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Medical image segmentation is a critical task in the healthcare feld.While deep learning techniques have shown promise in this area, they
often require a large number of accurately labeled images. To address this issue, semisupervised learning has emerged as a potential
solution by reducing the reliance on precise annotations. Among these approaches, the student-teacher framework has garnered attention,
but it is limited in its reliance solely on the teacher model for information. To overcome this limitation, we propose a prototype-based
mutual consistency learning (PMCL) framework. Tis framework utilizes two branches that learn from each other, incorporating
supervision loss and consistency loss to adapt tominor data perturbations and structural diferences. By employing prototype consistency
learning, we are able to achieve reliable consistency loss. Our experiments on three public medical image datasets demonstrate that PMCL
outperforms other state-of-the-art methods, indicating its potential in semisupervised medical image segmentation. Our framework has
the potential to assist medical professionals in enhancing their diagnoses and delivering improved patient care.

1. Introduction

Automatic and accurate segmentation of tumors, organs, or
lesions is the premise of designing computer-aided diagnosis
and detection systems. Deep convolutional neural networks
have performed well at many medical image segmentation
tasks [1–3]. However, these methods require a large number of
high-quality labeled images to achieve very good results. It is
laborious and time-consuming for experienced experts tomake
reliable and accurate annotations. We study semisupervised
methods to fully utilize a small number of labeled images and
a large number of unlabeled images to solve this problem.

Semisupervisedmethods have developed rapidly, especially
in the feld of medical image segmentation. Temporal
ensembling and the II model [4] are proposed to accomplish
semisupervised learning tasks by adding noise to the unlabeled
data and then minimizing the diference between the pre-
diction results of the source data and the noised data.Temean

teacher framework [5] utilized the exponential moving average
(EMA) of the temporal ensembling method. Te network
consists of a teacher model and a student model. Te student
model is trained by gradient descent, and the teacher model is
obtained by using the parameters of the student model. Te
mean teacher framework has a simple structure and excellent
experimental results, so many subsequent methods [6–8] make
full use of this framework and extend this framework. Xie et al.
[6] added a confdence module to the mean teacher framework
to predict the confdence of the model and improve the per-
formance of the network. Li et al. [7] introduced more per-
turbations to both the data and model of the mean teacher
framework to construct the consistency loss. Yu et al. [8]
encouraged the model to learn more reliable goals by adding
uncertainty awareness to the mean teacher framework.
Adversarial learning is also used for semisupervised segmen-
tation [9, 10]. Zhang et al. [10] proposed a deep adversarial
network to encourage consistency between the predicted
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segmentation of unlabeled data. More recently, there have been
some multitask network structures for semisupervised medical
image segmentation tasks [11, 12]. Li et al. [11] performed
image segmentation and signed distance map regression tasks
at the same time and used the discriminator as a regularization
item. Luo et al. [12] built a multitask network that builds the
consistency from the diference of segmentation tasks and the
level set function regression task.

However, in themean teacher framework, the parameters of
the student network are obtained by the combination of the
segmentation and consistency loss, the exponential moving
average is calculated to obtain the parameters of the teacher
network, and the total loss is updated to guide the student
network in turn. We want to build a framework that consists of
two student models, which we encourage to learn from each
other, combining their learned information to improve network
performance.Wepropose a prototype-basedmutual consistency
learning framework (PMCL) for medical image segmentation
tasks, which is divided into two branches, which we can regard
as two student models. To make them learn diferent in-
formation, the two studentmodels are slightly diferent.Te two
branches use prototype learning to obtain the segmentation
predictions of unlabeled images under diferent distur-
bances, and we obtain the consistency loss by comparing
the segmentation predictions of the two branches. Te
prediction diference between the two branches can be
considered as a complex area. By applying the consistency
loss to the output of each decoder, high-confdence re-
gions can be learned. For labeled images, the two
branches obtain diferent pieces of information through
slightly diferent decoders. Te framework learns more
reliable information through a combination of two su-
pervision losses. Te two branches learn from each other,
allowing the network to train end-to-end.Te main
contributions of this work are as follows:

(1) We propose a semisupervised 2D medical image
segmentation framework, PMCL, which allows two
networks to learn from each other for semi-
supervised segmentation tasks. Te proposed
framework can also be applied to other 2D and 3D
semisupervised medical image segmentation tasks.

(2) We use prototype consistency learning to generate
high-quality pseudolabels specifcally for unlabeled
images, which are more reliable than those generated
by other methods. Te performance of the network
can be signifcantly improved by using labels ob-
tained specifcally from unlabeled images.

(3) Comprehensive experiments on three public medical
image datasets demonstrate the superiority of PMCL
to other semisupervised methods. Ablation experi-
ments confrm the efectiveness of each submodule
of the proposed method.

2. Related Work

We introduce related work on semisupervised medical
image segmentation, mutual learning, and prototype con-
sistency learning.

2.1. Semisupervised Medical Image Segmentation.
Semisupervised learning plays an increasing role in the feld
of medical image segmentation. It can be roughly divided
into regularization methods based on data or model dis-
turbances, adversarial learning methods, and consistency
methods based on multitask levels.

Tere are many pseudolabel methods [14, 15], which
utilize labeled data to train the model, generate pseudolabels
for unlabeled data, and add these to the training set to
continue training. Te most important task is fnding high-
quality soft labels. Hung et al. [16] designed a discriminator
to provide supervisory signals to perform semisupervised
medical image segmentation tasks. It can learn to distinguish
between ground-truth label maps and probability maps for
segmentation prediction. Combining spatial cross-entropy
loss, this paper uses adversarial loss to encourage segmen-
tation networks to generate prediction probability maps that
are close to the real label map in high-order structures.
Temporal ensembling and the II model [4] were proposed to
complete semisupervised learning by minimizing the dif-
ference between the predicted results of the original un-
labeled data and the noised unlabeled data. Virtual
adversarial training (VAT) [17] proposed a regularization
method based on virtual adversarial loss: a new measure of
local smoothness of label distribution given input condi-
tions. Te virtual adversarial loss is defned as the robustness
of the conditional label distribution around each input data
point to local disturbances. It replaces random perturbations
with adversarial perturbations designed to deceive the
trained model, enabling the network to efectively learn the
local smoothness a priori and become more resilient to
various noises.

Mean teacher [5] also uses the consistency regularity and
is divided into student and teacher models. Te student
model obtains the parameters through gradient descent, and
the teacher model obtains them through the exponential
moving average calculation of the student model parame-
ters. Te diference between the two model parameters can
be regarded as a part of the network disturbance, which,
together with the data disturbance, constitutes the total
disturbance. Mean teacher has achieved great success in
semisupervised image segmentation, and many subsequent
networks [6–8] have modifed and extended it. Li et al. [7]
added more perturbations to the data and model based on
the mean teacher framework. Yu et al. [8] used Monte Carlo
dropout to add uncertainty awareness to the mean teacher
framework to allow the learning of more reliable
information.

Multitask network structures for semisupervisedmedical
image segmentation have recently appeared. SASSnet [11]
performs signed distance map regression and image seg-
mentation tasks at the same time and uses the discriminator
as a regularization item. Te stability and robustness of the
segmentation results are ensured by introducing prior in-
formation of shape and position. DTC [12] also builds
consistency from the level of tasks for semisupervised
learning and uses a multitask network. Unlike SASSnet, it
uses the representation diference between the two tasks to
build consistency.
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2.2. Mutual Learning. High-performance deep neural net-
works generally have a huge number of parameters, so
sophisticated networks such as MobileNet [18] and Shuf-
feNet [19] appeared later. Hinton et al. [20] proposed
knowledge distillation technology, which uses a more
complex teacher model that has been trained to guide
a relatively lightweight student model for training. While
reducing the model size and computing resource re-
quirements, it tries to maintain the accuracy of the original
teacher model. In the semisupervised medical image seg-
mentation tasks, much work [5–8] has used the student-
teacher network architecture to improve network
performance.

In our work, the entire network framework has a mu-
tual learning framework. In the student-teacher network,
the student network can only learn from the teacher
network. Unlike the student-teacher network, mutual
learning consists of two student networks, which can learn
from each other and make progress together. Mutual
learning frameworks are widely used in multimodel ar-
chitectures, and they have achieved good results at various
tasks. Zhang et al. [21] frst proposed a deep mutual
learning strategy. Each network used the sum of its own
supervision loss and the interaction loss from other net-
works to supervise network learning. Wu et al. [22] pro-
posed two decoders in semisupervised medical image
segmentation, whose outputs used pseudolabels to guide
each other’s probability map. Tis design made the output
of the submodel consistent and low entropy, which can
better segment edges and isolated parts of the image. Zhang
and Zhang [23] designed two networks with the same
structure, resulting in segmentation and regression layers.
Te networks were optimized to learn useful knowledge
through mutual learning. Many methods [24–26] have
exploited mutual learning methods.

2.3. Prototype Learning. In our method, we generate pre-
dicted labels for unlabeled images by using prototype
learning in few-shot segmentation learning tasks, where the
latter aims to learn transferable knowledge from diferent
tasks with just a few samples. In prototype learning, the
labeled data in the training set are used as the model’s
support set, and the prediction object is used as the net-
work’s query set. Te network must learn to use the support
set to predict the label of the query set.

Manymethods, includingmetric- [27, 28], optimization-
[29, 30], and graph-based [31, 32] methods, have been
proposed for few-shot learning. Among these, prototype-
based methods are widely used in few-shot segmentation, as
they reduce computation and perform relatively well. Snell
et al. [27] proposed a prototypical network to represent each
class with one feature vector in image classifcation tasks,
using the nearest neighbor classifer to predict the category
of the query set. Shaban et al. [33] proposed a classical two-
branch model for few-shot segmentation tasks, using
a conditional branch to extract the prototype features of the
support set and a segmentation branch to extract the features
of the query set, obtaining a segmentation map through

logistic regression. Dong and Xing [34] also used metric
learning and prototypical networks to complete few-shot
segmentation tasks. SG-One [35] used masked average
pooling to generate prototypes for the support set and cosine
similarity to establish the relationship between the query set
and prototype. Masked average pooling has since been
widely used. Wang et al. [36] proposed prototype alignment
regularization to make full use of the information of the
support set. CANet [37] introduced the attention mecha-
nism in prototype learning, using the middle-level features
of the network to compare the query and support sets, and
continuously iterating the network to obtain the segmen-
tation results. FWB [38] improved the quality of the pro-
totype by performing the same operations on the support set
image as on the query set. AMP [39] considered the support
set of the historical state when calculating the prototype and
combined prototypes under diferent feature resolutions.
Some methods [40–42] have used superpixels to accomplish
few-shot segmentation tasks.

We transfer the prototype learning in few-shot learning
to semisupervised learning and use it to generate high-
quality pseudolabels for unlabeled images to improve the
reliability of network prediction.

3. Proposed Methodology

We present the details of the proposed PMCL method. We
introduce the general semisupervised learning framework to
make our method more intuitive and easier to understand,
and then, we present the prototype consistency and mutual
consistency learning modules. In this section, the overall loss
composition of the framework is explained frst. Ten, the
process of generating masks generated by prototype learning
is explained, and fnally, the consistency loss caused by
masks is explained.

3.1. Semisupervised Segmentation Framework. Figure 1
shows the PMCL framework, which is trained as follows:
Te encoders of the two branches have the same structure
and share weights. Two decoders from UNet [13] can
capture uncertainty information through slight structural
diferences. A labeled image and an unlabeled image are fed
into the two branches. For each branch, a shared backbone
encoder is frst used to embed the labeled and unlabeled
images into deep features. Ten, masked average pooling is
utilized to obtain prototypes for the foreground and back-
ground from the labeled data and corresponding ground-
truth, as discussed in Section 3.2. Label each pixel according
to the class of the nearest prototype in order to segment the
unlabeled images. A mutual learning network framework
constrains the outputs of the two branches, as detailed in
Section 3.3. Consistency loss and supervised loss constitute
the total loss.

In the semisupervised learning setting, we have N la-
beled and M unlabeled training samples. We denote the
respective labeled and unlabeled sets as Dl � xi, yi􏼈 􏼉

N

i�1 and
Du � xi􏼈 􏼉

N+M
i�N+1, where xi ∈ RH×W is the input image,

yi ∈ RH×W is the ground truth of xi, and H and W are the

International Journal of Intelligent Systems 3



image height and width, respectively. So, we can train our
semisupervised medical image segmentation framework by
minimization:

min
θ,ξ,ξ′

􏽘

N

i�1
Ls θ, ξ, ξ′, Dl􏼒 􏼓 + λ 􏽘

N+M

i�1
Lc θ, ξ, ξ′, Du􏼒 􏼓, (1)

whereLs andLc are supervised loss and consistency loss, θ,
ξ, and ξ′ are the weights of the encoder, decoder1, and
decoder2, and λ is a ramp-up weighting coefcient that
controls the trade-of between the supervised and consis-
tency loss and can prevent the network from learning
meaningless consistency goals at the beginning of training.

Te total loss of our prototype-based mutual consistency
learning network is a weighted combination of supervised
loss Ls and consistency loss Lc, which are calculated only
from labeled and unlabeled images, respectively. Te total
loss is

L � Ls + λLc. (2)

3.2. Prototype Mutual Learning. Previous semisupervised
methods have usually directly used the encoding and
decoding structure to generate segmentation predictions
for unlabeled images, which does not efciently utilize the
information in the labeled images and corresponding
labels. We want to efciently generate pseudolabels for
unlabeled images, which can be accomplished with the
prototype learning method in few-shot learning. We use
the labeled image and its ground truth as the support set
and the unlabeled image as the query set to train the
network. Our model is based on a prototypical network
[27] that uses the mask annotations of the support set to

learn prototypes for the foregrounds and backgrounds of
images. To maintain input consistency, we adopt a late
fusion strategy that uses a shared feature extractor to
generate feature maps for the foregrounds and back-
grounds of images [35, 43]. Specifcally, we have a support
set Si � (Xl(k), Yl(k)), and Fl(k) is a feature map extracted
by the encoder for the labeled image Xl(k), where k �

1, . . . , K indexes the support images. We can obtain the
prototype of the foreground by masked average pooling
[35]:

pl(fg) �
1
K

􏽘
K

􏽐x,yF
(x,y)

l(k) l Y
(x,y)

l(k) ∈ Cfg􏽨 􏽩

􏽐x,yl Y
(x,y)

l(k) ∈ Cfg􏽨 􏽩
, (3)

where (x, y) indexes the spatial locations, l(·) is an in-
dicator function that returns 1 if the condition is true and
otherwise outputs 0, and Cfg is the foreground segmen-
tation target. We can also obtain the prototype of the
background as

pl(bg) �
1
K

􏽘
K

􏽐x,yF
(x,y)

l(k) l Y
(x,y)

l(k) ∉ Cfg􏽨 􏽩

􏽐x,yl Y
(x,y)

l(k) ∉ Cfg􏽨 􏽩
. (4)

Nonparametric metric learning is used to learn the
optimal prototype and complete segmentation. Since seg-
mentation can be thought of as a classifcation of each spatial
position, we calculate the distance between the query feature
vector for each spatial position and each computed pro-
totype. We introduce a distance function d and apply the
softmax function over distances to produce a probability
map Mj over classes. Let Pl � pl(fg)􏼈 􏼉∪ pl(bg)􏼈 􏼉 and de-
note the feature map extracted from unlabeled data as Fu.
For each pj ∈ Pl, we have

Labeled data 

Unlabeled data

Encoder

Decoder1 Pl Ground_truth

Share weights

Labeled data

Encoder

(a) (b) (c)

Masked Average Pooling

cos

prototypes

Masked Average Pooling

prototypes

Decoder2

cos

Lc1

Ls1

Lc2

Yu

Ls2

Y ’u

P ’l

F ’u

F u

Fl

Fl Ground_truth

Figure 1: Overview of the proposed prototype-based mutual consistency learning network (PMCL) for semisupervised medical image
segmentation. Te entire framework consists of two branches, inspired by the Unet [13] method. Te orange line represents the fow of
labeled images, and the blue line represents the fow of unlabeled images. Te entire framework can be divided into three parts. (a) Embed
depth features into the original image. (b) Perform segmentation tasks on student models. (c) Te composition of the framework loss we
proposed.
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M
(x,y)
j �

exp −αd F
(x,y)
u , pj􏼐 􏼑􏼐 􏼑

􏽐pj∈Pl
exp −αd F

(x,y)
u , pj􏼐 􏼑􏼐 􏼑

, (5)

where the distance function d(·) adopts the cosine distance
(i.e., cos in Figure 1) to measure the similarity between the
unlabeled feature map Fu and the labeled prototypesPl, and
the multiplier α is set as 20, as used in PANet [36].

Ten, we can obtain the predicted segmentation mask of
unlabeled data as follows:

Y
(x,y)
u � argmax

j∈ fg,bg{ }

M
(x,y)
j . (6)

Similarly, we can get the predictive segmentation mask
of the unlabeled image of the other branch by performing the
above operations (i.e., Yu

′). Te two branches generate dif-
ferent pseudolabels for unlabeled data under diferent data
perturbations. We add Gaussian noise on unlabeled data of
the second branch (i.e., noise ε). Te network can focus on
high-confdence areas through the diferent pseudolabels
generated by the two branches and obtain more reliable and
robust results through consistency learning. We verify the
role of prototype consistency learning in the network
through an ablation experiment, as described in Section 4.4.

3.3. Mutual Consistency Learning. In a mutual learning
framework, multiple untrained branches learn at the same
time to solve tasks together. Each branch is guided by
traditional supervised learning loss and consistency loss
from other branches.

At the beginning of training, each branch can quickly
segment images relatively correctly because of the traditional
supervised loss. At this point, the predictions of the same
pixels may difer according to initial conditions and network
structures. Te framework encourages consistent pre-
dictions from each branch. Te consistency loss from other
branches fne-tunes the model to perform better in complex
segmentation areas. In the end, mutual learning helps to
obtain a more robust and generalized network.

Our mutual learning framework consists of prototype
mutual consistency learning for unlabeled data and mutual
supervision learning for labeled data.

For prototype mutual consistency learning, to measure
the segmentation predictions of the two branches, Kullback
Leibler (KL) [21] divergence is used as the consistency loss.
Te consistency loss from Yu to Yu′ is computed as

Lc1 � DKL Y
′
u‖Yu􏼒 􏼓 � 􏽘

j

Y
′
u(j) log

Y
′
u(j)

Yu(j)

. (7)

We can similarly obtain the consistency loss from Y ′u to
Yu as

Lc2 � DKL Yu‖Y
′
u􏼒 􏼓 � 􏽘

j

Yu(j)log
Yu(j)

Y
′
u(j)

. (8)

In this way, each branch learns to correctly predict
segmentations of training data and to match the probability
estimate of its peer. We balance the two consistency losses to
obtain the fnal consistency loss:

Lc � 0.5∗ Lc1 + Lc2( 􏼁. (9)

For mutual supervision learning, decoder1 and decoder2
perform upsampling through bilinear interpolation and
deconvolution, respectively.Te diferent decoder structures
prompt the model to learn more information. We combine
cross-entropy and Dice loss to calculate the supervised loss.
Te two branches are calculated as follows:

Ls1 � 0.5∗ Lce Pl, Yl( 􏼁 + LDice Pl, Yl( 􏼁( 􏼁, (10)

Ls2 � 0.5∗ Lce Pl
′, Yl( 􏼁 + LDice Pl

′, Yl( 􏼁( 􏼁. (11)

To fully utilize the information of both branches and let
the model train end-to-end, we combine the two supervised
losses:

Ls � 0.5∗ Ls1 + Ls2( 􏼁. (12)

Hence, the network obtains more reliable information
from the labeled data through the mutual learning
framework.

4. Experiments and Results

We discuss the implementation and compare the perfor-
mance of PMCL and other semisupervised medical image
segmentation algorithms on three public datasets. We
performed ablation experiments to validate each part of our
method.

4.1. Datasets and Evaluation Metrics. We evaluated our
method on three public polyp segmentation datasets: CVC-
ClinicDB [44], CVC-ColonDB [45], and Kvasir-SEG [46].
CVC-ClinicDB contains 612 images of size 384× 288 pixels.
CVC-ColonDB contains 380 images of size 574× 500 pixels.
Kvasir-SEG contains 1000 images, which we scaled to
256× 256 pixels before training, as they vary in size from
332× 487 to 1920×1072 pixels. In our experiments, we
follow the training settings of [3, 47, 48]. Te division of the
three datasets was the same, with random selections of 80%
of the images for training, 10% for validation, and 10% for
testing. Each image was normalized to unit variance and zero
mean. For training images, only 10% and 20% were used as
labeled, and the remaining data were used as unlabeled data.
Table 1 shows the image size, scale of training set, validation
set, and testing set of these datasets.

We evaluated segmentation performance using the Dice
similarity coefcient (DSC), Jaccard index (JI), sensitivity
(SE), accuracy (AC), 95% Hausdorf distance (95HD), and
average surface distance (ASD). We combine the experi-
mental protocols in [6, 8] to calculate these metrics.
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4.2. Implementation Details. All the networks in our ex-
periments were trained using PyTorch, with an Nvidia
GeForce TITAN X GPU. For all the methods, the encoder
and the decoders came from UNet [13]. We adopted the
SGD optimizer to train the networks, setting the weight
decay to 0.0001 and momentum to 0.9. We used no pre-
trained weights. We set the initial learning rate of the
network to 0.01 and reduced it by a factor of 10 every 2500
iterations. Te input batch size of the network was set to 4,
consisting of two labeled images and two unlabeled images.
We set the consistency weight factor λ as a time-dependent
Gaussian warming-up function λ(t) � 0.1∗ e− 5(1− t/tmax)2 ,
where t and tmax indicate the current and last training step,
respectively. Because both branches were trained through
mutual learning, we chose the better performance of the two
branches as the fnal test result.

With 1000 or fewer iterations, we let the consistency loss
equal 0, because the network parameters did not converge at
the beginning, and the consistency loss was meaningless.
With greater than 1000 iterations, we added the consistency
loss to the total loss.

4.3. Comparison between PMCL and Other Methods. We
compared the proposed method with existing methods on
CVC-ClinicDB, CVC-ColonDB, and Kvasir-SEG. As shown
in Tables 2–4, we implemented several semisupervised
segmentation methods for comparison, including mean
teacher (MT) [5], deep adversarial network (DAN) [10],
entropy minimization (EM) [49], uncertainty aware mean
teacher (UAMT) [8], and interpolation consistency training
(ICT) [50]. Fully supervised utilized 100% labeled data to
obtain an upper bound on performance. For fair compar-
isons, all methods utilized a UNet [13] backbone network.

Table 2 shows the results of comparative experiments on
CVC-ClinicDB under 10% and 20% labeled images, taking
the supervised-only method as the baseline. With 10% la-
beled images, we can see that all semisupervised methods
show an improvement over the baseline because they can
learn additional information from the unlabeled images by
regularization loss. Te proposed PMCL method shows
steady and obvious improvement over other state-of-the-art
semi-supervised learning methods on the six metrics. DSC
has increased by 6.64%, 4.89%, 6.56%, 4.9%, and 5.65%
compared with [5, 8, 10, 49, 50], respectively, by leveraging
10% labeled images and 90% unlabeled images. When using
20% of labeled images, all semisupervised learning methods
improved. Our method still shows a notable performance
improvement, as DSC has increased by 2.6%, 1.54%, 1.7%,
2.97%, and 0.79% compared with [5, 8, 10, 49, 50], re-
spectively. Te proposed PMCL outperforms the other
methods on the DSC, JI, SE, and 95HD metrics.

Tables 3 and 4 show the performance of the proposed
method and other state-of-the-art methods under 10% and
20% labeled images on CVC-ColonDB and Kvasir-SEG. For
CVC-ColonDB, compared with other state-of-the-art
semisupervised methods, on all six metrics, our method
achieves the best performance under 10% and 20% labeled
data. For Kvasir-SEG, our method performs best on fve
metrics under 10% labeled data and on four metrics under
20% labeled data. Trough experiments on these three
datasets, we can fnd that when using a small amount of
labeled data, our method improves greatly compared with
other methods, which means that it can more efciently
exploit unlabeled images compared with other semi-
supervised methods.

Figures 2–4 show the predicted segmentation results of
the proposed PMCL and other methods under 10% labeled
image settings on three datasets. Compared with other
semisupervised approaches, the predicted segmentation
map of our PMCL has a larger intersection rate with the
ground truth, and its segmentation results are smoother in
the edge area of the lesion.

Overall, the comparison experiments demonstrate that
the PMCL framework can outperform other state-of-the-art
methods under diferent numbers of labeled images, which
means that our method is fully capable of learning the rich
and efective information from the unlabeled images.

4.4. Ablation Study. To verify the impact of prototype
mutual consistency learning and mutual supervision
learning on the entire framework, we conducted ablation
studies on CVC-ClinicDB. We designed a method to use the
MTframework, replacing consistency loss with the proposed
prototype mutual consistency learning, referred to as
Prototype-MT. Te proposed method utilizes mutual
learning between the two branches, where both the super-
vision and consistency losses have two parts.We designed an
experiment to explore the impact of the two parts on the
overall network, proposing three framework structures
based on our network framework for ablation experiments
under 10% labeled data settings: PMCL-B1 uses the loss of
the branch above, L � Ls1 + Lc1; PMCL-B2 uses the loss of
the branch below, L � Ls2 + Lc2; and PMCL combines the
two branch losses.

In Table 5, it can be observed that the performance of
Prototype-MT is better than that of MT, which indicates that
prototype mutual consistency learning can more efectively
utilize unlabeled data and learn more reliable and rich
knowledge from it. Moreover, the performance of PMCL
signifcantly exceeds that of PMCL-B1 and PMCL-B2, which
means that the two branches obtain better performance
through mutual learning. Te ablation experiments show

Table 1: Te medical datasets used in our experiments.

Datasets Images Input size Train Valid Test
CVC-ClinicDB [44] 612 384 × 288 490 61 61
CVC-ColonDB [45] 380 574 × 500 304 38 38
Kvasir-SEG [46] 1000 Variable 800 100 100
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Table 2: Quantitative comparison between our method and other semisupervised methods on CVC-ClinicDB under 10% and 20%
labeled data.

Method Labeled/unlabeled DSC↑ (%) JI↑ (%) SE↑ (%) AC↑ (%) 95HD↓ (mm) ASD↓ (mm)
Fully supervised 490/0 84.16 76.00 85.23 96.83 29.76 8.84
Supervised-only 49/0 61.01 50.72 66.96 92.68 80.68 28.56
MT [5] 49/441 62.36 52.38 66.97 93.08 77.20 26.43
DAN [10] 49/441 64.11 53.49 69.05 93.01 73.83 23.84
EM [49] 49/441 62.44 51.47 67.92 92.70 81.96 28.08
UAMT [8] 49/441 64.10 52.83 70.52 93.05 72.67 26.07
ICT [50] 49/441 63.35 53.33 68.38 92.79 68.38 23.27
PMCL (ours) 49/441 69.  58.5 74.86 93.55 66.68 23. 8
Supervised-only 98/392 72.33 61.44 75.65 94.48 60.12 19.23
MT [5] 98/392 73.04 63.33 76.74 94.59 48.86 13.11
DAN [10] 98/392 74.10 63.59 76.98 94.87 55.19 17.55
EM [49] 98/392 73.94 63.98 75.93 94.77 55.52 14.83
UAMT [8] 98/392 72.67 62.52 78.84 94.59 53.36 15.16
ICT [50] 98/392 74.85 64.87 76.84 94.91 50.35 14.53
PMCL (ours) 98/392 75.64 65.61 81. 9 94.76 48.15 14.58
Te bold values suggest the best performance compared to other state-of-the-art methods.

Table 3: Quantitative comparison between our method and other semisupervised methods on CVC-ColonDB under 10% and 20%
labeled data.

Method Labeled/unlabeled DSC↑ (%) JI↑ (%) SE↑ (%) AC↑ (%) 95HD↓ (mm) ASD↓ (mm)
Fully supervised 304/0 81.05 74.16 80.41 98.78 20.57 5.10
Supervised-only 30/0 36.92 28.26 38.31 94.68 150.09 76.87
MT [5] 30/274 42.56 33.74 43.85 93.99 156.51 77.51
DAN [10] 30/274 44.04 35.11 44.23 95.48 133.45 69.00
EM [49] 30/274 43.39 34.66 42.42 95.60 124.81 62.38
UAMT [8] 30/274 43.45 34.84 42.57 95.43 156.10 82.26
ICT [50] 30/274 44.77 36.70 45.63 94.76 135.35 69.11
PMCL (ours) 30/274 51.14 42.81 5 .29 95.82 1 3.89 42.62
Supervised-only 60/244 62.09 53.85 58.55 97.39 97.72 44.42
MT [5] 60/244 65.65 56.87 67.79 97.42 99.50 48.61
DAN [10] 60/244 66.14 58.02 66.65 97.66 91.36 45.87
EM [49] 60/244 65.29 56.74 67.19 97.37 112.44 45.24
UAMT [8] 60/244 64.82 55.81 64.27 97.77 115.44 46.78
ICT [50] 60/244 65.96 57.74 65.66 97.71 93.75 47.81
PMCL (ours) 60/244 67.42 59.97 68.8 97.91 79.39 38.87
Te bold values suggest the best performance compared to other state-of-the-art methods.

Table 4: Quantitative comparison between proposed PMCL and other semisupervised methods on Kvasir-SEG under 10% and 20%
labeled data.

Method Labeled/unlabeled DSC↑ (%) JI↑ (%) SE↑ (%) AC↑ (%) 95HD↓ (mm) ASD↓ (mm)
Fully supervised 800/0 81.79 73.16 84.62 95.13 77.60 23.53
Supervised-only 80/0 73.04 62.32 80.32 92.39 117.23 46.83
MT [5] 80/720 74.09 63.31 82.33 92.90 115.48 41.87
DAN [10] 80/720 75.29 65.14 81.33 92.88 106.65 39.26
EM [49] 80/720 74.73 64.38 83.75 92.69 121.12 42.55
UAMT [8] 80/720 74.66 64.32 81.61 92.68 112.18 38.61
ICT [50] 80/720 74.58 64.49 80.83 93.02 100.03 37.46
PMCL (ours) 80/720 76. 2 66.4 81.53 93.56 91. 3 3 .96
Supervised-only 160/640 77.94 69.26 83.12 94.09 94.98 32.04
MT [5] 160/640 78.14 69.52 77.29 94.40 77.65 21.14
DAN [10] 160/640 78.38 70.04 78.79 94.48 81.64 20.31
EM [49] 160/640 78.59 69.47 83.23 94.28 91.34 31.94
UAMT [8] 160/640 78.42 69.96 80.30 94.56 78.85 23.26
ICT [50] 160/640 78.78 70.55 78.90 94.48 7 .33 19.71
PMCL (ours) 160/640 79.98 7 .92 84.24 94.63 97.83 31.01
Te bold values suggest the best performance compared to other state-of-the-art methods.
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Image Ground-Truth Fully supervised Ours Supervised-only
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Figure 2: Visual comparison on CVC-ClinicDB under 10% labeled data settings, where the red color indicates predicted polyps.

Image Ground-Truth Fully supervised Ours Supervised-only
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Figure 3: Visual comparison on CVC-ColonDB under 10% labeled data settings, where the red color indicates predicted polyps.
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that our mutual learning framework can learn rich in-
formation from both branches and efectively improve
network performance.

5. Conclusion

We investigated common methods for semisupervised
medical image segmentation and proposed the PMCL
framework. Trough experiments on these three datasets, it
can be found that when using a small number of labeled
images, the PMCL framework has a greater improvement
than other methods. Tis is because the proportion of la-
beled data is smaller, the semisupervised method can utilize
less reliable information, and the proportion of unlabeled
data is higher. Terefore, the semisupervised method can
extract more information from unlabeled data. At this point,
diferent semisupervised learning methods have signifcant

diferences in their ability to extract information, resulting in
signifcant diferences in the fnal results.

From the experiment, it can be seen that the PMCL
method can more fully utilize unlabeled images to improve
network performance compared to other semisupervised
methods. Te proposed method makes full use of a mutual
learning framework to improve its performance and ro-
bustness. We designed prototype mutual consistency
learning to obtain more reliable consistency loss for un-
labeled images and supervision mutual learning for labeled
images. Experiments demonstrated that our method has
potential in semisupervised segmentation tasks.

Data Availability

Te data that support the fndings of this study are available
on request from the corresponding author.

Image Ground-Truth Fully supervised Ours Supervised-only

MT DAN EM UAMT ICT

Figure 4: Visual comparison on Kvasir-SEG under 10% labeled data settings, where the red color indicates predicted polyps.

Table 5: Ablation study on CVC-ClinicDB under 10% labeled data settings.

Method DSC JI SE AC 95HD ASD
MT [5] 62.36 52.38 66.97 93.08 77.20 26.43
Prototype-MT 63.58 53.25 67.55 93.24 67.16 26.24
PMCL-B1 64.70 54.07 69.97 93.15 84.34 27.57
PMCL-B2 64.25 53.47 72.96 92.66 74.43 27.98
PMCL 69.  58.5 74.86 93.55 66.68 23. 8
Te bold values suggest the best performance compared to other models in the ablation study.
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