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We investigate a practical technique for deembedding the channel filter S-parameters of manifold-coupled multiplexers (MUXs),
without detaching filters from the manifold. The method is applicable for MUXs with an arbitrary number of channels and can be
used for the device regardless of its bandwidth, guard band, or loss of filters. We reconfigure the N-port MUX to two simpler
networks cascaded to each other. We assume that the manifold response is unknown and use the idea of applied perturbation
on the channel filter, and then by comparing the response of the overall cascaded network, before and after the perturbation,
we approximate the channel port response. The technique is useful in fast detecting the unexpectedly detuned channels or
likely faults in the device without unnecessary plugging/unplugging; it is also useful in roughly tuning of the channel filers at
the early stage of MUX tuning. The technique can be easily traced by the telecommunication community.

1. Introduction

Manifold-coupled multiplexers (MUXs) are critical compo-
nents of satellite communication payloads which, despite
their simple configuration, render reliable and compact
structure. These devices are composed of N-channel filters
connected to a common junction. The manifold is funda-
mentally an almost lossless line with no directional element
in its connecting ports to the channel filters. This feature
though provides simplicity of the structure and leads to
complexity in both its design and tuning processes [1].

Filter tuning is an essential postproduction process in
manifold MUXs; the channel filters are conventionally
equipped with tuning screws which can be adjusted to reach
optimal response. In satellite components, severe limiting in/
out of band margins are applied to the operating frequency
range, which makes tuning a time-consuming task. Despite
this, for filters as individual components, there exist well-
known parameter extraction techniques such as H2 approx-

imation [2] or vector fitting [3, 4] in the frequency domain
for the purpose of tuning.

The design and tuning of the manifold-coupled multi-
plexers conventionally entail a comprehensive full wave
analysis in the RF domain, and in this regard, there is a clear
discrepancy between these structures and the optical multi-
plexing device/techniques proposed for the satellite wireless
communication [5]; in the latter, which provides THz chan-
nels and compact architecture, wavelength [6] or spacial
multiplexing schemes [7] may be used, depending of the
application.

While many computer-aided techniques have been pro-
posed for tuning filters in the literature [8–11], only a few
methods are developed for MUXs for which there is no need
to detach connected filters. The hurdle is clear; tuning a multi-
port network (i.e., a MUX) has much more theoretical and
practical complexity than a simple two-port filter. Although,
it is initially preferred to shrink the problem (i.e., MUX tuning)
to individually tuning the connected filters, for practically
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important reasons, it is strongly recommended to tune MUXs
without detaching their components. The reason is lucid;
assuming that plugging/unplugging of filters is feasible, then
one has to repeat this task many times during the tuning stage,
and these tests might probably damage intermediate connec-
tions. On the other side, deembedding a MUX without detach-
ing its components is expected to be helpful in diagnosing the
defects that occurred in the structure during the manufacturing
stage [12]. Moreover, developing a deembedding technique for
MUX is advantageous in particular for configurations manu-
factured in one piece; thereby, detaching the channel filters is
impossible.

To deembed a MUX without detaching its filters, a
conceivable method is to directly optimize characteristic
polynomials of the MUX and find the optimal matching
to their measured scattering parameters. However, this
approach is substantially time-consuming and costly in terms
of computer processors required [13]. As another approach,
deembedding is described as a rational approximation prob-
lem. In [12, 14], the manifold MUX is modeled as a cascaded
system in which a filter—that is planned to be tuned—is
terminated in a load composed of manifold and remaining fil-
ters in a short circuit form. The deembedding problem is then
expressed in a Pade interpolation form for which the interpo-
lation values are determinable functions of the transmission
zeros and their associated derivatives. With this, the filters’
response is recovered up to their adjacent cavity to the load.
It remains, however, some degree of uncertainty in the com-
puted response. Beside this, stability is not also guaranteed in
the technique. Despite this, the approach does not require
prior knowledge of the frequency response in the manifold.
Techniques based on neural networks are another approaches
that are mainly proposed for tuning filters [15]. Although
response convergence in those techniques is proved, they give
no physical understanding of tuning [12, 15]. In addition to
these, several deembedding techniques are proposed solely
for specific MUXs such as diplexers [16, 17], and in some
others, deembedding of MUX is subject to configurations with
lossless filters, which hardly occurs in practice [13].

In this study, we follow our recent work on frequency
identification of multiplexers (see [18]) and propose a prac-
tical technique to deembed the frequency parameters of
channel ports of manifold-coupled MUXs for the purpose
of tuning. The technique is based on simplifying the com-
plex N-port system of MUX to a two-port network, before
deembedding. In the proposed approach, there is no prior
knowledge of S-parameters in the manifold. We, then, apply
a perturbation in the frequency response of the interested
filter, and by analyzing the measured responses of the
overall two-port network, before and after the perturba-
tions, S-parameter s22 of the interested filter is extracted.
Beside this, a simple method is proposed to identify transmis-
sion zeros of channel filters. With regard to the second tech-
nique, we establish an appropriate formulation for the
deembedding problem and study the necessary conditions to
achieve results.

The organization of the paper is as follows. First, we
describe the structure of the manifold-coupled MUX and
reconfigure it to a two-port network. In section 3, we apply

perturbations to the new network and evaluate the transmis-
sion zeros of the selected filter, as well as the scattering
parameter S22 of the filter. Finally in section 4, we employ
the proposed technique to some case studies and report the
results.

2. Preliminaries and Modeling

We consider a manifold-coupled MUX as schematically
brought in Figure 1. A MUX is composed of a junction
(i.e., manifold), which is connected to N channels Ch k.
The manifold is assumed to be lossless, which is close to its
realization as a low loss, nonresonating transmission line
[19]. Filters in contrast can be lossy in our model; this situ-
ation is most often expected in manifold-coupled MUX.

We can reconfigure this multiport network model to a
two-port one, by short-circuiting all ports except port In
and Ch k as shown in Figure 1. Assuming that the network
between ports In and Ch k is T In−Chk , from network theory,
we have [20].

T In−Chk = TRkTk, 1

where T In−Chk is the overall frequency response of the two-
port network (between port In and outport Ch k) measured
before applying any perturbation in the filter Fk.

3. Deembedding via Applied Perturbations

In our previous study in [18], we assumed that the scattering
parameters of the manifold are known to us. Thereby, we
were able to determine the network TRk at each stage of
deembedding. There are, however, circumstances where this
prior knowledge is not available. For instance, if we have not
designed the MUX, its simulation might be unknown to us.
For these situations, here, we concentrate on an approach
toward deembedding the S-parameters of channel filters,
without the need to detach them from the manifold.

To begin deembedding the parameters of the interested
channel filter Fk, we first reconfigure MUX to the form
shown in Figure 1. Next, we apply a small change on the
scattering parameters of the network Tk, via slightly chang-
ing the tuning screws of its associate filters (i.e., Fk). By a
slight change, the overall scattering components of the cas-
caded network T In−chk experience a small difference from
its previous value inside the filter passband. Again, we mea-
sure the overall frequency response. Note that the network
TRk is remained unchanged after the perturbation. Further-
more, filters in TRk are not in highly detuning situation; this
allows poles/zeros of the short-circuited filters to contribute
in forming appropriate response of TRk within the band-
width of Fk, as will be seen in later case studies. After apply-
ing the perturbation, we have

T In−Chk′ = TRkTk′ , 2
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where T In−Chk′ is the overall frequency response of the two-
port network after detuning the filter Fk (Tk′ denotes the fil-
ter response after perturbation). We rearrange (1) in terms
of TRk and substitute in (2).

T−1
k Tk′ = T−1

In−ChkT In−Chk′ 3

The left-hand side of (3) appears like a cascaded system,
composed of two networks T−1

k and Tk′. Although T−1
k is not

a real microwave network, its transmission matrix compo-
nents still show interesting properties of a microwave net-
work, including reciprocity and poles/zero locations. The
latter means that no poles or zero are added or removed in
the T−1

k in comparison to Tk. These features makes Tk′ ben-
eficial in theoretical analysis of our deembedding technique.
While the scattering parameters of these two networks are
unknown, it is expected that Tk′ and Tk have very similar
responses as we have made only a slight change in tuning
screws of the filter. Regarding the right-hand side of the
(3), the two matrices T−1

In−Chk and T In−Chk′ are known from
measurements. However, their multiplication does not form
a real transmission matrix, and hence, poles and reflection
zeros of Tk′ and Tk do not explicitly appear in the matrix
component. Therefore, it is impossible to extract—and then
identify—the characteristic polynomials of the filter via con-
ventional frequency identification techniques. Despite this,
the transmission zeros of the filter can be identified by com-
paring the scattering components in T−1

In−Chk and T In−Chk′ . In
the following section, we discuss this and then apply reason-
able approximations to estimate the scattering response of
the filter Fk after perturbation.

3.1. Deriving Transmission Zeros of Fk. Perturbation is a
simple technique to deembed transmission zeros of filters
in a MUX. In its conventional approach, one has to measure
then analyze the scattering response of the whole MUX to
identify the transmission zeros of each filter. In contrast, in
the perturbation technique, we need only two ports; this
can greatly reduce the complexity of the required analysis.
Let us consider the scattering parameter sIk21 of T In−Chk (tthe
superscript Ik denotes the cascaded system between port In
and outport Ch k), expressed in terms of S-parameters of
TRk and Tk

sIk21 =
sRk21 s

k
21

1 − sRk22 s
k
22
, 4

in which sRk21 is the s21 component of the network TRk . To
obtain (4), we used the relation s21 = 1/ T In−Chk, 11 [1].
Therefore, the transfer matrices TRk and Tk are first
obtained from their corresponding scattering parameters.
Then, the cascaded network is calculated using their product
as brought in (2). Equation (4) can be rewritten in terms of
characteristic polynomials of the scattering parameters:

sIk21 =
NRk

21N
k
21

DRk
21D

k
21 −NRk

22N
k
22
, 5

in which Nij and Dij are the numerator and denominator of
ijth component of scattering matrices. Looking to the
denominator of sIk21 clearly show that poles in Tk and TRk
are not distinguishable. However, from the numerator, the
overall zeros are composed of zeros in Tk and TRk . Now,
assuming that we make a change in the tuning screws of Fi,
the zeros of TRk remain unchanged while those of Tk varies.
Thus, a comparison between the two situations facilitates
deembedding the zeros.

We evaluate the perturbation technique on the MUX
shown in Figure 2. The scattering parameters are shown in
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Figure 1: The schematic of a MUX composed of N channel filters.
All channels except Ch k are short-circuited.
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Figure 2: A fabricated manifold MUX composed of four dual-
mode channel filters of degree 6.
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Figure 3, where sI221 (solid blue) and sI2′21 (red dashed) indicate
the S-parameters before and after applying perturbations on
the MUX, respectively. From the figure, except at two fre-
quencies 10.983GHz and 10.9835GHz, the location of other
transmission zeros is remained unchanged. This apparently
indicates that the transmission zeros (TZs) of the perturbed
filter are at the relocated frequencies. In the case of lossy fil-
ters, the TZs are complex quantities. In order to extract the
real part of the zeros, a prior knowledge of unloaded Q
-factor in the filter cavities is required, or we might rely on
computations via interpolation techniques, in this case.

3.2. Evaluating Sk′22. The most exciting aspect of the idea of
applied perturbation is its application in deriving the
approximate value of the scattering components of channel
filters. In the following, we establish our formulation to

derive the component sk′22 of the filter Fk, after the applied

detuning. The sk′22 corresponds to the port of Fk that is not
connected to the manifold.

We begin with (3) and expand it in terms of its constit-
uent transmission matrices, i.e., T−1

k and Tk′.

T−1
k Tk′ =

Tk
22 −Tk

12

−Tk
21 Tk

11

Tk′
11 Tk′

12

Tk′
21 Tk′

22

≔
T tot
11 T tot

12

T tot
21 T tot

22

,

6

where the defined matrix in the right-hand side of the equa-
tion is a known matrix from measurement (see (3)), which
can also be expressed in terms of the unknown scattering
parameters of T−1

k and Tk′.

T tot
21 = T tot

12
∗ =

sk′11 − sk11
sk12s

k′
12

, 7

T tot
22 = T tot

11
∗ =

sk′12
2
− sk′11s

k′
22 + sk′11s

k
22

sk12s
k′
12

, 8

in which ∗ denotes complex conjugate. Next, we substitute
(7) into (8). After simplifying the equation, we have

sk ′22 =
R − T tot

22
T tot
21

, 9

where the ratio R is

R =
stot′21
stot21

1 − sRk22 s
k
11

1 − sRk22 s
k′
11

10

The expression for sk′22 in (9) provides us with the exact
value of this quantity. However, to calculate R, we need to
have the scattering parameters of the filter Fk, which are in
general unknown values (see (10)).

The expression for R is composed of two terms; the first

term stot′21 /stot21 is known—from measurement—while the sec-
ond fraction is unknown. Let us assume that under certain
circumstances, the magnitude of the second fraction tends
to unity, so that R is approximated solely with the first frac-

tion (i.e., R ≈ stot′21 /stot21 ). In this situation, the scattering param-

eter sk ′22 can be computed without the need to prior
knowledge of the filter status. We should note that since
the S-parameters of the filter Fk are unknown, the above
approximation is fulfilled in the case that sRk22 in (10) is suf-
ficiently small. Fortunately, this condition is most often
achieved in manifold MUXs. Provided that there is no inter-
ference between the channels and coarse tuning is roughly
performed, this situation is satisfied. We will see in the late
case studies that factors such as the number of channels,
the guard band between them, and the S-parameters of
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Figure 3: The scattering parameter sI221 of the network in dB, before (solid blue) and after (red dashed) applied perturbations. The two
frequency deviations are shown with green dotted ellipses.
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adjacent filters do not have negative effect on the technique.
In addition, assuming only a slight perturbation, the two

terms 1 − sRk22 s
k
11 and 1 − sRk22 s

k′
11 are expected to be close to

each other, which further push the magnitude of this frac-
tion to unity.

We summarize the described steps toward deembedding

the S-parameter sk ′22 as follows:

(1) Short circuit all ports except the channel Ch k

(2) Measure S-parameters of the network T In−Chk

(3) Slightly detune the filter Fk

(4) Measure S-parameters of the network T′In−Chk
(5) Determine the ratio R from (10)

(6) Estimate the S-parameter sk′22, from (9)

Table 1 provides a comparison on the main features of
important deembedding techniques introduced in the litera-
ture, and in this study.

4. Case Studies

We, here, study the demonstrated technique in three case stud-
ies. The first case is deriving the s22 parameters in a realized
two-channel MUX. Two other case studies refer to exploring
the technique in designed—but not fabricated—MUXs.

4.1. Deembedding s2′22 in a Fabricated Two-Channel MUX. In
the first case study, we examine our technique on a fabri-
cated MUX shown in Figure 4. The device is composed of
two channels, each with a dual-mode cavity filter having
four cavities. The MUX is roughly tuned, and we intend to
examine the S-parameters of the channel ports.

For this and according to the proposed technique, we
short-circuit channel Ch1 and measure the S-parameters
between port In and Ch2, before and after slightly perturb-
ing the second filter. Perturbation was performed by slightly
changing one of the tuning screws of the second filter. Then,
using (9), we compute the s22 for the perturbed channel.
Then, we unplug the filter and, again, measure s22. Results
are compared in Figure 5.

As can be seen, there exists a reasonable agreement
between the two graphs. This indicates that one can
deembed the approximate amplitude of the frequency
response of the channel ports with only a practically simple
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S
22
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Measured S22

Figure 5: The computed (blue) and measured (red) s22—in
dB—from the second channel (Ch 2) in the two-port MUX
shown in Figure 4.

Table 1: A comparison between recent deembedding techniques proposed for filters in a multiplexer.

Technique Validation Features Reference

Computing a rational model Theoretically

High accuracy

[2, 12, 21]Stability not guaranteed

Junction prior knowledge not required

Recursive Schur’s algorithm Theoretically
Assuming a lossless system

[22]
Limited to diplexers

Polynomial approximation Theoretically
Quick and accurate

[17]
Simple implementation

This work Practically
Reasonable accuracy

No prior knowledge required

Out

Ch 2

Ch 1

Figure 4: The fabricated two-channel manifold-coupled MUX
composed of two dual-mode filters of degree 8.
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method. In addition, if an error has occurred in the device,
one can detect its position, without multiple plugging/
unplugging the connected filters.

4.2. Deembedding s2′22 in Channel 2 of a Four-Channel MUX.
In the second case study, we examine our technique on the
second channel of the MUX shown in Figure 2 (we here
use the simulated frequency response of the structure).
Figure 6(a) compares the magnitude and phase response of

the computed sk ′22 (dashed pink) calculated by (9), with its
exact value obtained by detaching the filter F2 (solid orange).

From the figure, the computed sk′22 attempts to follow the

general trend of the expected sk ′22 in both magnitude and
phase. There is a very good match between the two graphs,
both in magnitude and phase—at band edges. There also
exists a deviation between the two graphs around the central
frequency, which is practically rather small (about 2 (dB) at
11.02GHz and 4.2 (dB) at 11.04GHz, respectively), which is
caused due to the approximation we have made in (9). The
graphs in Figure 6(b) show the magnitude and phase of
the ratio R in the frequency range of the filter F2. As we
expected, the magnitude of R is close to one at the band pass
of the filter. Moreover, both magnitude and phase responses
of the computed ratio are in a very good agreement with
their expected values obtained via (10). The small deviation
between the approximation and the exact results at 11.04GHz
can also be observed in Figure 6(b) between the computed
and expected graphs of R. From this example, the applied
approximation is reasonable and leads to responses which are
effectively useful for operators during the tuning stage.

4.3. Deembedding s2′22 in a Two-Channel MUX. In the last
case study, we examine the impact of scattering parameters
of adjacent channels on the achievable response of the inter-
ested channel filter in MUXs with narrow guard bands. This

is an important issue as, in practice, there is no prior knowl-
edge of other channel filter response, and this might lead to
ambiguity on the effectiveness of our technique. Figure 7
shows a schematic of a two-channel manifold-coupled
MUX composed of two filters designed to operate at the cen-
tral frequencies 10.972GHz (Ch1) and 11.012GHz (Ch2),
each operating with the bandwidth 36MHz. The guard band
between the two channels is only 4MHz, which is much
smaller than in the previous four-channel MUX with the
guard band of 20MHz. To evaluate the effect of F1 on deem-
bedding the S-parameters of F1, we compute three different
responses of F1, via arbitrarily changing the position of its
tuning screws in the model. The scattering component s122
for the three situations are shown in Figure 8(a), in which
substantial differences exist among the responses. Then, we
derive the sR222 for the network TR2 as shown in Figure 8(b).
As can be seen, despite various responses in Ch1, sR222
remains almost unchanged. In addition, and like the previ-
ous example, the magnitude of sR222 is significantly decreased
(≈-17 (dB) at 11.01GHz) within the passband of Ch1.
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Figure 6: A comparison, both in (a) magnitude and phase, between the exact and computed values of s2 ′22 of filter F2 in the MUX shown in
Figure 2. (b) Comparison of the magnitude and phase of the exact and approximate values of R in the case study.

Ch 1

Ch 2

Figure 7: Schematic of the structure 2-channel manifold-coupled
MUX composed of two dual-mode filters of degree 6.
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Therefore, the approximation we made in this section should

be applicable for deembedding the parameter s2′22. The extracted

frequency response of s1′22 is shown in Figure 8(c) for the three
situations of channel 1. As can be seen, there are negligible dif-

ferences between the deembedded responses of s2′22. In addition,
the computed responses follow the expected response (solid
orange) of the filter appropriately through the bandwidth. This
example underlines the effectiveness of the technique for
MUXs with narrow guard bands, and its independence to prior
knowledge of other channel filter response.

5. Conclusion

A practical technique to deembed the frequency response of
channel ports in manifold-coupled MUXs was presented in

this paper, which do not require detaching filters from their
connected manifold. The technique was applicable in MUXs
with even lossy filters at any tuning conditions they have; the
N-port network was reduced to a simple two-port network
composed of a channel filter cascaded to network with
short-circuited channel ports. It was assumed that no prior
knowledge is available about the manifold, and the idea of
applied perturbations was employed. The tuning screws of
filter—with unknown S-parameters—were slightly detuned.
Then, by analyzing the responses before and after the pertur-
bation, characteristic parameters of the filter were extracted.
This technique was, in particular, useful for the situation
that one needs to analyze the performance of a filter in a
MUX with an unknown response, without detuning other
channel filters nor detaching any filter from the manifold.
Moreover, the technique speeds up tuning for sophisticated

10.95 11 11.05
–20

–15

–10

–5

0

Frequency (GHz)

s1 22
 (d

B)

Case 1
Case 2
Case 3

(a)

10.95 11 11.05

–15

–10

–5

0

F2 Bandwidth

sR
2 22

 (d
B)

Case 1
Case 2
Case 3

Frequency (GHz)

(b)

s2
′ 22

 (d
B)

Frequency (GHz)
F2- Expected
F2- Computed-case1

10.96 10.98 11 11.02 11.04 11.06
–12

–10

–8

–6

–4

–2

0

F2- Computed-case2
F2- Computed-case3

(c)

Figure 8: (a) The scattering parameter s122 of the channel filter F1 in three different applied perturbations. (b) The corresponding sR222 in dB.
The bandwidth region of the filter F2 is also shown with vertical dotted black lines. (c) The deembedded response of the channel filter F2 in
dB obtained for the three different situations of F1. The computed responses are compared with the expected response.
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operators whose knowledge on approximate response of a
channel filter can effectively help them to adjust the
appropriate cavity, without the need to identify the whole
S-parameters of the MUX network.
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