
Research Article
A Deep Learning System for Detecting Cardiomegaly Disease
Based on CXR Image

Shaymaa E. Sorour ,1,2 Abeer A. Wafa ,3 Amr A. Abohany ,4 and Reda M. Hussien 4

1Department of Management Information Systems, College of Business Administration, King Faisal University,
Al-Ahsa 31982, Saudi Arabia
2Faculty of Specifc Education, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
3Faculty of Computer and Artifcial Intelligence, Helwan University, Helwan, Egypt
4Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt

Correspondence should be addressed to Shaymaa E. Sorour; ssorour@kfu.edu.sa

Received 14 November 2023; Revised 30 January 2024; Accepted 1 February 2024; Published 23 February 2024

Academic Editor: Vasudevan Rajamohan

Copyright © 2024 Shaymaa E. Sorour et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te potential of technology to revolutionize healthcare is exemplifed by the synergy between artifcial intelligence (AI) and early
detection of cardiomegaly, demonstrating the power of proactive intervention in cardiovascular health. Tis paper presents an
innovative approach that leverages advanced AI algorithms, specifcally deep learning (DL) technology, for the early detection of
cardiomegaly. Te methodology consists of fve key steps, including data collection, image preprocessing, data augmentation,
feature extraction, and classifcation. Utilizing chest X-ray (CXR) images from the National Institutes of Health (NIH), the study
applies rigorous image preprocessing operations, including color transformation and normalization. To enhance model gen-
eralization, data augmentation is employed, paving the way for two distinct DL models, a convolutional neural network (CNN)
developed from scratch and a pretrained residual network with 50 layers (ResNet50), and adapted to the problem domain. Both
models are systematically evaluated with fve optimizers, revealing the AdaMax optimizer’s superiority for the CNN model and
AdaGrad’s efcacy for the modifed ResNet50. Te proposed CNN with AdaMax achieves an impressive 99.91% accuracy,
outperforming recent techniques in precision, recall, and F1 − score. Tis research underscores the transformative potential of AI
in cardiovascular health diagnostics, emphasizing the signifcance of timely intervention.

1. Introduction

Cardiomegaly, or an enlarged heart, may be a sign of cardiac
insufciency in a variety ofmedical conditions, including high
blood pressure, coronary artery disease, heart valve disease,
and pulmonary hypertension. Detecting cardiomegaly early
on is of utmost importance, and one of the most widely used
noninvasive and afordable medical imaging tests for early
diagnosis is chest X-ray (CXR) imaging [1]. Recent advances
in deep learning (DL), combined with the availability of
comprehensive CXR databases, have greatly improved the
performance of computer-aided detection for cardiomegaly.
Tese methods have achieved results that are comparable to
those of human radiologists [2–6]. However, it is important to

note that current DL-based detection methods rely heavily on
binary classifcation of the entire CXR, using image-level
label-dependent learning to detect cardiomegaly. Although
classifcation-based methods have limitations due to the
unclear process by which DL algorithms arrive at conclusions,
segmentation-based methods can efectively identify the
boundaries of the lungs and heart on CXRs, enabling the
automatic calculation of the cardiothoracic ratio (CTR). Tis
index is highly valuable for evaluating cardiac enlargement. It
is essential to possess a thorough comprehension of the
standard ranges for the CTR since these ranges are subject to
variation due to factors such as age, gender, and population
demographics. By comparing the calculated CTR value to
established norms, we can identify possible indications of

Hindawi
International Journal of Intelligent Systems
Volume 2024, Article ID 8997093, 38 pages
https://doi.org/10.1155/2024/8997093

https://orcid.org/0000-0003-0805-2705
https://orcid.org/0009-0002-2229-476X
https://orcid.org/0000-0002-7408-5073
https://orcid.org/0000-0003-2808-0623
mailto:ssorour@kfu.edu.sa
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/8997093

cardiac enlargement. An elevated CTR value signals an im-
balance between heart size and thoracic dimensions, which
can be a sign of cardiomegaly. Te CTR is determined by
dividing the maximum horizontal cardiac diameter by the
maximumhorizontal thoracic diameter.Te normal range for
CTR is between 0.42 and 0.50. If the value is higher than 0.50,
it indicates cardiomegaly [7]. To accomplish this, it is im-
portant to identify key anatomical landmarks in the chest’s
posterior-anterior (PA) projection. Calibrated measurement
tools are used to determine the maximal horizontal diameter
of the cardiac silhouette, which includes the outer boundaries
of the heart, such as the left ventricular border and the right
atrial margin. At the same time, the thoracic cavity’s widest
transverse diameter is measured, establishing the dimensions
of the anatomical context in which the heart resides. Te
quotient of these twomeasurements, the cardiac diameter and
the thoracic width, gives rise to the CTR.

Interpreting the CTR requires a nuanced understanding
of normative ranges, which vary based on many factors such
as age, gender, and population demographics. Comparing
the calculated CTR against established norms is crucial in
detecting cardiac enlargement. Elevated CTR values indicate
an altered equilibrium between heart size and thoracic di-
mensions, which can signify cardiomegaly. To calculate the
CTR, you need to follow these key steps:

(1) Identify Cardiac Borders. Discern the outer bound-
aries of the cardiac silhouette on the CXR image.Tis
involves identifying anatomical landmarks, such as
the left ventricular border on the left side and the
right atrial border on the right side.

(2) Measure Cardiac Width. Using calibrated measure-
ment tools, ascertain the widest horizontal diameter of
the cardiac silhouette. Tis encompasses the distance
between the identifed borders, encapsulating the entire
extent of the heart’s dimensions visible on the CXR.

(3) Measure Toracic Width. Simultaneously, measure
the widest transverse diameter of the thoracic cage.
Tis measurement corresponds to the broadest di-
mension of the chest cavity as depicted on the CXR.

(4) Calculate the CTR. Divide the measured cardiac
width by the measured thoracic width to obtain the
CTR value. Mathematically, it is expressed as

CTR �
(Width of   the Heart)
(width of   the  thorax)

. (1)

Te CTR value is a unitless ratio that quantifes the
heart’s size relative to the thoracic cavity. An elevated
CTR value suggests cardiomegaly. However, the quanti-
tative datum is not considered in isolation. Its clinical
signifcance is accentuated through contextual integration
with patient-specifc variables, including symptoms,
medical history, and associated diagnostic data. A thor-
ough analysis of an elevated CTR can prompt further
clinical exploration, including specialized consultations,
corroborative diagnostic investigations, and targeted
therapeutic interventions.

In summary, the CTR from CXR is a multidimensional
diagnostic tool that provides early insights into cardiomegaly.
By embracing quantitative and qualitative aspects of this
approach, healthcare practitioners gain a nuanced framework
for identifying cardiac enlargement, leading to proactive
clinical management and better patient outcomes.

DL is a powerful technique [8] that involves training
artifcial neural networks to analyse data and make pre-
dictions. Its ability to identify complex patterns and accu-
rately predict outcomes based on large datasets has made it
increasingly popular across various felds. For instance, DL
can be utilized to detect cardiomegaly (enlarged heart) in
CXR images, ofering a practical solution to diagnose this
condition. Te importance of DL in the early detection of
cardiomegaly through CXR images lies in the following:

(1) Feature Extraction. DL models can automatically
learn relevant features from CXR images without the
need for explicit feature engineering.Tis enables the
model to capture intricate details that might be in-
dicative of cardiomegaly.

(2) Complex Pattern Recognition. Cardiomegaly detection
involves recognizing subtle variations in heart size,
shape, and contour. DL models excel at identifying
complex and nonlinear patterns within the data, which
may not be easily discernible by traditional methods.

(3) Scalability. DL models can be trained on large
datasets, allowing them to generalize from a diverse
range of CXR images. Tis scalability enables better
performance in identifying various manifestations of
cardiomegaly across diferent patient populations.

(4) Continuous Learning. DL models can be fne-tuned
and updated as new data become available. Tis
adaptability ensures that the model remains relevant
and accurate over time, improving its efectiveness in
detecting cardiomegaly.

(5) Reduction of Human Error. Automated analysis of
CXR images using DL can minimize human sub-
jectivity and errors that may arise from manual
interpretation, leading to more consistent and reli-
able results.

(6) Early Intervention. By accurately detecting signs of
cardiomegaly in its early stages, healthcare pro-
fessionals can initiate appropriate interventions,
such as further diagnostic tests or treatment plans, to
mitigate the progression of cardiovascular diseases.

DL technology for early detection of cardiomegaly involves
constructing neural networks with multiple layers that can
learn to map CXR images to relevant diagnostic outcomes.
Tese networks are trained using labeled datasets, where CXR
images are paired with corresponding labels indicating the
presence or absence of cardiomegaly. Te learning process
involves optimizing the model’s parameters to minimize the
diference between predicted outcomes and actual labels,
thereby enabling the model to generalize to new, unseen CXR
images. Overall, the application of DL technology in the early
detection of cardiomegaly through CXR images ofers

2 International Journal of Intelligent Systems

a sophisticated and data-driven approach to improve di-
agnostic accuracy, potentially leading to enhanced patient
outcomes and better management of cardiovascular health.

1.1. Motivations. Te primary objective of this paper is to
develop a DL model for early identifcation of cardiomegaly.
Te paper proposes two distinct DL models to solve a given
problem. Te frst model is a convolutional neural network
(CNN) which has been developed from scratch. Te second
model is based on a pretrained residual network with 50 layers
(ResNet50) which has been modifed to make it more ap-
propriate for the problem at hand. To evaluate the proposed
models, the research considers fve types of optimizers, namely,
Adaptive Gradient (AdaGrad), Adaptive Moment Estimation
(Adam), Adaptive Moment Estimation with Infnity Norm
(AdaMax), Nesterov-accelerated AdaptiveMoment Estimation
(NAdam), and Root Mean Square Propagation (RMSprop).
Te efects of each optimizer on the performance, in terms of
accuracy, precision, recall, F1-score, and processing time, of the
models are analysed and discussed in detail.

Te proposed model comprises seven distinct steps.
Initially, a relevant dataset for cardiomegaly is gathered. After
that, the unstructured data are preprocessed, converting them
into a structured format for classifcation purposes. Next, the
data are split into training and testing sets, with data aug-
mentation being employed to improve the model’s predictive
abilities. Simultaneously, DL models are utilized for both
feature extraction and classifcation. Finally, each DLmodel is
compiled with fve types of optimizers, and their efectiveness
is measured using predefnedmetrics. Based on the evaluation
results, the best optimizer for each DL model is determined,
ultimately leading to the identifcation of the best-performing
DL model for early cardiomegaly detection.

1.2. Contributions. Tis paper introduces a pioneering
methodology that incorporates both deep learning model
diversity and optimization strategy comprehensiveness. Te
standout features and contributions, particularly consider-
ing the noteworthy results obtained, are outlined as follows.

1.2.1. Architectural Innovation

(1) Te paper goes beyond conventional methods by
employing two distinct DL models—a custom-built
CNN and a modifed ResNet50.

(2) Tis dual-model paradigm allows for a nuanced
comparison, showcasing the ingenuity of a model
created from scratch against the adaptability of
a modifed pretrained model. Te exceptional results
afrm the efcacy of both approaches in early car-
diomegaly detection.

1.2.2. Optimizer Diversity and Performance Metrics

(1) Te study systematically evaluates both models under
the infuence of fve diverse optimization algorithms
namely, AdaGrad, Adam, AdaMax, NAdam, and
RMSprop.

(2) Te comprehensive exploration of optimization
strategies is coupled with a multifaceted evaluation
using metrics like accuracy, precision, recall, and
F1-score. Te exceptional achievements, such as
99.91% accuracy with AdaMax for the proposed
CNN and 99.73% accuracy with AdaGrad for the
modifed ResNet50, underscore the signifcance of
this dual exploration.

1.2.3. Efciency as a Decisive Criterion

(1) Te paper introduces computational efciency as
a crucial criterion, evaluating the speed of pre-
dictions for each model-optimizer combination.

(2) Recognizing AdaMax as the fastest optimizer for the
proposed CNN and AdaGrad for the modifed
ResNet50 not only emphasizes the practical implica-
tions for real-time clinical scenarios but also highlights
the efciency gains achieved through strategic opti-
mizer selection.

1.2.4. Optimal Confgurations and Model Superiority
Determination

(1) Te study not only identifes optimal confgurations
for each model-optimizer pair but also determines
the superior model-optimizer combination for both
the proposed CNN and the modifed ResNet50.

(2) Te exceptional results, such as 99.91% accuracy,
100% precision, 99.40% recall, and 99.7% F1-score
with AdaMax for the proposed CNN, and 99.73%
accuracy, 98.8% recall, and 99.1% F1-score with
AdaGrad for the modifed ResNet50, reinforce the
practical applicability and superiority of these
confgurations.

So, these fndings establish the study as a pivotal con-
tribution toward improving the efectiveness and practicality
of DL in medical image analysis.

1.3. Structure. Te rest of the paper is structured into various
sections. Initially, the prior research is presented in Section
2. After that, Section 3 discusses a proposed system for early
detection of cardiomegaly, which is further divided into two
subsections: Section 3.1 presents suggested DLmodels, while
Section 3.2 provides suggested optimizers for each DL
model. Proceeding further, Section 4 presents the analysis
and experimental fndings, which are then compared to
some state-of-the-art methods. Finally, the paper concludes
in Section 5 by summarizing the fndings and suggesting
further research.

2. Literature Review

Te pursuit of precise and timely identifcation of car-
diomegaly, an imperative indicator of underlying cardio-
vascular pathologies, is a paramount objective in medical
imaging. Within this context, the examination of chest

International Journal of Intelligent Systems 3

radiographs, or CXRs, emerges as a pivotal diagnostic
modality. However, the inherently intricate and context-
dependent nature of cardiomegaly poses challenges to tra-
ditional interpretative paradigms. To address this, a surge of
interest has been directed toward harnessing the capabilities
of DL methodologies, particularly CNNs, to facilitate the
automated detection of cardiomegaly from CXR images.
Tis section embarks on an incisive exploration of the
scholarly landscape, traversing methodologies underpinning
the application of CNNs in this domain as in Table 1. Te
investigation encompasses the diverse spectra of data aug-
mentation techniques, architectural confgurations, and
training modalities that underlie the DL paradigms
employed in tackling the complexity of cardiomegaly de-
tection. Additionally, an analytical examination of reported
evaluation metrics, such as precision-recall curves and F1-
scores, resonates with the overarching goal of elucidating the
advancements and potential limitations of CNN-based
strategies in enabling robust and clinically relevant identi-
fcation of cardiomegaly. Te synthesis of these endeavors
forms a crucial substrate, illuminating the trajectory of
employing DL, specifcally in the realm of CXR-based
cardiomegaly detection, thus paving the way for a more
comprehensive understanding of the scientifc landscape
and its implications. Lin et al. [9] introduced an innovative
classifer for automated cardiomegaly-level screening in
frontal PA view CXR images. Te multilayer one-
dimensional (1D) CNN employed dual-round 1D con-
volutional processes, enhancing the recognition of normal
conditions and diferent cardiomegaly levels. Te classif-
cation layer utilized a grey relational analysis-based classifer
for computational simplicity. Evaluation through 10-fold
cross-validation demonstrated promising results with pre-
cision of 97.80%, recall of 98.20%, accuracy of 98.00%, and
an impressive F1-score of 97.99%.Te study utilized datasets
from the National Institutes of Health (NIH) CXR image
collection, showcasing the potential of advanced image
analysis in medical diagnostics. Wu et al. [10] developed
a hybrid approach employing both 2D (two-dimensional)
and 1D CNN-based classifers for swift cardiomegaly
screening in clinical applications, specifcally utilizing
frontal PA CXR scans. Te methodology integrates 2D and
1D convolutional processes, along with a multilayer inter-
connected classifcation network, to enhance feature ex-
traction and pattern recognition tasks. Tis holistic strategy
aims to enrich the original CXR images while eliminating
undesired artifacts. Te classifer is trained and assessed
using 10-fold cross-validation. Te experimental results
exhibit promising outcomes aligned with the intended
medical purpose, boasting a precision of 97.60%, recall of
99.20%, accuracy of 98.40%, and an impressive F1-score of
98.38%. Notably, datasets from the NIH CXR image col-
lection were utilized.

Chen et al. [11] presented a novel approach for car-
diomegaly detection on CXR images, introducing a dual
attention network named CXRDANet. Te CXRDANet
incorporates a channel attention module (CAM) and
a spatial attention module (SAM), strategically enhancing
features associated with the lesion region. Experimental

results showcase the efectiveness of their technique,
achieving an accuracy of 90.50%, a recall of 94.45%, and an
F1-score of 90.59%. Te training and test sets involve
nonoverlapping CXR images of cardiomegaly and normal
cases sourced from CXR14 and NLM-CXR within the NIH
CXR image collection. Zhou et al. [12] employed a transfer
learning approach in their study to identify cardiomegaly in
CXR images, as detailed in their work. Te researchers
achieved superior results by utilizing a combination of
InceptionV3 and ResNet50 pretrained models, yielding
impressive AUCs of 86.0%, surpassing the outcomes of
previous similar studies. Teir research highlights the ef-
fectiveness of employing transfer learning methodologies to
develop a CXR computer-aided detection (CAD) system.
Te proposed technique exhibits an accuracy of 79.7% and
an F1-score of 80.00%, validated on the CXR8 dataset
sourced from the NIH CXR image collection. Innat et al. [13]
introduced Cardio-XAttentionNet, a DL network designed
for accurate cardiomegaly classifcation and localization in
CXRs. Te model incorporates a convolutional attention
mapping technique, enhancing the global average pooling
(GAP) system through the addition of a weighting term to
form an efcient attention mapping mechanism (AMM).
Tis innovation enables the detection of cardiomegaly
through both image-level classifcation and pixel-level lo-
calization, even with image-level labeling alone. Te pro-
posed attention mapping network’s backbone integrates
robust ConvNet designs. Te best-performing single model
demonstrates impressive overall accuracy, recall, F-1 mea-
sure, and area under the curve (AUC) scores of 87.00%,
85.00%, 86.00%, and 89.00%, respectively. Training of the
model utilized the CXR14 dataset from the NIH.

Ajmera et al. [14] presented a DL-based algorithm aimed
at automating CTR computation, facilitating swift car-
diomegaly diagnosis and enhancing radiological workfow.
Te algorithm employs the Attention U-Net DL architecture
for automatic CTR calculation. An observer performance
test was conducted to assess radiologists’ efcacy in iden-
tifying cardiomegaly, both with and without the assistance of
artifcial intelligence. Te U-Net model exhibits com-
mendable performance metrics, with a recall of 80.00%,
precision reaching 99.00%, and an F1-score of 88.00%.Tese
results underscore the potential of the DL algorithm in
aiding radiologists in the efcient and accurate diagnosis of
cardiomegaly. Sarpotdar et al. [15] introduced a DL-based,
customized, and retrained U-Net model designed for the
diagnosis of cardiomegaly. Teir model integrates data
preprocessing, image enhancement, image compression,
and classifcation processes to optimize computation time.
Utilizing a CXR image dataset for simulation, the study
achieves notable diagnostic metrics, including an accuracy of
94%, recall of 96.2%, and specifcity of 92.5%.Te evaluation
was based on the CXR8 dataset sourced from the NIH CXR
image collection. Candemir et al. [2] proposed a method for
cardiomegaly detection in CXRs, as outlined in their work.
Te algorithm comprises two key stages: identifcation of
heart and lung regions in CXRs and extraction of radio-
graphic index from their boundaries. A lung detection al-
gorithm, extended for automatic determination of heart

4 International Journal of Intelligent Systems

Ta
bl

e
1:

C
om

pa
ri
so
n
be
tw
ee
n
di
fe
re
nt

ea
rly

de
te
ct
io
n
m
et
ho

ds
of

ca
rd
io
m
eg
al
y.

A
ut
ho

rs
(y
ea
r)

D
at
as
et

M
et
ho

do
lo
gy

Re
su
lts

Li
n
et

al
.[
9]

(2
02
2)

N
IH

O
ne
-d
im

en
sio

na
l(
C
N
N
)

Pr
ec
isi
on

of
97
.8
0%

,r
ec
al
lo

f9
8.
20
%
,a
cc
ur
ac
y
of

98
.0
0%

,a
nd

F1
-s
co
re

of
97
.9
9%

W
u
et

al
.[
10
]
(2
02
2)

N
IH

M
ix

of
1D

an
d
2D

C
N
N

Pr
ec
isi
on

of
97
.6
0%

,r
ec
al
lo

f9
9.
20
%
,a
cc
ur
ac
y
of

98
.4
0%

,a
nd

F1
-s
co
re

of
98
.3
8%

C
he
n
et

al
.[
11
]
(2
02
2)

N
IH

C
X
RD

A
N
et

A
n
ac
cu
ra
cy

of
90
.5
0%

,r
ec
al
lo

f9
4.
45
%
,a

nd
F1

-s
co
re

of
90
.5
9%

Zh
ou

et
al
.[
12
]
(2
01
9)

N
IH

A
m
ix

of
In
ce
pt
io
nV

3
an
d
Re

sN
et
50

A
n
ac
cu
ra
cy

of
79
.7
0%

an
d
F1

-s
co
re

of
80
.0
0%

In
na
te

ta
l.
[1
3]

(2
02
3)

N
IH

C
ar
di
o-
X
A
tte

nt
io
nN

et
A
cc
ur
ac
y
of
87
.0
0%

,r
ec
al
lo
f8
5.
00
%
,F
1-
sc
or
eo

f8
6.
00
%
,a
nd

A
U
C
of

89
.0
0%

A
jm

er
a
et
al
.[
14
](
20
22
)

12
57

C
X
Rs

A
tte

nt
io
n
U
-N

et
Re

ca
ll
of

80
.0
0%

,p
re
ci
sio

n
of

99
.0
0%

,a
nd

F1
-s
co
re

of
88
.0
0%

Sa
rp
ot
da
r
et

al
.[
15
]

(2
02
2)

N
IH

U
-N

et
A
cc
ur
ac
y
of

94
.0
0%

,r
ec
al
lo

f9
6.
20
%
,a

nd
sp
ec
if
ci
ty

of
92
.5
0%

C
an
de
m
ir
et

al
.[
2]

(2
01
6)

JS
RT

da
ta
se
t
an
d
In
di
an

da
ta
se
t

A
no

ve
la

ut
om

at
ed

m
et
ho

d
A
cc
ur
ac
y
of

77
.0
0%

an
d
se
ns
iti
vi
ty

of
77
.0
0%

Bo
ug
ia
se
ta
l.
[1
6]

(2
02
1)

20
00

X
-r
ay
s

G
oo

gl
e’
s
In
ce
pt
io
nV

3,
V
G
G
16
,V

G
G
19
,a

nd
Sq
ue
ez
eN

et
ne
tw
or
ks

Se
ns
iti
vi
ty

of
84
.0
0%

,s
pe
ci
fc
ity

of
83
.0
0%

,P
PV

of
83
.0
0%

,N
PV

of
84
.0
0%

,a
nd

ac
cu
ra
cy

of
84
.5
0%

Ri
be
ir
o
et
al
.[
17
](
20
23
)

V
in
D
r-
C
X
R

Re
sN

et
50

v2
A
cc
ur
ac
y
of

91
.8
0
±
0.
7%

,p
re
ci
sio

n
of

74
.0
0
±
2.
7%

,s
en
sit
iv
ity

of
87
.0
0
±
5.
5%

,s
pe
ci
fc
ity

of
92
.9
0
±
1.
2%

,F
1-
sc
or
eo

f7
9.
80
±
1.
9%

,a
nd

A
U
RO

C
of

90
.0
0
±
0.
7%

International Journal of Intelligent Systems 5

boundaries, was employed to locate these regions. Standard
models of heart and lung regions, learned from a public CXR
dataset with boundary markings, were registered to patient
CXR images to estimate region locations. Traditional and
recently published radiographic indexes were utilized for
index computation. Te classifer combined these indexes,
successfully identifying patients with cardiomegaly with an
accuracy of 77.00% and sensitivity (recall) of 77.00%. Te
evaluation was conducted on the JSRT Set (compiled by the
Japanese Society of Radiological Technology), comprising
247 CXRs, and the Indiana Set, consisting of approximately
4,000 frontal and lateral CXRs with various lung abnor-
malities. From the latter, 250 frontal CXRs with car-
diomegaly and 250 normal cases were selected for testing. In
a recent investigation conducted by Bougias et al. [16], the
analysis of CXR aimed to discern cases of cardiomegaly. Te
study utilized a dataset comprising 2000 CXRs, evenly di-
vided between normal and confrmed cardiomegaly cases.
Several DL networks, including Google’s InceptionV3,
VGG16, VGG19, and SqueezeNet, were employed to extract
deep features from the CXRs. Subsequently, these extracted
features were utilized for classifying CXRs as either in-
dicative or not indicative of cardiomegaly through a logistic
regression algorithm. Among the DL networks, VGG19
demonstrated the most favorable results, achieving an
overall accuracy of 84.5%. Te other networks exhibited
varying accuracy ranges, with sensitivities ranging from
64.1% to 82%, specifcities ranging from 77.1% to 81.1%,
positive predictive values (PPVs) ranging from 74% to
81.4%, and negative predictive values (NPVs) ranging from
68% to 82%.

Ribeiro et al. [17] introduced a DL model designed to
detect cardiomegaly using CXR images, accompanied by an
evaluation of three local explainable methods: Grad-CAM,
LIME, and SHAP. Te study’s fndings reveal that their DL
model achieved an accuracy of 91.8± 0.7%, precision of
74.0± 2.7%, sensitivity of 87.0± 5.5%, specifcity of 92.9±
21.2%, F1-score of 79.8± 21.9%, and an area under the re-
ceiver operating characteristic curve (AUROC) of 90.0±
20.7%. Te evaluation was conducted on the VinDr-CXR
dataset, comprising CXR scans obtained retrospectively from
two major hospitals in Vietnam. Table 1 summarizes the
fndings of the literature review.

Singh et al. [18] proposed using DL techniques to di-
agnose glaucoma, which is the second leading cause of
permanent blindness. Teir study showed that Inception-
ResNet-v2 and Xception models outperformed other models
in detecting glaucoma from fundus pictures. Te automated
system has great potential to improve early detection of
glaucoma while reducing human eforts and time.

In a recent study by Khanna et al. [19], CT images and
test kits were utilized to predict COVID-19 with success. By
employing AI-powered chest X-ray analysis, automated
analysis has been shown to greatly enhance accuracy and
speed up the diagnostic process. Te most dependable
models, including the ensemble deep transfer learning CNN
model and hybrid LSTM-CNN, have demonstrated the
ability to deliver prompt and precise predictions, ofering
a meaningful advancement for clinical practice.

Khanna et al. [19] presented three innovative CNNs that
can detect and classify diabetic retinopathy into fve cate-
gories. Te proposed models outperform many existing
models in terms of classifcation, achieving a maximum ac-
curacy of 0.9545, a maximum F1-score of 0.9685, a maximum
sensitivity of 0.9566, and a maximum AUC score of 0.9769.
Te experiment results demonstrate that the proposedmodels
are efective in identifying retinal issues in diabetic patients,
leading to better diagnosis and preventing vision loss.

Table 1 introduces the state-of-the-art studies in the area
of detecting cardiomegaly disease based on CXR images.

In discussing medical and disease data, it is crucial to
prioritize accuracy and sensitivity since human life is at
stake. Previous studies have shown that many of them need
more balanced data, leading to subpar results in addressing
medical problems. Our paper aims to address this issue by
introducing changes to the same dataset used in these studies
to balance the data as in Section 4.1 and achieve more precise
and reliable outcomes. Our goal is to explore multiple DL
models for early cardiomegaly detection using diferent
optimizers to determine the best one for each model. By
doing so, we aim to present a model that outperforms
previous studies in the same feld.

3. The Proposed Methodology

An early detection system for cardiomegaly is proposed in
this paper, which utilizes specifc DL models. Te system
involves several key steps, starting with the preprocessing
of CXR images using a dedicated pipeline. Tis pipeline
includes techniques such as data resizing, labeling, nor-
malization, and color transformation. Te preprocessed
dataset is then divided into training and testing sets, and
data augmentation is performed for both sets. Te rec-
ommended DL models are fnally constructed and trained
based on these sets, and their performance is evaluated.Te
DL approach that has been suggested involves the use of
two DL models, namely, CNNs and ResNet50. Addition-
ally, fve diferent optimizers: AdaGrad, Adam, NAdam,
AdaMax, and RMSprop, will be utilized to observe their
impact on each proposed model and its outcomes. Auto-
mated feature extraction and classifcation tasks are carried
out by the DL models presented. Te training accuracy and
validation loss values are evaluated periodically. After that,
the efectiveness of the available DL models is measured in
terms of various assessment measures such as accuracy,
precision, recall, F1-score, and processing time.Te general
design of the suggested system for early detection of car-
diomegaly is illustrated in Figure 1.

3.1. Suggested Deep Learning Models. Two types of DL
models, namely, CNNs and ResNet50 models, are recom-
mended for use. Tese models are briefy explained in the
following subsections. Additionally, each of the models is
compiled with fve diferent optimizers, namely, AdaGrad,
Adam, NAdam, AdaMax, and RMSprop, which are also
briefy explained in Section 3.2. Te primary objective of
using these models with these optimizers is to determine

6 International Journal of Intelligent Systems

how each optimizer afects each proposed model and
identify the best optimizer from the fve that balances testing
time and detection accuracy.

3.1.1. Convolutional Neural Network. Convolutional neural
networks (CNNs) have brought about a revolution in the
feld of DL, with their incredible success in various domains
such as image classifcation [20], object detection [21], and
image segmentation [22]. As a result, there has been a sig-
nifcant increase in interest from both academia and in-
dustry in recent years. CNNs aim to make use of the spatial
hierarchies in the data by utilizing convolutional and
pooling layers, as explained in [23]. Convolutional layers are
considered the key component of CNNs, which apply
convolution operations to the input data through the use of
a small flter, also known as a kernel that is positioned over
the spatial dimensions of the input image. For a 2D input
image and a 2D flter, the convolution operation can be
mathematically expressed as

S(i, j) � (I∗K)(i, j) � 􏽘
m

􏽘
n

I(i + m.j + n)∗K(m, n),

(2)

where S(i, j) is the value at position (i, j) in the output feature
map, I represents the input image, and K is the flter/kernel.
Te summation runs over allm and n values that correspond
to the flter’s dimensions. After convolution, nonlinear ac-
tivation functions like rectifed linear unit (ReLU) are often
applied elementwise to introduce nonlinearity into the
model. Mathematically, the ReLU function is defned by the
following equation:

ReLU(x) � max(0, x). (3)

Pooling layers, such as MaxPooling, are considered
another crucial component of CNNs. Pooling layers help
reduce the spatial dimensions of the feature maps while

retaining important information. MaxPooling, for example,
involves selecting the maximum value within a small region
of the input. Tis operation is expressed as

MaxPooling(i, j) � max
I(i, j) I(i, j + 1)

I(i + 1, j) I(i + 1, j + 1)
􏼠 􏼡.

(4)

Te combination of convolutional layers and pooling
layers helps CNNs capture and hierarchically represent
features at diferent levels of abstraction. Tis ability is
crucial for recognizing complex patterns and structures
within images. In addition to convolutional and pooling
layers, CNNs often contain fully connected layers near the
end of the architecture. A fully connected layer, also known
as a dense layer, is a fundamental building block in neural
networks. It is a type of layer where each neuron or node is
connected to every neuron in the previous layer, forming
a fully connected graph. Tis layer is commonly used to
capture complex relationships and patterns within the data,
making it suitable for tasks such as classifcation and re-
gression. Mathematically, let us consider a fully connected
layer that takes input from a previous layer with n neurons.
Each neuron in the fully connected layer applies a weighted
sum of the input values followed by an activation function to
produce its output. Te output yi of the ith neurons in the
fully connected layer can be calculated using the following
equation:

yi � activation 􏽘
n

j�1
wij . xi + bi

⎛⎝ ⎞⎠, (5)

where wij is the weight connecting the jth neuron in the
previous layer to the ith neuron in the fully connected layer, xj

is the output of the jth neuron in the previous layer, bi is the
bias term for the ith neuron in the fully connected layer, and
the activation function introduces nonlinearity to the output.

• Contains 2 classes
• Type_Image

• Color Transformation
• Resizing
• Normalization
• Labeling

• Accuracy
• Precision
• Recall
• F1_Score

• AdaGrad
• Adam
• NAdam
• AdaMax
• RMSprop

• proposed CNN
• ResNet50

Data Collection

Data
Preprocessing Sampling

Data
Augmentation

Training Data

Testing Data

Model Evaluation

Model Compilation

Image Data
Generator

Model
Development

Figure 1: Te overall design of the proposed system for early detection of cardiomegaly.

International Journal of Intelligent Systems 7

In the context of neural networks, multiple fully con-
nected layers can be stacked together, typically with acti-
vation functions in between, to form deep architectures. Te
deep neural network can learn increasingly complex and
abstract representations of the input data as it goes through
these layers. Fully connected layers have a signifcant
number of parameters, often leading to a high computa-
tional load and potential overftting. Regularization tech-
niques like dropout and weight decay are commonly
employed to mitigate overftting. Additionally, global av-
erage pooling and convolutional layers have gained popu-
larity, especially in convolutional neural networks, as they
reduce the number of parameters and capture spatial hi-
erarchies more efectively. A typical CNN architecture along
with these layers is depicted in Figure 2. In this paper, the
suggested CNN model involves several convolutional and
pooling layers to discover the preprocessed images’ features
and do the classifcation task. Te following layers make up
the recommended CNN model:

(1) Te frst layer is a convolutional (Conv2D) layer
with 32 flters of size 3 X 3, and incorporates the
ReLU activation function. Tis is formally pre-
sented in equation (3), with the layer receiving an
input tensor with dimensions of (224, 224, 3).

(2) Te second layer is a max-pooling (MaxPooling2D)
layer, which has the maximum output from the
neighborhood, with a pool size of 2× 2. Tis layer
reduces the spatial dimensions of the feature maps
outputted by the convolutional layer, as explained
in equation (5).

(3) Te third layer is another convolutional layer
(Conv2D) with 64 flters and the ReLU activation
function.

(4) Te fourth layer is another max-pooling (Max-
Pooling2D) layer with a pool size of 2× 2.

(5) Te ffth layer is another convolutional layer
(Conv2D) with 128 flters and the ReLU activation
function.

(6) Te sixth layer is another max-pooling (MaxPoo-
ling2D) layer with a pool size of 2× 2.

(7) Te seventh layer is another convolutional layer
(Conv2D) with 128 flters and the ReLU activation
function.

(8) Te eighth layer is another max-pooling (Max-
Pooling2D) layer with a pool size of 2× 2.

(9) Te ninth layer is a fattened layer (Flatten) that
converts the 2D feature maps outputted by the
previous layer into a 1D vector.

(10) Te tenth layer is a dense layer (Dense). It is fully
connected because all input neurons are considered
by each output neuron, with 128 units and a ReLU
activation function.

(11) In the fnal layer, there is a dense layer that contains
2 units and utilizes the softmax activation function.

Tis function generates a probability distribution
for the two classes of data. Te softmax function is
profcient in transforming a vector of K real values
into a vector of K real values that add up to 1. It can
handle values that are positive, negative, zero, or
greater than one and transforms them into values
ranging from 0 to 1. Te mathematical represen-
tation for softmax is represented in the following
equation:

fj(Z) �
e

Z
j

􏽐ke
Z

k
. (6)

In conclusion, following the comprehensive delineation
of the 11-layer CNN architecture proposed for precocious
detection of cardiomegaly, the pseudocode for the recom-
mended CNN framework is delineated in Algorithm 1 and 2
that provide the pseudocode for the proposed CNN model
and the modifed ResNet50 model, respectively. In addition,
the architecture of the suggested CNNmodel is illustrated in
Figure 3, which provides a visual representation of a neural
network’s architecture. It ofers a structured and static view
of how the various layers are connected and how data fow
through the network. It illustrates the arrangement of input
and output layers, hidden layers, and any branching or
merging of connections. It captures the overall structure of
the mode and gives a snapshot of the model’s design, making
it suitable for conveying a high-level overview of the neural
network’s layout and connections, and Figure 4 ofers an
interactive and dynamic representation of a neural network’s
architecture. Tis interactive nature empowers users to
explore intricate model confgurations, understand data
fow, and delve into specifc layer properties, making it
particularly benefcial for educational purposes and com-
prehending complex neural network architectures.

3.1.2. Residual Network with 50 layers (ResNet50). Learning
through residual mechanisms is a simplifed process that
focuses on the diference between the input and desired
mapping rather than attempting to learn the entire mapping
directly. Tis approach allows for efective learning, even
in situations where the network is extremely deep. In
mathematical terms, input is denoted as x, and output is
denoted as H(x), as shown in Figures 5–14, and can be
calculated using the following equation:

H(x) � F(x) + X, (7)

where F(x) represents the residual function that the block
needs to learn. By rearranging equation (7), we can see that
the network is learning to approximate the residual function
F(x) as shown in the following equation:

F(x) � H(x) − X. (8)

Te ResNet50 is a convolutional neural network ar-
chitecture that has played a signifcant role in advancing the
feld of computer vision and image recognition. It was

8 International Journal of Intelligent Systems

developed by He et al. [24]. Te ResNet50 addresses the
problem of vanishing gradients, which can often hinder the
learning of intense neural networks. Tis problem occurs
when the gradients become very small during back-
propagation as they pass through layers, making it chal-
lenging for the network to learn efectively. To solve this
issue, ResNet50 introduces residual blocks, which help the
network learn identity mappings more easily, thereby
allowing for the training of extremely deep networks.
ResNet50 architecture consists of 50 layers as shown in
Figure 15 and is organized in a series of building blocks, each
comprising multiple convolutional layers, batch normali-
zation, and activation functions. Tese blocks are repeated
multiple times, with shortcut connections (also known as
skip connections) that allow the gradient to fow directly
through the layers, thereby mitigating the vanishing gradient
problem. In summary, ResNet50, Figure 15, is a ground-
breaking neural network architecture that tackles the
challenges of training very deep networks. By introducing
residual blocks with skip connections, it enables the efcient
training of networks with dozens of layers. Mathematically,
ResNet50 employs the concept of residual functions, which
helps the network learn the diference between the desired
output and the input, making it easier to optimize and train
deep networks efectively.

In this paper, alterations were applied to the ResNet50
architecture to adapt it for the targeted classifcation task, as
depicted from Figure 5 to 13 , and Figure 16, as follows:

(1) Exclusion of Top Classifcation Layer. Te ResNet50
model, as originally designed, includes a classifca-
tion layer with 1000 units, suitable for classifying
images into one of the 1000 categories in the
ImageNet dataset. In this paper, the top classifcation
layer was excluded. Tis means that the fnal clas-
sifcation layer of the ResNet50 model is not used.

(2) Freezing Layers. After excluding the top classifcation
layer, the code iterates through all the layers in the

ResNet50 model and sets their trainable attribute to
False. By doing so, the weights of these layers are
frozen, preventing them from being updated during
subsequent training. Tis step retains the pretrained
feature extraction capabilities of ResNet50 while
preventing them from being altered during the
customization process.

(3) Additional Layers for Customization. Te proposed
model then proceeds to add new layers to the model,
which are fully connected (Dense) layers. Tese new
layers allow you to fne-tune the model for the specifc
classifcation task. Te original ResNet50 features are
followed by these custom layers, which help capture
more task-specifc patterns and information.

(4) Flatten Layer. A Flatten layer is inserted after the
frozen ResNet50 layers.Tis layer reshapes the output
from the previous layers into a one-dimensional
vector, preparing the data for the subsequent fully
connected layers.

(5) Dense Layers. Tree additional dense layers are
added, each with 100 units and ReLU activation
function. Tese layers introduce nonlinearity to the
model and enable it to learn more intricate patterns
and relationships in the data.

(6) Output Layer. Finally, a dense layer with 2 units and
softmax, equation (6), activation function is added.
Tis layer produces class probabilities for the two
classes in a binary classifcation problem.Te softmax
activation ensures that the predicted probabilities sum
up to 1, providing a probability distribution over the
classes.

Overall, the changes made to the ResNet50 model can be
seen in Figure 16, which is a modifed version of Figure 14
which involves excluding the original top classifcation layer,
freezing the ResNet50 layers to preserve their pretrained
features, adding custom fully connected layers for task-

Input
Convolution

Pooling Output

Fully
Connected

ClassifcationFeature Extraction

Figure 2: Te CNN architecture.

International Journal of Intelligent Systems 9

specifc learning, and creating a new output layer for your
specifc classifcation problem. Tese modifcations enable
the utilization of the pretrained ResNet50 features, while
customizing the model for the specifc image classifcation
requirements, with the architecture shown in Figure 15 and
the alterations detailed in Figure 17.

ResNet50 model is specifcally chosen for this problem
rather than the other pretrained model because of the
following:

(1) Residual Connections for Gradient Flow. ResNet50 in-
troduces residual connections, alleviating the vanishing
gradient challenge inherent in deep neural networks.
Tis architectural innovation facilitates smoother gra-
dient fow during backpropagation, enabling the ef-
fective training of signifcantly deep models.

(2) Depth Scaling and Performance Maintenance.
ResNet50 exhibits the remarkable capability to scale
in depth without encountering the degradation
problem observed in shallower architectures. Tis
phenomenon underscores the network’s resilience to
diminishing performance with increasing depth.

(3) Efcient Parameter Utilization. ResNet50 achieves
competitive performance with a reduced parameter
count, implying efcient extraction and utilization of
hierarchical features. Tis attribute underscores the
network’s ability to discern salient patterns with
parsimonious parameterization.

(4) Transfer Learning Prowess. Pretrained on expansive
datasets like ImageNet, ResNet50 serves as a potent
feature extractor, demonstrating its efectiveness in
transfer learning across diverse image classifcation
tasks. Te network’s learned representations con-
tribute signifcantly to enhanced generalization.

(5) Architectural Adaptability. Te architecture of
ResNet50, featuring skip connections, imparts adapt-
ability beyond image classifcation. Its applicability
extends seamlessly to various computer vision tasks,
encompassing object detection and segmentation.

(6) Benchmark Performance. ResNet50 consistently attains
state-of-the-art performance in benchmark datasets
and competitions, underscoring its efcacy in dis-
cerning intricate patterns and features within images.

Figures 5–13 and 16 provide a visual representation of
the architecture of a neural network. Tey ofer a structured
and static view of how the various layers are connected and
how data fow through the network. Tese fgures illustrate
the arrangement of input and output layers, hidden layers,
and any branching or merging of connections. Tey also
capture the overall structure of the model, giving a snapshot
of the neural network’s design, which makes it suitable for
conveying a high-level overview of the layout and con-
nections of the model.

3.2. SuggestedOptimizers. Optimization and optimizers play
a crucial role in training DL models efectively [25–29]. Te
main objective of the optimization is to discover the col-
lection of model parameters that can reduce a specifed loss
function. Optimizers refer to algorithms that aid in directing
the modifcations of these parameters while undergoing the
training procedure.

Here is a closer look at optimization and some com-
monly used optimizers in DL:

conv2d_input

InputLayer

input:

output:

[(None, 224, 224, 3)]

[(None, 224, 224, 3)]

conv2d

Conv2D

input:

output:

(None, 224, 224, 3)

(None, 224, 224, 32)

max_pooling2d

MaxPooling2D

input:

output:

(None, 224, 224, 32)

(None, 112, 112, 32)

max_pooling2d_1

MaxPooling2D

input:

output:

(None, 112, 112, 64)

(None, 55, 55, 64)

max_pooling2d_2

MaxPooling2D

input:

output:

(None, 55, 55, 128)

(None, 27, 27, 128)

conv2d_1

Conv2D

input:

output:

(None, 112, 112, 32)

(None, 112, 112, 64)

conv2d_2

Conv2D

input:

output:

(None, 55, 55, 64)

(None, 55, 55, 128)

conv2d_3

Conv2D

input:

output:

(None, 27, 27, 128)

(None, 27, 27, 128)

max_pooling2d_3

MaxPooling2D

input:

output:

input:

output:

(None, 27, 27, 128)

(None, 13, 13, 128)

(None, 13, 13, 128)

(None, 21632)

flatten

Flatten

input:

output:

(None, 21632)

(None, 128)

dense

Dense

input:

output:

(None, 128)

(None, 2)

dense_1

Dense

Figure 3: Te architecture of the suggested CNN model.

10 International Journal of Intelligent Systems

(1) Optimization Problem. In DL, the optimization
problem [30] involves fnding the values of model
parameters that minimize a loss function. Tis loss
function quantifes the diference between the
model’s predictions and the actual target values. Te
optimization process aims to iteratively adjust the
model’s parameters to reduce the loss and improve
its performance on the training data.

(2) Gradient Descent. Gradient descent [31–34] is the
foundation of most optimization algorithms in DL. It

involves calculating the gradient (partial derivatives)
of the loss function with respect to each parameter
and updating the parameters in the direction that
reduces the loss. Te general update rule is

parameter � parameter − learningrate∗ gradient.
(9)

Here, the learning rate controls the step size of each
update.

224 × 224 × 3 Conv2D MaxPooling2D Flatten Dense

Figure 4: Te suggested CNN model visualization.

Input:
Cardiomegaly dataset
T—fxed number of allowed epochs
Output:
One of the two classes

(1) Start
(2) Resize images of the cardiomegaly dataset to 224× 224;
(3) Augment the training images with strategies, including random rotation, random zooming of images, random fipping of images

in both horizontal and vertical directions, and random width and height shifting of images; shufe and split the resized images
into training, validation, and testing image datasets;

(4) t← 1;
(5) while t<T do
(6) for batch size b� 1 : 85 do
(7) Train the model on the augmented training images dataset for each batch b based on the ftness function ft();
(8) Compile the model with fve types of optimizers, which are AdaGrad, Adam, NAdam, AdaMax, and RMSprop;
(9) end for
(10) Evaluate the training accuracy value and the validation loss value for each epoch t;
(11) if the validation loss value does not enhance for certain epochs then
(12) Go to step 5
(13) end if
(14) end while
(15) Evaluate the trained model on the testing images dataset based on the predict() function to obtain predictions for the testing

images;
(16) Calculate the accuracy score using the predicted labels and the true labels;
(17) Choose one of the two classes;
(18) Compare the results of each optimizer and fnd the best to this proposed model;
(19) End

ALGORITHM 1: Te proposed CNN model.

International Journal of Intelligent Systems 11

Input:
Cardiomegaly dataset
T—fxed number of allowed epochs
Output:
One of the two classes

(1) Start
(2) Resize images of the cardiomegaly dataset to 224× 224;
(3) Augment the training images with strategies, including random rotation, random zooming of images, random fipping of images

in both horizontal and vertical directions, and random width and height shifting of images;
(4) Shufe and split the resized images into training, validation, and testing image datasets;
(5) Use the pretrained model ResNet50 andmake some changes which are, excluding the original top classifcation layer, freezing the

ResNet50 layers to preserve their pretrained features, adding custom fully connected layers for task-specifc learning, and creating
a new output layer for your specifc classifcation problem;

(6) t← 1;
(7) while t<T do
(8) for batch size b� 1 : 32 do
(9) Train the model on the augmented training images dataset for each batch b based on the ftness function fit();
(10) Compile the model with fve types of optimizers, which are AdaGrad, Adam, NAdam, AdaMax, and RMSprop;
(11) end for
(12) Evaluate the training accuracy value and the validation loss value for each epoch t;
(13) if the validation loss value does not enhance for certain epochs then go to 7
(14) end if
(15) end while
(16) Evaluate the trained model on the testing images dataset based on the predict() function to obtain predictions for the testing

images;
(17) Calculate the accuracy score using the predicted labels and the true labels;
(18) Choose one of the two classes;
(19) Compare the results of each optimizer and fnd the best to these proposed models;
(20) End

ALGORITHM 2: Te modifed ResNet50 model.

input_1

InputLayer

input:

output:

[(None, 224, 224, 3)]

[(None, 224, 224, 3)]

conv1_pad

ZeroPadding2D

input:

output:

(None, 224, 224, 3)

(None, 230, 230, 3)

conv2_block1_1_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_1_bn

BatchNormalization

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_1_relu

Activation

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_2_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_2_bn

BatchNormalization

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_2_relu

Activation

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block1_3_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 256)

conv2_block1_3_bn

BatchNormalization

input:

output:

(None, 56, 56, 256)

(None, 56, 56, 256)

conv2_block1_0_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 256)

conv2_block1_0_bn

BatchNormalization

input:

output:

(None, 56, 56, 256)

(None, 56, 56, 256)

conv1_conv

Conv2D

input:

output:

(None, 230, 230, 3)

(None, 112, 112, 64)

conv1_bn

BatchNormalization

input:

output:

(None, 112, 112, 64)

(None, 112, 112, 64)

conv1_relu

Activation

input:

output:

(None, 112, 112, 64)

(None, 112, 112, 64)

pool1_pad

ZeroPadding2D

input:

output:

(None, 112, 112, 64)

(None, 114, 114, 64)

pool1_pool

MaxPooling2D

input:

output:

(None, 114, 114, 64)

(None, 56, 56, 64)

1 2

1 2

3

Figure 5: ResNet50 model.

12 International Journal of Intelligent Systems

(3) Stochastic Gradient Descent (SGD). Stochastic gra-
dient descent [35–37] is a variation of gradient de-
scent where instead of computing the gradient using
the entire training dataset, it is computed using
a randomly selected mini-batch of the data. Tis
introduces randomness and helps the optimization
process escape local minima and converge faster.

(i) Optimizer Algorithms. Several optimizer algo-
rithms [25, 26, 38, 39] enhance the basic gra-
dient descent approach. Tese algorithms
incorporate adaptive learning rates, momen-
tum, and other techniques to improve conver-
gence and training efciency. Some popular
optimizers include AdaGrad, Adam, NAdam,
AdaMax, and RMSprop, which will be explained
in detail in the following subsubsections.

(ii) Learning Rate Scheduling. Dynamic adjustment
of the learning rate during training is known as
learning rate scheduling [40–43]. It involves de-
creasing the learning rate over time to allow the
optimization process to convergemore accurately.
Common scheduling strategies include step decay,
exponential decay, and learning rate warmup.

(iii) Regularization. Regularization techniques [44–47]
like L1 and L2 regularization add penalty terms to
the loss function to prevent overftting. Tey
discourage large parameter values and promote
simpler models that generalize better to new data.

(iv) Second-Order Optimization. While less com-
monly used in DL due to computational com-
plexity, second-order optimization methods
[5, 48–50] like Newton’s method and variants
use second-order information (Hessian matrix)
to guide updates. Tese methods can converge
faster but require more computational resources.

Te choice of optimizer depends on the specifc problem,
model architecture, and dataset characteristics. Experi-
mentation and tuning are necessary to fnd the most suitable
optimizer and hyperparameters for a given task.

3.2.1. AdaGrad. Adaptive Gradient (AdaGrad) algorithm
[51–54] is a gradient-based optimization algorithm that aims
to improve the efciency of learning in the context of
training machine learning (ML) models, especially in sce-
narios involving sparse data and features. One of the central

3

4
5

conv2_block1_add
Add

input:
output:

[(None, 56, 56, 256), (None, 56, 56, 256)]
(None, 56, 56, 256)

conv2_block1_out
Activation

input:
output:

(None, 56, 56, 256)
(None, 56, 56, 256)

conv2_block2_2_relu
Activation

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

conv2_block2_2_bn
BatchNormalization

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

conv2_block2_3_conv
Conv2D

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 256)

conv2_block2_3_bn
BatchNormalization

input:
output:

(None, 56, 56, 256)
(None, 56, 56, 256)

conv2_block2_out
Activation

input:
output:

(None, 56, 56, 256)
(None, 56, 56, 256)

conv2_block3_1_conv
Conv2D

input:
output:

(None, 56, 56, 256)
(None, 56, 56, 64)

conv2_block3_1_bn
BatchNormalization

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

conv2_block2_add
Add

input:
output:

[(None, 56, 56, 256), (None, 56, 56, 256)]
(None, 56, 56, 256)

conv2_block2_1_conv
Conv2D

input:
output:

(None, 56, 56, 256)
(None, 56, 56, 64)

conv2_block2_1_bn
BatchNormalization

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

conv2_block2_1_relu
Activation

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

conv2_block2_2_conv
Conv2D

input:
output:

(None, 56, 56, 64)
(None, 56, 56, 64)

4 5

6 7

Figure 6: ResNet50 model (cont.).

International Journal of Intelligent Systems 13

6
7

8 9
10

8

conv2_block3_1_relu

Activation

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block3_2_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block3_2_bn

BatchNormalization

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block3_2_relu

Activation

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 64)

conv2_block3_3_conv

Conv2D

input:

output:

(None, 56, 56, 64)

(None, 56, 56, 256)

conv2_block3_3_bn

BatchNormalization

input:

output:

(None, 56, 56, 256)

(None, 56, 56, 256)

conv2_block3_add

Add

input:

output:

conv2_block3_out

Activation

input:

output:

[(None, 56, 56, 256), (None, 56, 56, 256)]

(None, 56, 56, 256)

(None, 56, 56, 256)

(None, 56, 56, 256)

conv3_block1_0_conv

Conv2D

input:

output: (None, 28, 28, 512)

(None, 56, 56, 256)conv3_block1_1_conv

Conv2D

input:

output: (None, 28, 28, 128)

(None, 56, 56, 256)

conv3_block1_1_bn

BatchNormalization

input:

output: (None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block1_1_relu

Activation

input:

output: (None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block1_2_conv

Conv2D

input:

output: (None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block1_2_bn

BatchNormalization

input:

output: (None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block1_2_relu

Activation

input:

output: (None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block1_0_bn

BatchNormalization

input:

output: (None, 28, 28, 512)

(None, 28, 28, 512)

Figure 7: ResNet50 model (cont.).

conv3_block1_3_conv input: (None, 28, 28, 128)

(None, 28, 28, 512)Conv2D output:

output:
(None, 28, 28, 512)
(None, 28, 28, 512)

conv3_block1_3_bn input:
BatchNormalization

(None, 28, 28, 128)

conv3_block2_2_bn input: (None, 28, 28, 128)
BatchNormalization output: (None, 28, 28, 128)

conv3_block2_2_relu input: (None, 28, 28, 128)

Activation output:

output:
output:

output:

Add

(None, 28, 28, 128)

(None, 28, 28, 512)
(None, 28, 28, 512)

conv3_block1_add

Add

conv3_block2_add

conv3_block2_out

input: [(None, 28, 28, 512), (None, 28, 28, 512)]

input:

output:
input:

output:

input:

output:

input:

input:

input:

output:

input:

conv3_block2_3_conv

conv3_block2_3_bn

Conv2D

Conv2D

Conv2D

Conv2D

conv3_block1_out
Activation

Activation

Activation

(None, 28, 28, 512)

(None, 28, 28, 512)

(None, 28, 28, 512)

(None, 28, 28, 128)

(None, 28, 28, 128)

(None, 28, 28, 128)

(None, 28, 28, 128)

(None, 28, 28, 128)

output:

input: (None, 28, 28, 128)

(None, 28, 28, 128)

(None, 28, 28, 512)
(None, 28, 28, 512)

(None, 28, 28, 512)

conv3_block2_1_conv

conv3_block2_2_conv

conv3_block3_1_conv
conv3_block2_1_relu

conv3_block2_1_bn

conv3_block3_1_bn

BatchNormalization

BatchNormalization

(None, 28, 28, 128)

(None, 28, 28, 128)

(None, 28, 28, 128)

131211 14

BatchNormalization output:

input:

(None, 28, 28, 512)

(None, 28, 28, 512)

(None, 28, 28, 512)

input:

output:

output:

input:

output:

9
10

11 12

[(None, 28, 28, 512), (None, 28, 28, 512)]

Figure 8: ResNet50 model (cont.).

14 International Journal of Intelligent Systems

challenges in optimization is fnding an optimal set of pa-
rameters that minimizes a given loss function. AdaGrad
tackles this challenge by adjusting the learning rates for each
parameter based on historical information about how the
gradients have been changing over time. At its core, Ada-
Grad’s innovation lies in the way it adapts the learning rates
for diferent parameters by taking into account the historical
behavior of gradients. Tis adaptation is particularly im-
portant because traditional optimization methods often use
a single learning rate for all parameters, which can lead to
slow convergence or even divergence in complex optimi-
zation landscapes. Mathematically, let us break down the key
steps of AdaGrad:

(1) Initialization. For ith parameter w, AdaGrad ini-
tializes a parameter vector wi and a variable Gi to
zero. Te parameter vector wi represents the pa-
rameter to be optimized, and Gi keeps track of the
historical sum of squared gradients.

(2) Gradient Calculation. At iteration t of the optimi-
zation process, the gradient gt of the loss function
with respect to the parameter vector wi is computed.

Historical Gradient Accumulation. AdaGrad’s adaptation is
based on the accumulation of historical gradient in-
formation Gi which is updated as

Gi � Gi−1 + gt,i􏼐 􏼑
2
, (10)

where gt,i represents the gradient of the loss function with
respect to parameter wi at iteration t.

Parameter Update. Te parameter wi is updated using the
adaptive learning rate. Mathematically, wi is expressed as

wi � wi−1 +
η

�����
Gi + ϵ

􏽰 . gt,i, (11)

where η represents the base learning rate, determining the
step size of the update, and ϵ is a small positive constant
added for numerical stability to avoid division by zero.

Te critical insight of AdaGrad is that parameters with
small historical gradients (indicating slow updates) will
receive larger learning rate adjustments, while parameters
with larger historical gradients (indicating fast updates) will
experience smaller learning rate adjustments. Tis dynamic

13
14

15

conv3_block3_1_relu

Activation

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block3_2_conv

Conv2D

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block3_2_bn

Batch Normalization

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block3_2_relu

Activation

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block3_3_conv

Conv2D

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 512)

conv3_block3_3_bn

BatchNormalization

input:

output:

(None, 28, 28, 512)

(None, 28, 28, 512)

conv3_block4_3_bn

BatchNormalization

input:

output:

(None, 28, 28, 512)

(None, 28, 28, 512)

conv3_block4_3_conv

Conv2D

input:

output:

(None, 28, 28, 218)

(None, 28, 28, 512)

conv3_block4_2_relu

Activation

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block4_2_bn

BatchNormalization

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block4_2_conv

Conv2D

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block4_1_relu

Activation

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block4_1_bn

BatchNormalization

input:

output:

(None, 28, 28, 128)

(None, 28, 28, 128)

conv3_block4_1_conv

Conv2D

input:

output:

(None, 28, 28, 512)

(None, 28, 28, 128)

conv3_block3_out

Activation

input:

output:

(None, 28, 28, 512)

(None, 28, 28, 512)

conv3_block3_add

Add

input:

output:

[(None, 28, 28, 512), (None, 28, 28, 512)]

(None, 28, 28, 512)

15
16

Figure 9: ResNet50 model (cont.).

International Journal of Intelligent Systems 15

adjustment enables the algorithm to navigate the optimi-
zation landscape more efciently, converging faster in re-
gions with complex dynamics. However, while AdaGrad’s
adaptivity can be advantageous, it also has its limitations. As
training progresses, the historical gradient sum Gi continues
to accumulate, potentially leading to overly small learning
rates that hinder convergence. Tis phenomenon, often
referred to as the “learning rate decay,” has prompted the
development of variants like RMSprop and Adam, which
aim to strike a balance between adaptivity and convergence
stability. Overall, AdaGrad is a pioneering optimization
algorithm that tailors the learning rates of parameters based
on historical gradient information. By adapting learning
rates to the characteristics of each parameter, AdaGrad
enhances the convergence efciency, making it particularly
efective in situations where data are sparse or features have
varying scales. However, its tendency to decrease learning

rates over time has motivated the creation of subsequent
optimization algorithms that ofer improved convergence
behavior while retaining the adaptivity concept.

3.2.2. Adam. Adaptive Moment Estimation (Adam) [35, 52,
55, 56] is an optimization algorithm designed to enhance the
training of ML models, particularly deep neural networks. It
builds upon concepts from both the momentum and Root
Mean Square Propagation (RMSprop), which is described later
in Section 3.2.5, optimizers to ofer efcient and adaptive up-
dates to model parameters during the training process. Adam’s
innovation lies in its ability to adjust both the learning rates and
momentum for each parameter based on historical gradient
information, leading to improved convergence properties in
various optimization landscapes. Mathematically, let us delve
into the fundamental aspects of the Adam optimizer:

16

17

conv3_block4_out

conv3_block4_add
Add

Activation

input:
output:

input:
output:

[(None, 28, 28, 512), (None, 28, 28, 512)]
(None, 28, 28, 512)

(None, 28, 28, 512)
(None, 28, 28, 512)

conv4_block1_1_conv
Conv2D

input:
output: (None, 14, 14, 256)

(None, 28, 28, 512) conv4_block1_0_conv
Conv2D

input:
output: (None, 14, 14, 1024)

(None, 28, 28, 512)

conv4_block1_0_bn
BatchNormalization

input:
output: (None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block1_1_bn
BatchNormalization

input:
output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block1_1_relu
Activation

input:
output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block1_2_conv
Conv2D

input:
output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block1_2_bn
BatchNormalization

input:
output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block1_2_relu
Activation

input:
output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block1_3_conv
Conv2D

input:
output: (None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block1_3_bn
BatchNormalization

input:
output: (None, 14, 14, 1024)

(None, 14, 14, 1024) conv4_block2_add

Add

input:

output: (None, 14, 14, 1024)

[(None, 14, 14, 1024), (None, 14, 14, 1024)]

conv4_block2_3_bn

BatchNormalization

input:

output: (None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block2_3_conv

Conv2D

input:

output: (None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block2_2_relu

Activation

input:

output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block2_2_bn

BatchNormalization

input:

output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block2_2_conv

Conv2D

input:

output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block2_1_relu

Activation

input:

output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block2_1_bn

BatchNormalization

input:

output: (None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block2_1_conv

Conv2D

input:

output: (None, 14, 14, 256)

(None, 14, 14, 1024)

conv4_block1_out

Activation

input:

output: (None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block1_add

Add

input:

output: (None, 14, 14, 1024)

[(None, 14, 14, 1024), (None, 14, 14, 1024)]

17 18

Figure 10: ResNet50 model (cont.).

16 International Journal of Intelligent Systems

(1) Initialization. Adam initializes two moment vectors,
m and v, for each parameter. Te m vector tracks the
exponentially moving average of past gradients, and
the v vector tracks the exponentially moving average
of squared past gradients.

(2) Exponential Moving Averages. In each iteration of
training, the gradients gt of the loss function con-
cerning the parameters are calculated. Adam then
updates the m and v vectors using equations (12) and
(13).

mt � β1.mt−1 + 1 − β1(􏼁 . gt, (12)

vt � β2.vt−1 + 1 − β2(􏼁 . g
2
t , (13)

where β1 and β2 are hyperparameters that control the
exponential decay rates of the moving averages.

(3) Bias Correction. Te m and v vectors are biased to-
ward zero, especially during the initial iterations. To
address this bias, at iteration t, Adam performs bias

18

conv4_block2_out

Activation

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block3_out

Activation

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block4_1_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block4_1_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block4_1_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block4_2_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block4_2_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block4_2_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block4_3_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 1024)

conv4_block4_3_bn

BatchNormalization

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block4_add

Add

input:

output:

[(None, 14, 14, 1024), (None, 14, 14, 1024)]

(None, 14, 14, 1024)

conv4_block3_1_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block3_1_bn

BatchNormaliztion

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block3_1_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block3_2_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block3_2_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block3_2_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block3_3_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 1024)

conv4_block3_3_bn

BatchNormalization

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block3_add

Add

input:

output:

[(None, 14, 14, 1024), (None, 14, 14, 1024)]

(None, 14, 14, 1024)

19

19 20

Figure 11: ResNet50 model (cont.).

International Journal of Intelligent Systems 17

correction by adjusting the vectors using equations
(14) and (15):

􏽣mt �
mt

1 − βt
1
, (14)

􏽢vt �
vt

1 − βt
2
. (15)

(4) Parameter Update. In the fnal step, the model’s
parameters w is updated utilizing the bias-corrected
moment estimates as described in equation (16):

wt � wt−1 −
η

��
􏽢vt

􏽰
+ ϵ

. 􏽣mt, (16)

where η is the learning rate, controlling the step size of the
update, and ϵ is a small constant added for numerical sta-
bility to prevent division by zero.

Adam’s key strength lies in its adaptive learning rates and
momentum adjustments. Te m vector behaves like momen-
tum, helping to accelerate the optimization process, while the v

vector adapts the learning rates based on the historical in-
formation of the squared gradients. Tis combination allows
Adam to handle sparse gradients and varying landscape ge-
ometries efectively. However, it is worth noting that while
Adam ofers excellent performance in many scenarios, its
hyperparameters (β1, β2, and ϵ) need careful tuning. Incorrect
tuning can result in suboptimal convergence or training in-
stability. Furthermore, in cases where the loss landscape is
particularly noisy or ill-conditioned, variations of Adam or
other optimizers might be more suitable. Overall, Adam is an
advanced optimization algorithm that combines momentum

conv4_block4_out

Activation

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block5_out

Activation

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block6_1_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block6_1_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block6_1_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block6_2_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block6_2_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block6_2_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block6_3_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 1024)

conv4_block6_3_bn

BatchNormalization

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block6_add

Add

input:

output:

[(None, 14, 14, 1024), (None,14, 14, 1024)]

(None, 14, 14, 1024)

conv4_block5_1_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 256)

conv4_block5_1_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block5_1_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block5_2_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block5_2_bn

BatchNormalization

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block5_2_relu

Activation

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 256)

conv4_block5_3_conv

Conv2D

input:

output:

(None, 14, 14, 256)

(None, 14, 14, 1024)

conv4_block5_3_bn

BatchNormalization

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv4_block5_add

Add

input:

output:

[(None, 14, 14, 1024), (None, 14, 14, 1024)]

(None, 14, 14, 1024)

21 22

20
21

Figure 12: ResNet50 model (cont.).

18 International Journal of Intelligent Systems

and adaptive learning rates to optimize ML models efectively.
Its mathematical framework enables it to adaptively adjust
learning rates and momentum, making it well-suited for
training deep neural networks and handling challenges like
sparse gradients and varying scales. However, its success relies
on hyperparameter tuning and understanding the character-
istics of the optimization landscape.

3.2.3. AdaMax. Adaptive Moment Estimation with Infnity
Norm (AdaMax) [34, 57–59] is an optimization algorithm that
builds upon the principles of the Adam optimizer while
addressing some of its limitations. Specifcally, AdaMax is
designed to ofermore stable and efective updates bymodifying
the way the moments (exponential moving averages of gradi-
ents and squared gradients) are computed. By introducing
a new term called “infnity norm” and modifying the de-
nominator of the update equation, AdaMax aims to mitigate
some of the potential issues that can arise during optimization.
Let us explore the mathematical operations and key concepts of
AdaMax:

(1) Initialization. Just like other adaptive optimization
algorithms, AdaMax initializes two moment vectors,
m and v, for each parameter. Tese moments track
the exponentially weighted averages of past gradients
and squared gradients, respectively. Additionally, an
initial value for the infnity norm u is set.

(2) Exponential Weighted Averages. At iteration t, the
gradients gt of the loss function with respect to the
parameters are calculated. AdaMax then updates the
moments m and v using equations (17) and (18):

3.mt � β1.mt−1 + 1 − β1(􏼁 . gt, (17)

vt � max β2.vt−1, gt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, (18)

where β1 and β2 are the exponential decay rates for
the moving averages.

(3) Parameter Update. AdaMax performs the parameter
update using the modifed moments:

conv4_block6_out

Activation

input:

output:

(None, 14, 14, 1024)

(None, 14, 14, 1024)

conv5_block1_0_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 7, 7, 2048)

conv5_block1_0_bn

BatchNormalization

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block1_out

Activation

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block2_1_conv

Conv2D

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 512)

conv5_block2_1_bn

BatchNormalization

input:

output:

(None, 7, 7, 5112)

(None, 7, 7, 512)

conv5_block2_1_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block2_2_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block2_2_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block2_2_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block2_3_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 2048)

conv5_block2_3_bn

BatchNormalization

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block2_add

Add

input:

output:

[(None, 7, 7, 2048), (None, 7, 7, 2048)]

(None, 7, 7, 2048)

conv5_block1_1_conv

Conv2D

input:

output:

(None, 14, 14, 1024)

(None, 7, 7, 512)

conv5_block1_1_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block1_1_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block1_2_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block1_2_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block1_2_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block1_3_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 2048)

conv5_block1_3_bn

BatchNormalization

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block1_add

Add

input:

output:

[(None, 7, 7, 2048), (None, 7, 7, 2048)]

(None, 7, 7, 2048)

24

23

22

23

Figure 13: ResNet50 model (cont.).

International Journal of Intelligent Systems 19

wt � wt−1 −
η
vt

. mt, (19)

where η is the learning rate, controlling the step size of the
update.

Te key innovation of AdaMax lies in the computation of
the v moment. Instead of using the squared gradient directly,

AdaMax employs the infnity norm |gt|, which is the maxi-
mum absolute value of the gradient components. By doing so,
AdaMax introduces a form of regularization on the second
moment that can help address some of the convergence issues
observed in Adam when the moving average of squared
gradients gets close to zero. Moreover, AdaMax’s use of the
infnity norm can make the updates more robust, particularly
in cases where individual gradient components are excep-
tionally large. Tis adaptation can prevent the v moment from
becoming too small, thus maintaining stable learning rates
throughout training. Overall, AdaMax is an extension of the
Adamoptimizer that employs the infnity norm and amodifed
denominator in the update equation to provide more reliable
and efective parameter updates. Its mathematical alterations
are designed to address some of the potential challenges in
optimization landscapes, making it a valuable optimization
technique for training ML models, especially deep neural
networks. However, like other adaptive optimizers, proper
hyperparameter tuning is essential to harness its full potential.

3.2.4. NAdam. Nesterov-accelerated Adaptive Moment
Estimation (NAdam) [34, 60–62] is an optimization algo-
rithm that builds upon the Adam optimizer by incorporating
Nesterov’s accelerated gradient technique. NAdam aims to
combine the benefts of both the Nesterov Accelerated
Gradient (NAG) and Adam optimizers to improve con-
vergence and handling of noisy or ill-conditioned optimi-
zation landscapes. By adopting the momentum update in
NAG with the moment-based update in Adam, NAdam
seeks to achieve enhanced optimization performance. To
understand NAdam more thoroughly, let us delve into its
mathematical operations and key concepts:

(1) Initialization. Like other adaptive optimization al-
gorithms, NAdam initializes two moment vectors, m

and v, for each parameter. Tese moments track the
exponentially weighted averages of past gradients
and squared gradients, similar to Adam. Addition-
ally, NAdam also initializes the Nesterov momentum
term |gt−1| for each parameter.

(2) Exponential Weighted Averages. In each iteration of
training, the gradients gt of the loss function with
respect to the parameters are calculated. NAdam
then updates the moments m and v using similar
formulas as Adam in equations (20) and (21).

(3) Nesterov Momentum Update. NAdam introduces the
Nesterov momentum term gt−1 into the momentum
update step. Tis term incorporates information
from the previous iteration’s gradient as expressed in
the following equation:

gt−1 � β1 . gt−2 + 1 − β1(􏼁 . gt−1. (20)

(4) Combined Parameter Update. Te NAdam param-
eter update combines the momentum update from
Nesterov’s technique and the moment-based update
from Adam. Te parameter w is updated using the
following equation:

conv5_block2_out

Activation

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block3_1_conv

Conv2D

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 512)

conv5_block3_1_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_1_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_3_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 2048)

conv5_block3_3_bn

BatchNormalization

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block3_out

Activation

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

avg_pool

GlobalAveragePooling2D

input:

output:

(None, 7, 7, 2048)

(None, 2048)

predictions

Dense

input:

output:

(None, 2048)

(None, 1000)

conv5_block3_add

Add

input:

output:

[(None, 7, 7, 2048), (None, 7, 7, 2048)]

(None, 7, 7, 2048)

24

Figure 14: ResNet50 model (cont.).

20 International Journal of Intelligent Systems

wt � wt−1 −
η

��
vt

√
+ ϵ

. β1 . gt−1 + 1 − β1(􏼁 . gt(􏼁. (21)

Te strength of NAdam lies in its combination of Nes-
terov’s accelerated gradient and the adaptive moment updates.
By incorporating the Nesterov term into the momentum
update, NAdam improves convergence properties by adjusting
the direction of the update based on past gradients.Tis can be
particularly benefcial when navigating through regions with
complex and noisy landscapes. Overall, NAdam is an opti-
mization algorithm that marries the concepts of Nesterov’s
accelerated gradient and the adaptive moment-based updates
of Adam. Its hybrid approach aims to provide improved
optimization performance, making it a suitable candidate for
training ML models, especially deep neural networks. As with
other adaptive optimizers, proper tuning of hyperparameters
is crucial for achieving optimal results.

3.2.5. RMSprop. RootMean Square Propagation (RMSprop)
[23, 34, 63–68] is an optimization algorithm designed to
address some of the limitations of traditional gradient de-
scent methods, particularly in handling varying scales of
gradients and accelerating convergence in DL models.
RMSprop adapts the learning rates of individual parameters
based on the historical information of past gradients,
allowing for more efcient updates and better optimization
performance. Let us explore the mathematical operations
and key concepts of RMSprop:

(1) Initialization. RMSprop initializes a variable s for
each parameter, representing the exponentially
moving average of squared gradients. Tis variable is
initialized to zero.

(2) Exponential Moving Averages. In each iteration of
training, the gradients gt of the loss function with
respect to the parameters are calculated. RMSprop
then updates the s values using the following equation:

st � β.st−1 +(1 − β) . g
2
t , (22)

where β is a hyperparameter that controls the ex-
ponential decay rate of the moving average.

(3) Parameter Update. RMSprop performs the param-
eter update using the adapted learning rate.

wt � wt − 1 −
η
st

. gt. (23)

Temain innovation of RMSprop lies in its adaptation of
the learning rate based on the moving average of squared
gradients. By doing so, RMSprop can efectively handle
situations where some gradients have larger magnitudes
than others. Tis adaptive learning rate adjustment allows
the optimizer to navigate optimization landscapes more
smoothly and converge faster. Moreover, RMSprop’s in-
corporation of the squared gradient magnitude in the de-
nominator of the update equation contributes to a natural
scaling of the learning rates, preventing the learning rates
from becoming too small, as can happen in standard gra-
dient descent methods. Tis property can make RMSprop
particularly useful for training deep neural networks, where
gradients can exhibit a wide range of magnitudes. Overall,
RMSprop is an optimization algorithm that adapts the
learning rates of parameters based on the historical in-
formation of squared gradients. Its mathematical framework
enables it to handle varying scales of gradients and accelerate
convergence in DL models. While RMSprop has been

X

Weight Layer

Weight Layer
ReLu

ReLu
F(x)

H(x)=F(x)+x

+

Residual Learning Block

Image Max-Pool

7*
7,

 co
nv

, 6
4

1*
1,

 co
nv

, 6
4

3*
3,

 co
nv

, 6
4

1*
1,

 co
nv

, 2
56

1*
1,

 co
nv

, 1
28

3*
3,

 co
nv

, 1
28

1*
1,

 co
nv

, 5
12

1*
1,

 co
nv

, 2
56

3*
3,

 co
nv

, 2
56

1*
1,

 co
nv

, 1
02

4

1*
1,

 co
nv

, 5
12

3*
3,

 co
nv

, 5
12

1*
1,

 co
nv

, 2
04

8

Fc
, 1

00
0

3× 4× 6× 3×

AVG-Pool

Figure 15: Te architecture of ResNet50.

International Journal of Intelligent Systems 21

proven efective in many scenarios, it is important to note
that proper hyperparameter tuning is crucial for achieving
optimal results, as the choice of β and ϵ can signifcantly
impact the optimization process.

4. Analytical Insights and
Experimental Outcomes

Te proposed models along with the recommended opti-
mizers were subjected to experimentation, the datasets used
for both training and testing were evaluated, and the fnal
results were obtained by averaging all the assessment
metrics. Additionally, the time taken for training and testing
was also recorded. Further details on the datasets used to
evaluate the performance of the proposed model can be
found in Section 4.1. Workplace characteristics and
hyperparameter values are recorded in Section 4.2, followed
by performance indicators in Sections 4.3 and 4.4, which
describe experimental analysis and result discussion.

4.1. Dataset Description. Te evaluation of the proposed and
state-of-the-art models is conducted in this study using data
from a CXR provided by the NIH clinical center. Tis CXR can
give an initial indication of cardiomegaly by evaluating the size
and shape of the heart. NIH, a research hospital in the Uni-
ted States, has recently published over 100,000 anonymized
frontal-view CXR images. Te NIH gathered a scanning dataset
of over 30,805 individuals, many of whom had advanced lung
illnesses. All of the photographs have a high resolution of
1024×1024. Figure 18 provides visual dataset samples.Tere are
up to 15 diferent thoracic categories, such as atelectasis, car-
diomegaly, efusion, infltration, mass, nodule, pneumonia,
pneumothorax, consolidation, edema, emphysema, fbrosis,
pleural thickening, hernia, and normal images. Although the
picture label is derived using natural language processing (NLP),
the publisher guarantees that the NLP labeling precision sur-
passes 90%. Te CXR8 also provides 8 class designations. Te
dataset is ofered by Kaggle but with some changes to be more
suitable for our problem of early detection of cardiomegaly and
to make the data more balanced. Te dataset is composed of
5552 images, divided into two categories: 2776 images are la-
beled as No Cardiomegaly, indicating normal conditions, and
the other 2776 images are categorized under Cardiomegaly,
signifying the presence of the disease, as illustrated in Figure 19.
Tese images are preprocessed through resizing, color trans-
formation, and normalization and then labeled. Image pre-
processing is a crucial initial step in computer vision and image
analysis pipelines, aiming to enhance the quality and consistency
of images prior to any further analysis or processing.

4.1.1. Resizing [69–71]. Te frst step is to adjust the image’s
dimensions while keeping its aspect ratio intact.Tis is necessary
to make all the images the same size, which ensures consistency
and compatibility for further processing. Resizing images not
only makes computing easier but also helps to compare images
fairly across various resolutions, making analysis more accurate.

4.1.2. Color Transformation [72, 73]. In the second step, the
color space of an image is manipulated to enhance certain
image characteristics. For example, RGB (Red, Green, Blue)

24

conv5_block3_1_conv

Conv2D

conv5_block3_1_bn

BatchNormalization

input:

output:

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 512)

conv5_block2_out

Activation

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_1_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_bn

BatchNormalization

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_2_relu

Activation

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 512)

conv5_block3_3_conv

Conv2D

input:

output:

(None, 7, 7, 512)

(None, 7, 7, 2048)

conv5_block3_3_bn

BatchNormalization

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block3_add

Add

input:

output:

(None, 7, 7, 2048), (None, 7, 7, 2048)

(None, 7, 7, 2048)

conv5_block3_out

Activation

input:

output:

(None, 7, 7, 2048)

(None, 7, 7, 2048)

flatten

Flatten

input:

output:

(None, 7, 7, 2048)

(None, 100352)

dense

Dense

input:

output:

(None, 100352)

(None, 100)

dense_1

Dense

input:

output:

(None, 100)

(None, 100)

dense_2

Dense

input:

output:

(None, 100)

(None, 100)

dense_3

Dense

input:

output:

(None, 100)

(None, 2)

Figure 16: Te modifed ResNet50 model.

22 International Journal of Intelligent Systems

1*
1,

 co
nv

, 6
4

7*
7,

 co
nv

, 6
4

3*
3,

 co
nv

, 6
4

1*
1,

 co
nv

, 2
56

1*
1,

 co
nv

, 1
28

3*
3,

 co
nv

, 1
28

1*
1,

 co
nv

, 5
12

1*
1,

 co
nv

, 2
56

3*
3,

 co
nv

, 2
56

1*
1,

 co
nv

, 1
02

4

1*
1,

 co
nv

, 5
12

3*
3,

 co
nv

, 5
12

1*
1,

 co
nv

, 2
04

8

AV
G

-P
oo

l

Flatten
Layer

Dense
Layer

Sofmax
activation

No-Cardiomegaly

Cardiomegaly

Weight Layer

Weight Layer

ReLu

ReLu
+

F(x)

F(x)

Identity (x)

Residual Learning Block

× × × ×

Max-Pool

Figure 17: Te architecture of modifed ResNet50 for binary classifcation.

No Cardio Cardio No Cardio Cardio No Cardio Cardio

No Cardio Cardio No Cardio Cardio No Cardio Cardio

No Cardio Cardio No Cardio Cardio No Cardio Cardio

No Cardio Cardio No Cardio Cardio No Cardio Cardio

No Cardio Cardio No Cardio Cardio No Cardio Cardio

No Cardio Cardio No Cardio Cardio No Cardio Cardio

Figure 18: Visualization sample of the data.

International Journal of Intelligent Systems 23

and HSV (Hue, Saturation, Value) are distinct color spaces
that represent color information within an image. Trans-
forming an image from one color space to another can
accentuate or suppress certain features, which can be useful
in tasks such as feature extraction or pattern recognition.

4.1.3. Normalization [74, 75]. Te third step involves
adjusting pixel values to ensure they comply with a stan-
dardized scale. Tis is important to reduce the impact that
changing lighting conditions or sensor characteristics can
have on the appearance of an image. Normalization tech-
niques typically involve scaling pixel values to fall within
a specifc range, such as [0, 1] or [−1, 1], or performing mean
subtraction and division by standard deviation. Normali-
zation ensures that the statistical distribution of image data
is consistent, which helps to stabilize the training and
learning processes of subsequent ML models.

4.1.4. Labeling [76, 77]. Te fnal step in the process involves
annotating images with relevant information that identifes
the objects or regions within them. In supervised learning,
labels serve as the ground truth for training and evaluating
ML models. Proper labeling requires accurately associating
images with the appropriate classes or categories, allowing
algorithms to efectively learn and generalize from the
provided data.

In this study, the data are labeled as 0 for no cardiomegaly
and 1 for cardiomegaly. Te data are then shufed and split
into 80% training and 20% testing sets, as shown in Table 2.

Next, the dataset is enhanced with data augmentation
using the ImageDataGenerator technique [78–83]. Data
augmentation is a crucial technique in computer vision,
especially when there is a shortage of annotated data for
training ML models. Tis technique generates various
versions of the existing dataset by applying a range of
transformations to the original images. In the Keras library,
the ImageDataGenerator class enables this process by
providing a simple way to implement data augmentation
during the model’s training phase.

Te ImageDataGenerator technique [80–83] operates by
applying a set of predefned image transformations, such as
rotations, fips, shifts, zooms, and shears, to the input im-
ages. Tese transformations introduce controlled pertur-
bations that simulate real-world variations in imaging
conditions. By augmenting the dataset with these trans-
formed images, the efective size of the training data in-
creases substantially, which can mitigate overftting and
enhance the model’s generalization capabilities.

Te advantages of data augmentation [84] are manifold.
Firstly, augmented data enrich the training dataset with
diverse instances, efectively expanding the model’s expo-
sure to a wider range of scenarios. Tis exposure contributes
to improved robustness, as the model learns to recognize
objects or patterns despite variations in lighting, orientation,
and other factors. Secondly, augmented data canmitigate the
risk of overftting, a phenomenon where a model learns to
memorize the learning data instead of generalizing from it.
Te inherent noise introduced by the transformations helps
regularize the learning process, preventing the model from
becoming excessively specialized to the training samples.
Lastly, data augmentation can also save valuable time and
resources, as it reduces the dependency on collecting and
annotating an extensive dataset. Trough augmentation,
a relatively smaller dataset can be efectively amplifed,
potentially leading to comparable or even superior model
performance.

4.2. Modelling Context. Te computational outcomes were
produced using a computer equipped with an Intel Core i7
CPU, 64GB of RAM, and an NVIDIA GTX 1050i GPU.
Additionally, coding resources like Python, Keras, Tensor-
Flow, and Sklearn were employed for executing the pro-
gramming assignments. Te hyperparameters and standard
parameter confgurations for the presented models, in-
cluding the maximum number of epochs and the loss
function, are detailed in Table 3. Tese hyperparameters
were set by using both grid search and random search
techniques for hyperparameter tuning. Grid search ex-
haustively explores a predefned set of hyperparameter
values, as the number of epochs was in the range from 1 to
100, the learning rate was in the range from 0.0001 to 0.1,
and batch size was in the range from 16 to 120, while
random search randomly samples from a given distribution.
Tis combination helps fnd optimal confgurations more
efciently.

4.3. Performance Metrics. Recall, precision, accuracy, and
F1-score are some of the assessment measures used to assess
the presented models. Tese metrics are dependent on the
assessment parameters for predictive models known as True
Positive (TP), True Negative (TN), False Positive (FP), and

2500

2000

1500

1000

500

0

co
un

t

No Cardio Cardio
Label

Label
No Cardio
Cardio

Figure 19: Dataset histogram.

Table 2: Dataset’s subset size.

Subset Records
Training 4441
Testing 1111

24 International Journal of Intelligent Systems

False Negative (FN). Recall [85] is mathematically defned as
TP divided by the product of TP and FN, as shown in the
following equation:

Recall �
TP

TP + FN

. (24)

Precision [86] is computed using equation (25) and is
equal to TP divided by the product of TP and FP:

Precision �
TP

TP + FP

. (25)

Equation (26) describes accuracy as follows:

Accuracy �
TN + TP

TP + FP + TN + FN

. (26)

F1-score [87] is equal to 2 times precision times recall
times the sum of precision and recall divided by the pre-
cision plus recall. It is written as

F1 � 2 ·
Precision · Recall
Precision + Recall

. (27)

4.4. Investigative Comparison. Tis paper suggests a frame-
work to address the problem of early cardiomegaly detection.
Two diferent DLmodels were used for this objective and each
one is developed with fve types of optimizers, which are
AdaGrad, Adam, AdaMax, NAdam, and RMSprop, to fnd
the best optimizer for each proposed model. Te goal is to
develop two DL models and fnd the best optimizer from the
ffth for each one of them that performs at its best regarding
processing speed and detection accuracy and then fnd the
best-proposed model from the two.

4.5. Results of the Proposed CNNModels. In this section, the
simulated outcomes of the suggested CNNs with the fve
types of optimizers are compared to fnd the best optimizer
for the proposed CNN model. Table 3 shows that the
suggested CNNs with the fve types of optimizers are all
trained using 50 epochs with a batch size of 85.

4.5.1. Results of the Proposed CNN with AdaGrad. Te
simulated outcomes of the proposed CNN-AdaGrad are
covered in this section. Te accuracy, loss curves, and
confusion matrix of the proposed CNN-AdaGrad are shown
in Figures 20–22, respectively. Te proposed CNN-AdaGrad
obtained an accuracy of 96.07% for training. Table 4 shows
the proposed CNN-AdaGrad evaluation metrics in the

testing stage. It achieved an accuracy, precision, recall, and
F1-score of 95.5%, 96.89%, 73.1%, and 83.3%, respectively.

4.5.2. Results of the Proposed CNN with Adam. Tis section
covers the simulated outcomes of the proposed CNN-Adam.
Te accuracy, loss curves, and confusion matrix of the
proposed CNN-Adam are shown in Figures 23–25, re-
spectively. Te proposed CNN-Adam obtained an accuracy
of 100.00% for training. Table 5 shows the proposed CNN-
Adam evaluation metrics in the testing stage. It achieved an
accuracy, precision, recall, and F1-score of 99.64%, 100.00%,
97.39%, and 98.7%, respectively.

4.5.3. Results of the Proposed CNN with AdaMax. Tis
section covers the simulated outcomes of the proposed CNN-
AdaMax. Te accuracy, loss curves, and confusion matrix of
the proposed CNN-AdaMax are shown in Figures 26–28,
respectively. Te proposed CNN-AdaMax obtained an ac-
curacy of 100.00% for training. Table 6 shows the proposed
CNN-AdaMax evaluation metrics in the testing stage. It
achieved an accuracy, precision, recall, and F1-score of
99.91%, 100.00%, 99.40%, and 99.7%, respectively.

4.5.4. Results of the Proposed CNN with NAdam. Te
simulated outcomes of the proposed CNN-NAdam are
covered in this section. Te accuracy, loss curves, and
confusion matrix of the proposed CNN-NAdam are shown
in Figures 29–31, respectively. Te proposed CNN-NAdam
obtained an accuracy of 100.00% for training. Table 7 shows
the proposed CNN-NAdam evaluation metrics in the testing
stage. It achieved an accuracy, precision, recall, and F1-score
of 99.55%, 100.00%, 97.1%, and 98.5%, respectively.

4.5.5. Results of the Proposed CNN with RMSprop. Te
simulated outcomes of the proposed CNN-RMSprop are
covered in this section. Te accuracy, loss curves, and con-
fusion matrix of the proposed CNN-RMSprop are shown in
Figures 32–34, respectively. Te proposed CNN-RMSprop
obtained an accuracy of 99.50% for training. Table 8 shows the
proposed CNN-RMSprop evaluation metrics in the testing
stage. It achieved an accuracy, precision, recall, and F1-score
of 99.37%, 98.9%, 96.89%, and 97.8%, respectively.

4.6. Results of the Modifed ResNet50Models. In this section,
the simulated outcomes of the modifed ResNet50 with the
fve types of optimizers are compared to fnd the best op-
timizer for the modifed ResNet50 model. Table 3 shows that
the modifed ResNet50 models with the fve types of opti-
mizers are all trained using 15 epochs with a batch size of 32.

Table 3: Parameter setting for the proposed models.

Model Epochs Batch
size

Total
parameters

Trainable
parameters

Nontrainable
parameters

Learning
rate Loss function

Proposed CNN 50 85 3,010,114 3,010,114 0 0.001 binary_Crossentropy
Modifed
ResNet50 15 32 33,643,414 10,055,702 23,587,712 0.001 binary_Crossentropy

International Journal of Intelligent Systems 25

4.6.1. Results of the Modifed ResNet50 with AdaGrad.
Te simulated outcomes of the modifed ResNet50-AdaGrad
optimizer are presented here. Te accuracy, loss curves, and
confusion matrix of the modifed ResNet50-AdaGrad are
shown in Figures 35–37, respectively. Te modifed
ResNet50-AdaGrad obtained an accuracy of 100.00% for
training. Table 9 shows the modifed ResNet50-AdaGrad
evaluation metrics in the testing stage. It achieved an ac-
curacy, precision, recall, and F1-score of 99.73%, 99.4%,
98.9%, and 99.1%, respectively.

4.6.2. Results of the Modifed ResNet50 with Adam. Te
simulated outcomes of the modifed ResNet50-Adam are
covered in this section. Te accuracy, loss curves, and
confusion matrix of the modifed ResNet50-Adam are
shown in Figures 38–40, respectively. Te modifed
ResNet50-Adam obtained an accuracy of 100.00% for
training. Table 10 shows the modifed ResNet50-Adam
evaluation metrics in the testing stage. It achieved an ac-
curacy, precision, recall, and F1-score of 99.19%, 100.00%,
95.1%, and 97.5%, respectively.

4.6.3. Results of Modifed ResNet50 with AdaMax. Te
simulated outcomes of the modifed ResNet50-AdaMax are
covered in this section. Te accuracy, loss curves, and
confusion matrix of the modifed ResNet50-AdaMax are
shown in Figures 41–43, respectively. Te modifed
ResNet50-AdaMax obtained an accuracy of 100.00% for
training. Table 11 shows the modifed ResNet50-AdaMax

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82

0.80

ac
cu

ra
cy

0 10 20
epoch

Model Accuracy

30 40 50

train
test

Figure 20: Accuracy curve of the proposed CNN-AdaGrad.

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

lo
ss

0 10 20
epoch

Model Loss

30 40 50

train
test

Figure 21: Loss curve of the proposed CNN-AdaGrad.

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

800

4

46 125

936

600

400

200

Figure 22: Confusion matrix of the proposed CNN-AdaGrad.

Table 4: Performance overview of the proposed CNN-AdaGrad.

Precision Recall F1-score
0 (no cardiomegaly) 0.95 1.00 0.97
1 (cardiomegaly) 0.97 0.73 0.83
Macro avg. 0.96 0.86 0.90
Weighted avg. 0.96 0.95 0.95
Accuracy (%) 95.5

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84
ac

cu
ra

cy
0 10 20

epoch

Model Accuracy

30 40 50

train
test

Figure 23: Accuracy curve of the proposed CNN-Adam.

26 International Journal of Intelligent Systems

evaluation metrics in the testing stage. It achieved an ac-
curacy, precision, recall, and F1-score of 99.64%, 100.00%,
97.50%, and 98.70%, respectively.

4.6.4. Results of Modifed ResNet50 with NAdam. Te
simulated outcomes of the modifed ResNet50-NAdam
optimizer are covered in this section. Te accuracy, loss
curves, and confusion matrix of the modifed ResNet50-
NAdam are shown in Figures 44–46, respectively. Te
modifed ResNet50-NAdam obtained an accuracy of
100.00% for training. Table 12 shows the modifed
ResNet50-NAdam evaluation metrics in the testing stage. It

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

0

4 152

955

Figure 25: Confusion matrix of the proposed CNN-Adam.

Table 5: Performance overview of the proposed CNN-Adam.

Precision Recall F1-score
0 (no cardiomegaly) 1.00 1.00 1.00
1 (cardiomegaly) 1.00 0.97 0.99
Macro avg. 1.00 0.99 0.99
Weighted avg. 1.00 1.00 1.00
Accuracy (%) 99.64

1.00

0.95

0.90

0.85

0.80

ac
cu

ra
cy

0 10 20
epoch

Model Accuracy

30 40 50

train
test

Figure 26: Accuracy curve of the proposed CNN-AdaMax.

3.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0

lo
ss

0 10 20
epoch

Model Loss

30 40 50

train
test

Figure 27: Loss curve of the proposed CNN-AdaMax.

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

0

1 175

935

Figure 28: Confusion matrix of the proposed CNN-AdaMax.

4.0

3.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0

lo
ss

0 10 20
epoch

Model Loss

30 40 50

train
test

Figure 24: Loss curve of the proposed CNN-Adam.

International Journal of Intelligent Systems 27

achieved an accuracy, precision, recall, and F1-score of
99.46%, 100.00%, 96.6%, and 98.3%, respectively.

4.6.5. Results of Modifed ResNet50 with RMSprop. Te
simulated outcomes of the modifed ResNet50-RMSprop
optimizer are covered in this section. Te accuracy, loss
curves, and confusion matrix of the modifed ResNet50-
RMSprop are shown in Figures 47–49, respectively. Te
modifed ResNet50-RMSprop obtained an accuracy of

98.96% for training. Table 13 shows the modifed ResNet50-
RMSprop evaluation metrics in the testing stage. It achieved
an accuracy, precision, recall, and F1-score of 96.94%, 99.3%,
80.2%, and 88.7%, respectively.

4.6.6. Result Discussion. Table 14 shows the experimental
results of the proposed CNN with the suggested optimizers;
it can be observed that AdaGrad optimizer is the last in all

Table 6: Overview of the proposed CNN-AdaMax.

Precision Recall F1-score
0 (no cardiomegaly) 1.00 1.00 1.00
1 (cardiomegaly) 1.00 0.99 1.00
Macro avg. 1.00 1.00 1.00
Weighted avg. 1.00 1.00 1.00
Accuracy (%) 99.91

1.00

0.94

0.96

0.98

0.92

0.90

0.86

0.84

0.88

ac
cu

ra
cy

0 10 20
epoch

Model Accuracy

30 40 50

train
test

Figure 29: Accuracy curve of the proposed CNN-NAdam.

2.5

2.0

1.5

1.0

0.5

0.0

lo
ss

0 10 20
epoch

Model Loss

30 40 50

train
test

Figure 30: Loss curve of the proposed CNN-NAdam.

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

0

5 166

940

Figure 31: Confusion matrix of the proposed CNN-NAdam.

Table 7: Performance overview of the proposed CNN-NAdam.

Precision Recall F1-score
0 (no cardiomegaly) 0.99 1.00 1.00
1 (cardiomegaly) 1.00 0.97 0.99
Macro avg. 1.00 0.99 0.99
Weighted avg. 1.00 1.00 1.00
Accuracy (%) 99.55

1.0

0.7

0.8

0.9

0.6

0.5

0.3

0.4

ac
cu

ra
cy

0 10 20
epoch

Model Accuracy

30 40 50

train
test

Figure 32: Accuracy curve of the proposed CNN-RMSprop.

28 International Journal of Intelligent Systems

performance measures. Adam optimizer ranks frst in
precision and second in accuracy, recall, F1-score, and loss.
AdaMax optimizer is the best in all performance measures,
and it is also the lowest in loss. NAdam optimizer ranks frst
in precision and third in accuracy, recall, F1-score, and loss.
RMSprop optimizer ranks second in precision and fourth in
accuracy, recall, F1-score, and loss.

Based on the duration required for the proposed CNN
model, it is apparent that during the training phase, Ada-
Grad, Adam, and RMSprop optimizers required equal time

and ranked second. AdaMax and NAdam, on the other
hand, took the least amount of time and thus ranked frst.
Moving on to the testing phase, AdaMax proved to be the
most efcient, taking the shortest time. NAdam came in
second, while Adam and RMSprop took the same amount of
time and ranked third. Finally, AdaGrad consumed the most
time and ranked last.

Table 15 shows the experimental results of the modifed
ResNet50with the suggested optimizers. It can be observed that
AdaGrad optimizer ranks frst in accuracy, recall, and F1-score
and second in precision and loss. Adam optimizer ranks frst in
precision and fourth in accuracy, recall, F1-score, and loss.
AdaMax optimizer ranks frst in precision and loss and second
in accuracy, recall, and F1-score. NAdam optimizer ranks frst
in precision and third in accuracy, recall, F1-score, and loss.
RMSprop is the last in all performance measures.

20

15

10

5

0

lo
ss

0 10 20
epoch

Model Loss

30 40 50

train
test

Figure 33: Loss curve of the proposed CNN-RMSprop.

800

600

400

200

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

2

5 158

946

Figure 34: Confusion matrix of the proposed CNN-RMSprop.

Table 8: Performance overview of the proposed CNN-RMSprop.

Precision Recall F1-score
0 (no cardiomegaly) 0.99 1.00 1.00
1 (cardiomegaly) 0.99 0.97 0.98
Macro avg. 0.99 0.98 0.99
Weighted avg. 0.99 0.99 0.99
Accuracy (%) 99.37

1.00

0.98

ac
cu

ra
cy

0 2 4 6 8
epoch

Model Accuracy

10 12 14

0.96

0.94

0.92

0.90

0.88

0.86

train
test

Figure 35: Accuracy curve of the modifed ResNet50-AdaGrad.

0.30

0.25

0.35

lo
ss

0 2 4 6 8
epoch

Model Loss

10 12 14

0.20

0.15

0.05

0.10

0.00

train
test

Figure 36: Loss curve of the modifed ResNet50-AdaGrad.

International Journal of Intelligent Systems 29

It is evident from the duration needed for the adjusted
ResNet50 model that Adam and RMSprop optimizers took
an equal amount of time and were second in rank during the
training phase. In contrast, AdaGrad, AdaMax, and NAdam
took the least amount of time and ranked frst. During the
testing phase, AdaGrad demonstrated the highest efciency,

taking the shortest time. NAdam followed in second place,
while AdaMax came in third. Adam and RMSprop took the
same amount of time and ranked last.

Finally, it can be observed that the proposed CNN-
AdaMax is the best in all performance measures, faster in
both training and testing time, and lowest in loss.

800

600

400

200

0

1

1
Predicted Label

Confusion Matrix of Model
Tr

ue
 L

ab
el

0

1

2 174

934

Figure 37: Confusion matrix of the modifed ResNet50-AdaGrad.

Table 9: Performance overview of the modifed
ResNet50-AdaGrad.

Precision Recall F1-score
0 (no cardiomegaly) 1.00 1.00 1.00
1 (cardiomegaly) 0.99 0.99 0.99
Macro avg. 1.00 0.99 0.99
Weighted avg. 1.00 1.00 1.00
Accuracy (%) 99.73

1.00

0.98

ac
cu

ra
cy

0 2 4 6 8
epoch

Model Accuracy

10 12 14

0.96

0.94

0.92

0.90

0.88

0.86

train
test

Figure 38: Accuracy curve of the modifed ResNet50-Adam.

0.5

0.4

0.6

lo
ss

0 2 4 6 8
epoch

Model Loss

10 12 14

0.3

0.2

0.1

0.0

train
test

Figure 39: Loss curve of the modifed ResNet50-Adam.

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model
Tr

ue
 L

ab
el

0

0

9 174

928

Figure 40: Confusion matrix of the modifed ResNet50-Adam.

Table 10: Performance overview of the modifed ResNet50-Adam.

Precision Recall F1-score
0 (no cardiomegaly) 0.99 1.00 1.00
1 (cardiomegaly) 1.00 0.95 0.97
Macro avg. 1.00 0.98 0.98
Weighted avg. 0.99 0.99 0.99
Accuracy (%) 99.19

30 International Journal of Intelligent Systems

4.7. Benchmarking against Cutting-Edge Models. Table 16
compares the proposed models with the recent models
using the same dataset. Te proposed CNN-AdaMax opti-
mizer ranked frst in all performance metrics, while the
proposed CNN-Adam optimizer, the proposed CNN-
NAdam optimizer, the modifed ResNet50-Adam opti-
mizer, the modifed ResNet50-AdaMax optimizer, and the
modifed ResNet50-NAdam optimizer ranked frst in pre-
cision. Te modifed ResNet50-AdaGrad ranked second in
terms of accuracy, precision, recall, and F1-score.

It is important to note that the choice of optimizer depends
on various factors, including the architecture of the neural
network, the nature of the dataset, and the training goals. In this
study, the AdaMax optimizer with the proposed CNN, utilized
dataset, and same hyperparameters is the best in all perfor-
mance measures because as previously explained in Section
3.2.3, AdaMax is a variant of the Adam optimizer that provides
certain advantages, particularly for training the proposedCNN:

(1) Sparse Gradient Handling. AdaMax’s parameter
update rule includes the infnity norm (L∞ norm) of
the gradients, which can be helpful for handling
sparse gradients. Tis property can be benefcial
when training deep models with a large number of
parameters, as sparse gradients can be an issue
during optimization.

(2) Convergence Speed. AdaMax is known to have better
convergence properties compared to plain Adam in

1.00

0.98

ac
cu

ra
cy

0 2 4 6 8
epoch

Model Accuracy

10 12 14

0.96

0.94

0.92

0.90

0.88

0.86

train
test

Figure 41: Accuracy curve of the modifed ResNet50-AdaMax.

0.5

0.4

0.6

lo
ss

0 2 4 6 8
epoch

Model Loss

10 12 14

0.3

0.2

0.1

0.0

train
test

Figure 42: Loss curve of the modifed ResNet50-AdaMax.

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

0

4 154

953

Figure 43: Confusion matrix of the modifed ResNet50-AdaMax.

Table 11: Performance overview of the modifed ResNet50-AdaMax.

Precision Recall F1-score
0 (no cardiomegaly) 1.00 1.00 1.00
1 (cardiomegaly) 1.00 0.97 0.99
Macro avg. 1.00 0.99 0.99
Weighted avg. 1.00 1.00 1.00
Accuracy (%) 99.64

1.00

0.95

ac
cu

ra
cy

0 2 4 6 8
epoch

Model Accuracy

10 12 14

0.90

0.85

0.80

0.75

0.70

0.65

train
test

Figure 44: Accuracy curve of the modifed ResNet50-NAdam.

International Journal of Intelligent Systems 31

certain cases. Tis can be benefcial when training
a CNN from scratch, as faster convergence can lead
to quicker training times.

(3) Stability. AdaMax’s formulation can make it more
stable than other optimizers, such as plain Adam.
Tis stability can help avoid oscillations during
training and improve the overall training process.

On the other hand, AdaGrad with the modifed ResNet50
model in our problem case and with the same hyperparameters
is the frst in terms of accuracy, recall, and F1-score and also is
faster in training and testing time because as previously
explained in Section 3.2.1, AdaGrad is an optimizer that adapts
the learning rates of individual parameters based on their
historical gradient information. It has certain characteristics
that could be advantageous when training complex architec-
tures like ResNet50:

(1) Adaptivity to Sparse Features. AdaGrad’s adaptive
learning rate mechanism works well with sparse
features. ResNet50 has skip connections that can
introduce sparse-like activations through the net-
work. AdaGrad’s adaptivity to such features can lead
to more efective updates during training.

1.4

1.2

1.6

lo
ss

0 2 4 6 8
epoch

Model Loss

10 12 14

1.0

0.8

0.6

0.2

0.4

0.0

train
test

Figure 45: Loss curve of the modifed ResNet50-NAdam.

800

600

400

200

0

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

0

6 172

933

Figure 46: Confusion matrix of the modifed ResNet50-NAdam.

Table 12: Performance overview of the modifed ResNet50-NAdam.

Precision Recall F1-score
0 (no cardiomegaly) 0.99 1.00 1.00
1 (cardiomegaly) 1.00 0.97 0.98
Macro avg. 1.00 0.98 0.99
Weighted avg. 0.99 0.99 0.99
Accuracy (%) 99.46

0.98

ac
cu

ra
cy

0 2 4 6 8
epoch

Model Accuracy

10 12 14

0.96

0.94

0.92

0.90

0.88

0.86

train
test

Figure 47: Accuracy curve of the modifed ResNet50-RMSprop.

1.50

1.25

1.75
lo

ss

0 2 4 6 8
epoch

Model Loss

10 12 14

1.00

0.75

0.50

0.25

0.00

train
test

Figure 48: Loss curve of the modifed ResNet50-RMSprop.

32 International Journal of Intelligent Systems

(2) Weight Decay Adaptation. AdaGrad’s accumulation
of historical gradients efectively reduces the learning
rate for frequently updated parameters. Tis can act
as a form of implicit weight decay, which can help
prevent overftting in complex models like ResNet50.

(3) Convergence with Sparse Data. If the dataset used for
training ResNet50 contains sparse or irregularly
distributed features, AdaGrad’s learning rate adap-
tation can aid in navigating the optimization land-
scape and achieving convergence.

800

600

400

200

0

1

1
Predicted Label

Confusion Matrix of Model

Tr
ue

 L
ab

el

0

1

33 134

943

Figure 49: Confusion matrix of the modifed ResNet50-RMSprop.

Table 13: Performance overview of the modifed ResNet50-RMSprop.

Precision Recall F1-score
0 (no cardiomegaly) 0.97 1.00 0.98
1 (cardiomegaly) 0.99 0.80 0.89
Macro avg. 0.98 0.90 0.93
Weighted avg. 0.97 0.97 0.97
Accuracy (%) 96.94

Table 14: Comparison between the fve optimizers of the proposed CNN model.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Loss Training time (m) Testing time (ms)
CNN-AdaGrad 95.50 96.89 73.10 83.30 0.158 6 14
CNN-Adam 99.64 100.00 97.39 98.7 0.080 6 13
CNN-AdaMax 99.91 100.00 99.40 99.7 0.001 5 10
CNN-NAdam 99.55 100.00 97.1 98.5 0.083 5 12
CNN-RMSprop 99.37 98.9 96.89 97.8 0.105 6 13

Table 15: Comparison between the fve optimizers of the modifed ResNet50 model.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Loss Training time (m) Testing time (ms)
ResNet50-AdaGrad 99.73 99.4 98.9 99.1 0.0158 8 87
ResNet50-Adam 99.19 100.00 95.1 97.5 0.087 9 98
ResNet50-AdaMax 99.64 100.00 97.5 98.7 0.009 8 96
ResNet50-NAdam 99.46 100.00 96.6 98.3 0.062 8 93
ResNet50-RMSprop 96.94 99.3 80.2 88.7 0.274 9 98

International Journal of Intelligent Systems 33

Overall, it is important to note that while AdaMax and
AdaGrad or other optimizers have these potential advantages,
their efectiveness can still depend on factors such as the specifc
dataset, hyperparameter tuning, and other architecture-related
choices. So, in order to fnd out which optimizer is most ef-
fective for a particular task, experimentation is crucial.

5. Conclusion

Early detection of cardiomegaly is crucial for managing car-
diovascular health. Tis research highlights the importance of
timely identifying the condition to enable proactive in-
terventions, ultimately leading to better patient outcomes.
Advanced imaging techniques, such as CXR imaging, are
noninvasive and efective for assessing cardiac morphology
and size. Tey enable clinicians to determine cardiac chamber
enlargement and overall cardiac dimensions accurately. So, in
our paper, one of the fnest datasets for the detection process is
CXR. DL-based models are used to categorize images in the
medical area.Tis paper introduced two DLmodels: one from
scratch which is the proposed CNN and a pretrained model
ResNet50 with some modifcations, to be suitable for our
binary classifcation problem. Each model is compiled with
fve types of optimizers which are AdaGrad, Adam, AdaMax,
NAdam, and RMSprop. For the proposed CNN which is
trained using 50 epochs with a batch size of 85, AdaMax
optimizer is the best in all performance measures and it is also
the fastest of them. For modifed ResNet50 which is trained
using 15 epochs with a batch size of 32, the AdaGrad optimizer
is better in terms of accuracy, recall, and F1-score and also is
the fastest of them, but Adam, AdaMax, and NAdam opti-
mizers are the better in precision. Overall, the proposed CNN-
AdaMax is the best in all performance measures and the
fastest. Te results of this study confrm the diagnostic power
of such imaging modalities in detecting cardiomegaly.

Terefore, they should be considered for integration into
routine clinical practice for early detection and intervention.
Early detection of cardiomegaly not only advances scientifc
understanding but also reduces the burden of advanced
cardiac pathology on individuals and healthcare systems.
Further research should investigate the long-term implications
of early detection and explore the interplay of various imaging
technologies. Tis will contribute to the refnement of clinical
strategies and the enhancement of patient care in cardiovas-
cular health. Although the study achieved impressive accu-
racies of 99.91% using AdaMax for the proposed CNN and
99.73% using AdaGrad for the modifed ResNet50, there are
still some limitations. Te dataset used for this study includes
5552 images, with equal representation of no-cardio and
cardio cases, but there may be biases that could afect the
generalizability of the results. Additionally, the complex ar-
chitecture of ResNet50 makes it difcult to interpret the
model’s results, which is crucial in medical applications. Te
high resource requirements for training ResNet50 also raise
concerns about practical deployment. To overcome these
limitations, future research will focus on exploring the dataset
in detail to identify and address any biases, working collab-
oratively with domain experts to improve interpretability, and
investigating optimization strategies such as model com-
pression and hardware acceleration to enable efcient de-
ployment in resource-constrained environments.

Abbreviations

DL: Deep learning
ResNet50: Residual network with 50 layers
NIH: National Institutes of Health
AdaGrad: Adaptive Gradient
NAdam: Nesterov-accelerated Adaptive Moment

Estimation

Table 16: Comparison between the proposed models and the state-of-the-art methods.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
1D CNN (Lin et al. [9], 2022) 98.00 97.80 98.20 97.99
Mix of 1D and 2D CNN (Wu et al. [10], 2022) 98.40 97.60 99.20 98.38
CXRDANet (Chen et al. [11], 2022) 90.50 — 94.45 90.59
A mix of InceptionV3 and ResNet50 (Zhou et al. [12], 2019) 79.70 — — 80.00
Cardio-XAttentionNet (Innat et al. [13], 2023) 87.00 85.00 86.00
Attention U-Net (Ajmera et al. [14], 2022) — 99.00 80.00 88.00
U-Net (Sarpotdar et al. [15], 2022). 94.00 — 96.20 —
Novel automated method (Candemir et al. [88], 2016) 77.00 — 77.00 —
VGG19 (Bougias et al. [16], 2021) 84.50 84.00
ResNet50 v2 (Ribeiro et al. [17], 2023) 91.80± 0.7 74.00± 2.7 87.00± 5.5 79.80± 1.9
Proposed CNN-AdaGrad 95.50 96.89 73.10 83.30
Proposed CNN-Adam 99.64 100.00 97.39 98.70
Proposed CNN-AdaMax 99.91 100.00 99.40 99.70
Proposed CNN-NAdam 99.55 100.00 97.10 98.50
Proposed CNN-RMSprop 99.37 98.90 96.89 97.80
Modifed ResNet50-AdaGrad 99.73 99.40 98.90 99.10
Modifed ResNet50-Adam 99.19 100.00 95.10 97.50
Modifed ResNet50-AdaMax 99.64 100.00 97.50 98.70
Modifed ResNet50-NAdam 99.46 100.00 96.60 98.30
Modifed ResNet50-RMSprop 96.94 99.30 80.20 88.70

34 International Journal of Intelligent Systems

RMSprop: Root Mean Square Propagation
AdaMax: Adaptive Moment Estimation with

Infnity Norm
VGG19: Visual Geometry Group with 19 layers
AI: Artifcial intelligence
CTR: Cardiothoracic ratio
CXRDANet: Chest X-ray with dual attention network
PA: Posterior-anterior
AUC: Area under the curve
GAP: Global average pooling
SGD: Stochastic gradient descent
CNN-Adam: CNN with Adam optimizer
CNN-NAdam: CNN with NAdam optimizer
ResNet50-
AdaGrad:

ResNet50 with AdaGrad optimizer

ResNet50-
AdaMax:

ResNet50 with AdaMax optimizer

ResNet50-
RMSprop:

ResNet50 with RMSprop optimizer

ML: Machine learning
CNNs: Convolutional neural networks
VGG16: Visual Geometry Group with 16 layers
Adam: Adaptive Moment Estimation
TN: True Negative
FP: False Positive
FN: False Negative
TP: True Positive
NLP: Natural language processing
CXR: Chest X-ray
CAM: Channel attention module
SAM: Spatial attention module
AMM: Attention mapping mechanism
JSRT: Japanese Society of Radiological

Technology
CNN-AdaGrad: CNN with AdaGrad optimizer
CNN-AdaMax: CNN with AdaMax optimizer
CNN-RMSprop: CNN with RMSprop optimizer
ResNet50-
Adam:

ResNet50 with Adam optimizer

ResNet50-
NAdam:

ResNet50 with NAdam optimizer.

Data Availability

Data are available on request from the corresponding
author.

Disclosure

Intellectual property protection measures have been thor-
oughly discussed, and there are no impediments to its
dissemination, including publication timing. Accordingly,
we confrm our adherence to our institutions’ guidelines on
intellectual property.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

All authors have reviewed and approved themanuscript, and
no supplementary contributors who meet authorship cri-
teria have been excluded. Te sequence of authors has been
agreed upon mutually.

Acknowledgments

Te authors extend their sincere thanks to the Deanship of
Scientifc Research, Vice Presidency for Graduate Studies
and Scientifc Research, King Faisal University, Saudi
Arabia, for their generous fnancial support, which was
crucial for the research project (GRANT 5,740).

References

[1] A. A. Novikov, D. Lenis, D. Major, J. Hladuvka, M. Wimmer,
and K. Buhler, “Fully convolutional architectures for multi-
class segmentation in chest radiographs,” IEEE Transactions
on Medical Imaging, vol. 37, no. 8, pp. 1865–1876, 2018.

[2] S. Candemir, S. Rajaraman, G. Toma, and S. Antani, “Deep
learning for grading cardiomegaly severity in chest x-rays: an
investigation,” in 2018 IEEE Life Sciences Conference (LSC),
pp. 109–113, IEEE, Montreal, Canada, October 2018.

[3] Q. Que, Z. Tang, R. Wang et al., “CardioXNet: automated
detection for cardiomegaly based on deep learning,” in 2018
40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pp. 612–615, IEEE,
Honolulu, HI, USA, July 2018.

[4] T. Gupte, M. Niljikar, M. Gawali, V. Kulkarni, A. Kharat, and
A. Pant, “Deep learning models for calculation of cardio-
thoracic ratio from chest radiographs for assisted diagnosis of
cardiomegaly,” in 2021 International Conference on Artifcial
Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), pp. 1–6, IEEE, Durban, South Africa,
August 2021.

[5] P. Xu, F. Roosta, and M. W. Mahoney, “Second-order opti-
mization for non-convex machine learning: an empirical
study,” in Proceedings of the 2020 SIAM International Con-
ference on DataMining, pp. 199–207, SIAM, Philadelphia, PA,
USA, July 2020.

[6] Z. C. Taçyildiz, E. Kiliç, A. Budak, and H. Karataş, “Car-
diothoracic ratio calculation and cardiomegaly detection
based on object detection,” in 2021 29th Signal Processing and
Communications Applications Conference (SIU), pp. 1–4,
IEEE, Istanbul, Turkey, June 2021.

[7] K. Dimopoulos, G. Giannakoulas, I. Bendayan et al., “Car-
diothoracic ratio from postero-anterior chest radiographs:
a simple, reproducible and independent marker of disease
severity and outcome in adults with congenital heart disease,”
International Journal of Cardiology, vol. 166, no. 2, pp. 453–457,
2013.

[8] S. E. Sorour, A. A. A. El-Mageed, K. M. Albarrak,
A. K. Alnaim, A. A. Wafa, and E. El-Shafeiy, “Classifcation of
Alzheimer’s disease using MRI data based on Deep Learning
Techniques,” Journal of King Saud University-Computer and
Information Sciences, vol. 36, no. 2, Article ID 101940, 2024.

[9] C.-H. Lin, F. Z. Zhang, J. X. Wu et al., “Posteroanterior chest
X-ray image classifcation with a multilayer 1D convolutional
neural network-based classifer for cardiomegaly level
screening,” Electronics, vol. 11, no. 9, p. 1364, 2022.

International Journal of Intelligent Systems 35

[10] J.-X. Wu, C.-C. Pai, C.-D. Kan, P.-Y. Chen, W.-L. Chen, and
C.-H. Lin, “Chest X-ray image analysis with combining 2D and
1D convolutional neural network based classifer for rapid
cardiomegaly screening,” IEEE Access, vol. 10, pp. 47824–47836,
2022.

[11] L. Chen, T. Mao, and Q. Zhang, “Identifying cardiomegaly in
chest x-rays using dual attention network,” Applied In-
telligence, vol. 52, no. 10, pp. 11058–11067, 2022.

[12] S. Zhou, X. Zhang, and R. Zhang, “Identifying cardiomegaly
in ChestX-ray8 using transfer learning,” in MEDINFO 2019:
Health and Wellbeing E-Networks for All, pp. 482–486, IOS
Press, Amsterdam, Netherlands, 2019.

[13] M. Innat, M. F. Hossain, K. Mader, and A. Z. Kouzani, “A
convolutional attention mapping deep neural network for
classifcation and localization of cardiomegaly on chest
X-rays,” Scientifc Reports, vol. 13, no. 1, p. 6247, 2023.

[14] P. Ajmera, A. Kharat, T. Gupte et al., “Observer performance
evaluation of the feasibility of a deep learning model to detect
cardiomegaly on chest radiographs,” Acta Radiologica Open,
vol. 11, no. 7, Article ID 205846012211073, 2022.

[15] S. S. Sarpotdar, “Cardiomegaly detection using deep con-
volutional neural network with U-net,” 2022, https://arxiv.
org/abs/2205.11515.

[16] H. Bougias, E. Georgiadou, C. Malamateniou, and
N. J. A. R. Stogiannos, “Identifying cardiomegaly in chest
X-rays: a cross-sectional study of evaluation and comparison
between diferent transfer learning methods,” Acta Radio-
logica, vol. 62, no. 12, pp. 1601–1609, 2021.

[17] E. Ribeiro, D. A. Cardenas, J. E. Krieger, and M. A. Gutierrez,
“Interpretable deep learning model for cardiomegaly de-
tection with chest X-ray images,” in Anais do XXIII Simpósio
Brasileiro de Computação Aplicada à Saúde, pp. 340–347,
SBC, London, UK, 2023.

[18] L. K. Singh, Pooja, H. Garg, and M. Khanna, “Deep learning
system applicability for rapid glaucoma prediction from
fundus images across various data sets,” Evolving Systems,
vol. 13, no. 6, pp. 807–836, 2022.

[19] M. Khanna, L. K. Singh, S. Tawkar, and M. Goyal, “Deep
learning based computer-aided automatic prediction and
grading system for diabetic retinopathy,” Multimedia Tools
and Applications, vol. 82, pp. 1–48, 2023.

[20] M. Sorić, D. Pongrac, and I. Inza, “Using convolutional neural
network for chest X-ray image classifcation,” in 2020 43rd
International Convention on Information, Communication
and Electronic Technology (MIPRO), pp. 1771–1776, IEEE,
Opatija, Croatia, September 2020.

[21] A. Bhat, “Automated detection of COVID-19 from X-ray
images using deep convolutional neural networks,” in 2021
3rd International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N),
pp. 2076–2081, IEEE, Greater Noida, India, December 2021.

[22] R. D. Portela, J. R. G. Pereira, M. G. F. Costa, and C. F. F. Costa
Filho, “Lung region segmentation in chest x-ray images using
deep convolutional neural networks,” in 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), pp. 1246–1249, IEEE, Montreal,
Canada, July 2020.

[23] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of
convolutional neural networks: analysis, applications, and
prospects,” IEEE transactions on neural networks and learning
systems, vol. 33, 2021.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770–778, Las
Vegas, NV, USA, June 2016.

[25] R. Sun, “Optimization for deep learning: theory and algo-
rithms,” 2019, https://arxiv.org/abs/1912.08957.

[26] R.-Y. Sun, “Optimization for deep learning: an overview,”
Journal of the Operations Research Society of China, vol. 8,
no. 2, pp. 249–294, 2020.

[27] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and
A. Y. Ng, “On optimization methods for deep learning,” in
Proceedings of the 28th international conference on in-
ternational conference on machine learning, pp. 265–272,
Bellevue, WA, USA, June 2011.

[28] B. Qolomany, M. Maabreh, A. Al-Fuqaha, A. Gupta, and
D. Benhaddou, “Parameters optimization of deep learning
models using particle swarm optimization,” in 2017 13th
International Wireless Communications and Mobile Com-
puting Conference (IWCMC), pp. 1285–1290, IEEE, Valencia,
Spain, July 2017.

[29] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, “Scalable
second order optimization for deep learning,” 2020, https://
arxiv.org/abs/2002.09018.

[30] A. L. Friesen and P. Domingos, “Deep learning as a mixed
convex-combinatorial optimization problem,” 2017, https://
arxiv.org/abs/1710.11573.

[31] H. Pan, X. Niu, R. Li, Y. Dou, and H. Jiang, “Annealed
gradient descent for deep learning,” Neurocomputing,
vol. 380, pp. 201–211, 2020.

[32] S. Arora, Z. Li, and A. Panigrahi, “Understanding gradient
descent on the edge of stability in deep learning,” in In-
ternational Conference on Machine Learning, pp. 948–1024,
Baltimore, MD, USA, July 2022.

[33] J. Zhang, “Gradient descent based optimization algorithms for
deep learning models training,” 2019, https://arxiv.org/abs/
1903.03614.

[34] S. Ruder, “An overview of gradient descent optimization
algorithms,” 2016, https://arxiv.org/abs/1609.04747.

[35] N. Ketkar, “Stochastic gradient descent,” Deep learning with
Python: A hands-on introduction, Springer, Berlin,
Germanypp. 113–132, 2017.

[36] P. Netrapalli, “Stochastic gradient descent and its variants in
machine learning,” Journal of the Indian Institute of Science,
vol. 99, no. 2, pp. 201–213, 2019.

[37] L. Bottou, “Large-scale machine learning with stochastic
gradient descent,” in Proceedings of COMPSTAT’2010: 19th
International Conference on Computational Statistics,
pp. 177–186, Springer, Paris France, August 2010.

[38] G. Perin and S. Picek, “On the infuence of optimizers in deep
learning-based side-channel analysis,” in Selected Areas in
Cryptography: 27th International Conference, pp. 615–636,
Springer, Halifax, Canada, October 2021.

[39] N. Shlezinger, Y. C. Eldar, and S. P. Boyd, “Model-based deep
learning: on the intersection of deep learning and optimi-
zation,” IEEE Access, vol. 10, pp. 115384–115398, 2022.

[40] Z. Li and S. Arora, “An exponential learning rate schedule for
deep learning,” 2019, https://arxiv.org/abs/1910.07454.

[41] Z. Xu, A. M. Dai, J. Kemp, and L. Metz, “Learning an adaptive
learning rate schedule,” 2019, https://arxiv.org/abs/1909.09712.

[42] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
2012, https://arxiv.org/abs/1212.5701.

[43] L. N. Smith, “Cyclical learning rates for training neural
networks,” in 2017 IEEE winter conference on applications of
computer vision (WACV), pp. 464–472, IEEE, Santa Rosa, CA,
USA, March 2017.

36 International Journal of Intelligent Systems

https://arxiv.org/abs/2205.11515
https://arxiv.org/abs/2205.11515
https://arxiv.org/abs/1912.08957
https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/1710.11573
https://arxiv.org/abs/1710.11573
https://arxiv.org/abs/1903.03614
https://arxiv.org/abs/1903.03614
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1910.07454
https://arxiv.org/abs/1909.09712
https://arxiv.org/abs/1212.5701

[44] T. Poggio, V. Torre, and C. Koch, “Computational vision and
regularization theory,” Readings in Computer Vision,
pp. 638–643, 1987.

[45] P. J. Bickel, B. Li, A. B. Tsybakov et al., “Regularization in
statistics,” Test, vol. 15, no. 2, pp. 271–344, 2006.

[46] F. Girosi, M. Jones, and T. J. N. C. Poggio, “Regularization
theory and neural networks architectures,” Neural Compu-
tation, vol. 7, no. 2, pp. 219–269, 1995.

[47] G. Leibbrandt, “Introduction to the technique of dimensional
regularization,” Reviews of Modern Physics, vol. 47, no. 4,
pp. 849–876, 1975.

[48] R. Battiti, “First-and second-order methods for learning:
between steepest descent and Newton’s method,” Neural
Computation, vol. 4, no. 2, pp. 141–166, 1992.

[49] R. Zdunek and A. Cichocki, “Nonnegative matrix factoriza-
tion with constrained second-order optimization,” Signal
Processing, vol. 87, no. 8, pp. 1904–1916, 2007.

[50] N. Agarwal, B. Bullins, and E. Hazan, “Second-order sto-
chastic optimization for machine learning in linear time,”
Journal of Machine Learning Research, vol. 18, no. 1,
pp. 4148–4187, 2017.

[51] A. Lydia and S. Francis, “Adagrad—an optimizer for sto-
chastic gradient descent,” Journal of Computing and In-
formation Sciences, vol. 6, no. 5, pp. 566–568, 2019.

[52] N. Zhang, D. Lei, and J. Zhao, “An improved Adagrad gra-
dient descent optimization algorithm,” in 2018 Chinese Au-
tomation Congress (CAC), pp. 2359–2362, IEEE, Xi’an, China,
November 2018.

[53] Z. Wei, Z. Huang, and J. Zhu, “Position control of magnetic
levitation ball based on an improved adagrad algorithm and
deep neural network feedforward compensation control,”
Mathematical Problems in Engineering, vol. 2020, Article ID
8935423, 13 pages, 2020.

[54] M. N. Halgamuge, E. Daminda, and A. Nirmalathas, “Best
optimizer selection for predicting bushfre occurrences using
deep learning,” Natural Hazards, vol. 103, no. 1, pp. 845–860,
2020.

[55] S. Bock and M. Weiß, “A proof of local convergence for the
Adam optimizer,” in 2019 international joint conference on
neural networks (IJCNN), pp. 1–8, IEEE, Budapest, Hungary,
July 2019.

[56] Z. Zhang, “Improved Adam optimizer for deep neural net-
works,” in 2018 IEEE/ACM 26th international symposium on
quality of service (IWQoS), pp. 1-2, Ieee, Banf, Canada, June
2018.

[57] M. Maurya and N. Yadav, “A comparative analysis of gradient-
based optimization methods for machine learning problems,”
in International Conference on Data Analytics and Computing,
pp. 85–102, Springer, Berlin, Germany, January 2022.

[58] L. R. Campos, P. Nogueira, and E. Nascimento, “Tuning a fully
convolutional network for velocity model estimation,” in
Ofshore Technology Conference Brasil, Rio de Janeiro, Brazil,
October 2019.

[59] M. Obayya, M. S. Maashi, N. Nemri et al., “Hyperparameter
optimizer with deep learning-based decision-support systems
for histopathological breast cancer diagnosis,” Cancers,
vol. 15, no. 3, p. 885, 2023.

[60] A. Pavate, R. J. D. S. Bansode, and D. Analytics, An Analysis of
Derivative-Based Optimizers on Deep Neural Network Models,
CRC Press, Boca Raton, FL, USA, 2021.

[61] G. Amoudi, R. Albalawi, F. Baothman, A. Jamal, H. Alghamdi,
and A. Alhothali, “Arabic rumor detection: a comparative
study,” Alexandria Engineering Journal, vol. 61, no. 12,
pp. 12511–12523, 2022.

[62] M. Munsarif, E. Noersasongko, P. N. Andono, A. Soeleman,
and M. Sam’an, “An improved convolutional neural networks
based on variation types of optimizers for handwritten digit
recognition,” 2022, https://ssrn.com/abstract=4055758.

[63] D. Bahrami and S. Zadeh, “Gravity optimizer: a kinematic
approach on optimization in deep learning,” 2021, https://
arxiv.org/abs/2101.09192.

[64] B. Wang, Q. Meng, W. Chen, and T.-Y. Liu, “Te implicit bias
for adaptive optimization algorithms on homogeneous neural
networks,” in International Conference on Machine Learning,
pp. 10849–10858, PMLR, New York, NY, USA, May 2021.

[65] R. Poojary and A. Pai, “Comparative study of model opti-
mization techniques in fne-tuned CNN models,” in 2019
International Conference on Electrical and Computing Tech-
nologies and Applications (ICECTA), pp. 1–4, IEEE, Ras Al
Khaimah, UAE, November 2019.

[66] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufcient
condition for convergences of Adam and rmsprop,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11127–11135, Long Beach, CA, USA,
June 2019.

[67] M. Yaqub, J. Feng, M. Zia et al., “State-of-the-art CNN op-
timizer for brain tumor segmentation in magnetic resonance
images,” Brain Sciences, vol. 10, no. 7, p. 427, 2020.

[68] U. Michelucci, Applied Deep Learning with TensorFlow 2,
Springer, Berlin, Germany, 2022.

[69] B. J. Sullivan, R. Ansari, M. L. Giger, and H. MacMahon,
“Efects of image preprocessing/resizing on diagnostic quality
of compressed medical images [Chest Radiographs Appli-
cation],” in Proceedings., International Conference on Image
Processing, vol. 2, pp. 13–16, IEEE, Washington, DC, USA,
October 1995.

[70] S. Perumal, T. Velmurugan, and A. Mathematics, “Pre-
processing by contrast enhancement techniques for medical
images,” International Journal of Pure and Applied Mathe-
matics, vol. 118, no. 18, pp. 3681–3688, 2018.

[71] M. Brisinello, R. Grbić, M. Pul, and T. AnCelić, “Improving
optical character recognition performance for low quality im-
ages,” in 2017 International Symposium ELMAR, pp. 167–171,
IEEE, Zadar, Croatia, September 2017.

[72] S. D. Khirade and A. Patil, “Plant disease detection using image
processing,” in 2015 International conference on computing
communication control and automation, pp. 768–771, IEEE,
Pune, India, February 2015.

[73] W. Förstner, “Image preprocessing for feature extraction in
digital intensity, color and range images,” inGeomatic Method
for the Analysis of Data in the Earth Sciences, pp. 165–189,
Springer, Berlin, Germany, 2003.

[74] M. Sharif, S. Mohsin, M. J. Jamal, and M. Raza, “Illumination
normalization preprocessing for face recognition,” in 2010 the
2nd conference on environmental science and information
application technology, vol. 2, pp. 44–47, IEEE,Wuhan, China,
July 2010.

[75] J. Meier, R. Bock, G. Michelson, L. G. Nyúl, and J. Hornegger,
“Efects of preprocessing eye fundus images on appearance
based glaucoma classifcation,” in Computer Analysis of Im-
ages and Patterns: 12th International Conference, CAIP 2007,
pp. 165–172, Springer, Vienna, Austria, August 2007.

[76] F. Pérez-Garcı́a, R. Sparks, S. J. C. M. Ourselin, and
P. Biomedicine, “TorchIO: a Python library for efcient
loading, preprocessing, augmentation and patch-based sam-
pling of medical images in deep learning,” Computer Methods
and Programs in Biomedicine, vol. 208, Article ID 106236,
2021.

International Journal of Intelligent Systems 37

https://ssrn.com/abstract=4055758
https://arxiv.org/abs/2101.09192
https://arxiv.org/abs/2101.09192

[77] G. Caseneuve, I. Valova, N. LeBlanc, and M. J. P. Tibodeau,
“Chest X-ray image preprocessing for disease classifcation,”
Procedia Computer Science, vol. 192, pp. 658–665, 2021.

[78] J. Shijie, W. Ping, J. Peiyi, and H. Siping, “Research on data
augmentation for image classifcation based on convolution
neural networks,” in 2017 Chinese automation congress
(CAC), pp. 4165–4170, IEEE, Jinan, China, October 2017.

[79] A. Mikołajczyk and M. Grochowski, “Data augmentation for
improving deep learning in image classifcation problem,” in
2018 international interdisciplinary PhD workshop (IIPhDW),
pp. 117–122, IEEE, Poland, May 2018.

[80] S. Gu, M. Pednekar, and R. Slater, “Improve image classif-
cation using data augmentation and neural networks,” SMU
Data Science Review, vol. 2, no. 2, p. 1, 2019.

[81] D. Paper and D. Paper, “Increase the diversity of your dataset
with data augmentation,” State-of-the-Art Deep Learning
Models in TensorFlow, Springer, Berlin, Germanypp. 37–64,
2021.

[82] R. Poojary, R. Raina, and A. Kumar Mondal, “Efect of data-
augmentation on fne-tuned CNNmodel performance,” IAES
International Journal of Artifcial Intelligence, vol. 10, no. 1,
p. 84, 2021.

[83] A. Soliman and J. Terstriep, “Keras Spatial: extending deep
learning frameworks for preprocessing and on-the-fy aug-
mentation of geospatial data,” in Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on AI for Geographic
Knowledge Discovery, pp. 69–76, Chicago, IL, USA, November
2019.

[84] L. Perez and J. Wang, “Te efectiveness of data augmentation
in image classifcation using deep learning,” 2017, https://
arxiv.org/abs/1712.04621.

[85] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A com-
parison of extrinsic clustering evaluation metrics based on
formal constraints,” Information Retrieval, vol. 12, no. 4,
pp. 461–486, 2009.

[86] A. K. A. De Medeiros, A. Guzzo, G. Greco et al., “Process
mining based on clustering: a quest for precision,” in Business
Process Management Workshops: BPM 2007 International
Workshops, pp. 17–29, Springer, Brisbane, Australia, Sep-
tember 2008.

[87] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “Combining
evaluation metrics via the unanimous improvement ratio and
its application to clustering tasks,” Journal of Artifcial In-
telligence Research, vol. 42, pp. 689–718, 2011.

[88] S. Candemir, S. Jaeger, W. Lin, Z. Xue, S. Antani, and
G. Toma, “Automatic heart localization and radiographic
index computation in chest x-rays,” inMedical Imaging 2016:
Computer-Aided Diagnosis, vol. 9785, pp. 302–309, SPIE,
Bellingham, WA, USA, 2016.

38 International Journal of Intelligent Systems

https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/1712.04621

