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In this article, a novel method of fault detection in nonuniformly excited linear antenna array has been reported. This method uses
an evolutionary algorithm-based technique to generate approximate radiation pattern in tune with reference faulty pattern for a
nonuniformly excited linear antenna array. Based on the approximation, a binary sequence-based method of exact fault detection
has been developed. In order to illustrate the effectiveness of the method, 12- and 20-element Dolph Tschebyscheff linear antenna
array with amplitude fault has been considered. Superiority of the proposed method has been demonstrated through comparative
study.

1. Introduction

Faults in antenna arrays occur when one or more elements
of the array partially or totally fail; i.e., it starts malfunction-
ing or just stops working. As a result, degradation of radia-
tion characteristics of the antenna array takes place.
Consequently, it is necessary to detect the number of faults
and their exact locations in order to take corrective mea-
sures, so that the degraded radiation characteristics can be
improved. In this regard, many researchers have proposed
various methods to achieve fault detection in linear antenna
array [1–32].

Lee et al. in [1] have demonstrated near-field probing
data for 8 × 8 dipole array fault detection but found moder-
ate accuracy in the method. In [2], Rahnamai et al. proposed
a neural network-based array failure detection and isolation
method. Later, to overcome the limitations in Lee et al.’s
method, Bucci et al. in [3] developed a far-field power
pattern-based method for identifying on-off faults in planar
arrays. They used a modified genetic algorithm to find the
optimal amplitude distribution, allowing for easy identifica-
tion of faulty elements with minimal computational effort.

Patnaik et al. employed an artificial neural network (ANN)
to discover failures in a 5-element binomial array and a
16-element microstrip array in [4, 5], respectively, to reduce
computational effort. It has been observed that the adoption
of ANN improves the computational effort at the expense of
a lengthy training period, resulting in a more modest
approach of defect detection. Vakula and Sarma [6] also
worked on understanding the type of fault in linear antenna
array using neural networks. However, it was found out that
neural network-based approaches have certain disadvan-
tages, such as the fact that training requires numerous layers
and input nodes, resulting in enormous computations and
training time. Hence, Iglesias et al. [7] developed a case-
based reasoning system for fault diagnosis in moderate and
large linear antenna arrays, reducing computational cost
while improving detection accuracy. Consequently, Rajago-
palan et al. [8] developed a support vector machine-
(SVM-) based fault detection method for antenna arrays,
potentially replacing neural networks. They found that add-
ing training sets improved outcomes and reduced errors, but
high noise levels decreased accuracy. Further, Vakula and
Sarma [9] conducted a comparative study on neural
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network-based methods, finding ANN is time-consuming
but outperforms radial basis function (RBF) and probabilis-
tic neural network (PNN) in locating faulty elements. In
[10], Acharya et al. utilized bacterium foraging technique
to optimize fault detection in linear antenna arrays, deter-
mining the optimum excitation amplitude for faulty far-
field radiation patterns. Again in [11], Khan et al. showed
the application of firefly algorithm (FF) in identifying fault
in nonuniformly excited linear antenna array. In [12], a
comparative study by Mishra et al. on fault finding in
antenna arrays using neural networks and genetic algo-
rithms found both methods computationally intensive. Har-
rou and Nounou in [13] proposed an exponentially weighted
moving average control scheme for detecting faults in linear
antenna arrays, including full faults and partial faults. Again,
Muralidharan et al. [14] developed a fast Fourier transform-
(FFT-) based method for detecting antenna array fault posi-
tion and level from degraded far-field pattern samples. In
[15], a modified version of the method using iterative fast
Fourier transform (IFFT) has been reported by Yadav and
Singh, whereas in [16], Puri V. and Puri S. have shown the
application of particle swarm optimization (PSO) in detect-
ing defective element in space borne planar array. Further,
Zhu et al. proposed a signal-processing scheme for faulty
phased arrays, utilizing beamforming, direction of arrival
(DOA) estimation, and array diagnosis [17]. The method
effectively detects array defects and is verified using numer-
ical results. Harrou and Sun in [18, 19] proposed a general-
ized likelihood ratio (GLR) test-based statistical fault
detection method for potential faults in linear antenna
arrays. Khan et al. in [20] developed a hybrid method for
fault detection in nonuniformly excited linear arrays,
improving slow convergence of differential evolution- (DE-
) based compressed sensing techniques. They also used the
parallel coordinate decent algorithm (PCD) [21] for fault
prediction in linear antenna arrays and the cuckoo search
algorithm [22] for antenna array fault diagnosis. In [23],
Chen and Tsai have proposed fault detection in planar
antenna array using a statistical process control method
called as cumulative sum scheme. In [24], Lee uses uniform
linear array redundancy for reliable DOA estimation in sen-
sor failures, using sparse array interpolation, sparse signal
recovery, and penalized-weight alternating methods in
computer simulations. Chen et al. in [25] developed a fault
finding and location approach using two different com-
plexity deep neural networks. The basic network detects
faults at low cost, while the precise network locates prob-
lems. This reduces energy consumption and operation
costs but requires slower systems. Toshev [26] simply pre-
sents X-band array approach for accurate localization of
excitation errors in phased antennas at Fresnel distances.
Later, Ameya and Kurokawa [27] reported another usage
of neural networks in creating fault detection in planar
antennas. The method employs a shallow neural network
that has been trained to retain sufficient accuracy by learning
the relationship between array antenna excitation coefficients
and electric near-field distribution. Nielsen et al. [28]
reported on the application of deep neural networks in gen-
erating remote diagnosis of antenna arrays used in satellite

communication. Xiong et al. used compressed sensing to
study defect detection in a beam-steered planar array [29].
Capability of simulated annealing-based fault detection in
linear antenna has been reported by Boopalan et al. in [30].
Again in [31], Zainud-Deen et al. developed particle swarm
optimization (PSO) algorithm for detecting and correcting
failed elements in linear arrays, finding pattern deterioration
more near the center, but with higher complexity. A compre-
hensive review of fault-finding algorithms for planar arrays
has been carried out by Boopalan et al. in [32].

Existing fault detection methods related to neural net-
works take a huge amount of runtime, which was solved
using evolutionary algorithm. But, it is also observed that
evolutionary algorithm-based methods have some major
limitations like lesser accuracy and higher computational
complexity. To solve these problems, a method is reported
in this article. Here, a hybrid method using differential evo-
lution algorithm to approximate faulty far-field radiation
patterns in linear arrays has been investigated. The later
stage of the method calculates precise faulty patterns using
binary sequencing of array elements. The effectiveness of
the method has been illustrated using two design instances
of 12- and 20- element Dolph Tschebyscheff linear antenna
array with faults at random elements. Details of the pro-
posed hybrid method in detecting faulty elements have been
discussed in the later section. The simulation setup along
with results has also been provided to prove the effectiveness
of the method.

2. Proposed Method

The proposed method employs an evolutionary algorithm-
based technique to create estimated excitation amplitude
weights in tune with the reference faulty pattern for a nonu-
niformly excited linear antenna array. A threshold weight is
determined using maximum value of semioptimized weights.
Then, binary sequencing is used to determine whether the
optimized weight is larger than the threshold weight, in
which case the array state will be 1, otherwise 0. Another
array factor is calculated and checked for error based on the
newly generated array state. This step is repeated until the
error is zero. Therefore, the exact location of defects can be
detected by computing the quantity and position of 0 s in
the final array state. The major steps of the proposed method
are illustrated in Figure 1.

2.1. Evolutionary Algorithm-Based Pattern Approximation.
The number of elements (N), interelement spacing (d), and
beam steering angle (θs) are defined in step 1. In step 2, the
evolutionary algorithm uses these design parameters to build
an estimated radiation pattern of a nonuniformly excited
array with a fault. In this article, differential evolution (DE)
approach has been used as a representative algorithm. DE
mainly consists of three steps, which are mutation, crossover,
and selection. DE begins, like any other evolutionary algo-
rithms, with a population of N D-dimensional search variable
vectors. In a swarm of N particles in a D-dimensional search
space, the ith particle’s position at iteration t is given by xi t
= xi

1 t , xi2 t ,⋯ ,xiD t . In each generation or iteration
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of the algorithm, a donor vector vi t is created to modify each
population member xi t . Three random parameter vectors
(r1, r2, and r3) are chosen from the current population. A sca-
lar number F scales the difference of any two vectors, adding
the scaled difference to the third vector and subsequently cre-
ating the donor vector vi t . The generation process expres-
sion is given by

vdi t + 1 = xdr1 t + F xdr2 t − xdr3 t 1

The mutation operator is given by

F = Fmax e
c t 2

In (2), parameter c is represented as c = log 10 Fmin/Fmax /t.
A crossover technique is then used to expand the potential
diversity of the population. Based on the crossover rate
(CR), the donor vector exchanges its components to form a
trial vector which is given by

udi t = vdi t + 1 , rand 1 ≤ CR, 3

udi t = vdi t , rand 1 > CR 4

The crossover rate is defined by (5) where T is the total
number of iterations.

CR = CRmin + CRmax − CRmin
t
T

5

The algorithm creates an offspring vector ui t for each
trial vector xi t . To maintain population size, the next step
involves selection to determine which of the target vector and
the trial vector survives in the next generation which is math-
ematically given as (6) and (7). This is because DE involves the
principle of “survival of the fittest” in its selection process.

xi t + 1 = ui t if f ui t < f xi t , 6

xi t + 1 = xi t if f xi t < f ui t 7

Array factor used by DE for nonuniformly excited linear
antenna array expression given by (8) has been used in the
optimization process.
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Figure 1: Major steps of the proposed method.
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AF θ faulty = 〠
N

n=1
an × ej n−1 kd sin θ−sin θs 8

In (8),N is the number of array elements, an is the normal-
ized excitation amplitude weight of the Nth array element
which is zero for a faulty element and a nonzero value for a
nonfaulty element, k = 2π/λ is the wave number, d is the inter-
element spacing in terms of λ, θ is the angular position which
varies from −π/2 to +π/2, and θs is the main beam position of
the array. The fitness function used in the faulty pattern
approximation is given by

Fitness = 〠
M

i=1
AF θi ref −AF θi Cal 9

In (9), M represents the number of samples between θ =
−π/2 and θ = π/2, and AF θi ref = AF θi faulty and AF θi Cal
are the reference and calculated array factors of the linear
antenna array under investigation. Further, normalized excita-
tion weights (an′) of each array element have been considered
as optimization parameters and take any value between “1”
and “0.”

2.2. Binary Sequence-Based Pattern Approximation. The
threshold weight by using the maximum and minimum
values of the optimized weights acquired in step 2 is defined
in step 3. The threshold weight has been set in such a way
that only a few execution stages are necessary to achieve
the desired array state. Further, the array factor expression
corresponding to a particular binary sequence representing
an array element state can be represented by

AF θ bin = 〠
N

n=1
BN n × a′n × ej n−1 kd sin θ−sin θs 10

In (10), BN n and an′ represent array state and the cor-
rect excitation weight of nth array element, respectively. The
array state can either be 1 or 0 which in turns represents
nonfaulty and faulty element, respectively. Comparison
between the optimized excitation weight and threshold
weight for each element has been carried out in step 4. If
the optimum weight is less than threshold weight, then array
state has been assigned “0”; otherwise, it has been assigned as
“1.” This process of assignment and array pattern calculation
has been carried out in step 5 and step 6, respectively, using
array factor expression of (10). Step 7 involves the calcula-
tion of error function using

Error = sum abs AF θ faulty −AF θ bin 11

Analysis of error function value has been carried out in
step 8. Accordingly, in step 9(b), if error value has been
found to be a nonzero value, then weight threshold has been
decremented and process flow goes to step 4. However, zero
value of the error function represents desired array state
which corresponds to step 9(a). Subsequently, in step 10,

numbers of “0” are identified along with their position using
final array state. Finally, the results are displayed in step 11,
showing number of faults and their respective positions in
the array.

3. Simulated Results

Effectiveness of the proposed method has been illustrated
through fault detection in 12- and 20- element Dolph Che-
byshev linear antenna array. It must be noted that choice
of excitation distribution is representative only and can be
used with any distribution like Taylor distribution. Interele-
ment spacing (d) for each design instance has been kept at
0.5λ where λ is the operating wavelength. Such value of
interelement spacing ensures that there are no grating lobes.
Further, the array elements have been considered to be iso-
tropic in nature. A 12-element array with fault at 3rd and
7th elements has been considered as the first case. Subse-
quently, a 20-element array with fault at 3rd, 5th, 6th, 13th,
15th, 16th, and 18th elements has been considered as the sec-
ond case. Comparison between ideal and faulty reference
far-field array pattern of these 12 and 20 elements has been
illustrated in Figures 2 and 3, respectively.
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Figure 2: Comparison of ideal and faulty reference array factor of
12-element array.
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Figure 3: Comparison of ideal and faulty reference array factor of
20-element array.
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Comparison between reference, approximated, and final
restored far-field array pattern for 12 and 20 elements has
been illustrated in Figures 4 and 5, respectively.

Fitness curve corresponding to approximated array pat-
terns using DE for 12 and 20 elements has been shown in
Figures 6 and 7, respectively.

Final excitation weights after using binary sequence
method for 12 and 20 elements have been represented in
Figures 8 and 9, respectively.

Form the illustrations, it has been observed that the pro-
posed method can detect faults perfectly at the given random
locations. Table 1 shows the comparative study of paramet-
ric setup between conventional DE and the method pro-
posed in this article.
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Figure 4: Comparison between reference, approximated, and final
array factor of 12-element array.
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Figure 5: Comparison between reference, approximated, and final
array factor of 20-element array.
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Figure 6: Fitness curve for approximated radiation pattern for
12-element array.
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Figure 7: Fitness curve for approximated radiation pattern for
20-element array.
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Figure 8: Comparison of initial and final binary sequence-based
excitation weights for 12-element array.
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Figure 9: Comparison of initial and final binary sequence-based
excitation weights for 20-element array.
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The comparative results from using conventional differ-
ential evolution method as well as the hybrid optimization
method for the 12-element and 20-element nonuniformly
excited Dolph Tschebyscheff linear arrays are listed in
Table 2. The processing time taken for each of the optimiza-
tion methods is recorded as well for different types of failure
in Table 2.

Table 3 summarizes the excitation weights obtained
using DE algorithm and the proposed method. From
Table 3, it has been observed that for the first design instance
of 12-element nonuniformly excited linear array, DE has
detected the fault at 3rd element and fails to detect the fault
at 7th element which leads to detection efficiency of 50%.
For the second design instance, DE has detected fault at
3rd, 6th, 13th, 16th, and 18th element which accounts for
detection efficiency of 74.2%. However, the proposed
method has outperformed the DE-based method with
100% detection efficiency for both the design instances.

From Tables 1–3, it can be clearly observed that the
hybrid method needs lesser run cycles, particles, and itera-
tions to detect fault locations and that too with a better effi-
ciency than conventional DE. It can also be observed that the
processing time of the hybrid method is much lesser than
the previous existing methods. Consequently, the proposed
method can be used for fault detection in nonuniformly
excited linear antenna array.

4. Conclusion

The present article proposes a binary sequence-based evo-
lutionary algorithm-inspired approach of fault detection in
a nonuniformly excited linear antenna array. To approxi-
mate the faulty radiation pattern, the differential evolution
method was applied as a representative evolutionary algo-
rithm. Following that, binary sequencing with optimized
excitation weights was used to generate the final array
pattern. The effectiveness of the proposed method has
been demonstrated using a 2-element fault in a 12-
element linear antenna array and a 7-element fault in a
20-element linear antenna array. The simulation results
show that the method successfully detects flaws in both
12-element and 20-element linear antenna array of isotropic
radiators using only 1/10th number of run cycle, particles,
and iterations compared to the previous approaches. This
approach can also be expanded to include beam-steered
linear antenna array and planar antenna array layouts
as well.

Data Availability

Database is not publicly available. However, data will be
made available on request.

Table 1: Comparative parametric setup for DE algorithm.

Optimization method Array size Failure type
Run cycles
required

Iterations
required

Particles
required

Differential evolution (DE)
method

12 elements 3rd, 7th 10 1000 100

20 elements
3rd, 5th, 6th, 13th, 15th, 16th,

18th
10 1000 100

Hybrid method (proposed)
12 elements 3rd, 7th 1 100 10

20 elements
3rd, 5th, 6th, 13th, 15th, 16th,

18th
1 100 10

Table 2: Results of fault detection using different optimization algorithms.

Optimization method Array size Fault position
Run cycles
required

Detection
efficiency

Average processing
time (s)

Differential evolution (DE)
method

12 elements (design instance-I) 3rd, 7th 10 50% 594.03

20 elements (design instance-II) 3rd, 5th, 6th, 13th, 15th, 16th, 18th 10 71.4% 972.21

Hybrid method (proposed)
12 elements (design instance-I) 3rd, 7th 1

100%
4.53

20 elements (design instance-II) 3rd, 5th, 6th, 13th, 15th, 16th, 18th 1 28.92

Table 3: Summary of excitation amplitudes.

Design instance Excitation weight using DE
Proposed method

Initial binary sequence
Final binary
sequence

Final excitation weight

Design
instance-I

0.992, 0.96, 0, 0.843, 0.746, 0.198,
0.98, 1.18, 0.499, 0.13, 0.71, 0.55

0.82, 0.92, 0.124, 0.65, 0.48, 0.62, 0.24,
1.01, 0.75, 0.56, 0.68, 0.72

1, 1, 0, 1, 1, 1, 0, 1,
1, 1, 1, 1

1.49, 1.16, 0, 1.77, 1.985, 2.098, 0,
1.985, 1.77, 1.49, 1.16, 1.49

Design
instance-II

1.01, 0.89, 0, 0.65, 0.297, 0, 1.338,
0.78, 1.08, 1.6, 0.56, 0.595, 0, 0.6,

0.134, 0, 0.85, 0, 0.156, 1.44

0.41, 0.7, 0.31, 0.57 0.19, 0.02, 0.934,
0.48, 0.98, 0.564, 0.67, 0.63, 0.28, 0.46,

0.11, 0.22 0.87, 0.05, 0.56, 0.86

1, 1, 0, 1, 0, 0, 1, 1,
1, 1, 1, 1, 0, 1, 0, 0,

1, 0, 1, 1

1.265, 0.587, 0, 0.814, 0, 0, 1.098
1.163, 1.21, 1.23, 1.23, 1.21, 0, 1.098,

0, 0, 0.814, 0, 0.587, 1.265
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