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In this paper, a convenient process for the fabrication of flexible liquid metal mesh films (LMMF) is proposed first. Then, the light
transmittance and square resistance characteristics of LMMF are studied theoretically and experimentally. The light transmittance
of the LMMF can reach 85% when the line width and spacing are 50μm and 1000 μm, respectively. Furthermore, as an example of
LMMF, a coplanar waveguide loop antenna is designed and fabricated that contains an LMMF with a line width of 50 μm and a
line spacing of 500μm. The measured square resistance and transmittance for the LMMF are 0.0456 Ω/sq and 72%, respectively.
The measured peak gain of the antenna is 3.38 dBi while the average efficiency is 61%. The antenna’s working frequency covers
most of the S-band, C-band, and X-band, as well as multiple channels of fifth generation (5G) communication. Therefore, the
antenna can be used in fields such as radar and mobile communication. Uniquely, the fabricated antenna performs well in
terms of light transmission, conductivity, and flexibility. In particular, it remains stable in stretching and bending deformation.
As a highly light-transmissive stretchable flexible antenna, the antenna is equipped with various functions such as concealability,
conformability, and reconfigurability. This LMMF-based antenna has good prospects for applications in the fields of flexible
electronics and transparent electronics.

1. Introduction

With the gradual rise of fifth generation (5G) wireless technol-
ogy and the Internet of Things, the research and application of
optically transparent antennas have received increasing atten-
tion in recent years [1–7]. Optically transparent antennas can
be attached to the surface of various transparent substrates in
applications that are not easily recognized by the naked eye
and can play an important role in concealment and aesthetics
[1–7]. Therefore, transparent antennas have been installed on
vehicle glass, solar panels of satellites, architectural glass, etc.
However, with the increasing complexity of application sce-
narios, simple transparent antennas have been difficult to meet
the usage requirements. For example, when antennas are used
on objects with complex shapes, they often also need to have

conformal capabilities [8–10]. A better solution is to make
the antenna itself flexible. Furthermore, multifunctional
antennas like bandwidth-enhanced and reconfigurable anten-
nas [11–15] are in keen demand. In particular, in wearable
electronic [16], antennas are expected to be stretchable in the
presence of motion and deformation. Therefore, flexible
stretchable antennas with high transmission have good pros-
pects for development.

The substrate material and the conductive material of
the antenna are key factors for the light transmission, flexi-
bility, and stretchability of the antenna. So far, a variety of
transparent substrates have been used to manufacture trans-
parent antennas, including glass [1, 3, 12, 13, 17–19], poly-
imide (PI) [2], polydimethylsiloxane (PDMS) [5], plexiglass
[6], polyethylene terephthalate (PET) [7, 20, 21], polyvinyl
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chloride (PVC), and Ecoflex™. These materials are different
in various aspects, such as dielectric properties, hardness,
brittleness, and light transmission. For example, glass has high
light transmittance and is difficult to stretch and bend once
formed. Ecoflex™ is very flexible but less light transmitting.
Among them, PDMS is increasingly used by researchers
because of its good flexibility, stretchability, and light trans-
mission, as well as its ease of molding [5].

Conductive materials are also indispensable as the key ele-
ment for transparent antennas. Most existing studies use trans-
parent conductive oxides as conductor materials, such as
indium tin oxide (ITO) [1, 12, 13] and fluorine-doped tin oxide
(FTO) [22, 23]. However, conductive oxides have problems of
large square resistance and high brittleness. Researchers have
tried to sandwich a conductor layer in the middle of the trans-
parent conductive oxide [2, 3, 17–21] or coat it with gold on its
surface [1] to improve the conductivity of the transparent
antenna. However, due to the limited thickness of the added
conductor layer, the conductivity improvement is also limited,
and the brittleness problem remains unavoidable. In fact, in
order to improve the conductivity, the direct fabrication of
the antenna radiation unit with metallic conductors is the best
strategy. In this case, considering the light transmittance, the
metal must be made into a metal mesh with light leakage.

Elmobarak Elobaid et al. used a transparent conductive fab-
ric tissue on a polydimethylsiloxane (PDMS) substrate to obtain
a flexible and transparent ultrawideband (UWB) antenna. The
fabric tissue measured resistivity was 0.089 Ω/sq with a thick-
ness of 0.057mm, which consisted of woven meshed polyester
fibers and coated with nickel/zinc-blackened copper. The mea-
sured optical transmittance exceeded 70% across the entire
visible spectrum (from 400 to 800nm). This work had high
transmittance because the PDMS was used as the substrate
material, but the antenna could only be properly bent and
not stretched because its conductive element was made of
woven meshed polyester fibers that were coated with nickel/
zinc-blackened copper. Tung and Jung, Hong et al., Kim
et al., and Hong et al. published a series of works on transpar-
ent antennas [2, 6, 7, 17]. In their 2019 study, they fabricated a
high-light transmission antenna based on copper mesh [7].
The antenna had a light transmission rate of over 70% and a
low sheet resistance of 0.04 Ω/sq. The average efficiency of
the transparent patch antenna was 83.8% when using capaci-
tive feed. However, the solid metal mesh has certain limita-
tions in flexibility, stretchability, and bendability. Therefore,
it is worth investigating stretchable light-transmitting anten-
nas with new materials and processes.

Liquid metals (LM) refer to metals or alloys that are
liquid at room temperature [24]. Due to their good conduc-
tivity, fluidity, and modified printability, they are used in the
design and fabrication of coaxial phase shifters [25], wave-
guides [26], antennas, etc. [27–29]. In 2018, Pan et al. [30]
proposed a method to make transparent and stretchable cir-
cuits by first plating the copper/chromium layer and then
adhering the LM to the copper/chromium layer. In 2021,
Dejace et al. [31] also manufactured a transparent stretch-
able circuit by first plating a layer of gold and then attaching
gallium. Compared to pure solid metal, the LM film has
better tensile performance. However, the processes of these

two studies are very complex, and there is still a solid metal
layer that is prone to wrinkling during stretching.

This paper presents a simple strategy to fabricate LMMF,
which is used to fabricate antennas with excellent performance
in terms of flexibility, conductivity, and optical transmission.
First, the transmittance and square resistance characteristics
of LMMF are investigated theoretically and experimentally.
Then, to validate the design concept, a prototype of a coplanar
waveguide loop antenna is manufactured. Finally, the perfor-
mance of the coplanar waveguide loop antenna is simulated
and measured, including the reflection coefficient and gain.
The antennas manufactured in this paper can be used in radar
and mobile communication fields, and the new materials and
processes used can provide a reference for the research of
transparent and wearable electronics. Detailed discussions of
LMMF and the LMMF-based antenna are presented below.

2. Liquid Metal Mesh Films

2.1. The Configuration of LMMF. Figure 1 shows the config-
uration of a square LMMF. The black part of the figure was
the liquid metal mesh made of gallium-indium eutectic alloy
(EGaIn, the gallium-indium mass ratio is 75.5 : 24.5), and the
blue substrate used for illustration was made of PDMS (Syl-
gard 184, Dow Corning). EGaIn was encapsulated in PDMS
to prevent leakage and oxidation. According to the notes in
Figure 1, the line width is w, and the line spacing is s. The
thickness of EGaIn is H, the thickness of the substrate that
covers EGaIn is T1, and the thickness of the underlying sub-
strate is T2. The total lengths of the LMmesh and film areW
and L, respectively.

2.2. The Fabrication Process of LMMF. Figure 2 shows the
process flow for the fabrication of LMMF. The first step was
to use soft lithography to make a mold with a convex grid
on the surface of a silicon wafer. Next, the liquid PDMS base
and the curing agent were weighed according to the mass ratio
of 10 : 1, then mixed. The mixture was stirred manually for 10
minutes and kept under vacuum for 30 minutes to remove air
bubbles from the mixture. Then, an appropriate amount of
PDMS was poured into the mold placed in a Petri dish and
baked at 75°C for 2.5 hours to solidify the liquid PDMS
completely. Subsequently, film A with a concave grid was
formed and removed from the silicon wafer. Film B with flat
surfaces was produced in a similar way, and a small hole was
punched in the appropriate position of one corner of film B.
In the following process, a plasma bonder (YZD08-2C, Tang-
shan Yanzhao Technology, China) was used to treat the sur-
face of film A with a grid structure and the surface of one
side of film B, and then, the two surfaces were bonded to
obtain film C with grid flow channels. Film C was heated on
a heating plate at 90°C for 10 minutes to increase the bonding
effect. After that, an EGaIn droplet was dropped on the surface
of the small hole in film C, and film C with the EGaIn droplet
was placed in a vacuum chamber. A high vacuum of 10-4Pa
was obtained in the vacuum chamber by a molecular pump.
When the pressure in the vacuum chamber was restored to
atmospheric pressure, EGaIn was filled into film C, thus
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obtaining LMMF. Finally, excess EGaIn was removed around
the small hole and sealed with an appropriate amount of glue.

2.3. The Transmittance of LMMF. Ignoring half the line width
of LM lines at the edges of the LMMF, it (as shown in Figure 1)

can be regarded as a seamless splicing of many small grids with
a side length of s +w. Taking a small grid as the object of inves-
tigation, there is a nonmetallized area with side length s at the
center of the grid, and the edge of this unit is a square boundary
of width w/2. The area ratio of the nonmetallized area to the
unit can be calculated as

α = s2

s +wð Þ2 : ð1Þ

If the transmittance of the PDMS was A, then the transmit-
tance of the LMMF can be expressed as

T s,wð Þ = A × s
s +w

� �2
, ð2Þ

where s and w are independent and uncorrelated. The deriva-
tives of T (s,w) with respect to s andw can be obtained, respec-
tively, as

dT
ds

= 2sw
s +wð Þ3 ,

dT
dw

= −2s2
s +wð Þ3 :

ð3Þ

Since both s and w are greater than zero, we can get the
following.

dT
ds

> 0,

dT
dw

< 0:
ð4Þ

According to the monotonicity principle, T (s,w) increases
with s and decreases with w.

As shown in Figure 3, there are two groups of LMMF
samples with different line widthw and line spacing s. The first
group shows samples with the line spacing s gradually
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W

Figure 1: Schematic diagram of the LMMF.

(a) Mold making

(c) Mold filling

(e) Demolding for film B

(g) Getting high vacuum

EGaIn

10–4 Pa

Vacuum chamber

(b) Getting PDMS

(d) Demolding for film A 

(f) Bonding film A and B

(h) Getting LMMF

A hole

Figure 2: Process flow chart for making LMMF. (a) A mold was
made on the silicon wafer. (b) Obtaining liquid PDMS without
bubbles. (c) The specified volume of liquid PDMS was poured into
the mold. (d) After the PDMS was cured, film A with grid channels
on its surface was removed from the mold. (e) Using a similar
process, film B was made with flat surfaces, and a small hole was
punched in the appropriate position of one corner of film B. (f)
Film A and film B were bonded to obtain film C with grid flow
channels inside the double-layer film. (g) A droplet of EGaIn was
dropped on the surface of the small hole in film C, which was then
placed in a vacuum chamber later, and the vacuum degree in the
vacuum chamber was reduced to 10-4 Pa. (h) When the pressure in
the vacuum chamber was restored to atmospheric pressure, EGaIn
was filled into film C, thus obtaining the LMMF.

Group 2: s = 500 𝜇m

Group 1: w = 50 𝜇m

Figure 3: LMMF with different line widths and line spacings.
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increasing from 100μm to 1000μm, while the line width w
remains 50μm. The second group shows samples where the
line width w gradually increases from 20μm to 100μm, while
the line spacing s is kept at 500μm. In the second group,
EGaIn failed to be injected into the flow channels when the
sample line width was 10μm. A larger pressure difference
may be required to obtain narrower line widths than 20μm
by the preparation process described herein.

Figure 4 shows the components of the light transmittance
measurement system (spectrometer: AvaSpec-ULS2048CL-
EVO; light source: AvaLight-DH-S-BAL, both produced by
Avantes, Netherlands) for measuring the transmittance of
LMMF in the visible light range.

Figure 5 shows the results of light transmittance mea-
surements, in which Figure 5(a) demonstrates the measure-
ment results of group 1 shown in Figure 3. It indicates that
the transmittance (average value in the visible light range)
increases from 31% to 85% when the line spacing s gradually
increases from 100μm to 1000μm. As shown in Figure 5(b),

the average transmittance for group 2 shown in Figure 3
decreases from 81% to 55% when the line widthw is gradually
increased from 20μm to 100μm. Furthermore, the curves in
Figure 5(b) are more concentrated, and the average trans-
mittance is greater than 50%. It indicates that the effect of
line width w on transmittance is smaller than that of line
distance s in the two sets of data selected for line width w
and line distance s. Moreover, Figure 5 also shows the trend
of light transmittance, which is consistent with the theoreti-
cal derivation results. When the line width w and the line
spacing s are 50μm and 500μm, respectively, the average
light transmittance is 72%. The average transmittance of
PDMS without LM meshes is 91%. The data is taken into
(2) to obtain the calculated transmittance of the film for dif-
ferent line widths and line spacings, as shown in Figure 6.

Figures 6(a) and 6(b) show the calculated transmittance of
the films for different line width w and line spacing s. The
average value of the transmittance over the entire visible range
is then used as the transmittance of the film. Then, the average
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Figure 4: Transmittance measurement system.
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Figure 5: The measured results for the transmittance of LMMF. (a) The transmittance of LMMF with different line spacings s (line width
w = 50 μm). (b) The transmittance of LMMF with different line width w (line spacing s = 500μm).
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value of the transmittance over the entire visible range is used
as the measured transmittance, and a comparison graph of the
calculated and measured transmittances of the two sets of
samples can be obtained. From Figures 6(c) and 6(d), it is
known that in most cases, the measured transmittance is
slightly lower than the calculated value, but the trend is quite
consistent. The errors may come from the dimensional errors
of the fabricated samples.

2.4. The Square Resistance of LMMF. To thoroughly under-
stand the series-parallel problem of a bounded N ×M small

resistance involved in LMMF, it is necessary to theoretically
calculate the square resistance R of LMMF. In this case, the
simplified physical model of the square resistance could be
expressed as follows [32].

R = ρ
s +w
wH

, ð5Þ

where ρ represents the electrical resistivity of LM and s, w,
and H are the line spacing, the line width, and the line
height, respectively.
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Figure 6: Calculated and simulated light transmittance of the LMMF. (a) Calculated transmittance of the film under different line width w. (b)
Calculated transmittance of the film at different line spacing s. (c) Themeasured and calculated light transmittances of the films at different width
w (line spacing s = 500μm). (d) The measured and calculated light transmittances of the films at different line spacing s (line width w = 50μm).
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The resistivity of EGaIn is ρ = 2:89 × 10−7Ω·m [33]. The
case for s = 500μm, w = 50μm, and H = 50μm is selected as
an example. Substituting these data into (5), the square resis-
tance R of the LMMF is thus calculated as 0.063 Ω/sq.

For verification, the square resistance R of LMMF was
measured using the four-wire method. The schematic dia-
gram of the square resistance measurement is shown in
Figure 7(a). The resistance Rm was measured and recorded
with an Agilent 34420A nanoVolt/micro-Ohm meter. As
can be seen in Figure 7(a), the bold black lines are four

EGaIn-made electrodes to reduce contact resistance between
the LM electrodes and the LM grid wire. According to the
measurement principle of the four-wire method, the rela-
tionship between the square resistance R and the measured
resistance Rm is as follows.

R = Rm
C
B
: ð6Þ

The parameters of the LMMF, including the line spacing
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Figure 7: (a) Schematic diagram for measuring square resistance. (b) The measured results of the square resistance of the LMMF.
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Figure 8: (a) Schematic diagram of the structure of a coplanar waveguide loop antenna. (b) Holes were punched in the antenna to install the
SMA connector.

6 International Journal of RF and Microwave Computer-Aided Engineering



s, the width w, and the height H, are the same as those of the
above calculation case. Both dimensions of C and D are
21mm. Therefore, the measured resistance Rm is equal to
the square resistance R. As shown in Figure 7(b), Rm was
recorded for one hour and remained stable at approximately
0.0456 Ω/sq. Considering the very complex series-parallel
problem involved in LMMF, there is an acceptable difference
between the measured square resistance (0.0456 Ω/sq) and
the calculated value (0.063 Ω/sq). In addition to the influ-
ence of the simplified calculation model, the precision of
the fabrication of the liquid metal mesh is also an important
factor.

3. Transparent Antenna Based on LMMF

3.1. Antenna Design and Fabrication. Figure 8(a) shows the
structural diagram of the LMMF-based coplanar waveguide
loop antenna. This antenna is fed by coplanar waveguide
technology. There is a liquid metal mesh feed line in the
center of the lower part of the PDMS, an annular radiator
made of liquid metal mesh connected to the feeder, and
two conductor planes made of symmetric liquid metal mesh
on both sides of the feeder. Since the central feeder, the two
conductor planes, and the annular radiator are all located on
the same plane, only one bonding and one injecting are
required in the fabrication of the LMMF-based transparent
antenna. This shows that this structural design makes the pro-
cessing very convenient. This antenna structure is referenced
from previous studies [1], and all geometric dimensions of
the antenna are optimized and listed in Table 1.

An SMA connector is connected to the feeder and two
conductor planes to feed the transparent antenna. The
positions of the three connecting holes on the LMMF are
indicated in Figure 8(b). The three holes corresponded to
the pin positions of the SMA connector as follows: holes 1
and 2 corresponded to the outer conductors of the SMA
connector, and hole 3 corresponded to the inner conductor
of the SMA connector.

The process for fabricating the antenna is as follows.
First, according to the process described above, the PDMS
bilayer film was prepared with grid flow channels as shown
in Figure 8(a), and three holes were punched in the PDMS
film as shown in Figure 8(b). Next, EGaIn droplets were
dropped into the three holes, and the PDMS bilayer film
containing EGaIn droplets was placed in the vacuum cham-
ber and vacuumed to 10-4 Pa.

After the pressure has returned to atmospheric pressure,
EGaIn is automatically filled into all flow channels. Then, the

three pins of the SMA connector are inserted into the three
holes accordingly. Subsequently, an appropriate amount of
EGaIn is added into the three holes, ensuring good electrical
contacts between the lead pins of the SMA connector, the
feeder, and the coplanar waveguide. Finally, the contact

Table 1: Dimensions of the antenna (unit : mm).

Symbols Values Symbols Values Symbols Values

W1 60 W2 0.5 W3 2.0

W4 23.5 L1 60 L2 18.7

L3 0.54 R1 5.5 R2 12.6

T1 1.0 T2 1.0 H 0.05

s 0.5 w 0.05

Figure 9: Photo of the highly transparent flexible antenna
manufactured. The illustration in the upper right corner shows
the grid wire of LM observed with an optical microscope.
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surfaces between the SMA connector and the three holes are
sealed with glue. A sample of the highly transparent flexible
coplanar waveguide loop antenna, fabricated according to
the above process, is shown in Figure 9.

3.2. Results and Discussion. A vector network analyzer (5063A,
Keysight Technologies) was used to measure the S parameters
of the antenna, and S11 was used to characterize the size of
the antenna reflection coefficient. As shown in Figure 10, the
reflection coefficient of the antenna varies with frequency. The
simulation results indicate that the antenna is a low-reflection
broadband antenna. In the range of 2.17-10GHz, the S11 of
the antenna is below -10dB and presents multiple valleys at
3.17GHz (-32dB), 5.36GHz (-18.5dB), 8.11GHz (-22.6dB),
and 9.48GHz (-32.3dB). The measurement results show that
the S11 of the antenna is below -10dB in four discrete ranges
of 2.59-3.39GHz, 4.14-6.58GHz, 7.58-8.68GHz, and 9.57-
10.0GHz. The corresponding multiple valley values occur at
2.99GHz (-27.3dB), 4.97GHz (-30.3dB), 8.08GHz (-14.5dB),
and 9.88GHz (-11.4dB). Compared to the simulation results,
the curve of the measurement results shifts upward at frequen-
cies above 6.3GHz, indicating that the reflection coefficient

becomes larger, leading to some discontinuities in the continu-
ous bandwidth with low reflections. The increase of the reflec-
tion coefficient and the shift of the resonant frequency in the
measured results are acceptable, which may be caused by the
accuracy of the antenna fabrication and measurement errors.

The antenna gain is measured at different frequencies and
angles using a microwave darkroom (Institute of Antenna
and Microwave Research, Tsinghua University), and then, the
directionality coefficient and efficiency of the antenna are cal-
culated. Figure 11 shows the measured and simulated radiation
patterns of the E-plane and the H-plane when the antenna
works at 3GHz and 5GHz, respectively. The radiation patterns
show the shape of “8” on the E-plane and “O” on the H-plane.
The simulated peak gains are 2.23dBi (3GHz) and 2.95dBi
(5GHz), and the measured peak gains are 3.38dBi (3GHz)
and -0.34dBi (5GHz), respectively. In addition, the average
efficiencies of the simulation are all higher than 90%, while
the average efficiencies of the measurement are 61% (3GHz)
and 43% (5GHz), respectively. The errors in the measured gain
and efficiency related to the simulation results are caused not
only by the antenna manufacturing process and measurement
errors but also by the offset of the main frequency.
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Figure 11: (a) The measured and simulated radiation patterns of the antenna in the E-plane and H-plane, at 3GHz. (b) The measured and
simulated radiation patterns of the antenna in the E-plane and H-plane, at 5 GHz.
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Figure 12: Repeated bending and stretching tests. (a) The antenna was bent forward. (b) The antenna was bent in the opposite direction. (c)
The antenna was stretched in the front-back direction. (d) The antenna was stretched in the left-right direction.
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As shown in Figure 12, the appearance of the antenna did
not change after repeated bending and stretching. Addition-
ally, after the above bending and stretching, there was almost
no change in the S parameters, indicating that the antenna

had not been damaged, as shown in Figure 13. Unlike solid
metals and conductive oxides such as ITO and FTO, the
conductive materials of LM would not affect the stretchable
deformation ability of the antenna at all. In other words, the
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Figure 13: Reflection coefficient tests when the antenna is stretched and bent. (a) Fixture for fixing and stretching when measuring antenna
reflection coefficients. (b) Reflection coefficient when the antenna is stretched. (c) Reflection coefficient when the antenna is bent.

Table 2: Comparison of transparent antennas with previous works.

Ref. Conductive material Substrate material L ×W (mm2) T (%) R (Ω/sq) Peak gain (dBi) Measured average efficiency

[1] ITO Glass 50 × 50 57 5 0.5 75%

[2] IZTO/Ag/IZTO Polyimide 46 × 30 86 7.0189 1.84 53%

[3] ITO/Ag/ITO Glass 35 × 36:6 88 3.1 N/A 66%

[4] Nano-structure thin film Glass 200 × 150 80 5 1.28 66.52%

[5] Conductive fabric tissue PDMS 50 × 40 70 0.089 4.5 75%

[6] IZTO/ag/IZTO Acryl 50 × 50 68.6 2.52 -4.23 7.76%

[6] Metal mesh film Acryl 50 × 50 60 0.18 2.63 42.69%

[7] Metal mesh film Acryl 169 × 105 72 0.04 7.1 83.8%

This work LMMF (EGaIn) PDMS 60 × 60 72 0.0456 3.38 61%
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flexibility and stretchability of the antenna depend on the sub-
strate. PDMS has good stretchability and bendability, so the
LMMF can recover spontaneously after stretching and bend-
ing within the elastic strain range of the PDMS. Additionally,
improving the flexibility of the substrate can further improve
the flexibility of the LM-based antenna.

3.3. Performance Comparison. Table 2 presents a comparison
of the performance of this work and several transparent anten-
nas disclosed in the published literature. First, when analyzing
the transmittance and the square resistance, both do not per-
form well in [1]. The square resistance is too large (more than
3 Ω/sq), although the transmittance is better in [2–4] work;
while the square resistance is lower in [5, 6], the transmittance
is also too lower. In contrast, the square resistance and trans-
mittance measured by the antenna in this paper are 0.0465
Ω/sq and 72%, respectively. Square resistance and transmit-
tance are better than those of [5, 6]. The flexibility and stretch-
ability of the antenna are then analyzed. In [7], copper mesh
and acrylic were employed so that the antenna was completely
inelastic. Several other works were also limited to solid conduc-
tive materials or substrates, such as ITO and glass, so the
antennas were difficult to bend and stretch. In contrast, the
antenna in this work and in [5] performs best from the point
of view of flexibility. However, in [5], although PDMS was
used as the substrate, it could not be stretched because of the
conductive fibers. In this paper, as an application example of
LMMF, the antenna used EGaIn (fluidic) as the conductive
material and PDMS (flexible and stretchable) as the substrate,
so the antenna could be easily bent and stretched.

In summary, taking the new material and process pro-
posed in this paper, the proposed antenna in this work has
a rare balance of conductivity, light transmission, and flexi-
bility of the antenna. At the same time, the performance of
the antenna in terms of impedance bandwidth, gain, and
efficiency has reached a practical level. In the future, we will
further optimize the antenna to obtain better gain and effi-
ciency. In addition, the main factors that affect the square
resistance are the width, spacing, and height of the EGaIn

line. It can take measures to increase the line spacing and
reduce the line width to further improve its transmittance;
it can also increase the line height to reduce the square resis-
tance of the antenna without reducing the transmittance.
The flexibility and transmittance of the antenna can be
improved by selecting an appropriate substrate. These con-
clusions point to the direction for further improvements in
antenna conductivity, light transmittance, and flexibility.

3.4. Discussion on the Application of Antenna. Figure 14
shows the effect of placing the highly transmissive, flexible,
stretchable, and reconfigurable antenna obtained in this
paper on interior glass (flat glass) and car window glass
(curved glass). The antenna on the glass does not have a sig-
nificant visual impact, and it is easy to achieve a conformal
fit on the curved surface. Of course, at present, it is inevitable
that the SMA connector has some obstruction to the view.
Its effect can be reduced by placing the SMA connector on
a part other than the glass or by reducing the size of the con-
nector. Even transparent connectors can be developed in the
future. As we can see, this highly translucent, flexible, and
stretchable antenna is suitable for applications that require
stretching deformation or curved conformal capability. The
materials and processes used in this paper can be applied
to flexible antennas, stretchable antennas, conformal anten-
nas, hidden antennas, aesthetic antennas, wearable electron-
ics, or other RF electronic devices. The simulation results of
the antenna show that the S11 of the antenna is below -10 dB
in the range of 2.17-10GHz. Although the measured results
show some deviation, they also cover most of the S-band, C-
band, and X-band, as well as multiple 5G communication.
Therefore, the antenna can be used in fields such as radar
and mobile communication.

Currently, we are already working on the development
of antennas with multilayer liquid metal mesh films based
on the work in this paper. In the future, we will further
develop waveguide, phase shifter, and other microwave
devices based on liquid metal grid films to achieve transpar-
ent and stretchable radio frequency electronics.

(a) (b)

Figure 14: The image of the highly transparent antennas was placed on the indoor glass and the car window glass. (a) The antenna was
placed on the indoor window glass. (b) The antenna was placed on the car window glass.
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4. Conclusions

In this paper, the LMMF fabrication process and the cor-
responding antenna based on the LMMF are proposed.
According to this process, a series of LMMFs with differ-
ent line widths and line spacings is fabricated, and then,
the light transmittance and square resistance of LMMF
are theoretically and experimentally studied. To balance
transmittance and square resistance, the line width and
line spacing are set at 50μm and 500μm, respectively.
For this case, the light transmittance is 72%, while the
square resistance is 0.0456 Ω/sq. Thus, a highly transpar-
ent flexible coplanar waveguide loop antenna is designed
and fabricated to verify the practicability of LMMF. The
measured peak gain and average antenna efficiency are
3.38 dBi and 61% at 3GHz, respectively. The antenna’s
operating frequencies cover most of the S-band, C-band,
and X-band, as well as multiple channels for 5G commu-
nications. Therefore, the antenna can be used in areas
such as radar and mobile communications. Overall, the
fabrication of transparent antennas based on liquid metal
mesh films is reported for the first time, and the antenna
has good performance in light transmittance, square resis-
tance, and flexibility at the same time. It implies important
application prospects in transparent electronics, flexible
electronics, and wearable electronics.
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