. [6] modeled a two-echelon supply chain to optimize
retail and wholesale pricing for two substitutable products
under stochastic demand and evaluated the impact of
channel power structures on pricing decisions and chain
member profts. Bhardwaj et al. [7] examined how fast
fashion brands respond rapidly to changes in the fashion
industry, likely touching upon the implementation of
omnichannel strategies. Cao’s research [8] focused on the
strategic dynamic capabilities for fast fashion and online
retailing, discussing the omnichannel model in the Chinese
market.

Te success of fast fashion relies heavily on an efcient
order fulfllment process that ensures speed, fexibility, and
accuracy. Several studies have focused on the agility of
supply chain management in fast fashion. According to

Christopher et al. [9], agility is the cornerstone of fast
fashion, enabling brands to respond rapidly to changing
consumer trends. Ferdows et al. [10] underscored the im-
portance of a fexible supply chain that can adjust pro-
duction volume and turnaround times. Additionally,
research by Choi [11] found that streamlined supply chains
with strategic supplier relationships are critical for mini-
mizing lead times and maximizing responsiveness. Logistics
play a critical role in the fast fashion order fulfllment
process. A study by Barnes and Lea-Greenwood [12] noted
that logistics strategies must be designed to support the high
turnover of products characteristic of fast fashion. Hines [13]
discussed the importance of efcient transportation and
warehousing to ensure that products reach stores and
consumers without delay. Caro and Gallien [14] highlighted
the use of advanced distribution systems that align with the
fast-paced nature of the industry. Cachon and Swinney [15]
explored how online platforms complement traditional
retail channels, facilitating faster order fulfllment and
returns processing. Bhardwaj and Fairhurst [7] emphasized
the importance of a seamless omnichannel experience,
where inventory visibility and order accuracy are paramount
to customer satisfaction. Technological advancements have
had a profound impact on order fulfllment. H&M’s
implementation of RFID technology for inventory man-
agement is a prime example, as investigated by Moon et al.
[16].Tis technology allows for real-time inventory tracking,
which aids in accurate stock levels and reduces the risk of
stockouts or overstocking. Aviv et al. [17] discussed how
predictive analytics can be used to forecast demand and
optimize inventory in fast fashion. Te environmental im-
pact of fast fashion order fulfllment cannot be ignored. Shen
[18] explored the concept of sustainable supply chains and
suggested that fast fashion companies need to balance speed
with ecological and social responsibility. Companies like
Zara have been scrutinized for their sustainability practices,
leading to a call for greener logistics and packaging solutions
in the industry.

With the development of e-commerce and the di-
versifcation of customer needs, cross-channel order ful-
fllment problems have attracted more and more attention.
For example, Hendalianpour et al. [19] explored the efec-
tiveness of various contracts as supply chain coordination
mechanisms within a competitive, two-echelon supply
chain, fnding that revenue-sharing contracts perform best
in enhancing coordination between manufacturers and re-
tailers, with ordering decisions being crucial for competitive
strategy. Aksen and Altinkemer [20] studied the online order
fulfllment problem through retail stores. In particular, re-
tailers have to decide which retail store to serve which order,
based on the store operating cost and the last-mile delivery
cost. Liu et al. [21] addressed the challenge of creating an
integrated shopping experience in dual-channel retail by
using a multiobjective optimization model that balances
minimum distribution network costs with maximum cus-
tomer convenience. Hendalianpour [22] introduced a game-
theoretic model using Double Interval Grey Numbers to
optimize pricing and inventory decisions for perishable
goods in the supply chain, demonstrating that consumer
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preference for product freshness signifcantly infuences
demand and optimal retailer strategies. Chen [23] examined
a setting with an online retailer and two physical retailers. In
addition to serving their in-store customers, the physical
retailers act as drop shippers for the online retailer, which
carries no inventory of its own. Tey considered cross-
channel operations across independent retailers and each
retailer has separate proft functions. Jalilipour Alishah et al.
[24] studied the order fulfllment network consisting of only
one retail store and one fulfllment center (FC), and online
demands are routed to the ofine retail store only when the
FC runs out of stock. Zhao et al. [25] modeled a dual-channel
supply chain in which the manufacturer manages an online
retail store and operates an online-to-ofine strategy, in
which online orders are fulflled from the retail store in-
ventory of the manufacturer’s retail partners, with the
possibility of inventory transshipments between the retailer
and the manufacturer in case of stockouts. Teir fndings
proved the existence of an optimal inventory policy and an
optimal transshipment price. Ishfaq and Raja [26] provided
a framework for the online order fulfllment, which includes
the use of (1) distribution centers (DCs), in which retailers
integrate the fulfllment of retail store and online demands
through a unifed warehouse; (2) dedicated direct-to-
customers FCs to fulfll online demand from dedicated
centers direct-to-customer; (3) retail stores, which leverage
retail store inventory to fulfll both online and ofine de-
mands; and (4) vendors, which directly fulfll online orders
without the utilization of retail store inventory. Bayram and
Cesaret [27] investigated stochastic dynamic fulfllment
decisions that include both online and ofine orders. Online
orders can be fulflled either from the FC or from one of the
retail stores. Tey also developed a heuristic policy that
maximizes the retailer’s total proft from sales across all
channels.

From the above, it can be found that the relationships
among dual-channel, fast fashion and order fulfllment are
complex and multifaceted. However, the abovementioned
research mainly focuses on the relationship between two of
them, and there is no research on the relationship between
these three. As consumer expectations continue to evolve,
fast fashion brands based on dual-channel must continu-
ously innovate their order fulfllment strategies to maintain
a competitive edge in the marketplace. Fast fashion hopes to
fulfll orders faster and more efciently, which requires
opening up dual channels and front-loading and sharing
inventory to reduce the delivery distance between goods and
customers. Dual channels increase the distribution link of
fast fashion and improve the fexibility of service portfolio
and the sustainability of revenue. However, the increase in
service portfolio will correspondingly increase the types and
frequency of order fulfllment and distribution, which will
lead to an increase in overall logistics and distribution costs.
Tis requires considering the relationship among dual-
channel, fast fashion and order fulfllment to redesign
a logistics integrated distribution system that integrates
multiple types of distribution links and merges distribution
resources to strike a balance between speed, efciency,
fexibility, sustainability, and cost. Among the various design

options for customer-centered dual channels and order
fulfllment, most choose retail stores as distribution centers
to enhance distribution fexibility for various customer
needs and reduce distribution time and costs. Terefore, in
this study, the inventory of retail stores must not only
support direct purchases by ofine customers but also fulfll
online orders. So, our logistics distribution model needs to
consider the matching between retail stores and online
customer orders to determine the optimal distribution
strategy.

2.2. Product Return. For consumers using online channels,
they can only understand product information through text
and images before purchasing, and the product received may
difer from expectations, leading to a need for returns [28].
Since consumers cannot experience the unique qualities of
a product frsthand when shopping online, issues such as
discrepancies between the actual item and the merchant’s
description or product defects often arise.Tese issues result
in a persistently high rate of returns, causing signifcant
inconvenience to consumers and deteriorating their shop-
ping experience. For businesses, this is a major hindrance to
their development. To improve consumers’ shopping ex-
periences and attract more customers, merchants must place
greater emphasis on after-sales investments. Terefore, in-
vestments related to the return process have gradually be-
come a crucial consideration in business operations.
Scholars from home and abroad have considered various
factors and studied the issue of returns within the supply
chain. Ofek et al. [29] believe that the application of the
Internet has made merchants more fexible and the online
channel ofers a better shopping experience to consumers.
Tey looked at consumer returns and retail channel services,
starting with the utility function to study the dual-channel
pricing problem under the risk of returns. Ramanathan [30]
investigated online shopping user reviews and found that
return handling performance can afect a company’s brand
loyalty. It was also discovered that the impact of return
handling varies for diferent products. Return strategies
signifcantly infuence the pricing and revenue of the supply
chain; hence, some explorations into return policies have
been undertaken. Mukhopadhyay and others [31] found that
it is necessary for manufacturers to provide a return policy in
online channels and developed an optimal return policy
through a proft maximization model. Jing Chen and col-
leagues’ research indicates that retailers can increase profts
by segmenting themarket with policies that allow or prohibit
returns and considering these returns in pricing and or-
dering decisions [32]. Some scholars have also studied how
the amount of the refund afects consumers’ shopping be-
havior. For example, Suwelack et al. [33] showed that of-
fering a full refund guarantee can resonate with consumers,
who are then willing to pay a higher price for products.
McWilliams [34] found that in a competitive market with
high-quality goods, low-quality retailers attract consumers
by ofering more attractive return policies to enhance their
competitiveness. Most dual-channel return studies focus on
no-fault returns, but with changing consumer attitudes,
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quality issues have become a signifcant reason for returns. A
small number of scholars have also focused on quality de-
cisions as a key research area. Mukhopadhyay [35] initially
studied product quality issues. Building on previous re-
search, Li et al. [36] further investigated whether online
shopping return strategies are infuenced by product pricing
and quality.

At present, most studies on dual-channel supply chains
consider return services alone in the online channel, without
considering linkage with services in other channels. Cross-
channel return service can signifcantly reduce return lo-
gistics costs and improve consumer shopping experience.
Our research integrates three diferent types of services:
depot-to-store distribution, store-to-customer distribution,
and return services, which have not yet appeared in existing
studies.

2.3. Vehicle Scheduling. VRP is well acknowledged as the
foundation of logistics distribution operations, which in-
volves delivering some items from depots to customers using
capacitated vehicles [37]. Over the years, diferent variants of
the VRP have emerged, each addressing specifc operational
constraints and real-world complexities. Te basic VRP
seeks to minimize the total route cost for vehicles delivering
goods from a depot to a number of customers. However, the
classic VRP has been extended to include numerous prac-
tical considerations, leading to the development of several
well-known variants such as (a) VRP with Time Windows
(VRPTW), where deliveries must occur within predefned
time intervals [38], (b) Capacitated VRP (CVRP), which
introduces vehicle capacity constraints [39], and (c) VRP
with Pickup and Delivery (PDP), incorporating scenarios
where vehicles must manage both pickups and deliveries
[40]. With the increasing complexity of logistics systems,
more advanced VRP variants have arisen, including (a)
Periodic VRP (PVRP), where customers need to be visited
multiple times over a planning horizon [41], (b) Multidepot
VRP (MDVRP), involving multiple depots from which
vehicles begin and end their routes [42], and (c) Split De-
livery VRP (SDVRP), allowing a customer’s demand to be
split and delivered by multiple vehicles [43]. Emerging
concerns about sustainability and social responsibility have
led to new VRP formulations: (a) Green VRP (G-VRP),
aiming to reduce fuel consumption and CO2 emissions,
often through the use of alternative fuel vehicles [44], and (b)
VRP in Disaster Relief (VRP-DR), focusing on rapid and
efcient logistics in response to humanitarian crises [45].
Among them, PDP constitutes an important branch of
CVRP, in which itemsmust be picked up from some original
locations frstly and then transported to diferent destina-
tions. Berbeglia et al. [46] claimed that PDPs could be further
classifed into three subcategories according to the type of
demand and route structure, as many-to-many (M-M) type
in which each commodity may have multiple origins and
destinations, one-to-many-to-one (1-M-1) type in which
commodities are delivered from a depot to many customers
and some other commodities are collected from customers
and transported back to the depot, and one-to-one (1-1) type

in which each commodity has a single origin and a single
destination Te VRP and its variants represent a rich do-
main of study with direct applications in the improvement of
logistics and transportation systems.

Te problem studied in this paper from themacro level is
hybrid VRP that simultaneously contains CVRP, one-to-
many-to-one PDP, and many-to-one PDP. However, at
a micro level, decisions need to be made to identify specifc
retail stores to meet the distribution needs of specifc cus-
tomers, and the above types of VRPs considered together
provide difculty in decision making. As expected, we note
that the existing literature does not study this new VRP
variant.

2.4. SolutionMethods. Te difculty of solving VRPs is NP-
hard, and numerous efects have been devoted to solve these
problems using diferent methodologies or techniques. Te
solution methods for solving VRPs would encompass var-
ious studies that explore heuristic, exact, and metaheuristic
approaches to tackle the complexity of routing and sched-
uling vehicles. Te issues related to the research questions of
this paper are mainly PDP, so we look into diferent solution
methods that have been proposed and developed to solve
VRPs and PDP. Exact methods, such as the branch-and-
bound algorithm and its variations, have traditionally been
used to fnd the optimal solution to VRPs. Cordeau and
Laporte [47] were among the frst to apply branch-and-cut
algorithms to VRPs, demonstrating their efectiveness for
small problem instances. However, as noted by Toth and
Vigo [39], the computational complexity of these methods
limits their application to larger, real-world instances.
Dumas et al. [48] proposed a branch-and-cut algorithm
specifcally designed for the PDP, while Cordeau and
Laporte [47] extended these techniques to handle more
complex constraints, such as time windows and multiple
vehicles. Rousseau et al. [49] and Azi et al. [50] claimed that
column generation (CG) or Dantzig–Wolfe (DW)
decomposition-based algorithms can accommodate com-
plex constraints in VRPs. Some review papers concerning
the exact approach for VRPs have been conducted [51–53].
Heuristic approaches are designed to fnd good, but not
necessarily optimal, solutions to VRPs in a reasonable
amount of time. Laporte and Semet [54] and Laporte et al.
[55] once surveyed the commonly used heuristic ap-
proaches. Clarke and Wright [56] introduced the Savings
algorithm, an intuitive and straightforward heuristic that has
inspired numerous variations. Fisher and Jaikumar [57]
further developed insertion heuristics, which iteratively
build routes by inserting the most appropriate customer into
an existing route. Savelsbergh and Sol [58] developed an
insertion heuristic that constructs routes by iteratively
adding the most cost-efective pickup and delivery requests.
Bent and Van Hentenryck [59] introduced an adaptive large
neighborhood search (ALNS) that systematically explores
large portions of the search space through a series of destroy
and repair operators. Liu et al. [60] proposed a heuristic
algorithm with a robust optimization approach to minimize
the total costs of the inventory-routing in a supply chain.
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Metaheuristics provide a framework for developing heuristic
strategies capable of escaping local optima and exploring the
solution space more efectively. Since then, a variety of
metaheuristic methods have been applied, including simu-
lated annealing [61], tabu search [62], and ant colony op-
timization [63]. Nanry and Barnes [64] applied a simulated
annealing algorithm to the PDP, demonstrating its efec-
tiveness in fnding high-quality solutions. Parragh et al. [40]
explored a hybrid variable neighborhood search (VNS) and
tabu search algorithm, which dynamically adjusts its pa-
rameters based on the problem instance. Recognizing the
strengths and weaknesses of diferent methodologies, re-
searchers have proposed hybrid approaches. Pisinger and
Ropke [65] combined elements of exact and heuristic
methods in an adaptive large neighborhood search algo-
rithm, showing improved performance on benchmark
problems. Vidal et al. [66] further explored hybrid meta-
heuristics, integrating various techniques to balance in-
tensifcation and diversifcation strategies. Ropke and
Pisinger [67] introduced a hybrid heuristic that combines
elements of ALNS with local search procedures, efectively
balancing exploration and exploitation. Adewumi et al. [68]
presented a cooperative approach that integrates a genetic
algorithm with local search heuristics, allowing for a diverse
exploration of the solution space. More recently, the focus
has shifted towards incorporating machine learning and
artifcial intelligence into VRP solutions. Kontoravdis and
Bard [69] pioneered the use of neural networks for vehicle
routing, and more recent studies have explored re-
inforcement learning [70] as a means to adaptively learn
routing policies. Vidal et al. [71] have investigated the ap-
plication of machine learning techniques to learn and im-
prove heuristic rules for vehicle routing. Te VRP solution
methods reveal a continuous evolution of techniques to
address the inherent complexity of the problem.

While exact methods ofer optimality for smaller in-
stances, heuristic and metaheuristic approaches extend the
problem-solving capabilities to larger and more realistic
scenarios. Te advancement of hybrid and AI-based
methods refects the feld’s ongoing innovation, striving
for greater efciency and adaptability in vehicle routing.
However, for the new VRP variant we proposed, no algo-
rithm that can be used directly has been found in existing
research. It is still necessary to redesign and transform the
existing algorithm according to the characteristics of the
problem. As industries and societies continue to evolve, it is
expected that new VRP variants will emerge. So, there is an
ongoing quest for more efcient and adaptive solution
techniques, requiring continued innovation in optimization
algorithms and computational methods.

In summary, our study addresses a novel and complex
VRP variant containing one CVRP and two PDPs in a fast
fashion dual-channel supply chain. It merges depot-to-
store and store-to-customer distribution with cross-
channel return services. Te biggest difculty here is to
comprehensively consider the constraints required by the
three independent distribution services, establish a uni-
fed data model, and design an algorithm to solve the
problem. From the modeling perspective, we frst study

the integrated online and ofine retailing distribution
problem in the context of real-world application. And we
need to generate the vehicle routing plan to satisfy the
requirements from retail stores, online customer orders,
and product return requirements. From the algorithmic
perspective, we need to design a new algorithmic ap-
proach, which can exploit the structural information of
the proposed model and fnd the good quality solutions
using reasonable computational time.

3. Model Formulation

3.1. Problem Description. Te problem investigated in this
paper is motivated by a giant fast fashion company, which
owns a central warehouse and a group of retail stores. Te
company operates a dual-channel sales and distribution
system, i.e., ofine sales and online sales. In case of online
ordering, the online orders placed by customers indeed are
served by retail stores. In this research, we assume that the
available inventory of each retail store is known, and the
matching between online orders and retail stores is treated as
decision variables. Moreover, products are delivered from
the central warehouse to retail stores in a daily pace so as to
replenish the inventory of retail stores. In addition, product
return needs to be properly processed as well. In this re-
search, the company collects the return products from the
customers and then delivers them to the central warehouse
for further inspection and refurbishment.

Terefore, the distribution network is composed of three
delivery components, as (a) to deliver products from the
central warehouse to retail stores to replenish their stocks,
(b) to pick up products from retail stores and deliver to
customers, and (c) to collect return products from customers
and deliver to the central warehouse. In this research, we aim
to synthesize the three independent delivery systems as one
integrated distribution system so as to improve the opera-
tional efciency and fexibility. Hence, we propose an in-
tegrated distribution model using a feet of homogeneous
vehicles to serve the requirements of three tasks. Te frst
task is to meet the demand of r ∈ R stores with product
delivery from the central warehouse. Te second task is to
meet the demand of c ∈ CD online customers with product
delivery from retail stores. Te third task is to process the
product return from c ∈ CR customers with product delivery
from customers to the central warehouse.

3.2. Model Formulation. Te symbols and notations used in
the mathematical formulation are listed as follows (Table 1).

In order to elaborate our mathematical model so that it is
better understood, we specifcally defne the routes around
the characteristics of the problem we solve. Te problem we
solve is a single time period problem. During this period, in
the route plan output by our model, each route corresponds
to only one vehicle, and each vehicle can only take one route.
Te number of routes in the current route plan mainly
depends on the problem size and optimization space during
the current solution period. Te mathematical problem can
be formally formulated as follows:
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min 
k∈K


i∈V


j∈V

c
k
ijx

k
ij, (1)

subject to


k∈K


j∈V

x
k
ij � 1, ∀i ∈ R∪CD ∪CR, (2)


j∈R

x
k
0j � 

i∈V
x

k
i,v+1 ≤ 1, ∀k ∈ K, (3)


i∈V

x
k
ij − 

i∈V
x

k
ji � 0, ∀ j ∈ V, k ∈ K, (4)


l∈V

x
k
il − 

l∈V
x

k
lj ≤ 1 − yij M, ∀i ∈ R, j ∈ CD, k ∈ K, (5)


i∈R

yij � 1, ∀j ∈ CD, (6)


j∈CD

yijdj ≤ Ii, ∀i ∈ R,
(7)

t
k
i + Tij + si ≤ t

k
j + 1 − x

k
ij M, ∀i, j ∈ V, k ∈ K, (8)

t
k
i + Tij + si ≤ t

k
j + 1 − yij M, ∀i ∈ R, j ∈ CD, k ∈ K, (9)

q
k
0 � 

i∈V

j∈R

djx
k
ij, ∀k ∈ K, (10)

q
k
n+1 � 

i∈CR


j∈V

rix
k
ij, ∀k ∈ K, (11)

Table 1: Te symbols and notations.

Explanations
Sets

V Set of all nodes (central warehouse, retail stores, and customers)
R Set of retail stores
CD Set of customers ordering products online
CR Set of customers with product returns
K Set of available vehicles

Parameters
Q Vehicle capacity
di Demand of node i

ri Number of returned products from customer i

Ii Inventory level at retail store i

cij Delivery cost with traversing arc (i, j)

Tij Delivery time with traversing arc (i, j)

Si Service time at the node i

Decision variables
pk

i ∈ Z+ Te number of products needed to be picked up at retail store i by vehicle k

qk
i ∈ Z+ Te product quantity carried by vehicle k after leaving node i

tk
i ∈ Z+ Te arrive time at node i by vehicle k

xk
ij ∈ 0, 1{ } 1 if the arc (i, j) is traversed by vehicle k, and 0 otherwise

yij ∈ 0, 1{ } 1 if customer j is served by store i and 0 otherwise
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p
k
i � 

j∈CD

diyij, ∀i ∈ R, k ∈ K, (12)

q
k
j ≤p

k
i − dj + Q 1 − x

k
ij , ∀i ∈ R, j ∈ V, k ∈ K, (13)

q
k
j ≤ q

k
i − dj + Q 1 − x

k
ij , ∀i ∈ CD, j ∈ V, k ∈ K, (14)

q
k
j ≥ q

k
i + rj − Q 1 − x

k
ij , ∀i ∈ CR, j ∈ V, k ∈ K, (15)

0≤ q
k
i ≤Q ∀i ∈ V, k ∈ K, (16)

x
k
ij ∈ 0, 1{ } ∀i, j ∈ V, k ∈ K, (17)

yij ∈ 0, 1{ } ∀i ∈ R, j ∈ CD. (18)

Objective function (1) minimizes the total traveling cost
of all arcs traversed by all vehicles. Constraint (2) ensures
that each store and each customer are visited only once.
Constraint (3) confrms that each vehicle starts its route
from the depot and ends its route at the depot. Constraint (4)
represents the fow conservation for all nodes and vehicles.
Constraint (5) means that if a retail store serves a specifc
customer, both the retail store and customer are visited by
the same vehicle. Constraint (6) indicates that each customer
is served by only one retail store. Constraint (7) denotes that
the inventory level of retail stores cannot be violated.
Constraint (8) indicates that if xk

ij � 1, the time for the
vehicle k to reach a node j is greater than or equal to the time
it departs from the node i plus the time consumed on the way
from the node i to the node j. If xk

ij � 0, this constraint (8) is
relaxed. Constraint (9) indicates that if yij � 1 that repre-
sents the customer is served by the retail store, the time for
the vehicle k to reach a customer j is greater than or equal to
the time it departs from the retail store i plus the time
consumed on the way from the node i to the node j. If
yij � 0, this constraint (9) is relaxed. Constraint (10) cal-
culates the load of each vehicle when it leaves the central
warehouse. Constraint (11) calculates the load of each ve-
hicle when it returns to the central warehouse. Constraint
(12) calculates the number of products that need to be picked
up at a store. Constraints (13), (14), and (15) indicate the
vehicle load consistency when it leaves a store, a customer
with demand, and a customer with returned goods, re-
spectively. Constraint (16) ensures the load of a vehicle
cannot exceed its capacity. Constraints (17) and (18) are
binary constraints.

3.3.ModelExtension. Temodel described above is based on
the hypothesis that the inventory cannot share among
multiple retail stores. In some cases, there may be no feasible
solutions when the inventory is tight. For example, in
Figure 3, the inventory of retail stores A and B is 10, and the
demand of customers C and D is 9 and 11, respectively. In
this case, customer D cannot be served by any of the retail
stores as the inventory between A and B cannot be shared.

Hence, if the inventory can be shared among multiple retail
stores, more feasible solutions, such as
0⟶ A⟶ B⟶ C⟶ D⟶ 0, can be obtained.

Terefore, in order to improve the operational fexibility
of this integrated distribution system and share the in-
ventories at diferent retail stores, constraints (6), (7), (9),
and (12) can be replaced by constrains (19)–(21). Constraint
(19) ensures that the number of products to be delivered
cannot exceed the inventory of the retail store, in which zij is
an integer variable representing the number of products
delivered from a store i to a customer j. Constraint (20)
requires that the total number of products to be delivered to
customers cannot exceed the total available inventories of all
retail stores. Constraint (21) ensures that zij � 0 if yij � 0
and zij ≤ Ii if yij � 1.


j∈CD

zij ≤ Ii ∀i ∈ R,
(19)


k∈K


i∈V


j∈CD

x
k
ijdj � 

i∈R


j∈CD

zij, (20)

zij ≤ Iiyij ∀i ∈ R, j ∈ V, k ∈ K. (21)

4. Solution Approaches

Te branch-and-price (B&P) algorithm is an advanced
optimization method that combines two powerful tech-
niques: branch-and-bound (B&B) and column generation. It
is often applied to solve large-scale and complex combi-
natorial optimization problems. B&B is a general algorith-
mic method for fnding optimal solutions to various
optimization problems, especially in integer programming.
Te goal of B&B is to prune the search tree and reduce the
number of feasible solutions to be examined. Column
generation (CG) is a mathematical optimization technique
used to solve large-scale linear programming (LP) problems
that have a large number of variables. It starts with a smaller,
more manageable subset of the variables (the “restricted
master problem” or RMP) and iteratively adds new variables

10 International Journal of Intelligent Systems



(columns) that can potentially improve the objective
function (these are found by solving a “pricing problem” or
“subproblem”). Te process continues until no more im-
proving columns exist, at which point the current solution is
optimal for the LP relaxation of the problem. In B&P,
column generation is used to solve the LP relaxation of the
branch-and-bound nodes more efciently. At each node of
the branch-and-bound tree, instead of considering all
possible variables, the column generation approach is
employed to focus on a smaller subset and to generate new
columns only as needed. Te branching decisions often
involve choosing a variable to “branch” on, splitting the
problem into two new subproblems where the chosen
variable takes on diferent integer values in each sub-
problem. Te B&P algorithm continues this process, navi-
gating through the search tree, solving the LP relaxation at
each node, adding new columns as needed, and applying
bounds to eliminate suboptimal branches.

Mix PDPs have a vast and complex solution space due to
the combination of pickup and delivery tasks. And B&P is
a sophisticated optimization method that takes advantage of
both the systematic exploration of solutions in branch-and-
bound and the efcient handling of numerous variables in
column generation, making it an efective tool for tackling
mix PDPs. Te B&P algorithm can handle this complexity
efectively by breaking down the problem into smaller, more
manageable subproblems using CG and then systematically
exploring potential solutions with B&B. Te routing de-
cisions for mix PDPs involve many binary variables that
indicate whether a vehicle travels a certain arc or whether
a customer is served by a particular route. B&P can manage
the large set of variables by generating columns only as
needed, which reduces the computational burden compared
to considering all the variables simultaneously. Vehicles in
mix PDPs often have capacity limits, and routes must be

planned to avoid exceeding these limits while considering
the mix of pickups and deliveries. B&P allows for the in-
tegration of these constraints into the subproblems, making
it possible to generate feasible routes that respect vehicle
capacities and other constraints. Te column generation
component of B&P creates routes dynamically, which is
ideal for mix PDPs where the combination of pickups and
deliveries may lead to a wide variety of potential routes. New
columns (routes) generated can be highly specifc to the
problem’s constraints, thereby improving the quality of the
solution. At each node in the branch-and-bound tree, B&P
solves the LP relaxation of the problem using column
generation, which can quickly fnd the optimal fractional
solution that guides the branching decisions. Tis approach
ensures that the integer constraints of the problem are
respected, which is particularly important for mix PDPs,
where pickup and delivery pairings may have to adhere to
strict sequencing. B&P algorithms can be adapted to dif-
ferent variants of mix PDPs, including those with additional
constraints like time windows, multiple depots, or hetero-
geneous feets. Te method scales relatively well for larger
instances of the problem, which is a common challenge in
real-world applications. Overall, the B&P algorithm’s ca-
pability to manage a large number of variables, generate
feasible and efcient routes dynamically, and systematically
explore the solution space while incorporating complex
constraints makes it a highly suitable choice for solving
mix PDPs.

Te positive points of using the B&P algorithm for
solving mix PDPs in comparison to other solution ap-
proaches are highlighted by its ability to efectively handle
a variety of challenges inherent in these types of problems.
B&P seamlessly integrates complex routing constructs such
as pickup and delivery pairings, precedence relations, and
vehicle capacities, which might be cumbersome for tradi-
tional exact methods like branch-and-bound or heuristic
approaches. Te CG process in B&P focuses on generating
only those routes (columns) that are likely to improve the
solution, making the computational process more efcient
than methods that attempt to evaluate all possible routes.
Although mix PDPs rapidly increase in complexity with the
number of customers and vehicles, B&P is relatively scalable,
making it suitable for larger instances where purely heuristic
methods may not guarantee optimality. B&P is an exact
method that can provide optimal or near-optimal solutions
and stronger lower bounds on the objective value compared
to heuristics, which ofer limited guarantees regarding so-
lution quality. Te B&P algorithm can be adapted to address
stochastic demand and dynamic routing changes, which are
characteristic of real-world logistics scenarios and may not
be as efectively managed by simpler heuristics or classical
optimization techniques. B&P can be modifed to account
for various extensions of mix PDPs, such as time windows,
heterogeneous feets, and multidepot scenarios, more readily
than many other approaches, which might require signif-
cant adaptation. Te combination of branch-and-bound
with column generation allows for continuous refnement
of the solution space, providing tight bounds and ensuring
that nonpromising branches are pruned early in the search
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Figure 3: An example of inventory sharing of multiple retail stores.
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process. While the B&P algorithm has many advantages, it is
worth noting that its performance can depend on the specifc
instance of the mix PDPs and the quality of the
implementation.

In this section, a new B&P algorithm is designed for
solving the proposed model. B&P algorithm indeed is one of
well-acknowledged algorithms for solving large-scale integer
programming problems. In this research, in accordance with
the B&P solution framework, we develop a customized B&P
approach, which can efectively and efciently exploit the
characteristics of the proposed model. Figure 4 illustrates the
framework of our proposed B&P approach, which comprises
four subcomponents, as data preprocessing, initial solution
generation, column generation (CG), and branch and
pruning strategies.

Te implementation rationale of the proposed B&P
approach is described as follows. Initially, the input data are
preprocessed to rule out some unlikely arcs and distribution
combinations so as to narrow down the search space. Ten,
we design a simple and efcient way to generate the initial
feasible routes for starting the CG algorithm. Within the CG
algorithm, amaster problem can be constructed based on the
initialized feasible routes, and then both primal and dual
variables can be obtained by solving its relaxed linear
counterpart. Te dual variables are utilized to generate the
subsequent subproblem to search for more promising fea-
sible routes. After that, the integrality of the solutions of the
master problem is evaluated. If necessary, branch and
pruning strategies are executed in case of fractional results.
Te above process is iteratively conducted until the termi-
nation criterion is met. Te pseudocode of the proposed
B&P algorithm is presented in Algorithm 1.

4.1. Data Preprocessing. Unlike the theoretical complete
network graph, the network design for practical applications
needs to be tailored taking into account a variety of realistic
considerations. In this research, considering the proper
matching of inventory and demand, we design the following
data preprocessing logic to exclude some impossible dis-
tribution combinations so as to reduce the solution space
and facilitate the searching process.

(1) Q>di + dj,∀i, j ∈ R⇒xk
ij � 0

If the sum of the demands of store i and j is greater
than the vehicle capacity Q, then the two stores
cannot be in the same distribution route.

(2) Ii < dj,∀i ∈ R, j ∈ CD⇒yij � 0
If the inventory of store i is less than the demand of
the customer j, the store i cannot serve the
customer j.

(3) Ii < dj + dk,∀i ∈ R, j, k ∈ CD⇒yij + yik ≤ 1
If the inventory of store i is less than the sum of
demand of customers j and k, then the store i cannot
serve both customers j and k simultaneously.

(4) Rank(i, j)> e,∀i ∈ R, j ∈ CD ∪CR

If the distance between store i and customer j is
below the top e in ascending order, we believe that

the probability of their distribution combination can
be ignored.

4.2. Initial Solution Generation. Prior to the execution of
column generation algorithm, it is necessary to acquire an
initial solution as an input to the restricted LP master
problem so as to obtain its corresponding dual variables.Te
most intuitive and simplest way to generate the initial so-
lution is to dispatch individual vehicle to serve each re-
quirement of retail stores and customers. However, in this
case, a unique feature setting is that customer requirements
must be served by retail stores. Hence, retail stores and
customers must be combined to form distribution routes. In
this research, we adopt a special strategy to generate the
possible route combinations by constructing an assignment-
based mathematical model. Te factors, such as the vehicle
capacity, the accumulated demands from customers, and the
inventory level of retail stores, are evaluated so as to de-
termine the combinations of retail stores and customers.Te
promising matching combinations of retail stores and
customers can be quickly calculated using the CPLEX solver
as described below.

Start
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Solve the RLMP
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Figure 4: Te B&P algorithm framework.
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In accordance with the previous analysis, the initial
solution S0 consists of two parts: S10 for the routes that collect
return products from customers to the central warehouse,
and S20 for the routes that deliver products from the central
warehouse to retail stores and customers. S10 is constructed
by 0⟶ CRi

⟶ 0, CRi
∈ CR. S20 is constructed by

0⟶ Ri⟶ CDRi
⟶ 0, Ri ∈ R, CDRi

∈ CD, and CDRi
rep-

resents the customers served by Ri. Te route of CDRi
can be

constructed by solving the following model.
Initial solution generation model:

min
i∈R


j∈CD

cijxij, (22)

subject to


i∈R

xij � 1, ∀j ∈ CD, (23)


j∈CD

dixij ≤min Ii, Q  ∀i ∈ R,
(24)

xij ∈ 0, 1{ }, ∀i ∈ R, j ∈ CD. (25)

Constraint (23) indicates that one customer can only be
served by one retail store. Constraint (24) requires that the sum
of customer demands cannot exceed the inventory of retail
stores. Te mathematical model above is a typical assignment
model with small scale and low complexity, which can be
solved easily and quickly using the CPLEX solver.

4.3. Column Generation Algorithm. Column generation
(CG) algorithm was initially invented by Dantzig and Wolfe
[72] with the purpose of solving large-scale optimization
problems, especially with a huge amount of decision vari-
ables. For a detailed overview of column generation algo-
rithms, readers may refer to the work of [73, 74]. Initially, an
optimization problem was formulated as a set-partitioning
model (SPM) with nearly infnite variables (columns). Ten,
SPM was linearly relaxed as a linear master problem (LMP),
in which the columns still cannot be enumerated. After that,
a certain number of columns are utilized to form a restricted
linear master problem (RLMP). Te RLMP can be easily
solved using the simplex method, and its corresponding dual
variables can be obtained as well. Meanwhile, there might be
some other promising columns with negative reduced cost,
which can be added to the RLMP to improve its objective
value. Terefore, a subproblem is constructed to fnd the
promising columns, which exploits the beneft of dual
feasibility. Te above processes are iteratively conducted
until no more promising columns can be detected, in which
case, the optimal solution of RLMP is also the optimal
solution of LMP. After that, a branch scheme is conducted to
obtain the integral solution based on the factional solution
of LMP.

4.3.1. Set-Partitioning Model-Based RLMP. Let Ω be the set
of all feasible routes, aiω be a binary constant, 1 if node i ∈ V

is covered by route ω ∈ Ω, and cω be the cost of route ω. Let
θω be a binary decision variable equal to 1 if route ω is used.

Require: Te initial solution S0

Ensure:
(1) Generate an initial route set R0 based on the data of S0;
(2) Create a search stack SS←∅, SS← SS∪ R0 ;
(3) Set the optimal route set R∗ ←∅;
(4) Set an upper bound limit UB← MAX VALUE;
(5) While SS≠∅ do
(6) R← pop(SS)

(7) repeat
(8) Solve the RLPM with the basis of R using simplex algorithm;
(9) Calculate the dual values π and use π to construct the subproblem;
(10) Call the dynamic programming algorithm to search the route set denoted by R′;
(11) R←R∪ R′ 

(12) until R′ � ∅;
(13) Obtain the cost C(R);
(14) if C(R)≤UB then
(15) if ∃ fractional arc (i, j) then
(16) Branch on arc (i, j);
(17) Obtain two branching route sets R0 and R1 from R;
(18) SS← SS∪ R0, R1 ;
(19) else
(20) R∗ ←R, UB←C(R);
(21) end if
(22) end if
(23) end while
(24) Return R∗

ALGORITHM 1: B&P algorithm.
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Te initial SPM cannot be solved due to both the nearly
infnite set of feasible routes as Ω and the binary integer
setting θω ∈ 0, 1{ }. In order to overcome these problems,
frstly an LMP is constructed by linearly relaxing the binary
constraints, and then the complete set Ω is replaced by an
initial fnite set of routesR. Te set-partitioningmodel-based
RLPM can be presented as follows.

Set partitioning model:

min 
ω∈R

cωθω, (26)

subject to


ω∈Ω

aiωθω ≥ 1, ∀i ∈ V, (27)

θω ≥ 0, ∀ω ∈ Ω. (28)

Te objective function (26) minimizes the total route
cost. Constraint (27) ensures that every node is visited by
one route. Constraint (28) indicates the relaxed binary
constraints. Te RLMP model can be solved using CPLEX
solver efciently. Meanwhile, the corresponding dual values
can be obtained simultaneously using the inner function
provided by the CPLEX solver, which is used to build the
subsequent pricing problem model.

4.3.2. Pricing Subproblem. Te pricing problem is formu-
lated to fnd a specifc feasible route with the minimum
reduced cost. Let μi be the dual variable for constraint (27)
for node i ∈ V. Te pricing problem is an elementary
shortest path problem with resource constraints (SPPRC)
with the objective of fnding the feasible routes with negative
reduced cost. Te constraints of the pricing subproblem are
similar as constraints (2)–(18) without the index of vehicle k.

Pricing subproblem:

min
i∈V


j∈V

cij − μi xij. (29)

Subject to
Constraints (2)–(18) without superscript k.

4.3.3. Label-Setting Algorithm. Label-setting algorithms, as
one category of dynamic programming algorithms, are
commonly used to solve the elementary shortest path
problem with resource constraints (SPPRC) [75, 76]. In
a label-setting algorithm, a label or a state represents a partial
route from the source node to a certain node where the
consumption of each resource does not exceed its limit. In
each iteration, a label is extended along all the feasible arcs to
create a set of new labels. Tese new labels can be further
extended until there exist no feasible extensions for all the
unextended labels due to the consumption of resources. In
this way, a label-setting algorithm is guaranteed to enu-
merate all the feasible routes and hence to fnd an optimal
route. A complete label-setting algorithm is composed of
three aspects as label defnition, label extension, and
dominance rules, which are explained in following sections.

Algorithm 2 presents the pseudocode of the label-setting
algorithm, in which ULi and TLi denote the unextended and
extended labels, respectively. Te algorithm frst creates an
initial label L0 and adds it to UL0. In each iteration, the
algorithm selects an unextended label and extends it along all
the feasible arcs. Te resulting labels are added to ULj if they
are not dominated by the existing labels. Meanwhile, the
existing labels which are dominated by the new labels are
discarded. Te process terminates when all the labels have
been extended. Finally, the optimal route can be found
among the labels in ULn+1.

To further speed up the search of the label-setting algo-
rithm, two optimization techniques are used.Te frst one is to
sort the searched labels for subsequent extensions or to avoid
impossible tags in advance. Te search route must visit retail
stores frstly and then access customers with delivery re-
quirements. Te sorting operations of labels adopt the mini-
mum weight method commonly used in the shortest path
algorithm. And the second one is to record all searched labels
during the search. Based on the recorded labels, we only need to
reupdate the parameter value of the existing labels and then
start searching the last labels of the unfnished line in case of
iterative searching after reupdating the weight cij.

(1) Label Defnition. Let Li � (Ci, ti, qi, q
p
i , qc

i , qs
i , Qi,

Vi, Wi, Ti, Di, Si, Fi) be a label associated with node i, where

(i) Ci is the reduced cost;
(ii) ti is the arrive time at node i;
(iii) qt

i is the total quantity carried by the vehicle after
leaving node i, which is equal to the value of the last
node of Qi;

(iv) q
p
i is the amount of products that Li has picked up
at visited return customers;

(v) qc
i is the amount of products that Li has delivered at
visited delivery customers;

(vi) qs
i is the amount of inventory that Li has traveled at
visited store nodes;

(vii) Qi is the total quantity set carried by the vehicle
after leaving visited node;

(viii) Vi is the node set that records whether a node is
visited;

(ix) Wi is the ordered list of nodes that have been
visited by the label;

(x) Ti is the node type of i;
(xi) Di is the dominated fag of node i. If Li is domi-

nated, Di � 1;
(xii) Si is a mapping set that records which retail store

serves which customers;
(xiii) Fi is the visited fag that records whether a store

node is visited. If Li has visited a store node, Fi � 1.

(2) Label Extension. If node j is a retail store node, add the
delivery quantity of node j to the amount of the frst node
(depot) of Qi and then update the values of subsequent
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nodes in sequence. Let Qi ≤Q to ensure that the load of each
node that a vehicle has visited does not exceed its capacity.
Let qt

i − Ij ≤Q to ensure that the load of a vehicle does not
exceed its capacity after the products are delivered to the
store j.

If node j is a delivery customer node, from the retail
stores visited, select the retail stores k with surplus inventory
to meet customer j requirements, then add the delivery
quantity of node j to the amount of the node k (retail store)
of Qi, and update the values of subsequent nodes in se-
quence. If there are multiple retail stores with surplus in-
ventory to meet the customer demand, multiple extension
labels are performed. Let Qi ≤Q to ensure that the load of
a vehicle does not exceed its capacity after the products are
delivered and picked up from the store j. Let qi − dj ≤Q to
ensure that the load of a vehicle does not exceed its capacity
after the products are delivered to the customer j.

If node j is a return customer node, let qi + dj ≤Q to
ensure that the load of a vehicle does not exceed its capacity
after the products are picked up at the customer j.

Ten, a new label Lj � (Cj, tj, qt
j, q

p
j , qc

j, qs
j, Qj, Vj,

Wj, Tj, Dj, Sj, Fj) can be created along arc (i, j) if the fol-
lowing conditions are satisfed (Table 2).

(3) Dominance Rules. Te dominance rules proposed here are
inspired from the work of Dumas et al. [48] and Ropke and
Cordeau [74].Te design of dominance rules is critical towards
the convergence of the search process. Dominance rules are
exploited to identify a small subset of labels from which at least
an optimal route can be generated.Te labels not in this subset
are referred to as dominated labels. Te dominated labels are
discarded once they are generated.Terefore, dominance rules
can reduce the number of labels extended in a label-setting
algorithm to accelerate the algorithm.

In this research, taking into account the distribution
sequence between depot, retail stores, delivery customers,
and return customers, there are certain circumstances in
which the dominance rules take efect. Given two labels
associated with node i as follows:

L
1
i � c

1
i , t

1
i , q

1
i , q

p1
i , q

c1
i , q

s1
i , Q

1
i , V

1
i , W

1
i , T

1
i , D

1
i , S

1
i , F

1
i ,

L
2
i � c

2
i , t

2
i , q

2
i , q

p2
i , q

c2
i , q

s2
i , Q

2
i , V

2
i , W

2
i , T

2
i , D

2
i , S

2
i , F

2
i ,

(30)

L1
i dominates L2

i if these constraints: c
1
i ≤ c

2
i , t1i ≤ t2i , V1

i ⊇V2
i ,

q1i ≤ q2i , and the following conditions are true:

(1) All nodes accessing these two labels are return
customers

(2) All nodes accessing these two labels are retail stores
(3) Tese two labels remove the previous and same part;

the nodes accessing the remaining part are return
customers

(4) Tese two labels remove the previous and same part;
the nodes accessing the remaining part are retail
stores

(5) Tese two labels remove the previous and same part;
the nodes accessing the remaining part are delivery
customers which are serviced by the same retail
store.

4.4. Branching and Upper Bound Optimization.
Branching occurs when the optimal solution of the SPM is
fractional and no violated capacity inequalities can be
found. In the proposed solution approach, it is not proper
to branch on column variables θω, as setting θω to 0 means
preventing the pricing subproblem from generating cor-
responding columns and results in signifcant increment of

Require: updated cij based on due cost μi and μ0
Ensure: Te solution S1;

(1) Generate an initial label L0 � (C0, t0, q0, q
p
0 , qc

0, qs
0, Q0, V0, W0, T0, D0, S0, F0);

(2) Set UL0 � L0  and TLi � ∅;
(3) for all i ∈ V\ 0{ } do;
(4) Set ULi � ∅ and TLi � ∅;
(5) end for
(6) while ∪ i∈V\ n+1{ }ULi � ∅ do
(7) Choose a label Li � (Ci, ti, qi, q

p

i , qc
i , qs

i , Qi, Vi, Wi, Ti, Di, Si, Fi) ∈ ULi(ULi ≠∅);
(8) for all (i, j) ∈ A and extension along (i, j) is feasible do
(9) Extend Li along arc (i, j) and create label Lj;
(10) if Lj is not dominated by any label in TUj ∪TLj then
(11) Set ULj � ULj ∪ Lj ;
(12) Discard the labels in ULj ∪TLj which are dominated by Lj;
(13) end if
(14) Set ULi � ULi\ Li  and TLi � TLi\ Li ;
(15) end for
(16) end while
(17) Return the route with minimum reduced cost defned by labels in ULn+1.

ALGORITHM 2: Label-setting algorithm.
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the computational complexity of the pricing subproblem
[77]. Terefore, we need to design proper branching
strategies which do not change the structures of the pricing
subproblem.

In this research, we adopt an arc-based branching
scheme, which was introduced by Ryan and Foster [78];
we design our arc-based branching strategies. At frst, the
fractional solution based on the route is transformed into
a fractional value of its corresponding arc. bij denotes the
value of arc (i, j). Ten, we select the fractional value bij

with max bij − ⌊bij⌋  and branch it to 0 and 1. When bij

is branched to 0, delete routes associated with arc (i, j)

from the current route set R to form the new path set R0.
Ten, in the next route search of the labelling algorithm,
the cost of the arc cij is set to a very large value to make
sure that routes that travel on arc (i, j) will not be
generated. When bij is branched to 1, the current route
set R needs to delete other routes that include arc
(i, h), h ∈ V/ j  and (l, j), l ∈ V/ j  to form the new route
set R1. Moreover, in the next route search of the labelling
algorithm, the cost of the arcs cih and clj is set to a very
large value to make sure that routes that travel on arcs
(i, h) and (i, h) will not be generated.

If an integer solution is obtained during the search
process in the B&P algorithm framework, it can be set as
the upper bound to facilitate the pruning operation.
When the linear result of the current branch is greater
than the known minimum upper bound, the branch can
be cut of directly without any further branching oper-
ations. In the branching process, some unnecessary
branch searches can be avoided if the integer solution can
be obtained in advance. Te following are three trigger
criteria for the upper bound optimization in order to
acquire the integer solution of the master problem in
advance.

(1) When the initial solution is generated, the integer
solution value will be obtained necessarily.

(2) When the root node of the B&P search tree is
formed, themaster problem can directly calculate the
integer solution to update the upper bound value. As
the root node is derived from the initial solutions
using CG procedures, it is likely that better upper
bound can be obtained.

(3) When the linear result of the master problem is
around 10% less than the current upper bound, the
master problem can directly calculate the integer
solution to update the upper bound value.

5. Results and Discussion

In this section, instance generation mechanism is frstly
introduced. Ten we examine the performance of the
proposed approach using both small-scale and large-scale
instances. For small-scale test instances, CPLEX solver is
used as the comparable counterpart for evaluating the
performance of the proposed approach. After that, the
beneft of the proposed integrated distribution system is
presented in comparison with the three individual delivery
systems. Moreover, the product return rate and the in-
ventory scenarios of retail stores are discussed. In addition,
the inventory sharing among multiple retail stores is ex-
plored as well. All the computational experiments are
conducted on a PC with Intel Core i7-4770, 8 Duo 3.4GHZ.

5.1. Instance Generation. Test instances are generated re-
ferring to a real-world fast fashion company in China. Tis
company owns 1 central warehouse and 50 physical retail
stores in Shanghai city. Around 1500 customers place their
orders online on a daily basis. Public records can be accessed
from the open database of this company, and each record
contains the location information of customers, retail stores
and the central warehouse, and the demand forecast of
online customers for each retail store. We generate the test
instances based on these public records using the following
generation mechanism.

Table 2: Te conditions for label extension.

Retail store node j
Delivery

customer node j

Return
customer node j

cj � ci + cij cj � ci + cij cj � ci + cij

tj � ti + si + tij tj � ti + si + tij tj � ti + si + tij

qt
j � qt

i − Ij qj
t � qi

t − dj qj
t � qi

t + dj

q
p
j � q

p
i q

p
j � q

p
i q

p
j � q

p
i + dj

qc
j � qc

i qc
j � qc

i + dj qc
j � qc

i

qs
j � qs

i + Ij qs
j � qs

i qs
j � qs

i

Update Qi, Qj � Qi ∪ qj  Update Qi, Qj � Qi ∪ qj  Update Qi, Qj � Qi ∪ qj 

Vj � Vi ∪ j  Vj � Vi ∪ j  Vj � Vi ∪ j 

Wj � Wi ∪ j  Wj � Wi ∪ j  Wj � Wi ∪ j 

Tj � 1 Ti � 2 Ti � 3
Dj � 0 Dj � 0 Dj � 0
Sj � Si Sj � Si ∪ (k, j)  Sj � Si

Fj � 1 Fj � Fi Fj � Fi
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Te original three independent logistics distribution
systems will lead to an increase in the number of vehicles,
a low vehicle full load rate, and an increase in overall
transportation costs. Te original commonly used ar-
rangement of nearby retail stores to meet customer needs
will lead to a situation where some retail stores have in-
ventory, but some customer needs cannot be met. When
the inventory level becomes more abundant, although
customer demand can be fully satisfed, there are still
problems such as low vehicle occupancy rate and the
overall transportation cost cannot be reduced. However,
our model provides a matching rate of demand through
global decision making on matching retail store inventory
and customer demand. At the same time, by integrating
vehicle resources in the three logistics and distribution
systems for unifed distribution, the vehicle utilization rate
is improved, the distance of vehicles from multiple trips to
and from the retail store and the central warehouse is
reduced, and the distance cost caused by the long distance
matching between the retail store and the customer is
ofset. Considering that the inventory of retail stores will
have a very large impact on the experimental results, we
consider three inventory scenarios in designing the ex-
perimental data generation mechanism: tight inventory
scenarios, relaxed inventory scenarios, and abundant in-
ventory scenarios. In each scenario, it is ensured that the
total inventory of retail stores is greater than the total
demand of customer stores. In the tight inventory sce-
narios, the setting formula for the inventory of each retail
store is Ii � j∈Cdj + U[0.1, 0.2]j∈Cdj/|R|. Te relaxed
inventory scenario is Ii � j∈Cdj + U[0.5, 1]j∈Cdj/|R|,
and the abundant inventory scenario is Ii � j∈Cdj.

Totally, 4 sets of instances are generated, namely, Set 1,
Set 2, Set 3, and Set 4. Set 1 is with small-sized test instances
with all inventory scenarios of retail stores. Sets 2–4 are
medium-large test instances with diferent inventory sce-
narios of retail stores. Te number of retail stores (NS) of Set
1 is set as 3 to 4, and the number of retail stores of Sets 2–4 is
set as 5 to 40. For each traveling path, the travel cost is set to
the travel distance and the travel time is set to the travel
distance divided by the vehicle speed of 60 km/h.Te service
time at each retail store is set to 15minutes. Te number of
available vehicles is set to 30. Regarding the inventory
scenarios, Set 2 is set as tight inventory instances. Set 3 is set
as relaxed inventory instances. Set 4 is set as abundant
inventory instances. Moreover, for each set of instances, two
types of customers, i.e., customers with delivery requirement
and return requirement, are randomly chosen from the
database. Te number of online customers with delivery
requirement (NCD

) is set as three times the number of retail
stores, and the number of customers with return re-
quirement (NCR

) is set as ⌈0.1NCD
⌉ to ⌈0.5NCD

⌉. Totally, 150
test instances are generated. Te instances are named in the
scheme of “X-Sn-Dn-Rn,” where “X” represents the in-
ventory scenario, “Sn” represents the number of retail stores,
“Dn” represents the number of the customers with deliver
needs, and “Rn” represents the number of the customers
with return needs.

5.2. Algorithm Performance on Small-Sized Instances. Set 1
with 30 small-sized instances is frstly employed to examine
and validate the performance of the proposed approach in
comparison with the solutions obtained from the CPLEX
solver. Te test results are presented in Table 3. Te column
“Sum (Inv)” denotes the total inventory of retail stores. Te
column “Sum (Sd)” represents the total demand of retail
stores.Te column “Sum (Cd)” indicates the total demand of
customers.Te column “Sum (Re)” denotes the total amount
of returned goods. Te column “Time (s)” denotes the
computational time (in seconds) of CPLEX and the pro-
posed algorithm separately. Te column “Best” and “Avg.
10” provides the best results obtained with CPLEX and the
average result found in 10 runs using the proposed algo-
rithm, respectively. Te best results of CPLEX are obtained
either from the optimal solution or from the best upper
bound (given in bold) found within 300 seconds. Te col-
umn “%dev” denotes the percentage deviation of algorithmic
performance between CPLEX and the proposed approach.

Table 3 shows that for each test instance, the solution result
obtained by the proposed algorithm is not worse than that
obtained from CPLEX solver, which verifes the correctness of
the proposed algorithm. More importantly, when the scale of
the problem grows larger, the calculation time of CPLEX will
increase accordingly and gradually reach the maximum cal-
culation time limit. Te average calculation time of CPLEX
solver requires 289.9 seconds. In contrast, the proposed algo-
rithm is efcient and stable in small-scale examples. Te av-
erage solving time for all test instances using the proposed
algorithm is around 19.6 seconds, which is 14.8 times faster
than the CPLEX time. Especially when the problem size be-
comes larger, the diference in calculation time becomes larger
and larger, and themaximumdiference can be 35.3 times.Tis
is because the CPLEX solver uses a general mathematical
method to solve the problem. When the problem size becomes
larger, the decision variables and constraints increase expo-
nentially and the calculation time becomes longer. However,
our algorithm is specifcally designed for this problem, re-
ducing a large amount of inefective calculations, such as some
invalid route searches. Hence, the proposed algorithm sig-
nifcantly outperforms the commercial CPLEX solver in terms
of both solution quality and solving efciency, and it can solve
large-scale problems more efciently than the solver.

5.3. Algorithm Performance on Large-Sized Instances.
Tables 4–6 present the computational results on the large-
sized instances of Sets 2–4, respectively. As shown in
Tables 4–6, the proposed algorithm can generally fnd good
quality solutions within reasonable computational time. Te
instances without solutions are marked using “—”. Tese
“no solution” instances will be dealt in the following part.

5.3.1. Analysis of the Inventory Scenarios. As shown in
Tables 4 and 5, some test instances with tight and relaxed
inventories have no solution. It is noted that there are 16 out
of 40 instances in Tables 4,and 6 out of 40 instances in
Table 5 have no solutions. But there are no unsolvable
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instances in Table 6. It was initially judged that there was no
solution due to the “tight” settings of inventory levels of
retail stores. We further examine the impact of inventory
scenarios on these test instances. Figure 5 shows the cost
changes along with the change of inventory scenarios in each
test instance, in which the instances initially with no solu-
tions, such as S10-D30-R9 and S15-D45-R5 of tight in-
ventory, are marked a sufciently large value like 350,000.

As expected, when more inventories are available in the
network, the number of instances with no solutions and the
total cost tend to decrease. For example, instances S25-D75-
R23 and S25-D75-R38 become feasible when their inventory
scenarios are changed from tight to relaxed. Moreover, it is
noted that instances S35-D105-R32, S40-D120-R24, S40-
D120-R36, and S40-D120-R60 are still infeasible with re-
laxed inventory scenarios and become feasible only when the
inventory scenarios are changed to abundant. Te increase
of the available inventory in the network enlarges more
fexibility and possibility when assigning online customer
orders to retailer stores, which further refects the decrease of
the total operational cost, with the highest decrease of
172.2% and the lowest decrease of 3.4%. In each of our
instances, the total inventory in the retail store is greater
than the total order demand. However, there are still un-
solvable situations when inventory levels are tight and

relaxed. Tis is because the demand for retail stores to meet
orders is met in full at one time, resulting in some retail
stores remaining with sporadic inventory. In the end, this
cannot satisfy any of the remaining order requirements at
once. When inventory levels are abundant, each retail store’s
inventory can meet all order requirements, so there are no
unsolvable instances. However, in real scenarios, such
abundant inventory levels are rare. Most of them are tight
and relaxed inventory levels. Te existing way of single retail
stores meeting the demand of orders at one time will still
lead to inventory waste and unfulflled order demand.
Terefore, the best way to avoid inventory waste and un-
satisfed order demands is to realize inventory sharing in
retail stores and connect these inventories through vehicles
to meet order demands globally. Relevant experiments in
this regard are described in detail later.

Interestingly, the total operational cost does not vary
much with the instances of less than 10 retail stores (the
instances with no solutions are excluded). An in-depth
examination of the vehicle routes for these instances
shows that that the number of retail stores is relatively small,
resulting in fewer split combinations to meet order demand,
so there is not much room for optimization of operating
costs. However, with the increase of retail stores, the total
operational cost changes substantially, which is due to the

Table 3: Performance comparison of CPLEX solver and the proposed algorithm with Set 1.

Instance Sum (Inv) Sum (Sd) Sum (Cd) Sum (Re)
CPLEX Te proposed algorithm

%dev
Best k Time (s) Avg. 10 k Time (s)

T-S3-D9-R1 39 197 36 1 188368 1 195 188368 1 7.2 0.0
R-S3-D9-R1 63 197 36 1 174472 1 227 174472 1 7.1 0.0
A-S3-D9-R1 108 197 36 1 174472 1 176 174472 1 9.5 0.0
T-S3-D9-R2 42 197 36 10  84656 1 300 180688 1 8.5 − 2.2
R-S3-D9-R2 66 197 36 10  80395 1 300 176669 1 8.5 − 2.1
A-S3-D9-R2 108 197 36 10  80395 1 300 176669 1 10.0 − 2.1
T-S3-D9-R3 48 197 36 5 193772 1 300 193772 1 12.8 0.0
R-S3-D9-R3 60 197 36 5 191047 1 300 191047 1 10.0 0.0
A-S3-D9-R3 108 197 36 5 191047 1 300 191047 1 19.7 0.0
T-S3-D9-R4 48 197 36 12 191583 1 300 191583 1 10.0 0.0
R-S3-D9-R4 66 197 36 12 188858 1 300 188858 1 10.5 0.0
A-S3-D9-R4 108 197 36 12 188858 1 300 188858 1 13.4 0.0
T-S3-D9-R5 42 197 36 14 203714 1 300 203714 1 13.4 0.0
R-S3-D9-R5 57 197 36 14 20 9 6 1 300 200312 1 15.5 − 0.8
A-S3-D9-R5 108 197 36 14 200312 1 300 200312 1 34.6 0.0
T-S4-D12-R1 56 206 52 10 192523 2 300 192523 2 17.7 0.0
R-S4-D12-R1 100 206 52 10 192523 2 300 192523 2 14.7 0.0
A-S4-D12-R1 208 206 52 10 192523 2 300 192523 2 21.1 0.0
T-S4-D12-R3 56 206 52 21 211098 2 300 211098 2 18.9 0.0
R-S4-D12-R3 84 206 52 21 209391 2 300 209391 2 10.9 0.0
A-S4-D12-R3 208 206 52 21 209573 2 300 207960 2 14.0 − 0.8
T-S4-D12-R4 72 206 52 23 255768 2 300 254073 2 17.5 − 0.7
R-S4-D12-R4 80 206 52 23 235864 2 300 230901 2 33.0 − 2.1
A-S4-D12-R4 208 206 52 23 246404 2 300 223166 2 13.5 − 9.4
T-S4-D12-R5 68 206 52 21 260354 2 300 254570 2 27.7 − 2.2
R-S4-D12-R5 80 206 52 21 259689 2 300 254580 2 24.5 − 2.0
A-S4-D12-R5 208 206 52 21 264646 2 300 258683 2 60.0 − 2.3
T-S4-D12-R6 68 206 52 31 256079 2 300 255026 2 37.1 − 0.4
R-S4-D12-R6 100 206 52 31 255035 2 300 254482 2 39.5 − 0.2
A-S4-D12-R6 208 206 52 31 29  26 2 300 260144 2 46.5 − 10.6
Avg. 95.8 201.5 44.0 14.8 212215.4 1.5 289.9 209082.8 1.5 19.6 − 1.3

18 International Journal of Intelligent Systems



fact that online customers can be fulflled by more optional
retail stores, and the nearby retail store with stock can be
allocated.

5.3.2. Analysis of the Product Return. In addition to retail
store inventory levels and customer order demand, the
number of customers returning products also afects ve-
hicle routing and total operating costs. Figure 6 shows the
changes in total operating costs under diferent number of
product return customers. Te following subfgures, re-
spectively, represent the example result data under dif-
ferent number of returning customers at 10, 20, 30, and 35
retail stores. It is worth noting that total operating costs
fuctuate with the number of customers returning prod-
ucts. But overall, as the number of returns increases, the

total operating costs show an overall increased trend. Tis
trend is due to an increased need to recycle returned
products, resulting in the need to use more vehicles to
meet the demand for product returns. But this trend oc-
casionally has some fuctuations, resulting in results that
are opposite to the overall trend.Tis is because the vehicle
has the opportunity to use its unoccupied vehicle space to
collect more returned products on its way back to the
warehouse, thereby reducing the cost of traveling to and
from the warehouse repeatedly.

5.4. Efect of the Integrated Distribution System. In order to
evaluate the efect of our proposed integrated distribution
system, we specially designed experiments to compare it with
a two-stage independent distribution system and a three-stage

Table 4: Computational results for tight inventory instances (Set 2).

Instance Sum (Inv) Sum (Sd) Sum (Cd) Sum (Re)
Te proposed algorithm

Avg. 10 K Time (s)
T-S5-D15-R2 65 399 64 14 347974 5 277.7
T-S5-D15-R3 85 399 64 20 315086 5 413.0
T-S5-D15-R5 80 399 64 24 362652 5 90.7
T-S5-D15-R6 95 399 64 26 354474 5 469.6
T-S5-D15-R8 70 399 64 35 429973 5 399.4
T-S10-D30-R3 230 415 178 28 440946 3 315.3
T-S10-D30-R6 260 415 178 40 461574 3 193.3
T-S10-D30-R9 180 415 178 50 — — —
T-S10-D30-R12 190 415 178 75 546840 3 249.7
T-S10-D30-R15 190 415 178 100 859817 5 209.7
T-S15-D45-R5 225 844 225 19 — — —
T-S15-D45-R9 270 844 225 62 866002 5 275.7
T-S15-D45-R14 300 844 225 73 835588 5 267.7
T-S15-D45-R18 270 844 225 103 784298 5 565.3
T-S15-D45-R23 285 844 225 126 1060574 5 328.2
T-S20-D60-R6 340 950 305 30 1421386 6 195.8
T-S20-D60-R12 380 950 305 50 1040002 5 425.9
T-S20-D60-R18 400 950 305 95 1053547 5 237.2
T-S20-D60-R24 420 950 305 125 1530828 6 416.6
T-S20-D60-R30 440 950 305 153 1886193 6 370.5
T-S25-D75-R8 550 847 425 25 1120225 5 440.1
T-S25-D75-R15 550 847 425 72 1219248 5 371.1
T-S25-D75-R23 425 847 425 125 — — —
T-S25-D75-R30 500 847 425 131 1721168 5 303.4
T-S25-D75-R38 500 847 425 183 — — —
T-S30-D90-R9 690 1593 483 51 2624073 5 401.9
T-S30-D90-R18 570 1593 483 117 — — —
T-S30-D90-R27 540 1593 483 144 — — —
T-S30-D90-R36 660 1593 483 198 2592743 6 315.2
T-S30-D90-R45 660 1593 483 267 — — —
T-S35-D105-R11 700 1390 528 57 2566190 8 389.4
T-S35-D105-R21 525 1390 528 156 — — —
T-S35-D105-R32 700 1390 528 207 — — —
T-S35-D105-R42 735 1390 528 274 — — —
T-S35-D105-R53 700 1390 528 321 — — —
T-S40-D120-R12 880 1770 633 83 — — —
T-S40-D120-R24 960 1770 633 153 — — —
T-S40-D120-R36 880 1770 633 223 — — —
T-S40-D120-R48 720 1770 633 240 — — —
T-S40-D120-R60 640 1770 633 340 — — —
Avg. 446.5 1026.0 355.1 115.4 1101725.0 5.0 331.3
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independent distribution system. For the two-stage in-
dependent distribution system, two groups of vehicles from
diferent feets are used for distribution. Te frst group of
feets is tasked with transporting products via vehicles from
the central warehouse to retail stores and taking customer
returned products back to the central warehouse. Te second
feet is tasked with picking up goods from retail stores via
vehicles and delivering them to customers buying online. For
the three-stage independent distribution system, three groups
of vehicles from diferent feets are used for distribution. Te
frst feet is tasked with transporting products via vehicles
from central warehouses to retail stores. Te second feet is
tasked with picking up products from retail stores via vehicles
and delivering them to customers. Te third feet is tasked
with picking up returned products from customers via ve-
hicles to the central warehouse.

Table 7 gives the results of large-scale test instances of
our proposed integrated distribution system, two-stage in-
dependent distribution system, and three-stage independent
distribution system. It can be noted that the total operating
cost and the number of vehicles increase signifcantly when
a two-stage independent distribution system and a three-
stage independent distribution system are adopted. Te
statistics of the example results show that compared with the
integrated distribution system, the total operating cost of the
two-stage independent distribution system increased by
15.1% on average, and the vehicles increased by 137.0% on
average. Te total operating cost of the three-stage in-
dependent distribution system increased by 49.9% on av-
erage, and the vehicles increased by 183.4% on average. Tis
fully confrms that an integrated distribution system has
sufcient advantages over multiple independent distribution

Table 5: Computational results for relaxed inventory instances (Set 3).

Instance Sum (Inv) Sum (Sd) Sum (Cd) Sum (Re)
Te proposed algorithm

Avg. 10 k Time (s)
R-S5-D15-R2 115 399 64 14 268727 5 296.2
R-S5-D15-R3 100 399 64 20 294628 5 252.5
R-S5-D15-R5 115 399 64 24 306169 5 260.0
R-S5-D15-R6 115 399 64 26 308894 5 356.5
R-S5-D15-R8 105 399 64 35 297996 5 70.4
R-S10-D30-R3 290 415 178 28 417151 3 343.7
R-S10-D30-R6 270 415 178 40 465840 3 258.4
R-S10-D30-R9 270 415 178 50 399700 3 388.9
R-S10-D30-R12 330 415 178 75 492783 3 240.9
R-S10-D30-R15 280 415 178 100 499015 3 253.7
R-S15-D45-R5 435 844 225 19 546485 5 172.8
R-S15-D45-R9 375 844 225 62 666934 5 246.4
R-S15-D45-R14 390 844 225 73 565611 5 275.4
R-S15-D45-R18 450 844 225 103 620721 5 356.7
R-S15-D45-R23 450 844 225 126 675427 5 321.5
R-S20-D60-R6 540 950 305 30 700707 5 142.2
R-S20-D60-R12 500 950 305 50 675616 5 304.3
R-S20-D60-R18 500 950 305 95 697121 5 525.4
R-S20-D60-R24 540 950 305 125 792628 5 536.7
R-S20-D60-R30 540 950 305 153 799752 6 265.1
R-S25-D75-R8 650 847 425 25 903027 6 388.9
R-S25-D75-R15 800 847 425 72 938299 3 363.3
R-S25-D75-R23 825 847 425 125 897028 5 297.3
R-S25-D75-R30 725 847 425 131 943608 8 344.1
R-S25-D75-R38 800 847 425 183 1085692 5 281.4
R-S30-D90-R9 780 1593 483 51 1079256 5 232.3
R-S30-D90-R18 900 1593 483 117 1133485 6 686.8
R-S30-D90-R27 780 1593 483 144 1112044 8 424.9
R-S30-D90-R36 870 1593 483 198 1303971 5 681.9
R-S30-D90-R45 750 1593 483 267 1278208 6 295.8
R-S35-D105-R11 980 1390 528 57 1645316 5 442.1
R-S35-D105-R21 945 1390 528 156 1396845 5 544.1
R-S35-D105-R32 1015 1390 528 207 — — —
R-S35-D105-R42 1015 1390 528 274 1245501 8 506.4
R-S35-D105-R53 1050 1390 528 321 1574616 6 520.4
R-S40-D120-R12 960 1770 633 83 2376704 6 348.5
R-S40-D120-R24 1080 1770 633 153 — — —
R-S40-D120-R36 1120 1770 633 223 — — —
R-S40-D120-R48 1040 1770 633 240 2157401 8 671.4
R-S40-D120-R60 960 1770 633 340 — — —
Avg. 618.9 1026.0 355.1 115.4 876747.4 5.2 358.3
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systems in reducing total operating costs and the number of
vehicles.Te integrated distribution systemmakes full use of
vehicle space through the use of shared vehicles, dynamically
selects tasks from three types of tasks, and combines multiple
tasks to be executed together to avoid unnecessary vehicle
mileage and waste of vehicle space.

5.5. Discussion of Inventory Sharing among Multiple Retail
Stores. As discussed in the model extension section, order
fulfllment fexibility and feasibility can be increased through
inventory sharing among multiple retail stores. It was ob-
served through the above experiments that when inventory
cannot be shared between multiple retail stores, there are
some test instances with no solution in the case of tight and
loose inventory. Tere are no solutions for 16 of the 40

instances where inventory is tight, and there are no solutions
for 4 of the 40 instances where inventory is relaxed.
Terefore, we further investigated the impact of inventory
sharing among multiple retail stores on operating costs and
vehicle usage by comparing the results of an integrated
distribution system with and without inventory sharing. Te
calculation results of the example test are shown in Table 8.
Te 20 examples that originally had no solutions can now
fnd feasible solutions. Tis shows that when the total in-
ventory of all retail stores is greater than the total customer
order demand, when the inventory between retail stores can
also be shared, there is enough fexibility to ensure that all
order demands are met by the retail stores.Te demand is all
met by retail stores. Ten, when the integrated distribution
system allows retail stores to share inventory to meet

Table 6: Computational results for the abundant inventory instances (Set 4).

Instance Sum (Inv) Sum (Sd) Sum (Cd) Sum (Re)
Te proposed algorithm

Avg. 10 k Time (s)
A-S5-D15-R2 320 399 64 14 260058 5 338.9
A-S5-D15-R3 320 399 64 20 260208 5 348.5
A-S5-D15-R5 320 399 64 24 302714 5 251.0
A-S5-D15-R6 320 399 64 26 313295 5 266.0
A-S5-D15-R8 320 399 64 35 320981 5 280.5
A-S10-D30-R3 1070 415 178 28 411955 3 451.9
A-S10-D30-R6 1070 415 178 40 446610 3 314.6
A-S10-D30-R9 1070 415 178 50 421957 5 168.2
A-S10-D30-R12 1070 415 178 75 466601 3 308.7
A-S10-D30-R15 1070 415 178 100 462565 3 271.6
A-S15-D45-R5 1575 844 225 19 482881 5 219.0
A-S15-D45-R9 1575 844 225 62 618172 5 445.7
A-S15-D45-R14 1575 844 225 73 614723 5 443.6
A-S15-D45-R18 1575 844 225 103 574182 3 142.4
A-S15-D45-R23 1575 844 225 126 571501 5 408.9
A-S20-D60-R6 2440 950 305 30 771561 5 296.9
A-S20-D60-R12 2440 950 305 50 767060 5 541.8
A-S20-D60-R18 2440 950 305 95 724580 5 565.4
A-S20-D60-R24 2440 950 305 125 783674 5 166.8
A-S20-D60-R30 2440 950 305 153 784584 5 388.5
A-S25-D75-R8 3825 847 425 25 801754 5 313.2
A-S25-D75-R15 3825 847 425 72 774379 5 333.9
A-S25-D75-R23 3825 847 425 125 1014909 5 318.0
A-S25-D75-R30 3825 847 425 131 927728 3 365.1
A-S25-D75-R38 3825 847 425 183 892230 6 336.1
A-S30-D90-R9 4830 1593 483 51 964142 5 505.0
A-S30-D90-R18 4830 1593 483 117 966768 6 331.3
A-S30-D90-R27 4830 1593 483 144 1124662 6 732.7
A-S30-D90-R36 4830 1593 483 198 1294804 5 530.9
A-S30-D90-R45 4830 1593 483 267 1231195 8 779.0
A-S35-D105-R11 5810 1390 528 57 1033103 5 518.3
A-S35-D105-R21 5810 1390 528 156 1082917 6 523.3
A-S35-D105-R32 5810 1390 528 207 1139400 5 291.4
A-S35-D105-R42 5810 1390 528 274 1197973 5 358.0
A-S35-D105-R53 5810 1390 528 321 1415709 6 663.4
A-S40-D120-R12 7600 1770 633 83 1728800 5 363.8
A-S40-D120-R24 7600 1770 633 153 1736493 6 429.6
A-S40-D120-R36 7600 1770 633 223 1550196 8 591.6
A-S40-D120-R48 7600 1770 633 240 1630600 6 412.6
A-S40-D120-R60 7600 1770 633 340 1886100 6 377.7
Avg. 3433.8 1026.00 355.1 115.4 868843.1 5.1 392.3
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customer order needs, there is no need for high-level in-
ventory, and the total inventory only needs to be greater than
or equal to the total order demand. Tis once again verifes
that when the total inventory of all retail stores is greater
than or equal to the total demand for the order and the

inventory level is not high, order fulfllment can be well
achieved through the retail store inventory sharing method.

In addition, to explore the diferences between inventory
sharing scenarios and abundant inventory scenarios, we
compared some instance result data. Figure 7 shows the
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Figure 5: Te impact of diferent inventory scenarios.

38
39
40
41
42
43
44
45
46
47
48

A-S10-D30-R3 A-S10-D30-R6 A-S10-D30-R9 A-S10-D30-R12 A-S10-D30-R15

Av
g.

10
× 

10
,0

00

Insrances

68

70

72

74

76

78

80

A-S20-D60-R6 A-S20-D60-R12 A-S20-D60-R18 A-S20-D60-R24 A-S20-D60-R30

Av
g.

10
× 

10
,0

00

Instances

0

20

40

60

80

100

120

140

A-S30-D90-R9 A-S30-D90-R18 A-S30-D90-R27 A-S30-D90-R36 A-S30-D90-R45

Av
g.

10
× 

10
,0

00

Instances

0

20

40

60

80

100

120

140

160

A-S35-D105-R11 A-S35-D105-R21 A-S35-D105-R32 A-S35-D105-R42 A-S35-D105-R53

Av
g.

10
× 

10
,0

00

Instances

A-S10-D30 A-S20-D60

A-S30-D90 A-S35-D105

Figure 6: Te impact of the product return ratio.

22 International Journal of Intelligent Systems



results of the comparison between the two scenarios. It is
worth noting that in most cases, the number of vehicles used
and operating costs in the inventory sharing scenario are
smaller than those in the abundant inventory scenario, and
this diference increases with the size of the instance. It follows
that inventory sharing not only facilitates the generation of
feasible solutions when retail store inventory is tight but also
plays an important role in reducing total operating costs and
vehicle numbers, especially when the problem scale is large.

5.6.Managerial Insights. Based on the fndings of the paper,
several managerial insights can be drawn to guide the op-
eration of logistics and distribution systems in dual-channel
retail environments, particularly in the fast fashion industry:

(1) Long-Term Strategic Alignment. Te adoption of an
integrated distribution system aligns with the
broader supply chain strategy and supports sus-
tainable business growth. Managers should view
logistics integration as part of their long-term stra-
tegic planning. Te integration of distribution
channels can substantially reduce operational costs
and the number of vehicles needed. Te integrated
distribution system performs well across diferent
scales, but the benefts are particularly pronounced
in larger operations. As businesses scale up, the
integrated approach becomes even more critical to
maintaining cost-efciency. Managers should con-
sider restructuring their logistics operations to create

Table 7: Te performance of the integrated distribution system.

Instance
Integrated
distribution Two-stage distribution Tree-stage distribution

Avg. 10 k Sum k dev_sum dev_k Sum k dev_sum dev_k
A-S5-D15-R2 260058 5 313174 11 20.4 120.0 384430 13 47.8 160.0
A-S5-D15-R3 260208 5 313526 11 20.5 120.0 420459 13 61.6 160.0
A-S5-D15-R5 302714 5 343287 11 13.4 120.0 462769 13 52.9 160.0
A-S5-D15-R6 313295 5 360946 11 15.2 120.0 475590 13 51.8 160.0
A-S5-D15-R8 320981 5 361050 11 12.5 120.0 485331 13 51.2 160.0
A-S10-D30-R3 411955 3 472996 9 14.8 200.0 610556 11 48.2 266.7
A-S10-D30-R6 446610 3 491147 9 10.0 200.0 762265 11 70.7 266.7
A-S10-D30-R9 421957 5 490570 9 16.3 80.0 720179 11 70.7 120.0
A-S10-D30-R12 466601 3 516536 9 10.7 200.0 792341 11 69.8 266.7
A-S10-D30-R15 462565 3 541966 9 17.2 200.0 808850 11 74.9 266.7
A-S15-D45-R5 482881 5 576815 11 19.5 120.0 736925 13 52.6 160.0
A-S15-D45-R9 618172 5 666216 11 7.8 120.0 816591 13 32.1 160.0
A-S15-D45-R14 614723 5 634794 11 3.3 120.0 792252 13 28.9 160.0
A-S15-D45-R18 574182 3 694774 11 21.0 266.7 842595 13 46.7 333.3
A-S15-D45-R23 571501 5 702305 11 22.9 120.0 921314 13 61.2 160.0
A-S20-D60-R6 771561 5 785842 11 1.9 120.0 1045620 13 35.5 160.0
A-S20-D60-R12 767060 5 842671 11 9.9 120.0 1110011 13 44.7 160.0
A-S20-D60-R18 724580 5 841804 11 16.2 120.0 1153125 13 59.1 160.0
A-S20-D60-R24 783674 5 859361 11 9.7 120.0 1230674 13 57.0 160.0
A-S20-D60-R30 784584 5 918010 11 17.0 120.0 1297467 13 65.4 160.0
A-S25-D75-R8 801754 5 961978 11 20.0 120.0 1177346 15 46.8 200.0
A-S25-D75-R15 774379 5 958638 11 23.8 120.0 1269953 15 64.0 200.0
A-S25-D75-R23 1014909 5 1057780 13 4.2 160.0 1386456 15 36.6 200.0
A-S25-D75-R30 927728 3 1057435 11 14.0 266.7 1348111 15 45.3 400.0
A-S25-D75-R38 892230 6 1105663 11 23.9 83.3 1435711 15 60.9 150.0
A-S30-D90-R9 964142 5 1161818 13 20.5 160.0 1420735 15 47.4 200.0
A-S30-D90-R18 966768 6 1188167 13 22.9 116.7 1509819 15 56.2 150.0
A-S30-D90-R27 1124662 6 1264361 13 12.4 116.7 1533090 15 36.3 150.0
A-S30-D90-R36 1294804 5 1330690 13 2.8 160.0 1748175 15 35.0 200.0
A-S30-D90-R45 1231195 8 1389614 13 12.9 62.5 1768060 15 43.6 87.5
A-S35-D105-R11 1033103 5 1237921 13 19.8 160.0 1517020 15 46.8 200.0
A-S35-D105-R21 1082917 6 1325832 13 22.4 116.7 1661474 15 53.4 150.0
A-S35-D105-R32 1139400 5 1419934 13 24.6 160.0 1759917 15 54.5 200.0
A-S35-D105-R42 1197973 5 1484693 13 23.9 160.0 1837625 15 53.4 200.0
A-S35-D105-R53 1415709 6 1546269 13 9.2 116.7 1872045 15 32.2 150.0
A-S40-D120-R12 1728800 5 1818183 13 5.2 160.0 2142273 15 23.9 200.0
A-S40-D120-R24 1736493 6 1912449 13 10.1 116.7 2223528 15 28.0 150.0
A-S40-D120-R36 1550196 8 1914480 13 23.5 62.5 2344440 15 51.2 87.5
A-S40-D120-R48 1630600 6 1975590 13 21.2 116.7 2577642 15 58.1 150.0
A-S40-D120-R60 1886100 6 2041272 13 8.2 116.7 2617581 15 38.8 150.0
Avg. 868843.1 5.1 997013.9 11.6 15.1 137.0 1275508.6 13.8 49.9 183.4
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a more unifed system that combines replenishment,
delivery, and returns.

(2) Importance of Flexible Inventory. Understanding the
impact of diferent inventory levels on operational
costs can help managers in strategic planning. Sce-
narios with tight, relaxed, and abundant inventories
should be modeled to anticipate challenges and
create robust distribution strategies. Allowing in-
ventory levels to be more fexible, particularly
through sharing inventory between stores, can sig-
nifcantly increase the feasibility of meeting cus-
tomer demands and reduce operational costs. Tis
fexibility should be built into the logistics strategy,

possibly through improved inventory management
systems.

(3) Efcient Management. An integrated system can
better adapt to fuctuations in demand, including the
randomness of returns. Managers should consider
systems that can dynamically adjust to these changes
to prevent resource waste. Te implementation of
advanced optimization algorithms like the B&P al-
gorithm can lead to signifcant improvements in
route efciency and distribution strategy. Managers
should invest in developing or acquiring these op-
timization tools to enhance their decision-making
processes.

Table 8: Te computational results with inventory sharing.

Instance Sum (Inv) Sum (Sd) Sum (Cd) Sum (Re)
Te integrated distribution

Avg. 10 k Time (s)
T-S10-D30-R9 180 415 178 50 391097 3 166.4
T-S15-D45-R5 225 844 225 19 434856 5 226.8
T-S25-D75-R23 425 847 425 125 790550 5 533.2
T-S25-D75-R38 500 847 425 183 852372 5 208.6
T-S30-D90-R18 570 1593 483 117 905431 5 496.6
T-S30-D90-R27 540 1593 483 144 1029556 5 628.9
T-S30-D90-R45 660 1593 483 267 1094534 5 542.2
T-S35-D105-R21 525 1390 528 156 1023014 5 665.2
T-S35-D105-R32 700 1390 528 207 1127998 5 501.6
R-S35-D105-R32 1015 1390 528 207 1127998 5 492.0
T-S35-D105-R42 735 1390 528 274 1160386 5 519.2
T-S35-D105-R53 700 1390 528 321 1277712 5 570.2
T-S40-D120-R12 880 1770 633 83 1132749 5 696.4
T-S40-D120-R24 960 1770 633 153 1205853 5 682.7
R-S40-D120-R24 1080 1770 633 153 1226793 5 323.1
T-S40-D120-R36 880 1770 633 223 1227468 5 526.4
R-S40-D120-R36 1120 1770 633 223 1226655 5 316.6
T-S40-D120-R48 720 1770 633 240 1341189 5 500.9
T-S40-D120-R60 640 1770 633 340 1339551 5 589.0
R-S40-D120-R60 960 1770 633 340 1347777 5 481.7
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Figure 7: Te comparison between inventory sharing scenario and abundant inventory scenario.
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By implementing these managerial insights, companies
can expect improved efciency, customer satisfaction, and
competitive advantage in the fast-paced and often un-
predictable fast fashion market. Te integrated distribution
system provides a framework for addressing current logistics
challenges while positioning the company for future growth
and adaptation to market changes.

However, from the perspective of management and
operation, although the integrated distribution system can
bring down the overall cost, it also increases the cost of
management and the difculty of operation. Multiple in-
dependent distribution systems will be simpler and clearer in
management and operation. Each type of task has a dedi-
cated distribution system and operation mechanism.
Terefore, there are still many great challenges in imple-
menting an integrated logistics and distribution system.

6. Conclusions

In this research, we design an integrated dual-channel retailing
distribution to facilitate the company development and cus-
tomer requirements in fast fashion industry. Te integration of
online and ofine sales and distribution, especially with product
returns, can improve the systematic performance and opera-
tional fexibility signifcantly. Te operations of this system are
formally formulated using mathematical programming models,
which are derived from VRP and PDP. In order to solve the
introduced model, we further propose a B&P-based algorithm,
in which CG algorithm is exploited to fnd promising and
feasible solutions and label-setting algorithm is designed to solve
the pricing subproblem. Te performance of the proposed B&P
algorithm is examined and validated on a set of instances
generated referring to practical operational data. Computational
results indicate that the proposed B&P algorithm can produce
equivalent solutions when compared to the optimal solutions
from CPLEX solver in case of small-scale instances. And the
proposed B&P algorithm maintains a high performance with
large-scale instances. Moreover, this research illustrates the
beneft of using the proposed integrated distribution systemwith
the operational cost saving up to 49.9%. In addition, inventory
sharing amongmultiple retail stores is discussed, which could be
a further exploration towards better performance.

Although much efort has been conducted to explore the
benefts of the proposed integrated system and the efec-
tiveness of the proposed B&P algorithm, there are still some
possible extensions for future research. For instance, from
the modeling perspective, the demand and return goods of
customers in the proposed model are static and de-
terministic. It could be of interest that if such settings are
relaxed to dynamic and stochastic scenarios. From the
solving approach perspective, although the proposed B&P
algorithm can solve large-scale instances using computa-
tional time around hundred seconds, it is acceptable in static
scenarios. However, in case of dynamic customer re-
quirements, such a solving efciency should be further
enhanced. Tus, exploiting more powerful convergent
techniques, such as cutting plane constraints, to facilitate the
algorithmic searching process could be another promising
future research direction.

Data Availability
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