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Deterioration in the quality of a person’s voice and speech is an early sign of Parkinson’s disease (PD). Although a number of
computer-based methods have been invested to use patients’ speech for early diagnosis of Parkinson’s disease, they only focus on
a fxed pronunciation test, such as the subjects’ monosyllabic pronunciation is analyzed to determine whether they have potential
possibility of PD. Moreover, only using traditional speech analysis methods to extract single-view speech features cannot provide
a comprehensive feature representation. Tis paper is dedicated to the study of various pronunciation tests for patients with PD,
including the pronunciation of fve monosyllabic vowels and a spontaneous dialogue. A triplet multimodel transfer learning
network is designed and proposed for identifying subjects with PD in these two groups of tests. First, multisource data extract mel
frequency cepstrum coefcient (MFCC) features of speech for preprocessing. Subsequently, a pretrained triplet model represents
features from three dimensions as the upstream task of the transfer learning framework. Finally, the pretrained model is
reconstructed as a novel model that integrates the triplet model, temporal model, and auxiliary layer as the downstream task, and
weights are updated through fne-tuning to identify abnormal speech. Experimental results show that the highest PD detection
rates in the two groups of tests are 99% and 90% , respectively, which outperform a large number of internationally popular pattern
recognition algorithms and serve as a baseline for other academic researchers in this feld.

1. Introduction

Parkinson’s disease (PD) is a degenerative disease commonly
seen in the elderly, mainly manifested as motor retardation,
static tremor, and muscle rigidity. Terefore, the examination
of Parkinson’s disease mainly depends on the medical history
and physical examination, which should be completed by
neurologists in hospitals. If the patient has obviousmovement
slowing, static tremor, 4–6Hz per second, tremor is weakened
or disappeared during movement, and there is a mask face,
walking forward, small gait, muscle stifness, and increased
muscle tension, the patient is more likely to have Parkinson’s
disease. However, the motor symptoms of Parkinson’s disease
often occur late. In contrast, nonmotor symptoms, such as
language and cognitive disorders, are manifested decades
before the onset of motor symptoms, which is of great sig-
nifcance for the early diagnosis of the potential disease
possibility of Parkinson’s disease.

Tere is a lot of literature proving that early Parkinson’s
disease also has a small amount of speech impairment [1–5].
An assessment of vocal impairment was presented for
separating healthy people from persons with early untreated
Parkinson’s disease (PD) [1]. Te purpose of the study [2] is
to determine if subjects in the early stages of untreated
Parkinson’s disease (PD) or PD treated with deprenyl alone
sufer from motor speech abnormalities. Speech defects are
common in advanced PD, including disturbances of res-
piration, phonation, and articulation.We studied 12 subjects
with early PD (Hoehn and Yahr stage ≤ 2; mean duration
disease 3.2 years) who were not taking symptomatic therapy
and tested them under two conditions: on and of deprenyl.
Te study of [3] provides an evaluation of speech disorders
in early Parkinson’s disease. Moreover, evidence shows that
speech difculties were associated with greater autonomic
dysfunction, sleep disturbances, and striatal dopaminergic
defcit and can serve as a predictor of faster cognitive decline
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in early Parkinson’s disease [4]. Detecting speech disorders
in early Parkinson’s disease by acoustic analysis is another
study in 2018 [5].

Language dysfunction can show the cognitive ability of
the brain and the speed of response to external stimuli. It is
mainly manifested as throat voice and tongue movement
disorders of diferent degrees, and the frst manifestation is
the weakening of voice. In addition, there are also situations
of single pitch, slow speech speed, abnormal language
pauses, continuous dysphonia, abnormal stress, vague and
hoarse voice, decreased fuency of oral expression, and
simplifed syntactic expression. Furthermore, PD can also
hinder voice production, making the voice of patients with
Parkinson’s disease soft and monotonous. Research shows
that these symptoms often appear in the early stages of
disease development, sometimes decades earlier than
exercise-related symptoms. Tis year, a new study by neu-
roscientists at the University of Arizona showed that
a specifc gene usually associated with Parkinson’s disease
may be the reason behind these problems related to pho-
nation. Tis discovery may help to early diagnosis and
treatment of Parkinson’s disease [6]. Tese representations
are obtained from the patient’s speech data. Terefore, using
computer methods to analyze and process these speech data
is the primary task.

Te speech recognition system can be roughly divided
into four parts (Figure 1):

(1) PD pronunciation test, including the reading vowel
test and continuous conversation test

(2) Speech data collection: collect the test content using
mobile phones or recording pens and other equip-
ment equipped with microphones

(3) Speech recognition and PD detection: use deep
learning or machine learning algorithm for feature
extraction and recognition of speech data

(4) Te prediction results of the model are fed back to
doctors to help them make treatment plans

In order to detect Parkinson’s disease, computer sci-
entists try to capture the unique disease symptoms of PD
patients and build models to compare with healthy people.
Specifcally, a large proportion of these methods are artifcial
intelligence technologies. For example, supervised tradi-
tional machine learning (ML) algorithms, such as random
forest [7–9], decision trees [10, 11], and K-nearest neighbor
(KNN) [12], have been highly efective in motor symptoms
analysis of Parkinson’s disease; support vector machines
[13, 14] and XGBoost [15] have competitive performance in
PD speech analysis and recognition. Te deep network has
achieved far more accuracy than ML methods, including
speech, natural language processing, vision, and many other
felds. In the analysis of speech, a classical ML algorithm
usually requires complex feature engineering, while deep
networks can usually achieve good performance by simply
passing data directly to the network. Moreover, deep models
can more easily adapt to diferent felds and applications. For
instance, transfer learning makes it efective to apply the
pretrained deep network to diferent applications in the

same feld. Benefting from these strengths, deep models
have also shown incomparable advantages in speech rec-
ognition [16] of Parkinson’s disease, such as time series
models (LSTM [17, 18] and GRU [19]), convolution-based
neural networks (CNN [20–22] and ResNet [18, 23]), and
hybrid or complex networks (transformer [24, 25], ensemble
learning [26, 27], and few-shot learning [28]).

Despite that these methods have a place in a number of
felds, they are also limited to concentrating on a single
perspective, that is, using a single perspective to view speech
data. For example, CNN is for spatial feature extraction,
LSTM is for temporal feature extraction [29], and MFCC is
for spectral feature extraction. However, the expression
forms of each feature are diverse, and the degree of ag-
gregation of the same feature of multiple samples to diferent
spaces or diferent perspectives is greatly diferent. Tere-
fore, we choose the method of multimodel fusion to express
diferent levels of features in diferent dimensions and spaces
and fuse them until the best efect is achieved. Te multi-
model fusion method makes up for the defect of one-sided
feature representation of a single model and makes the
fusion model more suitable for the input data.

In addition, we conduct the transfer learning framework
to process speech data. Due to the long training time and
large amount of data of the deep learning model, it is difcult
for the complex model we designed to achieve excellent
classifcation efects in a short time, and it is hard to change
the details once the model is trained. Te transfer learning
framework is divided into an upstream task and a down-
stream task, which can perfectly optimize the system per-
formance and improve the training efciency, so that the
reconstructed model of the downstream task can cover the
shortcomings of the upstream task, pay more attention to
the detailed feature description, and achieve faster modeling
speed by fne-tuning the training weight.

Te inner unit of the triplet network proposed integrates
the attention mechanism, convolution, feature splicing,
scalable structure, and other technologies. New elements
have also been added to the block to improve the recognition
ability of the model. Tis improved strategy successfully
presents the advantages of each model and obtains a more
robust hybrid model.

Te main contributions of our work are summarized as
follows:

(i) A triplet multimodel transfer learning network
(TmmNet) is proposed for speech disorders
screening of Parkinson’s disease, which can not only
extract the multidimensional spatiotemporal fea-
tures of the input speech but also selectively enhance
the signifcance of the features. Te two-layer task
framework adopted solves the problem of a large
data volume and a long training process.

(ii) Te proposed triplet network integrates a variety of
improved new expansion units, adds multiscale
convolution, multihead, spatial, and channel at-
tention mechanisms, uses parallel mode for training
and serial mode for feature splicing, and performs
hierarchical feature representation and fusion.

2 International Journal of Intelligent Systems



(iii) After multifeature fusion of the upstream pre-
training model of the transfer learning structure is
completed, the downstream model adds a bi-
directional temporal recurrent memory network
and two fully connected modules after the pre-
training model for fne-tuning training. Te sig-
nifcance of fusion features in the time series
dimension is highlighted.

Te rest of this paper is organized as follows: Section 2
illustrates the related work in recent years. Section 3
describes the framework and computing process of the
proposed model. Section 4 provides the dataset in-
troduction, experimental results, and settings. Te con-
clusion discusses the strengthens and limitations in
Section 5.

2. Related Work

As far as the algorithms mentioned above are concerned, we
will introduce computer methods for speech recognition in
the following three categories: manual feature extraction
methods, machine learning methods, and deep learning
methods. As illustrated in Table 1, we mark whether the
investigated research involves these algorithm categories as
“✓” and “−.” “✓” means involved, and “−” means not
involved.

Machine learning methods, such as SVM and
XGBoost, have been widely applied in PD speech as-
sessment [13, 15]. Te study of [13] proposed to introduce
the L1 regularization SVM for speech signal feature ex-
traction and then trained an improved genetic algorithm
and an SVM classifer for speech recognition. Wang et al.
[15] compared XGBoost with support vector machines,
random forests, and neural networks for the detection of
the speech signal collected from Parkinson’s patients, by
identifying vocal fundamental frequency of speech. Al-
though machine learning algorithms have made
achievements in the feld of voiceprint recognition, most
of the machine learning algorithms used are still limited to
feature classifcation, without more consideration on
feature representation and description.

As popular deep learning methods, a large number of
classical models [18, 19, 24, 34, 35] have achieved good
performance in PD speech recognition. As the audio feature,
MFCC was input into LSTM, GRU, CNN, ResNet, and other
deep models for automatic speech recognition (ASR) in the
study of [18]. GRU [19] was employed to assess speech
impairments by computing static features from complete
utterance. Hernandez et al. [24] explored the usefulness of
using Wav2Vec self-supervised speech representation as the
speech feature of dysarthria in training ASR systems and
used a transformer-based context network for feature rep-
resentation and classifcation. In addition, several hybrid
fusion models [25, 26, 28, 36] have gradually emerged in the
application of PD speech recognition. An audio spectrogram
[25] transformer was proposed to analyze the multimodal
PD speech and handwriting data. An ensemble model [26]
was designed for the classifcation of PD speech data, which
combined a deep sample learning algorithm with a deep
network, realizing deep dual-side learning. A deep model
based on iterative mean clustering [28] was established to
obtain new high-level deep samples, which solved the
problem of few-shot learning.

For MFCC feature extraction, some algorithms analyze
and classify the MFCC features in speech data [30–33]. Qing
et al. [32] designed a transfer learning network after
extracting MFCC features from the raw speech data. In the

Table 1: Te discussed studies.

Previous studies MFCC feature Deep
learning Machine learning

[13] ✓
[15] ✓ ✓
[25] ✓ ✓
[26] ✓ ✓
[28] ✓ ✓
[30] ✓ ✓
[31] ✓ ✓
[32] ✓ ✓ ✓
[33] ✓ ✓
TmmNet ✓ ✓ ✓

Step 1: PD Pronunciation
Test

Step 2: Speech Data
Collection

Step 3: Speech
Recognition and PD

Detection

Step 4: Feedback for 
Diagnosis

(Treatment)

Single Testing

Spontaneous Dialogue

Figure 1: Speech recognition process. Te speech recognition system can be divided into four parts: PD pronunciation test, speech data
collection, speech recognition and PD detection, and feedback for diagnosis.
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study of [33], the MFCC parameters with the best perfor-
mance in 12 dimensions were extracted to represent the
acoustic characteristics of articulation disorders, which were
utilized for automatic speech recognition based on the ar-
tifcial neural network (ANN). Nivash et al. [31] carried out
research in 2021 and used a series of machine learning al-
gorithms to classify the MFCC features of speech, such as RF
and naive Bayes, and naive Bayes was verifed to be the best
algorithm. MFCC was also utilized to detect patients with
PD from healthy people. Literature [30] adopted an SVM
classifer to distinguish the extracted voice and cepstrum
features, and the results showed that MFCC is the best by
comparison. Tese algorithms all involve MFCC feature
extraction, which is sufcient to verify its availability.

Inspired by these approaches, we frst extract the MFCC
features of speech fles in the preprocessing part and then
develop a model of transfer learning structure that includes
traditional machine learning and deep learning.

3. Triplet Multimodel Transfer
Learning Network

For achieving successful speech analysis and recognition of
PD patients and healthy controls in the real environment, we
here propose a triplet multimodel transfer learning network
for MFCC features, multilevel and scale feature extraction,
and classifcation. First, we introduce the preprocessor for
MFCC feature computation. Ten, we describe the archi-
tecture of the pretrained model for multilevel and scale
feature extraction, followed by detailed discussion on the
individual components. Finally, we describe the recon-
structed model for fne-tuning the upstream parameters and
scoring the fused features before supplying the fnal di-
agnostic result.

3.1. Te Overall Structure. Our proposed model is shown in
Figure 2. In this framework, the speech data of healthy controls
and PD are fed into the preprocessor frst, which includes the
progress of pre-emphasis, discrete Fourier transform (DFT),
and inverse discrete Fourier transform (IDFT) to handle the
input for MFCC feature production. Afterward, we express
MFCC features in the form of sequences and reshape every ten
extracted frames into one frame, forming a 40 ∗ 10 matrix as
a training sample.Ten, the training samples are input into the
pretraining triple network in batch size, including two trans-
former blocks, multiscale convolution blocks, and a dense
block. Te output features of the triplet network are spliced
together through the global maximum pooling layer to form
multilevel fusion features, and then, the diagnostic results are
obtained through two fully connected layers. Since there is no
scalable structure in the pretraining model to represent the
changes of speech data in the time dimension, we reconstruct
the model in the downstream task of the transfer learning
model as a hybrid model in series of a triplet network and
a temporal network.

3.2. Data Preprocessor. As shown in Figure 2, frst of all, we
use a pre-emphasis method to compensate the high-
frequency part of the voice. For the sampled value x[n]

of speech at time n, the output after pre-emphasis processing
is

y[n] � x[n] − a∗ x[n − 1]. (1)

Te pre-emphasis coefcient a is generally between 0.9
and 1. Ten, the voice is divided into segments by win-
dowing. Te windowing function is nonzero only in some
regions but zero in other regions. Te next step of win-
dowing and framing is a discrete Fourier transform (DFT).
Te function of the Fourier transform is to map the signal
from the time domain to the frequency domain. Assuming
that the number of sampling points after windowing is N,
DFT for these N points includes

x[k] � 􏽘
N−1

n�0
x[n]e

−j2π/Nkn
. (2)

Ten, the amplitude of each frequency component is
obtained, and the frequency is mapped tomel frequency.Te
expression relationship between mel frequency and fre-
quency (f) is as follows:

Mel(f) � 1127∗ ln 1 +
f

700
􏼠 􏼡. (3)

Inverse discrete Fourier transform (IDFT): we take the
logarithm of the mel feature in the previous step, which can
be used as an acoustic feature, take the logarithmic frequency
spectrum as a time-domain signal, and do a Fourier
transform again, because the content of our voice is often
determined by the path that the sound passes through from
the sound location (similar to a series of flters) and is in-
dependent of the vibration frequency (fundamental fre-
quency) of the sound location itself. Te function of
cepstrum is to separate the flter from the sound source to
help identify the content of the sound. Te calculation
process of cepstrum is shown in the following formula,
which only represents the calculation process of cepstrum,
excluding the process of mel fltering. We can see that
cepstrum is to take the frequency spectrum after the Fourier
transform as the time-domain signal and do another Fourier
transform on this frequency spectrum:

c[n] � 􏽘
N−1

n�0
log 􏽘

N−1

n�0
x[n]e

−j2π/Nkn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠e

−j2π/Nkn
. (4)

Te process of delta is as follows: for each frame, the frst
12 dimension cepstrum coefcients passing through IDFT
are selected, and then, the energy is used as the 13th di-
mension feature. Te time-domain signal after adding
a window can obtain energy characteristics through calcu-
lation. Assuming that the window length starts from t1 and
ends at t2, then the energy of the frame is
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energy � 􏽘

t2

t�t1

x
2
[t]. (5)

Te change of feature in time can represent the acoustic
characteristics. Terefore, the change of feature in time is
added to the original 13 dimensional features to obtain the
delta feature, which represents the change of cepstrum
coefcient and energy between frames.

First, we formulate the problem for speech recognition.
Te MFCC features are defned as X � xi ∈ R40∗10,􏼈

i � 1, 2, 3, . . . , N} with corresponding 2-class label se-
quences L, N being the sample numbers of the input data,
and 10 and 40 being the width and height of each training
sample after preprocessing.

3.3. Triplet Network. Te triplet network is a model that
integrates three functional blocks. Te transformer block
integrates a multihead attention mechanism and a mul-
tiple feed-forward neural network (Multi-FFN). Te
multiscale convolution module contains the feature
output of diferent convolution kernels of the depth-wise,
spatial, and channel attention components, a normaliza-
tion module, two one-dimensional convolutions, and
a fully connected layer. Finally, DenseNet with three dense
blocks is adopted to reduce the possibility of information
loss of the frst two blocks.

3.3.1. Transformer Block. We redesigned the internal
structure of the transformer block, which is composed of
a multihead attention mechanism and a multiple feed-
forward neural network (Multi-FFN). Since the input data
are speech sequence data, a multihead attention can receive
three sequences: query, key, and value. Te output sequence
length of the multihead attention is consistent with the input

query sequence length. Te length of the query is Lq, and the
length of the key and value is Lk.

Multihead attention is composed of one or more parallel
cell structures. We call each such cell structure a head. For
convenience, we name this cell structure one head attention.
Multihead attention consists of multiple one head attention.
Remember that a multihead attention has n heads, and the
weights of the ith head are WQ, respectively, W

Q
i , WK

i , and
WV

i . Ten,

headi � Attention q · W
Q
i , k · W

K
i , v · W

V
i􏼐 􏼑,

MultiHead(q, k, v) � Concat head1, head2, . . . , headn( 􏼁 · W
O

.

(6)

Te input q, k, and v matrices are input into each one
head attention, respectively. Te output matrices of each
head are spliced according to the characteristic dimensions
to obtain a new matrix and then multiplied with the WO

matrix to obtain the output.Temultihead attention process
is illustrated in Figure 3. Te multihead attention mecha-
nism divides each attention operation into a single head and
can extract feature information from multiple dimensions.
Te three transformation tensors perform linear trans-
formation on Q, K, and V, respectively. Each head starts to
segment the output tensor from the semantic level; each
head wants to obtain a set of Q, K, and V for the calculation
of the attention mechanism.

For the multiple feed-forward neural network (Multi-
FFN), we embed three diferent feed-forward neural net-
works and fuse the three outputs obtained from these blocks.
It includes an RBF block, an FC block, and a Conv block; the
structure of the three blocks is demonstrated in Figure 4.
Tis redesigned transformer block not only includes the
multihead attention mechanism but also transforms a single
feed-forward MLP network into a combination of three
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Figure 2: Te structure of TmmNet. Tere are three modules: data preprocessor for MFCC feature extraction, pretrained model for
multilevel and scale feature extraction, and reconstructed model for temporal information acquisition and feature classifcation.
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feed-forward networks, aiming at extracting multimodel
fusion features.

Te RBF method is to select P basis functions, and each
basis function corresponds to one training data. Te in-
terpolation function based on the radial basis function is as
follows:

ϕ(r) � exp −
r
2

2σ2
􏼠 􏼡,

F(x) � 􏽘
P

p�1
wpϕp ‖ X − X

P
‖􏼐 􏼑.

(7)

Te input X is an m-dimensional vector, and the sample
size is P, P>m. Te input data point Xp is the center of the
radial basis function ϕ. Te function of the hidden layer is to
map the vector from the low dimension m to the high di-
mension P. When the low dimension is linearly indivisible, it
can be linearly separable from the high dimension. We select
refected sigmoidal function as a radial basis function ϕ. Te

Conv block contains three layers of convolution operations
with a kernel of 3 ∗ 3. Te down sampling layer is removed
to avoid information loss.

3.3.2. Multiscale Convolution Block. Te multiscale convo-
lution block follows the internal structure of the trans-
former. It uses group convolution to divide all channels into
several groups, and convolution is performed in groups. Te
inverse bottleneck layer is used to perform the convolution
operation in the order of dimension increasing (depth-wise
convolution) to dimension reducing, and the order of depth-
wise convolution is raised to the top. Tis is to facilitate the
comparison of features after the 1 ∗ 1 convolution and
prevent the parameter amount from rising. Te structure of
the multiscale conv block is shown in Figure 5. Te speech
data are frst convolved through three diferent scales of
depth-wise convolution kernels. Te joint features of
channel attention and spatial attention are extracted from
the output of each layer, and then, the fnal multiconvolution
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Figure 4: Te structure of the transformer block.

Figure 3: Te process of the multihead attention mechanism.
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fusion feature is obtained through two one-dimensional
convolutions.

It is worth noting that this module uses multiscale
convolution kernels, 7 ∗ 7, 5 ∗ 5, and 3 ∗ 3, in depth-wise
convolution and processes the input data to obtain three
features for fusion. After obtaining the feature map of these
three blocks, the serial channel attention and spatial at-
tention are added to highlight the landmark information and
target location in the speech signal. Convolutional block
attention (CBA) can improve the feature extraction ability of
the network model without signifcantly increasing the
amount of computation and parameters [37], which is
shown in Figure 6. Tis module can serially generate at-
tention feature map information in two dimensions of
channel and space and then multiply the two feature map
information with the original input feature map to generate
the fnal feature map through adaptive feature correction. It
includes two modules: channel attention and spatial at-
tention, channel attention uses the relationship between
feature channels to generate channel attention mapping. In
order to efectively calculate channel attention, we compress
the spatial dimension of input feature mapping. Average
pooling is usually used to aggregate spatial information.
Spatial attention uses the spatial relationship between fea-
tures to generate spatial attention mapping. In order to
calculate spatial attention, we frst apply average pooling and
max pooling operations along the channel axis and con-
catenate them to generate efective feature descriptors.

(a) Channel Attention. When compressing the spatial
dimension of the input feature map, average pooling
and max pooling methods are adopted to obtain
a total of two one-dimensional vectors. Global av-
erage pooling has feedback for every pixel on the
feature map, while global max pooling has gradient
feedback only where the response is the largest in the
feature map during gradient back propagation cal-
culation. Meanwhile, average pooling and max
pooling are employed to aggregate spatial dimension
features to generate two spatial dimension de-
scriptors: Fc

max and Fc
avg, and then, the weight is

generated for each channel through an MLP net-
work. Finally, the weight is multiplied by the original
channel attention. Te formula is as follows:

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

� σ W1 W0 F
c
avg􏼐 􏼑􏼐 􏼑 + W1 W0 F

c
max( 􏼁( 􏼁􏼐 􏼑,

(8)

where F represents the input feature map, Fc
avg and

Fc
max are the features calculated by global average

pooling and global max pooling, respectively, W0
and W1 denote two-layer parameters in a multilayer
perceptron model, and the features between W0 and
W1 in the multilayer perceptron model need to be
processed with ReLU as the activation function.

(b) Spatial Attention. With the exception of generating
the attention model on the channel, the author said
that at the spatial level, the network also needs to
understand which parts of the feature map should
have higher response. First, average pooling andmax
pooling are utilized to compress the input feature
map at channel levels, and the input features are
subject to mean and max operations on the channel
dimension, respectively. Finally, two 2D features are
obtained and stitched together according to the
channel dimension to obtain a feature map with two
channels. It is then convolved with a hidden layer
containing a single convolution kernel. It must be
ensured that the fnal features are consistent with the
input feature map in the spatial dimension:

Max and average pooling operations are also used, but
they are executed in the channel dimension. In order to
reduce the number of channels in the C dimension of the
original feature to 1 dimension, so as to learn spatial at-
tention. Te formula is

Ms(F) � σ f
7×7

([AvgPool(F);MaxPool(F)]􏼑􏼐 􏼑

� σ f
7×7

F
s
avg; F

s
max􏽨 􏽩􏼐 􏼑􏼐 􏼑,

(9)

where the feature map after max pooling and average
pooling is defned as Fs

avg ∈ R
1∗H∗W and Fs

max ∈ R
1∗H∗W and

σ represents sigmoid activation function. Te convolution
layer shown in this part uses 7 × 7 of the convolution kernel.

Channel attention and spatial attention can be expressed
by the following formula:
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Figure 5: Te structure of the multiscale Conv block.
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F′ � Mc(F)⊗F,

F″ � Ms F′( 􏼁⊗F′.

⎧⎨

⎩ (10)

where F is the feature map, Ms(F) and Mc(F) represent
channel-based and space-based attention, ⊗ represents the
element by element multiplication, and F′ and F″ represent
the output feature map after channel attention and spatial
attention, respectively. Because the input and output sizes of
the convolutional block attention module are the same, it
can be inserted anywhere in the existing model.

Subsequently, after two layers of 1∗ 1 ordinary convo-
lution layer, a layer of GeLU activation function is inserted
in the middle to preserve the probability and dependence on
input and to avoid the gradient disappearing.

3.3.3. DenseNet. DenseNet includes three dense blocks and
uses a more aggressive dense connection mechanism. Each
layer will accept all the layers in front of it as its additional
input.Te size of the feature map in each dense block is unifed
to facilitate the concatenation operation. Te dense block-
+ transition structure is used in the DenseNet network. A
dense block is a module that contains many layers. Te feature
map size of each layer is the same. Dense connection is adopted
between layers. Te transition module connects two adjacent
dense blocks and reduces the size of the feature map through
pooling. As shown in Figure 7, the network structure of
DenseNet is mainly composed of dense block and transition
(convolution+pooling). Te feature transfer method is to
directly concatenate the features of all the previous layers to the
next layer, instead of pointing to all the layers behind. Te
details can be illustrated in the literature of [38].

3.4. Reconstructed Model. As the downstream task of the
transfer learning model, we reconstruct the network into
a triplet network, a temporal network and a two-layer fully
connected layer.

We keep the triplet network unchanged in the pre-
training process. Since the input speech data are in a se-
quential state, we implant a temporal network composed of
a 1-D convolution layer and a bidirectional LSTM (BiLSTM)
with attention to conduct retraining and fne-tuning of the
original network weights, followed by two fully connected
layers. BiLSTM employs a two-layer internal extensible unit
as its structure and adds an attention mechanism as the
temporal feature extraction module of the fne-tuning
downstream task.

We integrate the output features of the triplet network
and the temporal network, preserve the bidirectional in-
formation transmission between the speech sequence data
frames, make up for the shortcomings of the triplet network,
and strengthen the attention to the value in the unique
position of the output matrix through attention, and the
working mechanism is illustrated in Figure 8.

4. Experiments

Tis section presents our experimental settings and the
performance of the proposed model, compared against
several state-of-the-art methods on two challenging speech
datasets.

First, we provide a brief introduction to the dataset.
Ten, we briefy describe the experimental settings. Finally,
we give the global evaluation of the experimental results on
the two speech datasets.

4.1. Dataset Specifcations. In this section, we give a brief
description of two speech datasets, i.e., MDVR-KCL dataset
[39] and IPVS dataset [40], including data collected from
microphones, and the format is in “.wav.” Te details are
introduced as follows.

MDVR-KCL dataset: Te MDVR-KCL dataset is a voice
fle of early and late Parkinson’s disease patients and healthy
controls recorded with mobile devices. It was collected at

Convolutional Block Attention

Channel Attention Spatial Attention
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Conv
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Input Data Conv Feature
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Channel
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Figure 6: Te internal structure of the convolutional block attention.
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King’s College London (KCL) Hospital in Brixton, London,
from September 26 to 29, 2017. A typical examination room
with about ten squaremeters area and a typical reverberation
tome of approx were utilized to perform the voice recording
with 500ms. Te recording was carried out in the real sit-
uation of the call (that is, the participant puts the phone on
the preferred ear and the microphone is directly close to the
mouth). It can be assumed that all recordings are made
within the reverberation radius, so it can be considered as
“clean” [39].

A Motorola Moto G4 smart phone was used as a re-
cording device. Trough the developed application, high-
quality recording with a sampling rate of 44.1 kHz and
a bit depth of 16 bits (audio CD quality) was fnally
achieved. Te format was “.wav,” and the collecting
process was as follows:

(i) Ask participants to relax a little and then call the test
executor

(ii) Please read the article aloud
(iii) According to the constitution of the participants,

they are required to read the text
(iv) Start a spontaneous conversation with the partici-

pants, and the test executor starts to randomly ask
questions about the scenic spots, local trans-
portation, or personal interests (if acceptable)

(v) Te test executor ends the call by saying goodbye

Te dataset included data from 16 PD patients and 21
healthy controls. For each HC and PD participant, the data
regarding scores were labeled on the Hoehn and Yahr (H

and Y) scale, as well as the UPDRS II part 5 and UPDRS III
part 18 scales.

IPVS dataset: Te IPVS dataset included voice re-
cordings of 28 PD patients and 20 healthy controls, all of
which were collected at a 16 kHz sampling rate in a quiet,
echoless, warm room. Te microphone was located 15 to
25 cm from the people. Te participants performed the
following tasks: two phonation of the vowels /a/, /e/, /i/, /o/,
and /u/ and syllable execution of “ka” and “pa” for 5 s. In this
study, the reading of phonetically balanced phrases and
vowel recording were utilized, and a phonetically balanced
text was read twice [40]. Te reading rules are as follows:

(i) (a) 2 readings of a phonemically balanced text
spaced by a pause (30 sec)

(ii) (b) execution of the syllable “pa” (5 sec), pause
(20 sec), and execution of the syllable “ta” (5 sec)

(iii) (c) 2 phonation of the vocal “a”
(iv) (d) 2 phonation of the vocal “e”

(v) e) 2 phonation of the vocal “i”
(vi) (f ) 2 phonation of the vocal “o”
(vii) (g) 2 phonation of the vocal “u”
(viii) (h) reading of some phonemically balanced words,

pause (1min), and reading of some phonemically
balanced phrases

It should be emphasized that there is a one-minute break
between the execution of (a) and (b) and between (g) and
(h). Before the implementation mentioned in points (c), (d),
(e), (f ), and (g), it is necessary to inhale as much air as
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Figure 7: Te structure of DenseNet.
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Figure 8: Te temporal network. Vectors in the hidden state sequence Ot are fed into the learnable function tanh(Ot) to produce
a probability vector a. Te vector At is computed as a weighted average of OT with weighting given by a.
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possible and continue to make sound until the lungs are
empty. A 30-second pause is required between the execution
of (c), (d), (e), (f ), (g), and (h).

4.2. Experimental Settings. Te experiment was imple-
mented on two speech datasets, and appropriate settings
were arranged according to the features of each dataset. Te
device had a graphics card of GeForce RTX 3080, the
memory of an RAM of 32.0GB, and a CPU of Intel(R)
Core(TM) i7-11700. Te settings were described in accor-
dance with the dataset.

For the two speech datasets, we shufed and randomly
selected 80% of the data for training and 20% for testing,
with a data capacity of 10000+ for the MDVR-KCL dataset
and 20000+ for the IPVS dataset, respectively. Te fnal
testing time on each dataset was approximately 15ms
(MDVR-KCL dataset) and 27ms (IPVS dataset). We utilized
the spontaneous dialogue fle in the MDVR-KCL dataset, as
well as the monophonic pronunciation (/a/, /e/, /i/, /o/, and
/u/) fles collected by the microphone in the IPVS dataset,
corresponding to points (c), (d), (e), (f ), and (g) in the
collection process.

For theMDVR-KCL dataset, we had “.wav” fles of 16 PD
patients and 21 healthy controls, each containing about two
minutes of recording. First, we extracted MFCC features (40
dimensions) through a data preprocessing module: 13 di-
mensional static coefcients + 13 dimensional frst-order
diference coefcients + 13 dimensional second-order dif-
ference coefcients + 1 dimensional frame energy. Te
sampling rate was set to 8000, which meant taking 8000
points per second. Tis way, a segment of audio can output
N × 40 dimensional vectors, as these audios were contin-
uous. We took 10 × 40-dimensional sequences as one
training sample. Ten, these 400 dimensional MFCC fea-
tures were fed into the triplet network for pretraining and
save the model parameters. Te processed data were then
input into the reconstructed model’s triplet network and
temporal network for retraining. Te triplet network used
pretrained parameters, the temporal network used initiali-
zation parameters, the time step was set to 100, and the batch
size of the entire network was set to 128. For the IPVS
dataset, we had “.wav” fles of 28 PD patients and 20 healthy
controls, the process parameters for MFCC feature extrac-
tion were consistent, and the diferences were mainly re-
fected in the amount of data.

4.3. Speech Recognition. Te experiment is implemented in
four parts, ablation experiment, comparison experiment of
machine learning models and deep models, and global
evaluation.

4.3.1. Ablation Experiment. We split TmmNet into four
constituting components, i.e., TmmNet without a fne-
tuning process (TmmNet NoFT), TmmNet without an MS
Conv block (TmmNet NoConv), TmmNet without an ST-
Attn block (TmmNet NoAttn), and TmmNet without
a temporal network and an ST-Attn block (TmmNet NoTN)

for the ablation experiment. Due to the small diference in
the efect of various models on the IPVS dataset, we only use
the MDVR-KCL dataset to carry out the ablation
experiment.

We used four evaluation indicators, precision, recall, F1
score, and accuracy, to evaluate the performance of the four
constituting components and the overall model. As shown in
Table 2, the precision represents the proportion of positive
cases in the samples with positive predicted results. Te
performance of several split modules here varies greatly. It
can be seen that TmmNet, TmmNet (NoConv), and
TmmNet (NoAttn) perform best, while TmmNet (NoFT)
and TmmNet (NoTN) perform poorly, because the temporal
network in the fne-tuning process and downstream tasks
has a greater impact on precision. For recall, the perfor-
mance of the overall model and the split modules was not
satisfactory, but the overall model reaches 75%, ranking frst.
For F1 score, TmmNet performs the best, followed by
TmmNet (NoConv). TmmNet (NoTN) is the worst, which
proves that the TN module of the fne-tuning part has the
greatest impact on the F1 score value of the overall model. By
comparing the accuracy of these components, TmmNet
(NoFT) and TmmNet (NoTN) perform worse than other
models, indicating the importance of fne-tuning and
temporal network in the overall model.

Te confusion matrix of the components is shown in
Figure 9. We can see that TmmNet achieves 100% of the
detection rate of PD, but the misclassifcation rate of HC is
still high and also better than that of other component
modules. Te worst detection rate for PD is TmmNet
(NoTN), and the highest error rate for HC is TmmNet
(NoFT). It can be seen that the fne-tuning part, attention,
and temporal information play a signifcant role in the
TmmNet framework. 24.74% of healthy subjects are clas-
sifed as PD patients, because the pronunciation in the
training data of some mild PD patients is similar to that of
healthy people.

We also utilize ROC (receiver operating characteristic)
curves and AUC (area under curve) values to compare the
performance of these constituting components (Figure 10).
Te closer the ROC curve is to the upper left corner, the
better the performance is. AUC is defned as the area under
the ROC curve enclosed by the coordinate axis. It is a ma-
chine learning performance metric used to evaluate the
binary model. Te degree of AUC greater than 0.5 measures
the extent to which the algorithm is superior to the randomly
selected algorithm. It can be seen that TmmNet, TmmNet
(NoAttn), and TmmNet (NoConv) are more than 80% and
that TmmNet (NoFT) and TmmNet (NoTN) are more than
70%.

4.3.2. Results of Machine Learning Models. In this section,
we compare eight machine learning methods, i.e., DT,
GBDT, LDA, KNN, LightGBM, LR, RF, and XGBoost, for
the classifcation of speech signals in PD patients and healthy
people.

MDVR-KCL dataset: As illustrated in Table 3, we still
adopt four classifcation evaluation indicators to compare
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the performance of diferent machine learning models. Te
best models for these four indicators are LR (precision
96.32%), LightGBM (recall 90.47%), LightGBM (F1 score
77.49%), and XGBoost (Acc 80.79%). Te classifcation
accuracy of KNN (80.73%) and XGBoost (80.79%) is similar,
but there is still a big gap compared with TmmNet (90.23%).

In addition, the ROC curve is demonstrated in Figure 11.
Te AUC value of TmmNet is the highest, followed by
LightGBM, which is a gradient boosting framework and
utilizes a decision tree-based learning algorithm. It is dis-
tributed and suitable for samples with large datasets. DTand
KNN have the lowest efect. When KNN treats the sample
imbalance, the predicted accuracy of rare categories is low.
DT is prone to overftting, and it is easy to ignore the
correlation of attributes in the dataset. For the input speech

data, each frame is interrelated, and the sample data volume
is large, which is also the reason why machine learning
methods can be applied.

IPVS dataset: We also used the IPVS dataset to distin-
guish the characteristics of healthy subjects and patients with
Parkinson’s disease by following the pronunciation of fve
vowels /a/, /e/, /i/, /o/, and /u/.

Te classifcation performance of machine learning
methods is discussed in Table 4. Te evidence shows that the
results of our proposed TmmNet in fve syllable pro-
nunciation classifcation are signifcantly superior to the
traditional machine learning algorithm, with an average
accuracy of more than 99%. It also means that our model can
be directly used for speech disorders prediagnosis. By
comparing the pronunciation of fve vowels, it is found that
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Figure 9: Te confusion matrix of TmmNet and its components on the MDVR-KCL dataset. (a) TmmNet (NoAttn). (b) TmmNet (NoFT).
(c) TmmNet (NoConv). (d) TmmNet (NoTN). (e) TmmNet.

Table 2: Results of the four constituting components on the MDVR-KCL dataset.

Components
Evaluation

Precision (%) Recall (%) F1 score (%) Acc (%)
TmmNet (NoFT) 86.39 56.87 68.59 80.46
TmmNet (NoConv) 97.16 69.02 80.71 86.82
TmmNet (NoTN) 71.73 61.92 66.46 75.44
TmmNet (NoAttn) 96.32 66.74 78.85 85.22
TmmNet 100.00  5.26 85.88 90.23
Te bold values in Table 2 represents the highest results among the split models.
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Figure 10: ROC curve of four constituting components and the overall model.

Table 3: Results of the eight machine learning methods on the MDVR-KCL dataset.

Methods
Evaluation

Precision (%) Recall (%) F1 score (%) Acc (%)
DT 65.81 46.95 54.80 68.52
GBDT 82.42 38.01 52.02 71.31
LDA 70.25 41.73 52.36 71.48
KNN 89.70 59.42 71.49 80.73
LightGBM 67.76 90.47 77.49 79.00
LR 96.32 71.68 43.81 54.38
RF 91.71 51.17 65.69 78.27
XGBoost 89.66 58.44 70.76 80.79
TmmNet 100.00  5.26 85.88 90.23
Te bold values in Table 3 represents the highest results compared with the machine learning classifers.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

DT (AUC = 0.651)
GBDT (AUC = 0.662)
LDA (AUC = 0.651)
KNN (AUC = 0.774)
LightGBM (AUC = 0.809)
LR (AUC = 0.659)
RF (AUC = 0.740)
XGBoost (AUC = 0.770)
TmmNet (AUC = 0.876)

Figure 11: ROC curve of eight machine learning methods and TmmNet.
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the subjects are difcult to distinguish between /e/ and /i/
pronunciation patterns, and the average efect of various
machine learning methods is the worst, but the efect of
TmmNet is still more than 99%. It is worth mentioning that
the efect of RF stands out among many methods and can be
comparable with the proposed TmmNet.

In addition, the ROC curve can also clearly show which
machine learning method is more suitable for speech
datasets. Te comparison of AUC values is shown in
Figure 12. We only list the evaluation results of resolving
vowel /a/. Te AUC values of LightGBM and RF rank in Top
1 and Top 2, respectively, which shows their advantages in
traditional classifcation. Te performance gap of other
classifers is relatively small, which indicates that the data are
highly separable and fully suitable for machine learning
methods.

4.3.3. Results of Deep Models. In this section, we evaluate
and compare 6 CNN-based models, i.e., CNN, DNN [41],
DenseCNN [42], ResCNN [43], ResNet50 [44], and Tin-
ResNet [45], and 5 temporal models, i.e., HMM, LSTM,
LSTM (Attn), BiLSTM (Attn) [46], and BiGRU(Attn) [47],
for the speech recognition in PD patients and healthy people.

MDVR-KCL dataset: In Table 5, by comparing the CNN-
based model with the temporal model, we can see that the
average classifcation performance of the temporal model is
better, which is related to the sequential form of speech data.
On the one hand, among the CNN-based models, Den-
seCNN obtains the highest accuracy. Because it proposes
a more radical intensive connection mechanism, which
connects all the layers and directly concatenates the feature
maps from diferent layers, it can achieve feature reuse and
improve efciency, so that it can obtain superior perfor-
mance. Te results of ResNet50 and DenseCNN are rela-
tively poor. Due to the sparsity of the data in the training
process, it leads to the overftting phenomenon, which is
inferior to other models. On the other hand, the bi-
directional memory model with an attention mechanism
(BiGRU (Attn), BiLSTM (Attn)) in the temporal network
performs satisfactorily due to its special gating mechanism
and the construction of the expandable unit. Inspired by the
advantages of these models, our proposed TmmNet has the
attribute of integrating spatiotemporal features and has
a transfer learning infrastructure. It goes beyond these
mainstream models and becomes an efective tool that best
fts the speech data being trained.

Furthermore, the ROC curve of 11 diferent deep models
on the MDVR-KCL dataset is demonstrated in Figure 13.
Te results in Table 5 are consistent with the performance
ranking of the ROC curve. Te performance based on
ResNet and HMM is relatively poor. Te corresponding
AUC can also see that the infection point of TmmNet is
closer to the upper left, while the results of ResNet50, HMM,
ResCNN, and LDA have a large gap compared with other
deep models, which is clearly refected.

IPVS dataset: We also compared fve deep learning
methods in Table 6, and the performance is signifcantly
better than that of machine learning methods, because the

accuracy of pronunciation resolution for each syllable is
more than 99%, of which the efect of HMM is obviously at
a disadvantage and also shows its limitations. We will give
priority to other networks as speech recognition algorithms.

Here, we can see that all the machine learning methods
and deep models compared in this paper have generally
excellent classifcation efects on this dataset, indicating that
the monosyllabic pronunciation of subjects is easier to
distinguish than reading a long passage or fnishing a di-
alogue.Te research in this paper can serve as a reference for
the prediagnosis and severity assessment of Parkinson’s
disease.

ROC and AUC are utilized to evaluate the classifcation
performance of the above deep learning model in Figure 14.
Similarly, the performance of deep models is not far from
that of traditional machine learning algorithms. Due to the
high sensitivity of the temporal network to speech se-
quences, the average performance is slightly higher than that
of machine learning and other deep learning models.

4.3.4. Global Evaluation. In this section, we evaluate the
overall efect of the TmmNet model and use the confusion
matrix of TmmNet on two datasets to describe the classi-
fcation accuracy. In addition, a perceptual experiment is
conducted to evaluate the classifcation results of speech
disorders.

MDVR-KCL dataset: We use the confusionmatrix to show
the classifcation results of TmmNet on the MDVR-KCL
dataset in Figure 15.Te accuracy of screening for PD reached
100%, although some healthy subjects were wrongly classifed
as PD patients. At the lower left corner of the confusion
matrix, 24.74% of the samples of healthy subjects were
wrongly divided into PD samples. We extracted a wrongly
divided sample and found that its feature distribution was
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Figure 12: ROC curve of machine learning and TmmNet.
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similar to the samples in the PD category. Terefore, the
similarity of the data would also afect the screening and early
diagnosis of Parkinson’s disease.

IPVS dataset: We use the confusion matrix to show the
classifcation results of TmmNet for pronunciation /a/ in
Figure 16. It can be seen that the probability of correct
classifcation of samples on the diagonal is more than 99%.
Compared with the MDVR-KCL dataset, the accuracy of
monosyllabic follow-up classifcation in the IPVS dataset is
signifcantly higher, which is inevitably related to the high
complexity of long texts.Terefore, when we conduct speech
tests on subjects, we can follow the vowels frst and then the
long text, which can efectively detect Parkinson’s disease
and evaluate its severity.

Perceptual Experiment. Tere are a total of 20 nonmedical
subjects conducting hearing experiments in a quiet room of
20 square meters. We randomly select an audio from

a dataset of PD patients, and each person is limited to
10 seconds to listen to a recording before giving a judgment
on whether it is an audio from a PD patient. After con-
ducting a hearing test on 20 people for a segment of audio, it
was found that 12 people correctly recognized the audio for
PD patients, with a comprehensive accuracy rate of 60.00%.
After inquiry, it is not ruled out that there is a possibility of
speculation. Tis recognition rate is much lower than the
model results proposed in this article. We also invited
a PD expert to conduct hearing tests on samples from 50
datasets, including 25 PD samples. Te test results
showed that the audio recognition accuracy of PD pa-
tients was 84%, HC audio recognition accuracy was 92%,
and the overall accuracy was 88.00%. Terefore, it can be
seen that the probability of using the proposed scheme for
accurate diagnosis of Parkinson’s disease using audio
exceeds 90%, providing a reference for automated di-
agnosis research.
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Figure 13: ROC curve of deep models and TmmNet on the MDVR-KCL dataset.

Table 5: Performance of deep models on the MDVR-KCL dataset.

CNN-based
methods

Precision
(%)

Recall
(%)

F1 score
(%)

Acc
(%)

Temporal network-based
methods

Precision
(%)

Recall
(%)

F1 score
(%) Acc (%)

CNN 89.38 57.50 69.99 80.01 HMM 61.74 50.48 55.54 67.73
DNN [41] 80.76 51.26 62.71 76.06 LSTM 84.28 59.39 69.68 79.37
ResCNN [43] 63.40 46.09 53.38 68.13 LSTM (Attn) 88.42 51.08 64.76 77.79
TinResNet [45] 86.96 59.60 70.73 79.96 BiGRU (Attn) [47] 92.45 64.49 75.98 84.04
DenseCNN [42] 85.71 86.84 87.16 86.47 BiLSTM(Attn) [46] 92.77 67.27 77.99 85.07
ResNet50 [44] 65.00 78.00 70.91 59.75 TmmNet 100.00  5.26 85.88 90.23
Te bold values in Table 5 represents the highest results compared with the deep learning models.
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Cohen’s Kappa. Cohen’s kappa is an indicator used for con-
sistency testing and can also be used to measure the efec-
tiveness of classifcation. For classifcation problems,
consistency refers to whether the predicted results of the model
are consistent with the actual classifcation results. Te cal-
culation of Cohen’s Kappa is based on the confusion matrix,
with values ranging from −1 to 1, usually greater than 0.

Te formula for calculating the kappa coefcient based
on the confusion matrix is as follows:

kappa �
po − pe

1 − pe

, (11)

where po is the sum of the number of correctly classifed
samples for each class divided by the total number of samples,
which is the overall classifcation accuracy, and pe represents
the sum of the product of actual and predicted quantities for all
classes, divided by the square of the total number of samples.

It can be divided into fve groups to represent diferent
levels of consistency: low consistency is [0.0, 0.20], fair
consistency is [0.21, 0.40], moderate consistency is [0.41,
0.60], substantial consistency is [0.61, 0.80], and almost
perfect consistency is [0.81, 1].

Trough consistency testing, the Kappa values of
TmmNet on two datasets are 0.9980 (/a/), 0.9952 (/e/),
0.9926 (/i/), 0.9974 (/o/), 0.9981 (/u/), and 0.7863
(MDVR-KCL dataset), respectively. It can be clearly seen
that the TmmNet model performs much better on IPVS than
on MDVR-KCL, achieving almost perfect consistency, while
achieving high consistency on MDVR-KCL. Te confusion
matrix on the MDVR-KCL dataset is relatively imbalanced,
as the detection rate of PD in the test set is 100%, there is
a problem of data imbalance. Other models also have the
same problem, and the data should be fltered or added later.

Severity Assessment. Furthermore, we also adopt a speech
dataset from Parkinson’s disease to validate the proposed
model, and the results showed that TmmNet also has good
performance in classifying the severity of PD speech. Tis
study can frst detect patients with potential Parkinson’s
disease based on speech data and then evaluate their severity.
Te experimental results are shown in Table 7. According to
the Hoehn and Yahr scale, speech data in the MDVR-KCL
dataset are classifed into four categories: healthy individuals,
PD1 level, PD2 level, and PD3 level, which is completely
marked by expert evaluation scores. We compared fve deep
learning methods [48–51], including models based on con-
volutional neural networks, transformers, and transfer
learning for speech emotion recognition, and achieved good
results, which is sufcient to prove that these deep models can
evaluate the severity of Parkinson’s disease speech, and the
efectiveness of the proposed TmmNet is also remarkable.

Furthermore, we also utilize the t-SNE visualization
method to show the classifcation ability of our proposed
method. Te experimental results are shown in Figure 17.
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Figure 14: ROC curve of deep models and TmmNet on the IPVS
dataset.
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Subfgures (a) and (b) represent the comparison between the
features extracted from our model and the original data after
dimensionality reduction. We can clearly see that the
original data are more chaotic than the extracted features,
and the data of the four classes have cross coverage, while the
features extracted by the proposed model have a distance
between diferent classes and a large degree of aggregation
for the same class, showing better separability.

5. Conclusion

We have presented techniques for screening out PD patients
or samples with potential PD from the speech data of
subjects, including MFCC feature extraction, and a pre-
trained triplet hybrid model and a reconstructed temporal
model achieve transfer learning for high-level expression of
the MFCC feature. Experiments have shown that our
method can not only be applied to the detection of
monosyllabic vowels in patients with Parkinson’s disease but
also have the function of analysis and recognition for
a period of time of the spontaneous dialogue. Although the
efect is not as good as the former, it can be used as a ref-
erence for the detection and classifcation of PD speech. By
the abovementioned strong results, we hope to stimulate
more research in this direction so that we can eventually
improve the ability of transfer learning models to process
speech sequence data and promote speech modeling.
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Table 7: Performance of deep models on the MDVR-KCL dataset for severity rating.

Methods Precision (%) Recall (%) F1 score (%) Acc (%)
Resnet50 91.60 87.25 86.47 95.64
LIGHT-SERNET [48] 99.98 99.93 99.95 99.94
CTL-MTNET [49] 99.87 99.64 99.75 97.38
GM-TCN [50] 99.88 99.56 99.72 99.87
TIM-NET [51] 99.95 99.86 99.90 99.88
TmmNet 100.00 99.97 99.93 99.95
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